1
|
Brek T, Gohal GA, Yasir M, Azhar EI, Al-Zahrani IA. Meningitis and Bacteremia by Unusual Serotype of Salmonella enterica Strain: A Whole Genome Analysis. Interdiscip Perspect Infect Dis 2024; 2024:3554734. [PMID: 38558876 PMCID: PMC10980553 DOI: 10.1155/2024/3554734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Background Although meningitis caused by Salmonella species is relatively rare and accounts for <1% of the confirmed cases in neonates, it is associated with case complications and fatality rates up to 50-70% when compared to other forms of Gram-negative bacilli meningitis. Objectives We conducted an investigation into the first reported case of neonatal meningitis caused by nontyphoidal S. enterica in Jazan, a region in the southwestern part of Saudi Arabia. Methods CSF and blood culture were collected from a female neonate patient to confirm the presence of bacterial meningitis. WGS was conducted to find out the comprehensive genomic characterization of S. enterica isolate. Results A 3-week-old infant was admitted to a local hospital with fever, poor feeding, and hypoactivity. She was diagnosed with Salmonella meningitis and bacteremia caused by S. enterica, which was sensitive to all antimicrobials tested. WGS revealed the specific strain to be S. enterica serotype Johannesburg JZ01, belonging to ST515 and cgMLST 304742. Conclusions We presented a genomic report of rare case of NTS meningitis in an infant who is living in a rural town in Jazan region, Saudi Arabia. Further research is required to understand the impact of host genetic factors on invasive nontyphoidal Salmonella infection.
Collapse
Affiliation(s)
- Thamer Brek
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Public Health Laboratory, The Regional Laboratory and the Central Blood Bank, Jazan Health Directorate, Jazan, Saudi Arabia
| | - Gassem A. Gohal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Yasir
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I. Azhar
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A. Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Novel Salmonella Variant Associated with Mortality in Two Great Spotted Woodpeckers (Dendrocopos major). J Wildl Dis 2019. [DOI: 10.7589/2018-08-191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Clinical features of children with nontyphoidal Salmonella bacteremia: A single institution survey in rural Japan. PLoS One 2017; 12:e0176990. [PMID: 28599007 PMCID: PMC5466273 DOI: 10.1371/journal.pone.0176990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/20/2017] [Indexed: 11/19/2022] Open
Abstract
Nontyphoidal Salmonella (NTS) can cause bacterial enterocolitis. Although some children with NTS infection develop bacteremia, its clinical manifestations have not been discussed adequately. Therefore, we examined children with NTS bacteremia. We retrospectively examined the medical records of 15 patients aged less than 15 years. Salmonella spp. were detected in the blood cultures of these patients between 1991 and 2014. We divided an additional sample group of 34 patients diagnosed with an NTS infection between 2005 and 2014, into 2 groups. Group bacteremia (B) included patients in whose blood cultures Salmonella spp. were detected, and group non-bacteremia (NB) included patients in whom Salmonella infection was not detected. We compared each group using Wilcoxon test and Fisher’s exact test. The number of patients with fever, diarrhea, or abdominal pain was 15 (100%), 13 (87%), and 9 (60%), respectively, in the first sample of patients. However, vomiting and bloody stool were observed in only 5 patients (33%). More than 70% of patients exhibited a reduced white blood cell count, while C-reactive protein levels were variable in the patients. Salmonella spp. were detected via stool culture in 10 patients (67%). Diarrhea persisted for more than 4 days more frequently in group B than group NB (p = 0.004). The number of patients whose fever persisted for more than 4 days was significantly higher in group B than group NB (p = 0.030). Therefore, if NTS bacteremia is suspected, blood cultures should be collected and antibiotics should be initiated in cases with diarrhea or fever for more than 4 days. Furthermore, a negative stool culture result does not preclude the possibility of NTS bacteremia.
Collapse
|
4
|
Chin'ombe N, Ruhanya V. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines. Open Virol J 2013; 7:121-6. [PMID: 24478808 PMCID: PMC3905348 DOI: 10.2174/1874357901307010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022] Open
Abstract
HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV
vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be
harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity.
These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic
compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering
expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the
studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of
the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice)
and are yet to reach human trials.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe ; Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Vurayai Ruhanya
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
5
|
The Salmonella enterica serotype Typhi Vi capsular antigen is expressed after the bacterium enters the ileal mucosa. Infect Immun 2009; 78:527-35. [PMID: 19901065 DOI: 10.1128/iai.00972-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica serotype Typhi, the etiological agent of typhoid fever, produces the Vi capsular antigen, a virulence factor absent in Salmonella enterica serotype Typhimurium. Previous studies suggest that the capsule-encoding viaB locus reduces inflammatory responses in intestinal tissue; however, there are currently no data regarding the in vivo expression of this locus. Here we implemented direct and indirect methods to localize and detect Vi antigen expression within polarized intestinal epithelial cells and in the bovine ileal mucosa. We report that tviB, a gene necessary for Vi production in S. Typhi, was significantly upregulated during invasion of intestinal epithelial cells in vitro. During infection of bovine ligated loops, tviB was expressed at levels significantly higher in calf tissue than those in the inoculum. The presence of the Vi capsular antigen was detected in calf ileal tissue via fluorescence microscopy. Together, these results support the concept that expression of the Vi capsular antigen is induced when S. Typhi transits from the intestinal lumen into the ileal mucosa.
Collapse
|
6
|
Acid pre-adaptation enhances virulence of Salmonella enterica serovar Typhimurium dam mutant. ACTA ACUST UNITED AC 2008; 57:358-62. [PMID: 18456425 DOI: 10.1016/j.patbio.2008.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 02/28/2008] [Indexed: 11/21/2022]
Abstract
It is well established that success or failure of bacterial pathogens during infection relies upon its ability to overcome many lethal environments in the host such as acidity, osmolarity and bile salts. In the present study, we have studied the effects of acid adaptation on the virulence of Salmonella enterica serovar Typhimurium dam mutant. Our results indicated that LD(50) of adapted strains were lower than those of control strains. Also, the in vivo assays have shown that the development of a systemic infection is slower for control strains than for adapted strains. In addition, the number of acid-adapted mutants colonizing spleen and liver is higher than control strains. Adhesion and invasion experiments were performed in order to compare the pathogenicity of Salmonella. No significant differences were shown between pre-treated and non-adapted strains. According to these results, we report that acid adaptation of Salmonella enterica serovar Typhimurium dam mutants can increase their in vivo virulence in mice.
Collapse
|
7
|
PARK S, BIRKHOLD S, KUBENA L, NISBET D, RICKE S. SURVIVAL OF A SALMONELLA TYPHIMURIUM POULTRY MARKER STRAIN ADDED AS A DRY INOCULUM TO ZINC AND SODIUM ORGANIC ACID AMENDED FEEDS. J Food Saf 2003. [DOI: 10.1111/j.1745-4565.2003.tb00369.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kim W, Surette MG. Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online 2003; 5:189-196. [PMID: 14615815 PMCID: PMC248473 DOI: 10.1251/bpo61] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 09/09/2003] [Accepted: 09/10/2003] [Indexed: 01/29/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is capable of swarming over semi-solid surfaces. Although its swarming behavior shares many readily observable similarities with other swarming bacteria, the phenomenon remains somewhat of an enigma in this bacterium since some attributes skew away from the better characterized systems. Swarming is quite distinct from the classic swimming motility, as there is a prerequisite for cells to first undergo a morphological transformation into swarmer cells. In some organisms, swarming is controlled by quorum sensing, and in others, swarming has been shown to be coupled to increased expression of important virulence factors. Swarming in serovar Typhimurium is coupled to elevated resistance to a wide variety of structurally and functionally distinct classes of antimicrobial compounds. As serovar Typhimurium differentiates into swarm cells, the pmrHFIJKLM operon is up-regulated, resulting in a more positively charged LPS core. Furthermore, as swarm cells begin to de-differentiate, the pmr operon expression is down-regulated, rapidly reaching the levels observed in swim cells. This is one potential mechanism which confers swarm cells increased resistance to antibiotics such as the cationic antimicrobial peptides. However, additional mechanisms are likely associated with the cells in the swarm state that confer elevated resistance to such a broad spectrum of antimicrobial agents.
Collapse
Affiliation(s)
- Wook Kim
- Department of Microbiology and Infectious Diseases and
| | - Michael G. Surette
- Department of Microbiology and Infectious Diseases and
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1. Canada
| |
Collapse
|
9
|
Takaya A, Suzuki M, Matsui H, Tomoyasu T, Sashinami H, Nakane A, Yamamoto T. Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Infect Immun 2003; 71:690-6. [PMID: 12540547 PMCID: PMC145356 DOI: 10.1128/iai.71.2.690-696.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the pathogenesis of Salmonella enterica serovar Typhimurium infections in mice have revealed the presence of two prominent virulence characteristics-the invasion of the nonphagocytic cells to penetrate the intestinal epithelium and the proliferation within host phagocytic cells to cause a systemic spread and the colonization of host organs. We have recently demonstrated that the ATP-dependent Lon protease of S. enterica serovar Typhimurium negatively regulates the efficiency of invasion of epithelial cells and the expression of invasion genes (A. Takaya et al., J. Bacteriol. 184:224-232, 2002). This study was performed to reveal the contribution of the Lon protease to the virulence of S. enterica serovar Typhimurium in mice. Determination of 50% lethal doses for the lon disruption mutant and wild-type strain revealed that the mutant was highly attenuated when administered either orally or intraperitoneally to BALB/c mice. The mutant was also found to be able to reach extraintestinal sites but unable to proliferate efficiently within the spleen and cause lethal systemic disease of mice. Macrophage survival assays revealed that the lon disruption mutant could not survive or proliferate within murine macrophages. In addition, the mutant showed extremely increased susceptibility to hydrogen peroxide, which contributes to the bactericidal capacity of phagocytes. The mutant also showed increased sensitivity to acidic conditions. Taken together, the impaired ability of the lon disruption mutant to survive and grow in macrophages could be due to the enhanced susceptibility to the oxygen-dependent killing mechanism associated with respiratory burst and the low phagosomal pH. These results suggest that the Lon protease is essentially involved in the systemic infection of mice with S. enterica serovar Typhimurium, which can be fatal. Of further interest is the finding that the lon disruption mutant persists in the BALB/c mice for long periods without causing an overwhelming systemic infection.
Collapse
Affiliation(s)
- Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
PARK S, WOODWARD C, BIRKHOLD S, KUBENA L, NISBET D, RICKE S. IN VITRO COMPARISON OF ANAEROBIC AND AEROBIC GROWTH RESPONSE OF SALMONELLA TYPHIMURIUM TO ZINC ADDITION. J Food Saf 2002. [DOI: 10.1111/j.1745-4565.2002.tb00343.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Beuzón CR, Unsworth KE, Holden DW. In vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence. Infect Immun 2001; 69:7254-61. [PMID: 11705895 PMCID: PMC98809 DOI: 10.1128/iai.69.12.7254-7261.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many virulence factors are required for Salmonella enterica serovar Typhimurium to replicate intracellularly and proliferate systemically within mice. In this work, we have carried out genetic analyses in vivo to determine the functional relationship between two major virulence factors necessary for systemic infection by S. enterica serovar Typhimurium: the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS) and the PhoP-PhoQ two-component regulatory system. Although previous work suggested that PhoP-PhoQ regulates SPI-2 TTSS gene expression in vitro, in vivo competitive analysis of mutant strains indicates that these systems contribute independently to S. typhimurium virulence. Our results also suggest that mutation of phoP may compensate partially for defects in the SPI-2 TTSS by deregulating SPI-1 TTSS expression. These results provide an explanation for previous reports showing an apparent functional overlap between these two systems in vitro.
Collapse
Affiliation(s)
- C R Beuzón
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College School of Medicine, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
12
|
Yamamoto T, Sashinami H, Takaya A, Tomoyasu T, Matsui H, Kikuchi Y, Hanawa T, Kamiya S, Nakane A. Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 2001; 69:3164-74. [PMID: 11292737 PMCID: PMC98273 DOI: 10.1128/iai.69.5.3164-3174.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enteric pathogen Salmonella enterica serovar Typhimurium, similar to other facultative intracellular pathogens, has been shown to respond to the hostile conditions inside macrophages of the host organism by producing a set of stress proteins that are also induced by various environmental stresses. The stress-induced ClpXP protease is a member of the ATP-dependent proteases, which are known to be responsible for more than 90% of all proteolysis in Escherichia coli. To investigate the contribution of the ClpXP protease to the virulence of serovar Typhimurium we initially cloned the clpP and clpX operon from the pathogenic strain serovar Typhimurium chi3306 and then created insertional mutations in the clpP and/or clpX gene. The Delta clpP and Delta clpX mutants were used to inoculate BALB/c mice by either the intraperitoneal or the oral route and found to be limited in their ability to colonize organs of the lymphatic system and to cause systemic disease in the host. A variety of experiments were performed to determine the possible reasons for the loss of virulence. An oxygen-dependent killing assay using hydrogen peroxide and paraquat (a superoxide anion generator) and a serum killing assay using murine serum demonstrated that all of the serovar Typhimurium Delta clpP and Delta clpX mutants were as resistant to these killing mechanisms as the wild-type strain. On the other hand, the macrophage survival assay revealed that all these mutants were more sensitive to the intracellular environment than the wild-type strain and were unable to grow or survive within peritoneal macrophages of BALB/c mice. In addition, it was revealed that the serovar Typhimurium ClpXP-depleted mutant was not completely cleared but found to persist at low levels within spleens and livers of mice. Interferon gamma-deficient mice and tumor necrosis factor alpha-deficient mice failed to survive the attenuated serovar Typhimurium infections, suggesting that both endogenous cytokines are essential for regulation of persistent infection with serovar Typhimurium.
Collapse
Affiliation(s)
- T Yamamoto
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
KONNAI S, HTSUKA H, SAKAMOTO T, NAKAOKA Y, KIKU Y, FUKUDA S, KOIWA M, TAKAHASHI J, TANIYAMA H, YOKOMIZO Y, OKADA H, YOSHINO T. Inflammatory Cytokines and Antigen-Responsive Mononuclear Cells in Peripheral Blood of Cattle Infected with Salmonella Takoradi. J Vet Med Sci 2001. [DOI: 10.1292/jvms.63.859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Satoru KONNAI
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University
| | - Hiromichi HTSUKA
- Department of Veterinary Teaching Hospital, Large Animal Clinical Center, School of Veterinary Medicine, Rakuno Gakuen University
| | | | | | - Yukio KIKU
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University
| | - Sigeo FUKUDA
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University
| | - Masateru KOIWA
- Department of Veterinary Teaching Hospital, Large Animal Clinical Center, School of Veterinary Medicine, Rakuno Gakuen University
| | - Junkichi TAKAHASHI
- Biomedical Equipment Department, Wako Pure Chemical Industries, Tokyo Office
| | - Hiroyuki TANIYAMA
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University
| | | | - Hiroyuki OKADA
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University
| | - Tomoo YOSHINO
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University
| |
Collapse
|
14
|
Bost KL, Bento JL, Ellington JK, Marriott I, Hudson MC. Induction of colony-stimulating factor expression following Staphylococcus or Salmonella interaction with mouse or human osteoblasts. Infect Immun 2000; 68:5075-83. [PMID: 10948128 PMCID: PMC101742 DOI: 10.1128/iai.68.9.5075-5083.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus and Salmonella spp. are common causes of bone diseases; however, the immune response during such infections is not well understood. Colony-stimulating factors (CSF) have a profound influence on osteoclastogenesis, as well as the development of immune responses following infection. Therefore, we questioned whether interaction of osteoblasts with two very different bacterial pathogens could affect CSF expression by these cells. Cultured mouse and human osteoblasts were exposed to various numbers of S. aureus or Salmonella dublin bacteria, and a comprehensive analysis of granulocyte-macrophage (GM)-CSF, granulocyte (G)-CSF, macrophage (M)-CSF, and interleukin-3 (IL-3) mRNA expression and cytokine secretion was performed. Expression of M-CSF and IL-3 mRNAs by mouse osteoblasts was constitutive and did not increase significantly following bacterial exposure. In contrast, GM-CSF and G-CSF mRNA expression by mouse osteoblasts was dramatically upregulated following interaction with either viable S. aureus or Salmonella. This increased mRNA expression also translated into high levels of GM-CSF and G-CSF secretion by mouse and human osteoblasts following bacterial exposure. Viable S. aureus and Salmonella induced maximal levels of CSF mRNA expression and cytokine secretion compared to UV-killed bacteria. Furthermore, GM-CSF and G-CSF mRNA expression could be induced in unexposed osteoblasts separated by a permeable Transwell membrane from bacterially exposed osteoblasts. M-CSF secretion was increased in cultures of exposed human osteoblasts but not in exposed mouse osteoblast cultures. Together, these studies are the first to define CSF expression and suggest that, following bacterial exposure, osteoblasts may influence osteoclastogenesis, as well as the development of an immune response, via the production of these cytokines.
Collapse
Affiliation(s)
- K L Bost
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA.
| | | | | | | | | |
Collapse
|
15
|
Beuzón CR, Méresse S, Unsworth KE, Ruíz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 2000; 19:3235-49. [PMID: 10880437 PMCID: PMC313946 DOI: 10.1093/emboj/19.13.3235] [Citation(s) in RCA: 482] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A method based on the Competitive Index was used to identify Salmonella typhimurium virulence gene interactions during systemic infections of mice. Analysis of mixed infections involving single and double mutant strains showed that OmpR, the type III secretion system of Salmonella pathogenicity island 2 (SPI-2) and SifA [required for the formation in epithelial cells of lysosomal glycoprotein (lgp)-containing structures, termed Sifs] are all involved in the same virulence function. sifA gene expression was induced after Salmonella entry into host cells and was dependent on the SPI-2 regulator ssrA. A sifA(-) mutant strain had a replication defect in macrophages, similar to that of SPI-2 and ompR(-) mutant strains. Whereas wild-type and SPI-2 mutant strains reside in vacuoles that progressively acquire lgps and the vacuolar ATPase, the majority of sifA(-) bacteria lost their vacuolar membrane and were released into the host cell cytosol. We propose that the wild-type strain, through the action of SPI-2 effectors (including SpiC), diverts the Salmonella-containing vacuole from the endocytic pathway, and subsequent recruitment and maintenance of vacuolar ATPase/lgp-containing membranes that enclose replicating bacteria is mediated by translocation of SifA.
Collapse
Affiliation(s)
- C R Beuzón
- Department of Infectious Diseases, Imperial College School of Medicine, Du Cane Road, London W12 0NN, Electron Microscopy Unit, Queen Charlotte's and Chelsea Hospital, Goldhawk Road, London W6 0XG, UK and Centre d'Immunologie INSERM-CNRS de Ma
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
García-Del Portillo F, Jungnitz H, Rohde M, Guzmán CA. Interaction of Salmonella enterica serotype Typhimurium with dendritic cells is defined by targeting to compartments lacking lysosomal membrane glycoproteins. Infect Immun 2000; 68:2985-91. [PMID: 10768999 PMCID: PMC97514 DOI: 10.1128/iai.68.5.2985-2991.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Accepted: 01/18/2000] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) play a central role in the generation of acquired immunity to infections by pathogenic microorganisms. Salmonella enterica serotype Typhimurium is known to survive and proliferate intracellularly within macrophages and nonphagocytic cells, but no data exist on how this pathogen interacts with DCs. In this report, we show the capacity of serotype Typhimurium to survive within the established mouse DC line CB1. In contrast to the case for the macrophage model, the compartments of DCs containing serotype Typhimurium are devoid of lysosomal membrane glycoproteins and the PhoPQ two-component regulatory system is not essential for pathogen intracellular survival.
Collapse
Affiliation(s)
- F García-Del Portillo
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid-CSIC, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
Sydenham M, Douce G, Bowe F, Ahmed S, Chatfield S, Dougan G. Salmonella enterica serovar typhimurium surA mutants are attenuated and effective live oral vaccines. Infect Immun 2000; 68:1109-15. [PMID: 10678914 PMCID: PMC97255 DOI: 10.1128/iai.68.3.1109-1115.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previously described attenuated TnphoA mutant (BRD441) of Salmonella enterica serovar Typhimurium C5 (I. Miller, D. Maskell, C. Hormaeche, K. Johnson, D. Pickard, and G. Dougan, Infect. Immun. 57:2758-2763, 1989) was characterized, and the transposon was shown to be inserted in surA, a gene which encodes a peptidylprolyl-cis, trans-isomerase. A defined surA deletion mutation was introduced into S. enterica serovar Typhimurium C5 and the mutant strain, named S. enterica serovar Typhimurium BRD1115, was extensively characterized both in vitro and in vivo. S. enterica serovar Typhimurium BRD1115 was found to be defective in the ability to adhere to and invade eukaryotic cells. Furthermore, S. enterica serovar Typhimurium BRD1115 was attenuated by at least 3 log units when administered orally or intravenously to BALB/c mice. Complementation of the mutation with a plasmid carrying the intact surA gene almost completely restored the virulence of BRD1115. In addition, S. enterica serovar Typhimurium BRD1115 demonstrated potential as a vaccine candidate, since mice immunized with BRD1115 were protected against subsequent challenge with S. enterica serovar Typhimurium C5. S. enterica serovar Typhimurium BRD1115 also showed potential as a vehicle for the effective delivery of heterologous antigens, such as the nontoxic, protective fragment C domain of tetanus toxin, to the murine immune system.
Collapse
Affiliation(s)
- M Sydenham
- Medeva Vaccine Development Group, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol 2000; 182:771-81. [PMID: 10633113 PMCID: PMC94342 DOI: 10.1128/jb.182.3.771-781.2000] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Salmonella pathogenicity island 2 (SPI-2) encodes a putative, two-component regulatory system, SsrA-SsrB, which regulates a type III secretion system needed for replication inside macrophages and systemic infection in mice. The sensor and regulator homologs, ssrAB (spiR), and genes within the secretion system, including the structural gene ssaH, are transcribed after Salmonella enters host cells. We have studied the transcriptional regulation of ssrAB and the secretion system by using gfp fusions to the ssrA and ssaH promoters. We found that early transcription of ssrA, after entry into macrophages, is most efficient in the presence of OmpR. An ompR mutant strain does not exhibit replication within cultured macrophages. Furthermore, footprint analysis shows that purified OmpR protein binds directly to the ssrA promoter region. We also show that minimal medium, pH 4.5, induces SPI-2 gene expression in wild-type but not ompR mutant strains. We conclude that the type III secretion system of SPI-2 is regulated by OmpR, which activates expression of ssrA soon after Salmonella enters the macrophage.
Collapse
Affiliation(s)
- A K Lee
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
19
|
Gupta RP, Verma PC, Chaturvedi GC. Experimental salmonellosis in guinea-pigs: haematological and biochemical studies. Vet Res Commun 1999; 23:415-24. [PMID: 10598073 DOI: 10.1023/a:1006369408405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Some haematological and biochemical parameters were studied in guinea-pigs infected intraperitoneally with Salmonella dublin 493 at 1 x 10(6) viable cells per animal. The infected animals showed a rise in temperature within 24 h, followed by depression and loss of body weight. On the 15th day post infection, haematological studies revealed a significant increase in the total leukocyte count due to both lymphocytosis and neutrophilia, and a decrease in the total erythrocyte count and haemoglobin concentration. There was also a significantly higher mean corpuscular volume and lower mean corpuscular haemoglobin concentration, indicating a macrocytic hypochromic anaemia. The infection caused a significant increase in alanine aminotransferase activity and creatinine, blood urea nitrogen and globulin concentrations, and a decrease in albumin and triiodothyronine. There was no significant effect on serum total protein or on thyroxine, or in the activity of aspartate aminotransferase in the serum.
Collapse
Affiliation(s)
- R P Gupta
- Department of Veterinary Pathology, CCS Haryana Agricultural University, Hisar, India
| | | | | |
Collapse
|
20
|
Kawakami T, Kaneko A, Okada N, Imajoh-Ohmi S, Nonaka T, Matsui H, Kawahara K, Danbara H. TTG as the initiation codon of Salmonella slyA, a gene required for survival within macrophages. Microbiol Immunol 1999; 43:351-7. [PMID: 10385201 DOI: 10.1111/j.1348-0421.1999.tb02415.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The slyA gene, which has been implicated in the virulence of Salmonella serovar Typhimurium and its survival in macrophages, is widely distributed among different Salmonella serovars. In this study, we cloned and sequenced the translational initiation region of the slyA gene from nine different serovars and found sequence differences in the previously proposed ATG initiation codon but not in a TTG triplet, another putative initiation codon in the slyA gene. Therefore, we determined the actual translational initiation site of the slyA gene by analyzing slyA genes with defined mutation in either the ATG or TTG sequences in an in vitro translation assay and a quantitative hemolytic assay in Escherichia coli. The replacement of TTG by TTC in the slyA gene significantly reduced both the amount of protein synthesized and the hemolytic activity of a transformed strain of E. coli, while replacement of ATG by ATC had no effect in these assays. In addition, the amino acid sequence analysis of the His-tagged SlyA protein showed that it was identical with the amino acid sequence deduced from the 5' end of the slyA gene with a TTG initiation codon. Our results suggest that TTG serves as the translational initiation codon for the slyA gene of Salmonella.
Collapse
Affiliation(s)
- T Kawakami
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Marriott I, Hammond TG, Thomas EK, Bost KL. Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur J Immunol 1999; 29:1107-15. [PMID: 10229077 DOI: 10.1002/(sici)1521-4141(199904)29:04<1107::aid-immu1107>3.0.co;2-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While Salmonella infects macrophages, this cell population may not be the only one important for disseminating intracellular bacteria from mucosal sites. Dendritic cells (DC) are present in the Peyer's patches and are mobilized following stimulation. Such characteristics would seem to be ideal for the dissemination of an intracellular, mucosal pathogen. However, it has been difficult to obtain sufficient numbers of DC to assess their ability to harbor Salmonella or to monitor DC in vivo. In the present study, this problem has been addressed by expanding DC in vivo using flt3 ligand, followed by the purification of CD11c+ cells using antibody-coated magnetic beads or by fluorescence-activated cell sorting. Salmonella dublin were found to be efficiently internalized, and to survive and replicate within purified CD11c+ DC, and also in CD11c+, CD8alpha+ or CD11c+, CD11b+ DC subpopulations. The ability of Salmonella to enter DC is of similar magnitude to that reported for macrophages, suggesting that this cell population could be an important host cell for dissemination of this pathogen from mucosal sites. Furthermore, infected DC responded to Salmonella by secretion of IL-1, IL-6 and IL-12. As such, these cells may be important sources of these cytokines during the host response against Salmonella infection.
Collapse
Affiliation(s)
- I Marriott
- Department of Biology, University of North Carolina at Charlotte, 28223, USA
| | | | | | | |
Collapse
|
22
|
Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A 1999; 96:2396-401. [PMID: 10051653 PMCID: PMC26795 DOI: 10.1073/pnas.96.5.2396] [Citation(s) in RCA: 586] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, Salmonella spp. were shown to induce apoptosis in infected macrophages. The mechanism responsible for this process is unknown. In this report, we establish that the Inv-Spa type III secretion apparatus target invasin SipB is necessary and sufficient for the induction of apoptosis. Purified SipB microinjected into macrophages led to cell death. Binding studies show that SipB associates with the proapoptotic protease caspase-1. This interaction results in the activation of caspase-1, as seen in its proteolytic maturation and the processing of its substrate interleukin-1beta. Caspase-1 activity is essential for the cytotoxicity. Functional inhibition of caspase-1 activity by acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone blocks macrophage cytotoxicity, and macrophages lacking caspase-1 are not susceptible to Salmonella-induced apoptosis. Taken together, the data demonstrate that SipB functions as an analog of the Shigella invasin IpaB.
Collapse
Affiliation(s)
- D Hersh
- Skirball Institute, Department of Microbiology and Kaplan Cancer Center, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lutwyche P, Cordeiro C, Wiseman DJ, St-Louis M, Uh M, Hope MJ, Webb MS, Finlay BB. Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob Agents Chemother 1998; 42:2511-20. [PMID: 9756749 PMCID: PMC105873 DOI: 10.1128/aac.42.10.2511] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell membranes are relatively impermeable to the antibiotic gentamicin, a factor that, along with the toxicity of gentamicin, precludes its use against many important intracellular bacterial infections. Liposomal encapsulation of this drug was used in order to achieve intracellular antibiotic delivery and therefore increase the drug's therapeutic activity against intracellular pathogens. Gentamicin encapsulation in several dipalmitoylphosphatidylcholine (DPPC) and pH-sensitive dioleoylphosphatidylethanolamine (DOPE)-based carrier systems was characterized. To systematically test the antibacterial efficacies of these formulations, a tissue culture assay system was developed wherein murine macrophage-like J774A.1 cells were infected with bacteria and were then treated with encapsulated drug. Of these formulations, DOPE-N-succinyl-DOPE and DOPE-N-glutaryl-DOPE (70:30;mol:mol) containing small amounts of polyethyleneglycol-ceramide showed appreciable antibacterial activities, killing greater than 75% of intracellular vacuole-resident wild-type Salmonella typhimurium compared to the level of killing of the control formulations. These formulations also efficiently eliminated intracellular infections caused by a recombinant hemolysin-expressing S. typhimurium strain and a Listeria monocytogenes strain, both of which escape the vacuole and reside in the cytoplasm. Control non-pH-sensitive liposomal formulations of gentamicin had poor antibacterial activities. A fluorescence resonance energy transfer assay indicated that the efficacious formulations undergo a pH-dependent lipid mixing and fusion event. Intracellular delivery of the fluorescent molecules encapsulated in these formulations was confirmed by confocal fluorescence microscopy and was shown to be dependent on endosomal acidification. This work shows that encapsulation of membrane-impermeative antibiotics in appropriately designed lipid-based delivery systems can enable their use in treating intracellular infections and details the development of a general assay for testing the intracellular delivery of encapsulated drug formulations.
Collapse
Affiliation(s)
- P Lutwyche
- Inex Pharmaceuticals Corporation, Burnaby, British Columbia, Canada V5J 5J8
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Everest P, Roberts M, Dougan G. Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infect Immun 1998; 66:3355-64. [PMID: 9632605 PMCID: PMC108352 DOI: 10.1128/iai.66.7.3355-3364.1998] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice defective in the ability to produce the tumor necrosis factor alpha p55 receptor (TNFalphap55R) were orally challenged with a number of Salmonella typhimurium HWSH derivatives that differ in virulence. In comparison to TNFalphap55R+/+ mice, TNFalphap55R-/- mice succumbed earlier to challenge with wild-type S. typhimurium HWSH and S. typhimurium HWSH purE. In contrast, TNFalphap55R-/- mice were able to control an S. typhimurium HWSH aroA challenge, although greater numbers of Salmonella organisms were present in the tissues for a longer time period than was observed with TNFalphap55R+/+ mice. Vaccination of normal and TNFalphap55R knockout animals with S. typhimurium HWSH aroA showed that TNFalphap55R-/- mice, unlike TNFalphap55R+/+ mice, were not protected against a virulent S. typhimurium HWSH challenge. Splenocytes from TNFalphap55R-/- mice exhibited a reduced ability to proliferate in the presence of S. typhimurium antigen compared to TNFalphap55R+/+ mice. Thus, TNFalphap55R is essential for controlling Salmonella growth in tissues and for recall of immunity in murine salmonellosis.
Collapse
Affiliation(s)
- P Everest
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
25
|
Braun L, Ohayon H, Cossart P. The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol Microbiol 1998; 27:1077-87. [PMID: 9535096 DOI: 10.1046/j.1365-2958.1998.00750.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
InIB is one of the two Listeria monocytogenes invasion proteins required for bacterial entry into mammalian cells. Entry into human epithelial cells such as Caco-2 requires InIA, whereas InIB is needed for entry into cultured hepatocytes and some epithelial or fibroblast cell lines such as Vero, HEp-2 and HeLa cells. InIB-mediated entry requires tyrosine phosphorylation, cytoskeletal rearrangements and activation of the host protein phosphoinositide (PI) 3-kinase, probably in response to engagement of a receptor. In this study, we demonstrate for the first time that InIB is sufficient to promote internalization. Indeed, coating of normally non-invasive bacteria or inert latex beads with InIB leads to internalization into mammalian cells. In addition, a soluble form of InIB also appears to promote uptake of non-invasive bacteria, albeit at a very low level. Similar to entry of L. monocytogenes, uptake of InIB-coated beads required tyrosine phosphorylation in the host cell, PI 3-kinase activity and cytoskeletal reorganization. Taken together, these data indicate that InIB is sufficient for entry of L. monocytogenes into host cells and suggest that this protein is an effector of host cell signalling pathways.
Collapse
Affiliation(s)
- L Braun
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
26
|
Richter-Dahlfors A, Buchan AM, Finlay BB. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 1997; 186:569-80. [PMID: 9254655 PMCID: PMC2199036 DOI: 10.1084/jem.186.4.569] [Citation(s) in RCA: 384] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Salmonella typhimurium is considered a facultative intracellular pathogen, but its intracellular location in vivo has not been demonstrated conclusively. Here we describe the development of a new method to study the course of the histopathological processes associated with murine salmonellosis using confocal laser scanning microscopy of immunostained sections of mouse liver. Confocal microscopy of 30-micron-thick sections was used to detect bacteria after injection of approximately 100 CFU of S. typhimurium SL1344 intravenously into BALB/c mice, allowing salmonellosis to be studied in the murine model using more realistic small infectious doses. The appearance of bacteria in the mouse liver coincided in time and location with the infiltration of neutrophils in inflammatory foci. At later stages of disease the bacteria colocalized with macrophages and resided intracellularly inside these macrophages. Bacteria were cytotoxic for phagocytic cells, and apoptotic nuclei were detected immunofluorescently, whether phagocytes harbored intracellular bacteria or not. These data argue that Salmonella resides intracellularly inside macrophages in the liver and triggers cell death of phagocytes, processes which are involved in disease. This method is also applicable to other virulence models to examine infections at a cellular and subcellular level in vivo.
Collapse
Affiliation(s)
- A Richter-Dahlfors
- Biotechnology Laboratory, University of British Columbia, Vancouver, B.C., Canada V6T 1Z3
| | | | | |
Collapse
|
27
|
Abstract
The genetic determinants that confer upon Salmonella the ability to enter non-phagocytic cells are largely encoded in a pathogenicity island located at centisome 63 of the bacterial chromosome. Molecular genetic analysis has revealed that this region encodes a specialized protein secretion system that mediates the export and/or translocation of putative signaling proteins into the host cell. This protein secretion system, which has been termed type III or contact-dependent, has also been identified in other plant and animal pathogens that have, in common, the ability to interact with eukaryotic host cells in an intimate manner.
Collapse
Affiliation(s)
- C M Collazo
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, 11794-5222, USA
| | | |
Collapse
|
28
|
Abstract
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics.
Collapse
Affiliation(s)
- B B Finlay
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
29
|
Finlay BB. Interactions of enteric pathogens with human epithelial cells. Bacterial exploitation of host processes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 412:289-93. [PMID: 9192032 DOI: 10.1007/978-1-4899-1828-4_48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many bacterial pathogens interact with surfaces on the body resulting in disease. These interactions are usually tightly regulated. Several of these pathogens also exploit host processed which contribute to their pathogenesis. Enteropathogenic existing epithelial cells using sophisticated mechanisms that exploit existing epithelial signal transduction pathways and host cytoskeleton components. Unlike EPEC, Salmonella species actually enter into epithelial cells (invade) and function as intracellular parasites. During invasion Salmonella exploit various host signal transduction pathways and cause cytoskeletal rearrangements. Salmonella enter an intracellular vacuole which remains separated from the main epithelial cell, Salmonella species trigger the formation of a novel intracellular organelle which is associated with intracellular growth. Comparison of the virulence mechanisms used by these two pathogens and their exploitation of epithelial cells illustrates several principles used by bacterial pathogens to cause disease.
Collapse
Affiliation(s)
- B B Finlay
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Lebrun M, Mengaud J, Ohayon H, Nato F, Cossart P. Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol Microbiol 1996; 21:579-92. [PMID: 8866480 DOI: 10.1111/j.1365-2958.1996.tb02566.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Entry of Listeria monocytogenes into cultured epithelial cells requires production of internalin, a protein with features characteristic of some Gram-positive bacterial surface proteins, in particular an LPXTG motif preceding a hydrophobic sequence and a few basic residues at its C-terminal end. By immunofluorescence and immunogold labelling, we show that in wild-type L. monocytogenes, internalin is present on the cell surface and has a polarized distribution similar to that of ActA, another surface protein of L. monocytogenes involved in actin assembly. Through a genetic analysis, we establish that the C-terminal region of internalin is necessary for cell-surface association, and that although internalin is partially released in the culture medium, its location on the bacterial surface is required to promote entry. Finally, using a 'domain-swapping' strategy-replacement of the cell wall anchor of IniA by the membrane anchor of ActA- we show that the reduced ability to adhere and enter cells of strains expressing IniA-ActA correlates with a lower amount of surface-exposed internalin. Taken together, these results suggest that internalin exposed on the bacterial surface mediates direct contact between the bacterium and the host cell.
Collapse
Affiliation(s)
- M Lebrun
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Ochman H, Soncini FC, Solomon F, Groisman EA. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 1996; 93:7800-4. [PMID: 8755556 PMCID: PMC38828 DOI: 10.1073/pnas.93.15.7800] [Citation(s) in RCA: 505] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have identified a region unique to the Salmonella typhimurium chromosome that is essential for virulence in mice. This region harbors at least three genes: two (spiA and spiB) encode products that are similar to proteins found in type III secretion systems, and a third (spiR) encodes a putative regulator. A strain with a mutation in spiA was unable to survive within macrophages but displayed wild-type levels of epithelial cell invasion. The culture supernatants of the spi mutants lacked a modified form of flagellin, which was present in the supernatant of the wild-type strain. This suggests that the Spi secretory apparatus exports a protease, or a protein that can alter the activity of a secreted protease. The "pathogenicity island" harboring the spi genes may encode the virulence determinants that set Salmonella apart from other enteric pathogens.
Collapse
Affiliation(s)
- H Ochman
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Salmonella spp. can enter into non-phagocytic cells, a property that is essential for their pathogenicity. Recently, considerable progress has been made in the understanding of the molecular genetic bases of this process. It is now evident that Salmonella entry functions are largely encoded on a 35-40 kb region of the Salmonella chromosome located at centisome 63. The majority of the loci in this region encode components of a type III or contact-dependent secretion system homologous to those described in a variety of animal and plant-pathogenic bacteria as well as a number of proteins that require this system for their export to the extracellular environment. A somewhat unexpected finding has been the remarkable homology between the Salmonella and Shigella proteins that mediate the entry of these organisms into cultured epithelial cells.
Collapse
Affiliation(s)
- J E Galán
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794-5222, USA.
| |
Collapse
|
33
|
Shea JE, Hensel M, Gleeson C, Holden DW. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 1996; 93:2593-7. [PMID: 8637919 PMCID: PMC39842 DOI: 10.1073/pnas.93.6.2593] [Citation(s) in RCA: 581] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mapping the insertion points of 16 signature-tagged transposon mutants on the Salmonella typhimurium chromosome led to the identification of a 40-kb virulence gene cluster at minute 30.7. This locus is conserved among all other Salmonella species examined but is not present in a variety of other pathogenic bacteria or in Escherichia coli K-12. Nucleotide sequencing of a portion of this locus revealed 11 open reading frames whose predicted proteins encode components of a type III secretion system. To distinguish between this and the type III secretion system encoded by the inv/spa invasion locus known to reside on a pathogenicity island, we refer to the inv/spa locus as Salmonella pathogenicity island (SPI) 1 and the new locus as SPI2. SPI2 has a lower G+C content than that of the remainder of the Salmonella genome and is flanked by genes whose products share greater than 90% identity with those of the E. coli ydhE and pykF genes. Thus SPI2 was probably acquired horizontally by insertion into a region corresponding to that between the ydhE and pykF genes of E. coli. Virulence studies of SPI2 mutants have shown them to be attenuated by at least five orders of magnitude compared with the wild-type strain after oral or intraperitoneal inoculation of mice.
Collapse
Affiliation(s)
- J E Shea
- Department of Infectious Diseases and Bacteriology, Royal Postgraduate Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
34
|
Ludwig A, Tengel C, Bauer S, Bubert A, Benz R, Mollenkopf HJ, Goebel W. SlyA, a regulatory protein from Salmonella typhimurium, induces a haemolytic and pore-forming protein in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:474-86. [PMID: 8544813 DOI: 10.1007/bf00290573] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A chromosomal fragment from Salmonella typhimurium, when cloned in Escherichia coli, generates a haemolytic phenotype. This fragment carries two genes, termed slyA and slyB. The expression of slyA is sufficient for the haemolytic phenotype. The haemolytic activity of E. coli carrying multiple copies of slyA is found mainly in the cytoplasm, with some in the periplasm of cells grown to stationary phase, but overexpression of SlyB, a 15 kDa lipoprotein probably located in the outer membrane, may lead to enhanced, albeit unspecific, release of the haemolytic activity into the medium. Polyclonal antibodies raised against a purified SlyA-HlyA fusion protein identified the overexpressed monomeric 17 kDa SlyA protein mainly in the cytoplasm of E. coli grown to stationary phase, although smaller amounts were also found in the periplasm and even in the culture supernatant. However, the anti-SlyA antibodies reacted with the SlyA protein in a periplasmic fraction that did not contain the haemolytic activity. Conversely, the periplasmic fraction exhibiting haemolytic activity did not contain the 17 kDa SlyA protein. Furthermore, S. typhimurium transformed with multiple copies of the slyA gene did not show a haemolytic phenotype when grown in rich culture media, although the SlyA protein was expressed in amounts similar to those in the recombinant E. coli strain. These results indicate that SlyA is not itself a cytolysin but rather induces in E. coli (but not in S. typhimurium) the synthesis of an uncharacterised, haemolytically active protein which forms pores with a diameter of about 2.6 nm in an artificial lipid bilayer. The SlyA protein thus seems to represent a regulation factor in Salmonella, as is also suggested by the similarity of the SlyA protein to some other bacterial regulatory proteins. slyA- and slyB-related genes were also obtained by PCR from E. coli, Shigella sp. and Citrobacter diversus but not from several other gram-negative bacteria tested.
Collapse
Affiliation(s)
- A Ludwig
- Biozentrum, Universität Würzburg, Theodor-Boveri-Institut, Mikrobiologie Am Hubland, Germany
| | | | | | | | | | | | | |
Collapse
|