1
|
Sundar LS, Wu JY, Tu YK, Chen HW, Chao YY. Mitigation of salinity stress in salt-sensitive rice seedlings via phytohormone synthesis, antioxidant defence enhancement, and ion balance regulation induced by 5-aminolevulinic acid-producing purple non-sulfur bacteria. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:388-400. [PMID: 39898519 DOI: 10.1111/plb.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Salt stress, intensified by climate change, is a significant threat to rice production, a vital staple for over half the world's population. This makes addressing salt stress in rice cultivation a pressing issue. This study investigates the role of PNSB as a biostimulant in enhancing salinity tolerance of salt-sensitive rice seedlings, addressing existing gaps in knowledge on physiological and biochemical impacts under saline stress. We inoculated salt-sensitive rice seedlings with PNSB under 80 mmol NaCl stress in a controlled environment. After a 5-day treatment, we conducted biochemical and physiological analyses. Salinity stress induced oxidative stress in salt-sensitive rice seedlings. However, application of 5-ALA-producing PNSB mitigated stress, elevated 5-ALA in shoots by 23%, roots by 190.5%, and chlorophyll content by 105.0%. PNSB treatment also reduced superoxide radicals (O2 •-) and H2O2 by 26.7% and 38.7%, respectively, related to increased activity of the antioxidant enzymes, SOD (142.9%) and APX (41.8%). This led to lower electrolyte leakage (25.2%) and MDA (17.4%), indicating reduced ROS. Additionally, proline and soluble sugar content decreased by 29.2% and 72.5%, respectively. PNSB treatment also reduced sodium to potassium ion content in both shoots (31.2%) and roots (27.4%) of salt-stressed rice seedlings. These findings suggest that PNSB may facilitate nutrient solubilization and ion balance, thereby mitigating the adverse effects of salinity, with potential implications for sustainable agricultural practices to improve crop yield in saline environments. Future research should focus on elucidating the specific biochemical pathways involved in PNSB-mediated stress tolerance and exploring their application across diverse crop species and varying stress conditions.
Collapse
Affiliation(s)
- L S Sundar
- Department of Crop Science, College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - J-Y Wu
- Department of Plant Industry, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Y-K Tu
- Crop Genetic Resources and Biotechnology Division, Ministry of Agriculture, Taiwan Agricultural Research Institute, Taichung City, Taiwan
| | - H-W Chen
- Crop Genetic Resources and Biotechnology Division, Ministry of Agriculture, Taiwan Agricultural Research Institute, Taichung City, Taiwan
| | - Y-Y Chao
- Department of Plant Industry, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| |
Collapse
|
2
|
Er-Rqaibi S, Lyamlouli K, El Yacoubi H, El Boukhari MEM. Effect of crude extract and polysaccharides derived from Fucus spiralis on radish plants Raphanus sativus L. agrophysiological traits under drought stress. BMC PLANT BIOLOGY 2025; 25:46. [PMID: 39800701 PMCID: PMC11727402 DOI: 10.1186/s12870-024-06023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.1% (w/v) respectively on radish plants Raphanus sativus L. subjected to varying levels of drought stress, specifically 80% of field capacity (FC) for no stress, 60% FC for moderate stress, and 40% FC for severe stress. Our examination of growth parameters, along with physiological and biochemical characteristics, revealed that both CE and PS increased the fresh weight over the control by 47.43% and 64% at 40% FC and 12.5% and 38% at 60% FC respectively. Under stress (40% FC), the application of CE and PS decreased proline content of radish leaves by 23.45% and 6.46% respectively in comparison with the control. Furthermore, PS treatment caused an increase of the alkaline phosphatase and urease activity in the soil by 182.5% and 34.6% respectively. CE and PS treatments led to decreased sugar content and total phenolics levels. Notably, lipid peroxidation was reduced in stressed plants treated with both CE and PS, with PS treatment yielding lower concentrations (3.75 nmol MDA.g- 1 FW at 40% FC). Overall, F. spiralis extracts interacted through several mechanisms using various compounds to mitigate the negative effects of drought stress on radish plants. These results demonstrate that seaweed extracts could be adopted in integrated production systems to boost food productivity under harsh climatic conditions.
Collapse
Affiliation(s)
- Safaa Er-Rqaibi
- Agrobiosciences Laboratory, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Natural Resources & Sustainable Development Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Karim Lyamlouli
- Agrobiosciences Laboratory, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Houda El Yacoubi
- Natural Resources & Sustainable Development Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohammed El Mehdi El Boukhari
- Agrobiosciences Laboratory, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
3
|
Zhang X, Ma H, Jiang P, Chen Y, Ma W, Chen P, Ma H, Li X, Ma J, Sun Q. Transcriptome and metabolism study reveals impact of nitrogen fertilizer on triticale. PROTOPLASMA 2025; 262:179-190. [PMID: 39302434 DOI: 10.1007/s00709-024-01986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Autumn-sown forage triticale can effectively leverage the optimal light and heat conditions in Ningxia, a region that boasts an abundance of light and heat resources sufficient for a single seasonal crop, but limited for two seasons. This not only fully utilizes the limited growing season but also significantly improves grass yield and economic efficiency per unit area. To enhance triticale yield in low-light and low-temperature environments, we investigated the impact of applying different concentrations of nitrogen fertilizer on triticale forage yield. Our findings revealed that nitrogen fertilizer application significantly increased triticale biomass, with the N4 treatment group exhibiting the most profound effect. To further explore the mechanisms behind nitrogen fertilizer's regulation of triticale growth and development, we conducted transcriptomic and metabolomic studies. These studies revealed that nitrogen fertilizer application significantly heightened transcription activity and protein synthesis in triticale, fostering the development of its seeds. Additionally, appropriate concentrations of nitrogen fertilizer significantly promoted photosynthesis. Metabolomic analysis revealed that nitrogen fertilizer application increased the levels of proline and O-phosphoethanolamine, enhancing triticale's stress resistance and supporting its growth and development under adverse conditions.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
- Guyuan Branch, Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, 756009, Ningxia, China
| | - Hongxiu Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Peng Jiang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Yongwei Chen
- Agricultural Technology Extension and Service Center of Ningxia Agricultural Reclamation Management Bureau, Yinchuan, 7560021, Ningxia, China
| | - Wenli Ma
- Agricultural Technology Extension and Service Center of Ningxia Agricultural Reclamation Management Bureau, Yinchuan, 7560021, Ningxia, China
| | - Ping Chen
- Agricultural Technology Extension and Service Center of Ningxia Agricultural Reclamation Management Bureau, Yinchuan, 7560021, Ningxia, China
| | - Hongcai Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Xuexue Li
- School of Agriculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Jiale Ma
- School of Agriculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Quan Sun
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China.
| |
Collapse
|
4
|
Hanif S, Farooq S, Kiani MZ, Zia M. Surface modified ZnO NPs by betaine and proline build up tomato plants against drought stress and increase fruit nutritional quality. CHEMOSPHERE 2024; 362:142671. [PMID: 38906183 DOI: 10.1016/j.chemosphere.2024.142671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Drought stress is a serious challenge for global food production. Nanofertilizers and nanocomposites cope with such environmental stresses and also increase nutritional contents of fruits. An in vitro experiment was designed to use Zinc Oxide Nanoparticles (ZnO NPs) primed with Proline and Betaine (ZnOP and ZnOBt NPs) at 50 and 100 mg/kg soil against drought stress in Tomato (Solanum lycopersicum) plants. Plant morphological, biochemical, and fruit nutritional quality were accessed. Maximum plant height was observed under the treatment of ZnOP50 (1.09 m) and ZnO 100 (1.06 m). ZnOP and ZnOBt also improved the chlorophyll content up to 86% and 87.16%, respectively. Application of ZnOP NPs also demonstrated maximum tomato yield (204 g tomato/plant) followed by ZnO NPs and ZnOBt NPs. Nanocomposites decreased phenolics and flavonoids contents in drought stressed plants demonstrating the mitigation of oxidative stress. Nanofertilizer also increased the concentration of phenolics and flavonoids in fruits that increased the nutritional contents. Furthermore a significant accumulation of betaine, proline, and lycopene in fruits on nanocomposite treatment made it nutritional and healthy. Lycopene content increased up to 2.01% and 1.23% in presence of ZnOP50 and ZnOP100, respectively. These outcomes validate that drought stress in plant can be reduced by accumulation of different phytochemicals and quenching oxidative stress. The study deems that nano zinc carrying osmoregulators can greatly reduce the negative effects of drought stress and increase nutritional quality of tomato fruits.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Snovia Farooq
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Misbah Zeb Kiani
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan.
| |
Collapse
|
5
|
Wang Q, Yu J, Li X, Zhang Y, Zhang J, Wang J, Mu J, Yu X, Hui R. Seasonal and anthropogenic influences on bacterioplankton communities: ecological impacts in the coastal waters of Qinhuangdao, Northern China. Front Microbiol 2024; 15:1431548. [PMID: 38962120 PMCID: PMC11220261 DOI: 10.3389/fmicb.2024.1431548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Marine bacterioplankton play a crucial role in the cycling of carbon, nitrogen, and phosphorus in coastal waters. And the impact of environmental factors on bacterial community structure and ecological functions is a dynamic ongoing process. To systematically assess the relationship between environmental changes and bacterioplankton communities, this study delved into the spatiotemporal distribution and predicted metabolic characteristics of bacterioplankton communities at two estuarine beaches in Northern China. Coastal water samples were collected regularly in spring, summer, and autumn, and were analyzed in combination with environmental parameters and bacterioplankton community. Results indicated significant seasonal variations in bacterioplankton communities as Bacteroidetes and Actinobacteria were enriched in spring, Cyanobacteria proliferated in summer. While Pseudomonadota and microorganisms associated with organic matter decomposition prevailed in autumn, closely linked to seasonal variation of temperature, light and nutrients such as nitrogen and phosphorus. Particularly in summer, increased tourism activities and riverine inputs significantly raised nutrient levels, promoting the proliferation of specific photosynthetic microorganisms, potentially linked to the occurrence of phytoplankton blooms. Spearman correlation analysis further revealed significant correlations between bacterioplankton communities and environmental factors such as salinity, chlorophyll a, and total dissolved phosphorus (TDP). Additionally, the metabolic features of the spring bacterioplankton community were primarily characterized by enhanced activities in the prokaryotic carbon fixation pathways, reflecting rapid adaptation to increased light and temperature, as well as significant contributions to primary productivity. In summer, the bacterial communities were involved in enhanced glycolysis and biosynthetic pathways, reflecting high energy metabolism and responses to increased light and biomass. In autumn, microorganisms adapted to the accelerated decomposition of organic matter and the seasonal changes in environmental conditions through enhanced amino acid metabolism and material cycling pathways. These findings demonstrate that seasonal changes and human activities significantly influence the structure and function of bacterioplankton communities by altering nutrient dynamics and physical environmental conditions. This study provides important scientific insights into the marine biological responses under global change.
Collapse
Affiliation(s)
- Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
- Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, China
| | - Jia Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Xiaofang Li
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Yong Zhang
- Department of Ocean Survey, Qinhuangdao Marine Center of the Ministry of Natural Resources, Qinhuangdao, China
| | - Jianle Zhang
- Department of Ocean Survey, Qinhuangdao Marine Center of the Ministry of Natural Resources, Qinhuangdao, China
| | - Jianyan Wang
- Department of Life Sciences, National Natural History Museum of China, Beijing, China
| | - Jiandong Mu
- Ecological Environment Research Department, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, China
| | - Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Ruixue Hui
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| |
Collapse
|
6
|
Đurić M, Jevremović S, Trifunović-Momčilov M, Milošević S, Subotić A, Jerinić-Prodanović D. Physiological and oxidative stress response of carrot (Daucus carota L.) to jumping plant-louse Bactericera trigonica Hodkinson (Hemiptera: Psylloidea) infestation. BMC PLANT BIOLOGY 2024; 24:243. [PMID: 38575896 PMCID: PMC10993497 DOI: 10.1186/s12870-024-04946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Carrot is an important vegetable crop grown worldwide. The major economic problem in carrot cultivation is yellow disease caused by Bactericera trigonica, which induces biotic stress and has the greatest impact on crop productivity. Comprehensive studies on the mechanism of carrot defense response to biotic stress caused by B. trigonica infestation have yet to be conducted. METHODS The changes in photosynthetic pigments, proline, TPC, H2O2 and MDA content, DPPH radical scavenging ability, and antioxidant enzyme activity of SOD, CAT, and POX in carrot leaves in response to insect sex (female and male), rapid response (during the first six hours), and long-term response to B. trigonica infestation were evaluated. RESULTS The results of our study strongly suggest that B. trigonica infestation causes significant changes in primary and secondary metabolism and oxidative status of carrot leaves. Photosynthetic pigment content, TPC, and DPPH and CAT activities were significantly reduced in carrot leaves in response to insect infestation. On the other hand, proline, H2O2 content, and the activity of the antioxidant enzymes superoxide dismutase and peroxidase were increased in carrot leaves after B. trigonica infestation. The results indicate that B. trigonica attenuates and delays the oxidative stress responses of carrot, allowing long-term feeding without visible changes in the plant. Carrot responded to long-term B. trigonica infestation with an increase in SOD and POX activity, suggesting that these enzymes may play a key role in plant defense mechanisms. CONCLUSIONS This is the first comprehensive study strongly suggesting that B. trigonica infestation causes significant changes in primary and secondary metabolism and an attenuated ROS defense response in carrot leaves that enables long-term insect feeding. The information provides new insights into the mechanisms of carrot protection against B. trigonica infestation.
Collapse
Affiliation(s)
- Marija Đurić
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Slađana Jevremović
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia.
| | - Milana Trifunović-Momčilov
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Snežana Milošević
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Angelina Subotić
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Dušanka Jerinić-Prodanović
- Department of Entomology and Agricultural Zoology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, 11080, Serbia
| |
Collapse
|
7
|
Ejaz B, Mujib A, Syeed R, Mamgain J, Malik MQ, Birat K, Dewir YH, Magyar-Tábori K. Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl 2. Metabolites 2024; 14:127. [PMID: 38393019 PMCID: PMC10891796 DOI: 10.3390/metabo14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a Gas chromatography-mass spectrometry (GC-MS) investigation of embryogenic callus and somatic embryo regenerated shoots of Carthamus tinctorius revealed the presence of a variety of sugars, sugar acids, sugar alcohols, fatty acids, organic acids, and amino acids of broad therapeutic value. The in vitro developed inflorescence contained a wide range of active compounds. In embryogenic calluses, important flavonoids like naringenin, myricetin, kaempferol, epicatechin gallate, rutin, pelargonidin, peonidin, and delphinidin were identified. To augment the synthesis of active compounds, the effect of cadmium chloride (CdCl2) elicitation was tested for various treatments (T1-T4) along with a control (T0). Varying concentrations of CdCl2 [0.05 mM (T1), 0.10 mM (T2), 0.15 mM (T3), and 0.20 mM (T4)] were added to the MS medium, and flavonoid accumulation was quantified through ultra-high-pressure liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS). The flavonoids naringenin, kaempferol, epicatechin gallate, pelargonidin, cyanidin, and delphinidin increased by 6.7-, 1.9-, 3.3-, 2.1-, 1.9-, and 4.4-fold, respectively, at T3, whereas quercetin, myricetin, rutin, and peonidin showed a linear increase with the increase in CdCl2 levels. The impacts of stress markers, i.e., ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD), on defense responses in triggering synthesis were also evaluated. The maximum APX and SOD activity was observed at T3, while CAT activity was at its maximum at T2. The impact of elicitor on biochemical attributes like protein, proline, sugar, and malondialdehyde (MDA) content was investigated. The maximum protein, proline, and sugar accumulation was noted at high elicitor dose T4, while the maximum MDA content was noted at T3. These elevated levels of biochemical parameters indicated stress in culture, and the amendment of CdCl2 in media thus could be a realistic approach for enhancing secondary metabolite synthesis in safflower.
Collapse
Affiliation(s)
- Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Moien Qadir Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Kanchan Birat
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Katalin Magyar-Tábori
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary;
| |
Collapse
|
8
|
Wang H, Li Y, Guo Z, Zhou X, Zhao Y, Han Y, Lin X. Genome-wide identification of AAAP gene family and expression analysis in response to saline-alkali stress in foxtail millet (Setaria italica L.). Sci Rep 2024; 14:3106. [PMID: 38326447 PMCID: PMC10850487 DOI: 10.1038/s41598-024-53242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Amino acid/auxin permease (AAAP) genes encode a large family of protein transporters that play important roles in various aspects of plant growth and development. Here, we performed genome-wide identification of members in the foxtail millet (Setaria italica L.) AAAP family (SiAAAP) and their saline-alkali stress-induced expression patterns, resulting in the identification of 65 SiAAAP genes, which could be divided into eight subfamilies. Except for SiAAAP65, the remaining 64 genes were located on nine chromosomes of foxtail millet. Gene structure and conserved motif analyses indicated that the members in the same subfamily are highly conserved. Gene duplication event analysis suggested that tandem duplication may be the main factor driving the expansion of this gene family, and Ka/Ks analysis indicated that all the duplicated genes have undergone purifying selection. Transcriptome analysis showed differential expression of SiAAAPs in roots, stems, leaves, and tassel inflorescence. Analysis of cis-acting elements in the promoter indicated that SiAAAPs contain stress-responsive cis-acting elements. Under saline-alkali stress, qRT-PCR analysis showed that SiAAP3, SiLHT2, and SiAAP16 were differentially expressed between salt-alkali tolerant millet variety JK3 and salt-alkali sensitive millet variety B175. These results suggest that these genes may be involved in or regulate the response to saline-alkali stress, providing a theoretical basis for further studying the function of SiAAAPs.
Collapse
Affiliation(s)
- Huimin Wang
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Zhenqing Guo
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Xiaoke Zhou
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Yuxue Zhao
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Yucui Han
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| | - Xiaohu Lin
- College of Agronomy and Biotechnology/Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| |
Collapse
|
9
|
Rico EI, de la Fuente GCM, Morillas AO, Ocaña AMF. Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean basin. PHOTOSYNTHESIS RESEARCH 2024; 159:1-16. [PMID: 37923970 DOI: 10.1007/s11120-023-01052-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 11/06/2023]
Abstract
A complete study of 14 olive cultivars of great economic importance was carried out. These cultivars are Arbequina, Arbosana, Chemlali, Cornicabra, Cornezuelo de Jaén, Empeltre, Frantoio, Hojiblanca, Koroneiki, Manzanilla de Sevilla, Martina, Picual, Sikitita1 and Sikitita 2. All of them are certified by the World Olive Germplasm Bank of Córdoba (Spain). They are predominant cultivars in the olive groves of different locations throughout the Mediterranean basin, and they were subjected to total water deficit for a minimum of 14 days and a maximum of 42 days in the present study. Data such as chlorophyll content, soil moisture and specific leaf area were gathered. Photosynthetic parameters measured at the respective saturation irradiance of each cultivar were also analysed: assimilation rate, transpiration, stomatal conductance, photosynthetic efficiency, photochemical and non-photochemical quenching, photonic flux density, electron transference ratio, efficient use of water and amount of proline and malondialdehyde as indicators of oxidative stress. In addition to the control, two different experimental conditions were analysed: moderate drought, after 14 days of lack of irrigation, and severe drought, after 28-42 days of total absence of irrigation, depending on the tolerance of each cultivar. Based on the results, the cultivars were characterised and divided into four groups according to their drought tolerance: tolerant, moderately tolerant, moderately sensitive and sensitive to drought. This work represents the first contribution of drought tolerance of a considerable number of olive cultivars, with all of them being subjected to the same criteria and experimental conditions for their classification.
Collapse
Affiliation(s)
- Elena Illana Rico
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Genoveva Carmen Martos de la Fuente
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Ainhoa Ortega Morillas
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Ana Maria Fernández Ocaña
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain.
| |
Collapse
|
10
|
Sun M, Yan H, Zhang A, Jin Y, Lin C, Luo L, Wu B, Fan Y, Tian S, Cao X, Wang Z, Luo J, Yang Y, Jia J, Zhou P, Tang Q, Jones CS, Varshney RK, Srivastava RK, He M, Xie Z, Wang X, Feng G, Nie G, Huang D, Zhang X, Zhu F, Huang L. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2348-2357. [PMID: 37530223 PMCID: PMC10579705 DOI: 10.1111/pbi.14136] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Millets are a class of nutrient-rich coarse cereals with high resistance to abiotic stress; thus, they guarantee food security for people living in areas with extreme climatic conditions and provide stress-related genetic resources for other crops. However, no platform is available to provide a comprehensive and systematic multi-omics analysis for millets, which seriously hinders the mining of stress-related genes and the molecular breeding of millets. Here, a free, web-accessible, user-friendly millets multi-omics database platform (Milletdb, http://milletdb.novogene.com) has been developed. The Milletdb contains six millets and their one related species genomes, graph-based pan-genomics of pearl millet, and stress-related multi-omics data, which enable Milletdb to be the most complete millets multi-omics database available. We stored GWAS (genome-wide association study) results of 20 yield-related trait data obtained under three environmental conditions [field (no stress), early drought and late drought] for 2 years in the database, allowing users to identify stress-related genes that support yield improvement. Milletdb can simplify the functional genomics analysis of millets by providing users with 20 different tools (e.g., 'Gene mapping', 'Co-expression', 'KEGG/GO Enrichment' analysis, etc.). On the Milletdb platform, a gene PMA1G03779.1 was identified through 'GWAS', which has the potential to modulate yield and respond to different environmental stresses. Using the tools provided by Milletdb, we found that the stress-related PLATZs TFs (transcription factors) family expands in 87.5% of millet accessions and contributes to vegetative growth and abiotic stress responses. Milletdb can effectively serve researchers in the mining of key genes, genome editing and molecular breeding of millets.
Collapse
Affiliation(s)
- Min Sun
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Haidong Yan
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Aling Zhang
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yarong Jin
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Chuang Lin
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Lin Luo
- College of Life SciencesFujian Agriculture and Forestry UniversityFujianChina
| | - Bingchao Wu
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yuhang Fan
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Shilin Tian
- Novogene Bioinformatics InstituteBeijingChina
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life SciencesWuhan UniversityWuhanChina
| | | | - Zan Wang
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jinchan Luo
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Yuchen Yang
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jiyuan Jia
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Puding Zhou
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Qianzi Tang
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Chris Stephen Jones
- Feed and Forage DevelopmentInternational Livestock Research InstituteNairobiKenya
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
- Murdoch's Centre for Crop and Food Innovation, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rakesh K. Srivastava
- Center of Excellence in Genomics and Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
| | - Zheni Xie
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
- College of Agro‐Grassland ScienceNanjing Agricultural UniversityNanjingChina
| | - Xiaoshan Wang
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Guangyan Feng
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Gang Nie
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Dejun Huang
- Herbivorous Livestock Research InstituteChongqing Academy of Animal SciencesChongqingChina
| | - Xinquan Zhang
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Fangjie Zhu
- College of Life SciencesFujian Agriculture and Forestry UniversityFujianChina
| | - Linkai Huang
- College of Grassland Science and TechnologySichuan Agricultural UniversityChengduChina
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
| |
Collapse
|
11
|
Vives-Peris V, López-Climent MF, Moliner-Sabater M, Gómez-Cadenas A, Pérez-Clemente RM. Morphological, physiological, and molecular scion traits are determinant for salt-stress tolerance of grafted citrus plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145625. [PMID: 37152171 PMCID: PMC10157061 DOI: 10.3389/fpls.2023.1145625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Introduction Citrus productivity has been decreasing in the last decade in the Mediterranean basin as a consequence of climate change and the high levels of salinity found in the aquifers. Citrus varieties are cultivated grafted onto a rootstock, which has been reported as responsible for plant tolerance to adverse situations. However, other important factors for stress tolerance relying in the scion have been less studied. The aim of this study was to evaluate the effect of the grafted scion on citrus tolerance to salt stress. Methods Four different citrus rootstock/scion combinations were subjected to salt stress for 30 days, using Carrizo citrange (CC) or Citrus macrophylla (CM) as rootstocks, and Navelina orange (NA) or Oronules mandarin (OR) as scions. CM-OR was the most tolerant combination, whereas CC-NA was the most sensitive one. Results and discussion Our results support the idea that the rootstock plays an important role in salt stress tolerance, but scion is also crucial. Thus, photosynthesis and transpiration, processes regulated by abscisic acid and jasmonic acid, are determinant of plant performance. These photosynthetic parameters were not affected in plants of the salt-tolerant combination CM-OR, probably due to the lower intoxication with Cl- ions, allowing a better performance of the photosynthetic machinery under stress conditions. The different stomatal density of the two citrus scions used in this work (higher in the sensitive NA in comparison to the tolerant OR) also contributes to the different tolerance of the grafted plants to this adverse condition. Additionally, CsDTX35.1 and CsDTX35.2, genes codifying for Cl- tonoplast transporters, were exclusively overexpressed in plants of the salt-tolerant combination CM-OR, suggesting that these transporters involved in Cl- compartmentalization could be crucial for salt stress tolerance. It is concluded that to improve citrus tolerance to high salinity, it is important that scions have a versatile photosynthetic system, an adequate stomatal density, and a proper modulation of genes coding for Cl- transporters in the tonoplast.
Collapse
|
12
|
El-Batal AI, Ismail MA, Amin MA, El-Sayyad GS, Osman MS. Selenium nanoparticles induce growth and physiological tolerance of wastewater‑stressed carrot plants. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
AbstractClimate changes have a direct impact on agricultural lands through their impact on the rate of water levels in the oceans and seas, which leads to a decrease in the amount of water used in agriculture, and therefore the use of alternative sources of irrigation such as wastewater and overcoming its harmful effect on plants was one of the solutions to face this problem. In the present study, the impacts of the synthesized selenium nanoparticles (Se NPs) alone or in combination with glycine betaine and proline treatments on the growth, physiological, and yield attributes of wastewater irrigated carrot plants are investigated. Furthermore, to evaluate heavy metals uptake and accumulation in edible plant parts. The usage of wastewater to carrot plants significantly increased free proline contents, total phenols, superoxide dismutase, catalase, peroxidase, polyphenol oxidase, Malondialdehyde (MDA), and hydrogen peroxide (H2O2) throughout the two growth stages. While total soluble carbohydrate and soluble protein content in carrot shoots and roots were significantly reduced. Moreover, the concentrations of nickel (Ni), cadmium (Cd), lead (Pb), and cobalt (Co) in carrot plants were considerably higher than the recommended limits set by international organizations. Application of selenium nanoparticles alone or in combination with glycine betaine and proline reduced the contents of Ni, Cd, Pb, and Co; free proline; total phenols; superoxide dismutase; catalase; peroxidase; polyphenol oxidase; Malondialdehyde (MDA) and Hydrogen peroxide (H2O2) in carrot plants. However, morphological aspects, photosynthetic pigments, soluble carbohydrates, soluble protein, total phenol, and β-Carotene were enhanced in response to Se NPs application. As an outcome, this research revealed that Se NPs combined with glycine betaine and proline can be used as a strategy to minimize heavy metal stress caused by wastewater irrigation in carrot plants, consequently enhancing crop productivity and growth.
Collapse
|
13
|
Aslam MA, Ahmed S, Saleem M, Shah AA, Shah AN, Tanveer M, Ali HM, Ghareeb RY, Hasan ME, Khan J. Quercetin ameliorates chromium toxicity through improvement in photosynthetic activity, antioxidative defense system; and suppressed oxidative stress in Trigonella corniculata L. FRONTIERS IN PLANT SCIENCE 2022; 13:956249. [PMID: 36452105 PMCID: PMC9704506 DOI: 10.3389/fpls.2022.956249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses, including heavy metals accumulation, have posed an immense threat to the agricultural ecosystem, leading to a reduction in the yield of crucial crops. In this study, we evaluated the role of quercetin (Qu) in the alleviation of chromium (Cr) stress in Fenugreek (Trigonella corniculata L.). Different levels of Qu were prepared during the experiment, i.e., 15, 25, and 40 μM. For Cr toxification in potted soil, potassium chromate (K2Cr2O7) was used. Cr toxification reduced growth of T. corniculata seedlings. Cr stress also reduced fiber, ash, moisture, carbohydrate, protein, fats, and flavonoid contents. However, seed priming with Qu improved growth and physiochemical characteristics of T. corniculata seedlings grown in normal and Cr-contaminated soil. Seed priming with Qu escalated intercellular CO2 concentration, stomatal conductance, transpiration rate, and photosynthetic rate in T. corniculata seedlings. Application of Qu also increased the activity of antioxidative enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) in T. corniculata seedlings exposed to normal and Cr-contaminated soil. Application of Qu incremented the activity of SOD, POD, CAT, and APX, which were increased by 28, 22, 29, and 33%, respectively, in T. corniculata grown in Cr-toxic soil as compared to control treatment. Chromium stress alleviation was credited to the enhanced activity of the antioxidative defensive system in T. corniculata seedlings. It is proposed that Qu supplementation can be used to mitigate other abiotic stresses in plants.
Collapse
Affiliation(s)
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Muhammad Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| | - Mohammad E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Jallat Khan
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim yar Khan, Punjab, Pakistan
| |
Collapse
|
14
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
15
|
Hannachi S, Signore A, Adnan M, Mechi L. Single and Associated Effects of Drought and Heat Stresses on Physiological, Biochemical and Antioxidant Machinery of Four Eggplant Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:2404. [PMID: 36145805 PMCID: PMC9502621 DOI: 10.3390/plants11182404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The impact of heat and drought stresses, either individually or combined, on physiological and biochemical parameters of four eggplant varieties (Solanum melongena L.) was investigated. The results showed that associated stress generated the highest increment in proline content, MDA concentration, and H2O2 accumulation and generated the lowest increment in RWC. In addition, ‘Bonica’ and ‘Galine’ exhibited higher starch accumulation and lower electrolyte leakage (EL) under combined stress. Moreover, drought and heat stresses applied individually contributed to a substantial decline in Chla, Chlb, total Chl, Chla/b, and carotenoids (p > 0.05) in ‘Adriatica’ and ‘Black Beauty’. The decreasing level of pigments was more substantial under associated drought and heat stresses. The simultaneous application of drought and heat stresses reduced PSII efficiency (Fv/Fm), quantum yield (ΦPSII), and photochemical efficiency (qp) and boosted non-photochemical quenching (NPQ) levels. However, the change recorded in the chlorophyll fluorescence parameters was less pronounced in ‘Bonica’ and ‘Galine’. In addition, the gas exchange parameters, transpiration rate (E), CO2 assimilation rate (A), and net photosynthesis (Pn) were decreased in all varieties under all stress conditions. However, the reduction was more pronounced in ‘Adriatica’ and ‘Black Beauty’. Under associated stress, antioxidant enzymes, SOD, APX, CAT, and GR exhibited a significant increment in all eggplant cultivars. However, the rising was more elevated in ‘Bonica’ and ‘Galine’ (higher than threefold increase) than in ‘Adriatica’ and ‘Black Beauty’ (less than twofold increase). Furthermore, ‘Bonica’ and ‘Galine’ displayed higher non-enzyme scavenging activity (AsA and GSH) compared to ‘Adriatica’ and ‘Black Beauty’ under associated stress. Under stressful conditions, nutrient uptake was affected in all eggplant cultivars; however, the root, stem, and leaf N, P, and K contents, in ‘Adriatica’ and ‘Black Beauty’ were lower than in ‘Bonica’ and ‘Galine’, thereby showing less capacity in accumulating nutrients. The coexistence of drought and heat stresses caused more damage on eggplant varieties than the single appearance of drought or heat stress separately. ‘Bonica’ and ‘Galine’ showed better distinguished performance compared to ‘Adriatica’ and ‘Black Beauty’. The superiority of ‘Bonica’ and ‘Galine’ in terms of tolerance to heat and drought stresses was induced by more effective antioxidant scavenging potential, enhanced osmolyte piling-up, and prominent ability in keeping higher photosynthetic efficiency and nutrient equilibrium compared with ‘Adriatica’ and ‘Black Beauty’.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium
| | - Angelo Signore
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Lassaad Mechi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
16
|
Effects of Combined Application of Salicylic Acid and Proline on the Defense Response of Potato Tubers to Newly Emerging Soft Rot Bacteria (Lelliottia amnigena) Infection. SUSTAINABILITY 2022. [DOI: 10.3390/su14148870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potato soft rot, caused by the pathogenic bacterium Lelliottia amnigena (Enterobacter amnigenus), is a serious and widespread disease affecting global potato production. Both salicylic acid (SA) and proline (Pro) play important roles in enhancing potato tuber resistance to soft rot. However, the combined effects of SA and Pro on defense responses of potato tubers to L. amnigena infection remain unknown. Hence, the combined effects of SA and Pro in controlling newly emerging potato soft rot bacteria were investigated. Sterilized healthy potato tubers were pretreated with 1.5 mM SA and 2.0 mM Pro 24 h before an inoculation of 0.3 mL of L. amnigena suspension (3.69 × 107 CFU mL−1). Rotting was noticed on the surfaces of the hole where the L. amnigena suspension was inoculated. Application of SA and Pro with L. amnigena lowered the activity of pectinase, protease, pectin lyase, and cellulase by 64.3, 77.8, 66.4 and 84.1%, and decreased malondialdehyde and hydrogen peroxide contents by 77.2% and 83.8%, respectively, compared to the control. The activities of NADPH oxidase, superoxide dismutase, peroxide, catalase, polyphenol oxidase, phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-coumaryl-CoA ligase and cinnamate-4-hydroxylase were increased in the potato tubers with combined treatments by 91.4, 92.4, 91.8, 93.5, 94.9, 91.3, 96.2, 94.7 and 97.7%, respectively, compared to untreated stressed tubers. Six defense-related genes, pathogenesis-related protein, tyrosine-protein kinase, Chitinase-like protein, phenylalanine ammonia-lyase, pathogenesis-related homeodomain protein, and serine protease inhibitor, were induced in SA + Pro treatment when compared with individual application of SA or Pro. This study indicates that the combined treatment of 1.5 mM SA and 2.0 mM Pro had a synergistic effect in controlling potato soft rot caused by a newly emerging bacterium.
Collapse
|
17
|
An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. BIOLOGY 2022; 11:biology11040597. [PMID: 35453796 PMCID: PMC9028878 DOI: 10.3390/biology11040597] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary This review focuses on plant growth and development harmed by abiotic stress, primarily salt stress. Salt stress raises the intracellular osmotic pressure, leading to hazardous sodium buildup. Plants react to salt stress signals by regulating ion homeostasis, activating the osmotic stress pathway, modulating plant hormone signaling, and altering cytoskeleton dynamics and cell wall composition. Understanding the processes underlying these physiological and biochemical responses to salt stress could lead to more effective agricultural crop yield measures. In this review, researchers outline recent advances in plant salt stress control. The study of plant salt tolerance processes is essential, both theoretically and practically, to improve agricultural output, produce novel salt-tolerant cultivars, and make full use of saline soil. Based on past research, this paper discusses the adverse effects of salt stress on plants, including photosynthesis suppression, ion homeostasis disturbance, and membrane peroxidation. The authors have also covered the physiological mechanisms of salt tolerance, such as the scavenging of reactive oxygen species and osmotic adjustment. This study further identifies specific salt stress-responsive mechanisms linked to physiological systems. Based on previous studies, this article reviews the current methodologies and techniques for improving plant salt tolerance. Overall, it is hoped that the above-mentioned points will impart helpful background information for future agricultural and crop plant production. Abstract Salinity is significant abiotic stress that affects the majority of agricultural, irrigated, and cultivated land. It is an issue of global importance, causing many socio-economic problems. Salt stress mainly occurs due to two factors: (1) soil type and (2) irrigation water. It is a major environmental constraint, limiting crop growth, plant productivity, and agricultural yield. Soil salinity is a major problem that considerably distorts ecological habitats in arid and semi-arid regions. Excess salts in the soil affect plant nutrient uptake and osmotic balance, leading to osmotic and ionic stress. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, the production of enzymes, compatible solutes, metabolites, and molecular or genetic networks. Different plant species have different salt overly sensitive pathways and high-affinity K+ channel transporters that maintain ion homeostasis. However, little progress has been made in developing salt-tolerant crop varieties using different breeding approaches. This review highlights the interlinking of plant morpho-physiological, molecular, biochemical, and genetic approaches to produce salt-tolerant plant species. Most of the research emphasizes the significance of plant growth-promoting rhizobacteria in protecting plants from biotic and abiotic stressors. Plant growth, survival, and yield can be stabilized by utilizing this knowledge using different breeding and agronomical techniques. This information marks existing research areas and future gaps that require more attention to reveal new salt tolerance determinants in plants—in the future, creating genetically modified plants could help increase crop growth and the toleration of saline environments.
Collapse
|
18
|
Wu ZZ, Zhang YX, Yang JY, Jia ZQ. Effect of vanadium on Lactuca sativa L. growth and associated health risk for human due to consumption of the vegetable. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9766-9779. [PMID: 34508309 DOI: 10.1007/s11356-021-15874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Elevated vanadium in the environment adversely affects organisms, including plants, animals, and humans. Plants act as the main conduit for environmental vanadium to enter the food chain, and simultaneously their growth response characteristics reflect vanadium toxicity efficacy for plants. The aim of the present study is to investigate lettuce (Lactuca sativa L.) growth involving morphological change, physiological adjustment, vanadium accumulation under vanadium stress, and the potential health risk (expressed as health risk index (HRI)) of adults and children who consume it. Lettuce was grown in nutrient solution with 0, 0.1, 0.5, 2.0, and 4.0 mg L-1 of pentavalent vanadium [V(V)]. Results showed that 0.1 mg L-1 V did not significantly affect lettuce growth versus control, and marked depression arose at ≥ 0.5 mg L-1 V. Foliar proline increased rapidly at ≥ 0.5 mg L-1 V. No striking change emerged in leaf cell membrane permeability at all treatments. V(V) and total vanadium concentration in plant tissues were ordered as root > stem > leaf, while tetravalent vanadium [V(IV)] was leaf > root > stem. No health risk (HRI < 1) exists for adults and children who consume lettuce at control treatment. However, the health risk occurs (HRI ˃ 1) when they both ingest the seedlings exposed to ≥ 0.1 mg L-1 V, and the risk overall markedly increases with increasing vanadium. Therefore, enough attention needs to be paid to the human health associated with the ingestion of vegetables like lettuce grown in substrata contaminated by vanadium.
Collapse
Affiliation(s)
- Zhen-Zhong Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - You-Xian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zong-Qian Jia
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
19
|
Lahuta LB, Szablińska-Piernik J, Horbowicz M. Changes in Metabolic Profiles of Pea ( Pisum sativum L.) as a Result of Repeated Short-Term Soil Drought and Subsequent Re-Watering. Int J Mol Sci 2022; 23:1704. [PMID: 35163626 PMCID: PMC8836265 DOI: 10.3390/ijms23031704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023] Open
Abstract
The metabolic re-arrangements of peas (Pisum sativum L.) under soil drought and re-watering are still not fully explained. The search for metabolic markers of the stress response is important in breeding programs, to allow for the selection drought-resistant cultivars. During the present study, changes in the polar metabolite content in pea plant shoots were measured under repeated short-term soil drought and subsequent re-watering. A gas chromatograph, equipped with a mass spectrometer (GC-MS), was used for the metabolite profiling of pea plants during their middle stage of vegetation (14-34 days after sowing, DAS). The major changes occurred in the concentration of amino acids and some soluble carbohydrates. Among them, proline, γ-aminobutyric acid (GABA), branched-chain amino acids, hydroxyproline, serine, myo-inositol, and raffinose were accumulated under each soil drought and decreased after re-watering. Besides, the obtained results show that the first drought/re-watering cycle increased the ability of pea plants to restore a metabolic profile similar to the control after the second similar stress. The accumulation of proline seems to be an important part of drought memory in pea plants. However, confirmation of this suggestion requires metabolite profiling studies on a broader spectrum of pea cultivars.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10719 Olsztyn, Poland; (J.S.-P.); (M.H.)
| | | | | |
Collapse
|
20
|
Loupit G, Valls Fonayet J, Prigent S, Prodhomme D, Spilmont AS, Hilbert G, Franc C, De Revel G, Richard T, Ollat N, Cookson SJ. Identifying early metabolite markers of successful graft union formation in grapevine. HORTICULTURE RESEARCH 2022; 9:uhab070. [PMID: 35043179 PMCID: PMC8881376 DOI: 10.1093/hr/uhab070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 05/06/2023]
Abstract
Grafting is an important horticultural technique used for many crop species. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. In general, visible phenotypes of grafted plants (size, root number, etc.) are poorly correlated with grafting success, but some studies have suggested that some polyphenols could be used as markers of graft incompatibility several months or years after grafting. However, much of the previous studies into metabolite markers of grafting success have not included all the controls necessary to unequivocally validate the markers proposed. In this study, we quantified 73 primary and secondary metabolites in nine hetero-grafts and six homo-grafted controls 33 days after grafting at the graft interface and in both the scion and rootstock woody tissues. Certain biomarker metabolites typical of a high stress status (such as proline, GABA and pallidol) were particularly accumulated at the graft interface of the incompatible scion/rootstock combination. We then used correlation analysis and generalized linear models to identify potential metabolite markers of grafting success measured one year after grafting. Here we present the first attempt to quantitatively predict graft compatibility and identify marker metabolites (especially asparagine, trans-resveratrol, trans-piceatannol and α-viniferin) 33 days after grafting, which was found to be particularly informative for homo-graft combinations.
Collapse
Affiliation(s)
- Grégoire Loupit
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Josep Valls Fonayet
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine - Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Sylvain Prigent
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine - Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- INRAE, University Bordeaux, UMR BFP, 33882 Villenave d’Ornon, France
| | - Duyen Prodhomme
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Anne-Sophie Spilmont
- Institut Français de la Vigne et du Vin, Domaine de l’Espiguette, 30240 Le Grau-du-Roi, France
| | - Ghislaine Hilbert
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Céline Franc
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Gilles De Revel
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Tristan Richard
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine - Bordeaux, av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- University Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, F33882 Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Sarah Jane Cookson
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| |
Collapse
|
21
|
Pandey V, Tiwari DC, Dhyani V, Bhatt ID, Rawal RS, Nandi SK. Physiological and metabolic changes in two Himalayan medicinal herbs under drought, heat and combined stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1523-1538. [PMID: 34366594 PMCID: PMC8295442 DOI: 10.1007/s12298-021-01027-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 05/15/2023]
Abstract
UNLABELLED Valeriana jatamansi Jones and Hedychium spicatum Ham-ex-Smith are important medicinal herbs of the Himalayan region, which are highly demanded by pharmaceutical industries. Climatic variability especially increasing temperature and water deficit affects the growth and productivity of these species. In addition, increased temperature and water deficit may trigger the biosynthesis of medicinally important bioactive metabolites, which influence the quality of raw plant material and finished products. Therefore, V. jatamansi and H. spicatum plants were undertaken and subjected to different levels of drought (no irrigation), heat (35 °C), and combined stresses for investigating their physiological and metabolic responses. Both the treatments (individually and in combination) reduced relative water content, photosynthesis, carboxylation efficiency, chlorophyll content, while increased intracellular CO2, malondialdehyde and H2O2 content in both the species. Transpiration and stomatal conductance increased under heat and reduced under drought stress as compared to control. Water use efficiency was found to be increased under drought, while reduced under heat stress. Protein, proline, carotenoid content and antioxidant enzymes activities (superoxide dismutase, peroxidise, catalase) initially increased and thereafter decreased during late stages of stress. Exposure of plants to combined stress was more detrimental than individual stress. In V. jatamansi, exposure to drought stress significantly (p < 0.05) increased valerenic acid content in all plant parts (1.0-6.9 fold) with maximum increase after 20 days of exposure, while under heat stress, valerenic acid content increased (1.0-1.2 fold) in belowground part of V. jatamansi, and decreased (1.1-1.3 fold) in aerial part as compared to control. In H. spicatum, exposure of individual heat stress for 25-30 days and combined stress for 5-15 days significantly (p < 0.05) increased linalool content to 6.2-6.5 fold and 8.3-19.6 fold, respectively, as compared to control. Higher accumulation of bioactive compounds after exposure to mild stress provides encouraging prospects for enhancing pharmaceutical properties of these Himalayan herbs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01027-w.
Collapse
Affiliation(s)
- Veena Pandey
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Deep C. Tiwari
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Vibhash Dhyani
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Indra D. Bhatt
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Ranbeer S. Rawal
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Shyamal K. Nandi
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| |
Collapse
|
22
|
Parveen S, Altaf F, Farooq S, Haq AU, Lone ML, Tahir I. Is proline the quintessential sentinel of plants? A case study of postharvest flower senescence in Dianthus chinensis L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1597-1607. [PMID: 34366599 PMCID: PMC8295426 DOI: 10.1007/s12298-021-01028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
The present investigation primarily focussed on evaluating the efficacy of exogenous proline on the flower longevity of Dianthus chinensis L. Floral buds were harvested at the paint brush stage (i.e., a day prior to anthesis) and divided into 6 sets, with one set of buds (i.e., control) held in distilled water and rest of the 5 sets were supplemented with various concentrations of proline, viz., 10 mM, 20 mM, 30 mM, 40 mM and 50 mM. The application of proline at 40 mM concentration proved out to be most effective in improving the longevity of the flowers by about 4 days as compared to the control. The ameliorated longevity coincided with enhanced floral diameter, fresh mass, dry mass and water content. The flowers with delayed senescence also maintained higher soluble proteins, sugars and phenols. The results suggest that exogenous proline effectively alleviates oxidative stress in the petal tissue, as evident by a relatively lower maloendialdehyde content, which is manifested in the form of reduced lipid peroxidation (LPO). Reduced LPO was commensurate with increased membrane stability, quantified by membrane stability index. Moreover, the flowers with improved longevity exhibited a decline in lipoxygenase activity and significant augmentation of antioxidant enzymes superoxide dismutase, catalase and ascorbate peroxidase.
Collapse
Affiliation(s)
- Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Aehsan ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India
| |
Collapse
|
23
|
Tawab F, Munir I, Nasim Z, Khan MS, Tawab S, Nasim A, Iqbal A, Ahmad MA, Ali W, Munir R, Munir M, Asim N. Identification and characterization of a novel multi-stress responsive gene in Arabidopsis. PLoS One 2020; 15:e0244030. [PMID: 33332435 PMCID: PMC7746274 DOI: 10.1371/journal.pone.0244030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022] Open
Abstract
Abiotic stresses especially salinity, drought and high temperature result in considerable reduction of crop productivity. In this study, we identified AT4G18280 annotated as a glycine-rich cell wall protein-like (hereafter refer to as GRPL1) protein as a potential multistress-responsive gene. Analysis of public transcriptome data and GUS assay of pGRPL1::GUS showed a strong induction of GRPL1 under drought, salinity and heat stresses. Transgenic plants overexpressing GRPL1-3HA showed significantly higher germination, root elongation and survival rate under salt stress. Moreover, the 35S::GRPL1-3HA transgenic lines also showed higher survival rates under drought and heat stresses. GRPL1 showed similar expression patterns with Abscisic acid (ABA)-pathway genes under different growth and stress conditions, suggesting a possibility that GRPL1 might act in the ABA pathway that is further supported by the inability of ABA-deficient mutant (aba2-1) to induce GRPL1 under drought stress. Taken together, our data presents GRPL1 as a potential multi-stress responsive gene working downstream of ABA.
Collapse
Affiliation(s)
- Faiza Tawab
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Iqbal Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- * E-mail:
| | - Zeeshan Nasim
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Sayyar Khan
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Saleha Tawab
- Agriculture Research System, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Adnan Nasim
- Agriculture Research System, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Aqib Iqbal
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mian Afaq Ahmad
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ali
- Department of Biotechnology, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Maria Munir
- Division of Biochemistry, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Noreen Asim
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
24
|
Samarina L, Matskiv A, Simonyan T, Koninskaya N, Malyarovskaya V, Gvasaliya M, Malyukova L, Tsaturyan G, Mytdyeva A, Martinez-Montero ME, Choudhary R, Ryndin A. Biochemical and Genetic Responses of Tea ( Camellia sinensis (L.) Kuntze) Microplants under Mannitol-Induced Osmotic Stress In Vitro. PLANTS 2020; 9:plants9121795. [PMID: 33348920 PMCID: PMC7766420 DOI: 10.3390/plants9121795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Osmotic stress is a major factor reducing the growth and yield of many horticultural crops worldwide. To reveal reliable markers of tolerant genotypes, we need a comprehensive understanding of the responsive mechanisms in crops. In vitro stress induction can be an efficient tool to study the mechanisms of responses in plants to help gain a better understanding of the physiological and genetic responses of plant tissues against each stress factor. In the present study, the osmotic stress was induced by addition of mannitol into the culture media to reveal biochemical and genetic responses of tea microplants. The contents of proline, threonine, epigallocatechin, and epigallocatechin gallate were increased in leaves during mannitol treatment. The expression level of several genes, namely DHN2, LOX1, LOX6, BAM, SUS1, TPS11, RS1, RS2, and SnRK1.3, was elevated by 2–10 times under mannitol-induced osmotic stress, while the expression of many other stress-related genes was not changed significantly. Surprisingly, down-regulation of the following genes, viz. bHLH12, bHLH7, bHLH21, bHLH43, CBF1, WRKY2, SWEET1, SWEET2, SWEET3, INV5, and LOX7, was observed. During this study, two major groups of highly correlated genes were observed. The first group included seven genes, namely CBF1, DHN3, HXK2,SnRK1.1, SPS, SWEET3, and SWEET1. The second group comprised eight genes, viz. DHN2, SnRK1.3, HXK3, RS1, RS2,LOX6, SUS4, and BAM5. A high level of correlation indicates the high strength connection of the genes which can be co-expressed or can be linked to the joint regulons. The present study demonstrates that tea plants develop several adaptations to cope under osmotic stress in vitro; however, some important stress-related genes were silent or downregulated in microplants.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
- Correspondence: ; Tel.: +79-66-7709038
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Taisiya Simonyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Natalia Koninskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Valentina Malyarovskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Maya Gvasaliya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Gregory Tsaturyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Alfiya Mytdyeva
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Marcos Edel Martinez-Montero
- Department of Plant Breeding and Plant Conservation, Bioplantas Center, University of Ciego de Avila, Ciego de Avila 65200, Cuba;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| |
Collapse
|
25
|
Aduse Poku S, Nkachukwu Chukwurah P, Aung HH, Nakamura I. Over-Expression of a Melon Y3SK2-Type LEA Gene Confers Drought and Salt Tolerance in Transgenic Tobacco Plants. PLANTS 2020; 9:plants9121749. [PMID: 33321898 PMCID: PMC7763651 DOI: 10.3390/plants9121749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Climate change, with its attendant negative effects, is expected to hamper agricultural production in the coming years. To counteract these negative effects, breeding of environmentally resilient plants via conventional means and genetic engineering is necessary. Stress defense genes are valuable tools by which this can be achieved. Here we report the successful cloning and functional characterization of a melon Y3SK2-type dehydrin gene, designated as CmLEA-S. We generated CmLEA-S overexpressing transgenic tobacco lines and performed in vitro and in vivo drought and salt stress analyses. Seeds of transgenic tobacco plants grown on 10% polyethylene glycol (PEG) showed significantly higher germination rates relative to wild-type seeds. In the same way, transgenic seeds grown on 150 mM sodium chloride (NaCl) recorded significantly higher germination percentages compared with wild-type plants. The fresh weights and root lengths of young transgenic plants subjected to drought stress were significantly higher than that of wild-type plants. Similarly, the fresh weights and root lengths of transgenic seedlings subjected to salt stress treatments were also significantly higher than wild-type plants. Moreover, transgenic plants subjected to drought and salt stresses in vivo showed fewer signs of wilting and chlorosis, respectively. Biochemical assays revealed that transgenic plants accumulated more proline and less malondialdehyde (MDA) compared with wild-type plants under both drought and salt stress conditions. Finally, the enzymatic activities of ascorbate peroxidase (APX) and catalase (CAT) were enhanced in drought- and salt-stressed transgenic lines. These results suggest that the CmLEA-S gene could be used as a potential candidate gene for crop improvement.
Collapse
Affiliation(s)
| | | | | | - Ikuo Nakamura
- Correspondence: ; Tel.: +81-47-308-8852; Fax: +81-47-308-8853
| |
Collapse
|
26
|
Raja V, Qadir SU, Alyemeni MN, Ahmad P. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 2020; 10:208. [PMID: 32351866 PMCID: PMC7181466 DOI: 10.1007/s13205-020-02206-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022] Open
Abstract
The present study was carried out to investigate the effect of individual drought, heat, and combined drought and heat stress on tomato plants. Combined stress resulted in the higher accumulation of Proline (101.9%), MDA (38.55%), H2O2 (101.19%), and lower levels of RWC (53.84%). Individual drought and heat stress decreased photosynthetic pigments like total chlorophyll content by (45.45%) and (25.35%), respectively, higher rates of pigment reduction (79.42%) were observed under combined drought and heat stress. Combined stress decreased PSII efficiency (Fv/Fm), quantum yield (ΦPSII), and photochemical efficiency (qp) and increased non-photochemical quenching (NPQ) levels. Moreover, the gas exchange parameters E, A, and Pn decreased by 5.36%, 36.45%, and 51.00%, respectively, in comparison to control plants. Antioxidant enzymes, SOD, APX, CAT, and GR showed a two- to threefold increase under combined drought and heat stress; however, the non-enzymatic antioxidants AsA and GSH displayed one-twofold increase under combined stress. Moreover, 2- to 2.5-fold decrease was observed in MDHAR and DHAR enzyme transcripts under combined stress conditions. The transcripts corresponding to AsA-GSH pathway enzymes SOD, APX, GR, DHAR, and MDHAR were up-regulated by 8- to 12-fold under combined drought and heat. Furthermore, DREB and LEA transcripts were up-regulated under drought and combined stress and down-regulated under drought stress. In the same manner, HSP70 and HSP90 transcripts were up-regulated under heat and combined stress; however, the transcription levels got down-regulated under drought stress. Additionally, rbcL and RCA transcripts were down-regulated especially under combined stress in comparison to individual drought and heat conditions. PSIP680 relative expression levels were up-regulated under drought stress; however, the transcripts were down-regulated under heat and combined stress. Taken together, the results suggest that the combined stress has a predominant effect over individual stress.
Collapse
Affiliation(s)
- Vaseem Raja
- Department of Botany, Government Degree College for Womens, Baramulla, Jammu and Kashmir India
| | - Sami Ullah Qadir
- Department of Environment Sciences, Government Degree College, Shopian, Jammu and Kashmir India
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S. P. College, 190001, Srinagar, Jammu and Kashmir India
| |
Collapse
|
27
|
Yobi A, Bagaza C, Batushansky A, Shrestha V, Emery ML, Holden S, Turner-Hissong S, Miller ND, Mawhinney TP, Angelovici R. The complex response of free and bound amino acids to water stress during the seed setting stage in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:838-855. [PMID: 31901179 DOI: 10.1111/tpj.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Free amino acids (FAAs) and protein-bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation-tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.
Collapse
Affiliation(s)
- Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Albert Batushansky
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vivek Shrestha
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Marianne L Emery
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah Turner-Hissong
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
28
|
Bist V, Niranjan A, Ranjan M, Lehri A, Seem K, Srivastava S. Silicon-Solubilizing Media and Its Implication for Characterization of Bacteria to Mitigate Biotic Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:28. [PMID: 32194577 PMCID: PMC7061934 DOI: 10.3389/fpls.2020.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 05/31/2023]
Abstract
Silicon (Si), the second most abundant element on earth, remains unavailable for plants' uptake due to its poor solubility. Microbial interventions to convert it in soluble forms are well documented. However, studies on discrimination of Si and P solubilizing microbes due to common estimation method and sharing of solubilization mechanism are still obscure. A defined differential media, i.e. silicon-solubilizing media (NBRISSM) is developed to screen Si solubilizers. NBRISN13 (Bacillus amyloliquefaciens), a Si solubilizer, exhibiting antagonistic property against Rhizoctonia solani, was further validated for disease resistance. The key finding of the work is that NBRISSM is a novel differential media for screening Si solubilizers, distinct from P solubilizers. Dominance of Pseudomonas and Bacillus spp. for the function of Si solubilization was observed during diversity analysis of Si solubilizers isolated from different rhizospheres. Sphingobacterium sp., a different strain has been identified for silicon solubilization other than Pseudomonas and Bacillus sp. Role of acidic phosphatase during Si solubilization has been firstly reported in our study in addition to other pH dependent phenomenon. Study also showed the combinatorial effect of feldspar and NBRISN13 on elicited immune response through (i) increased Si uptake, (ii) reduced disease severity, (iii) modulation of cell wall degrading and antioxidative enzyme activities, and (iv) induced defense responsive gene expression.
Collapse
Affiliation(s)
- Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Niranjan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Manish Ranjan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Alok Lehri
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Karishma Seem
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
29
|
Toderich KN, Mamadrahimov AA, Khaitov BB, Karimov AA, Soliev AA, Nanduri KR, Shuyskaya EV. Differential Impact of Salinity Stress on Seeds Minerals, Storage Proteins, Fatty Acids, and Squalene Composition of New Quinoa Genotype, Grown in Hyper-Arid Desert Environments. FRONTIERS IN PLANT SCIENCE 2020; 11:607102. [PMID: 33365043 PMCID: PMC7750330 DOI: 10.3389/fpls.2020.607102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/09/2020] [Indexed: 05/13/2023]
Abstract
The effects of climate change and soil salinization on dryland ecosystems are already widespread, and ensuring food security is a crucial challenge. In this article, we demonstrate changes in growth performance and seed quality of a new high-yielding quinoa genotype (Q5) exposed to sodium chloride (NaCl), sodium sulfate (Na2SO4), and mixed salts (NaCl + Na2SO4). Differential responses to salt stress in growth performance, seed yield, and seed quality were identified. High salinity (mixed Na2SO4 + NaCl) reduces plant height by ∼30%, shoot and root dry weights by ∼29%, head panicle length and panicle weight by 36-43%, and seed yield by 37%, compared with control conditions. However, the 1,000-seed weight changes insignificantly under salinity. High content of essential minerals, such as Fe, Zn, and Ca in quinoa Q5 seeds produced under salinity, gives the Q5 genotype a remarkable advantage for human consumption. Biomarkers detected in our studies show that the content of most essential amino acids is unchanged under salinity. The content of amino acids Pro, Gly, and Ile positively correlates with Na+ concentration in soil and seeds, whereas the content of squalene and most fatty acids negatively correlates. Variation in squalene content under increasing salinity is most likely due to toxic effects of sodium and chlorine ions as a result of the decrease in membrane permeability for ion movement as a protective reaction to an increase in the sodium ion concentration. Low squalene accumulation might also occur to redirect the NADPH cofactor to enhance the biosynthesis of proline in response to salinity, as both syntheses (squalene and proline) require NADPH. This evidence can potentially be used by the food and pharmaceutical industries in the development of new food and health products.
Collapse
Affiliation(s)
- Kristina N. Toderich
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
- International Center for Biosaline Agriculture for Central Asia and Caucasus (ICBA-CAC), Tashkent, Uzbekistan
| | | | - Botir B. Khaitov
- International Center for Biosaline Agriculture for Central Asia and Caucasus (ICBA-CAC), Tashkent, Uzbekistan
| | - Aziz A. Karimov
- International Center for Biosaline Agriculture for Central Asia and Caucasus (ICBA-CAC), Tashkent, Uzbekistan
| | - Azamjon A. Soliev
- Institute of Bioorganic Chemistry Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Kameswara Rao Nanduri
- International Center for Biosaline Agriculture for Central Asia and Caucasus (ICBA-CAC), Tashkent, Uzbekistan
| | - Elena V. Shuyskaya
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Elena V. Shuyskaya,
| |
Collapse
|
30
|
Nguyen QH, Vu LTK, Nguyen LTN, Pham NTT, Nguyen YTH, Le SV, Chu MH. Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci Rep 2019; 9:19663. [PMID: 31873128 PMCID: PMC6928231 DOI: 10.1038/s41598-019-55895-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
Soybean plants are sensitive to the effects of abiotic stress and belong to the group of crops that are less drought and salt tolerant. The identification of genes involved in mechanisms targeted to cope with water shortage is an essential and indispensable task for improving the drought and salt tolerance of soybean. One of the approaches for obtaining lines with increased tolerance is genetic modification. The dehydration-responsive element binding proteins (DREBs), belonging to the AP2 family, are trans-active transcription factors that bind to the cis-sequences of the promoter for activating the expression of the target genes that mediate drought and salt tolerant responses. In this study, the GmDREB6 transgene was introduced into DT84 cultivar soybean plants, using Agrobacterium-mediated transformation. The efficacy of GmDREB6 overexpression in enhancing the transcriptional level of GmP5CS and proline accumulation in genetically modified (GM) soybean plants was also assayed. The results demonstrated that ten GM soybean plants (T0 generation) were successfully generated from the transformed explants after selecting with kanamycin. Among these plantlets, the presence of the GmDREB6 transgene was confirmed in nine plants by Polymerase Chain Reaction (PCR), and eight plants showed positive results in Southern blot. In the T1 generation, four GM lines, labelled T1-2, T1-4, T1-7, and T1-10, expressed the recombinant GmDREB6 protein. In the T2 generation, the transcriptional levels of the GmP5CS gene were higher in the GM lines than in the non-transgenic plants, under normal conditions and also under conditions of salt stress and drought, ranging from 1.36 to 2.01 folds and 1.58 to 3.16 folds that of the non-transgenic plants, respectively. The proline content was higher in the four GM soybean lines, T2-2, T2-4, T2-7, and T2-10 than in the non-transgenic plants, ranging from 0.82 μmol/g to 4.03 μmol/g. The proline content was the highest in the GM T2-7 line (7.77 μmol/g). In GM soybean lines, T2-2, T2-4, T2-7, and T2-10 proline content increased after plants were subjected to salt stress for seven days, in comparison to that under normal conditions, and ranged from 247.83% to 300%, while that of the non-GM plants was 238.22%. These results suggested that GmDREB6 could act as a potential candidate for genetic engineering for improving tolerance to salt stresses.
Collapse
Affiliation(s)
- Quan Huu Nguyen
- Thainguyen University of Education, Thai Nguyen University, Thai Nguyen, 250000, Viet Nam
| | - Lien Thi Kim Vu
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi, 100000, Viet Nam
| | - Lan Thi Ngoc Nguyen
- Thainguyen University of Education, Thai Nguyen University, Thai Nguyen, 250000, Viet Nam
| | - Nhan Thi Thanh Pham
- Thainguyen University of Education, Thai Nguyen University, Thai Nguyen, 250000, Viet Nam
| | - Yen Thi Hai Nguyen
- Thainguyen University of Sciences, Thai Nguyen University, Thai Nguyen, 250000, Viet Nam
| | - Son Van Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Mau Hoang Chu
- Thainguyen University of Education, Thai Nguyen University, Thai Nguyen, 250000, Viet Nam.
| |
Collapse
|
31
|
Zulfiqar F, Akram NA, Ashraf M. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. PLANTA 2019; 251:3. [PMID: 31776765 DOI: 10.1007/s00425-019-03293-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 05/06/2023]
Abstract
Plant osmoprotectants protect against abiotic stresses. Introgression of osmoprotectant genes into crop plants via genetic engineering is an important strategy in developing more productive plants. Plants employ adaptive mechanisms to survive various abiotic stresses. One mechanism, the osmoprotection system, utilizes various groups of low molecular weight compounds, collectively known as osmoprotectants, to mitigate the negative effect of abiotic stresses. Osmoprotectants may include amino acids, polyamines, quaternary ammonium compounds and sugars. These nontoxic compounds stabilize cellular structures and enzymes, act as metabolic signals, and scavenge reactive oxygen species produced under stressful conditions. The advent of recent drastic fluctuations in the global climate necessitates the development of plants better adapted to abiotic stresses. The introgression of genes related to osmoprotectant biosynthesis from one plant to another by genetic engineering is a unique strategy bypassing laborious conventional and classical breeding programs. Herein, we review recent literature related to osmoprotectants and transgenic plants engineered with specific osmoprotectant properties.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
32
|
Jinal HN, Gopi K, Prittesh P, Kartik VP, Amaresan N. Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32815-32823. [PMID: 31502049 DOI: 10.1007/s11356-019-06394-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/02/2019] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is one of the essential micronutrients for all living organisms. Despite its abundance in most of the contaminated soil, it is usually in unavailable forms. The unavailable form of Fe could be mobilized to plants by the use of microorganisms. This study was carried out to show that the Fe-contaminated field soils could be used to accumulate Fe in the plant parts using bacterial inoculation. For this, from a set of bacterial isolates, four Fe-tolerant bacteria were selected and identified based on 16S rRNA gene sequencing. The Fe-tolerant bacteria belonged to the genus Bacillus toyonensis (MG430287), Rhodococcus hoagii (MG432495), Lysinibacillus mangiferihumi (MG432492), and Lysinibacillus fusiformis (MG430290). Screening of plant growth-promoting properties of these isolates revealed that all isolates were able to produce indole acetic acid (50.0-84.0 μg/ml), siderophore, and potassium solubilization (except R. hoagii). Pot assay using Fe-contaminated ((8.07-8.35 g kg-1) soils River Directorate of India) revealed that Fe-tolerant bacteria enhanced the growth of Brassica juncea and its biomass. Besides the improved plant growth, the inoculated plants also showed an overall percentage increase in the uptake of iron in root, stem, and leaf (57.91-128.31%) compared with uninoculated plants. In addition to enhanced plant growth attributes, the isolates also improved the total chlorophyll content and antioxidant properties such as total phenol, proline, and ascorbic acid oxidase. Thus, the results clearly indicated that these isolates could be used as a bioinoculant to improve the sequestration of Fe from the contaminated soils and alleviation of Fe stress in plants.
Collapse
Affiliation(s)
- Hardik Naik Jinal
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India
| | - Kachhadiya Gopi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India
| | - Patel Prittesh
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India
| | - Vinodbhai Patel Kartik
- Department of Biosciences, Veer Narmad South Gujarat University, Udhna Magdalla Road, Surat, Gujarat, 395 007, India
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India.
| |
Collapse
|
33
|
Genome-wide identification and expression analysis of the AAAP family in Medicago truncatula. Genetica 2019; 147:185-196. [PMID: 30905050 DOI: 10.1007/s10709-019-00062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
The amino acid/auxin permease (AAAP) gene family plays an important role in the long-distance amino acid transport pathway and takes part in various stages of plant growth and development. However, little is known about the AAAP gene family in Medicago truncatula. Here, we identified 86 putative MtAAAP family members using genome sequence information. Based on phylogenetic analysis, these MtAAAP genes were categorized into eight distinct subfamilies. The MtAAAP genes were mapped on 8 chromosomes and duplication events appeared widely, with 19 and 21 pairs of MtAAAP genes showing segment and tandem duplication events, respectively. Ratio of Ka/Ks indicated that duplicated genes underwent purifying selection. Analysis of RNA-seq data showed that MtAAAP genes exhibited specific expression patterns among different tissues and abiotic stress, indicating that MtAAAP members were involved in plant developmental regulation and stress responses. Expression patterns of 16 MtAAAP genes under abiotic stress were verified by qRT-PCR. The present study provides a foundation for the functional analysis of MtAAAPs in developmental regulation and stress responses.
Collapse
|
34
|
Ma H, Wang A, Zhang M, Li H, Du S, Bai L, Chen S, Zhong M. Compared the physiological response of two petroleum tolerant-contrasting plants to petroleum stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1043-1048. [PMID: 30095314 DOI: 10.1080/15226514.2018.1460303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Petroleum not only benefits the world economy but also contaminates the soil. In order to select the plants tolerant to petroleum, the physiological response of two petroleum tolerant-contrasting plants, Mirabilis jalapa and Orychophragmus violace, were investigated in variation of petroleum-contaminated soils (0, 5, 10, 20, and 40 g petroleum per kg soil) for 120 d. Petroleum degradation rate, seeds germination rate, free proline, and superoxide dismutase and peroxidase activities of M. jalapa were higher than that of O. violace under petroleum stress. However, the decrease rate of soluble protein, plant height, chlorophyll, and root fresh weight was greater in O. violace as compared to M. jalapa. Pearson correlation coefficient analysis was conducted, which indicated that the higher tolerance of M. jalapa was correlated with the higher level of free proline and antioxidative enzyme activities. Besides, the 10 g petroleum per kg soil may be appropriate for petroleum-tolerant plants selection, in which petroleum significantly restrain growth in O. violace but not in M. jalapa.
Collapse
Affiliation(s)
- Hui Ma
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| | - Ao Wang
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| | - Menghua Zhang
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| | - Haoge Li
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| | - Sisi Du
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| | - Liping Bai
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| | - Shuisen Chen
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| | - Ming Zhong
- a Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University , Shenyang , China
| |
Collapse
|
35
|
John R, Ganeshan U, Singh BN, Kaul T, Reddy MK, Sopory SK, Rajam MV. Over-expression of Topoisomerase II Enhances Salt Stress Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:1280. [PMID: 27630644 PMCID: PMC5006100 DOI: 10.3389/fpls.2016.01280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/11/2016] [Indexed: 05/09/2023]
Abstract
Topoisomerases are unique enzymes having an ability to remove or add DNA supercoils and untangle the snarled DNA. They can cut, shuffle, and religate DNA strands and remove the torsional stress during DNA replication, transcription or recombination events. In the present study, we over-expressed topoisomerase II (TopoII) in tobacco (Nicotiana tabaccum) and examined its role in growth and development as well as salt (NaCl) stress tolerance. Several putative transgenic plants were generated and the transgene integration and expression was confirmed by PCR and Southern blot analyses, and RT-PCR analysis respectively. Percent seed germination, shoot growth, and chlorophyll content revealed that transgenic lines over-expressing the NtTopoIIα-1 gene exhibited enhanced tolerance to salt (150 and 200 mM NaCl) stress. Moreover, over-expression of TopoII lead to the elevation in proline and glycine betaine levels in response to both concentrations of NaCl as compared to wild-type. In response to NaCl stress, TopoII over-expressing lines showed reduced lipid peroxidation derived malondialdehyde (MDA) generation. These results suggest that TopoII plays a pivotal role in salt stress tolerance in plants.
Collapse
Affiliation(s)
- Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of KashmirSrinagar, India
- *Correspondence: Riffat John
| | - Uma Ganeshan
- Plant Polyamine, Transgenic and RNAi Laboratory, Department of Genetics, University of Delhi South CampusNew Delhi, India
| | - Badri N. Singh
- Plant Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Tanushri Kaul
- Plant Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Malireddy K. Reddy
- Plant Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Sudhir K. Sopory
- Plant Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Manchikatla V. Rajam
- Plant Polyamine, Transgenic and RNAi Laboratory, Department of Genetics, University of Delhi South CampusNew Delhi, India
- Manchikatla V. Rajam
| |
Collapse
|