1
|
Yu M, Arai N, Ochiai T, Ohyama T. Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae. ANNALS OF BOTANY 2023; 131:335-346. [PMID: 36546767 PMCID: PMC9992940 DOI: 10.1093/aob/mcac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants trap and digest insects and similar-sized animals. Many studies have examined enzymes in the digestive fluids of these plants and have gradually unveiled the origins and gene expression of these enzymes. However, only a few attempts have been made at characterization of nucleases. This study aimed to reveal gene expression and the structural, functional and evolutionary characteristics of an S1-type nuclease (DAN1) in the digestive fluid of an Australian sundew, Drosera adelae, whose trap organ shows unique gene expression and related epigenetic regulation. METHODS Organ-specificity in Dan1 expression was examined using glandular tentacles, laminas, roots and inflorescences, and real-time PCR. The methylation status of the Dan1 promoter in each organ was clarified by bisulphite sequencing. The structural characteristics of DAN1 were studied by a comparison of primary structures of S1-type nucleases of three carnivorous and seven non-carnivorous plants. DAN1 was prepared using a cell-free protein synthesis system. Requirements for metal ions, optimum pH and temperature, and substrate preference were examined using conventional methods. KEY RESULTS Dan1 is exclusively expressed in the glandular tentacles and its promoter is almost completely unmethylated in all organs. This is in contrast to the S-like RNase gene da-I of Dr. adelae, which shows similar organ-specific expression, but is controlled by a promoter that is specifically unmethylated in the glandular tentacles. Comparison of amino acid sequences of S1-type nucleases identifies seven and three positions where amino acid residues are conserved only among the carnivorous plants and only among the non-carnivorous plants, respectively. DAN1 prefers a substrate RNA over DNA in the presence of Zn2+, Mn2+ or Ca2+ at an optimum pH of 4.0. CONCLUSIONS Uptake of phosphates from prey is suggested to be the main function of DAN1, which is very different from the known functions of S1-type nucleases. Evolution has modified the structure and expression of Dan1 to specifically function in the digestive fluid.
Collapse
Affiliation(s)
- Meng Yu
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Arai
- Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Tadahiro Ochiai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
2
|
Azizkhani N, Mirzaei S, Torkzadeh-Mahani M. Genome-wide identification and characterization of legume T2 Ribonuclease gene family and analysis of GmaRNS9, a soybean T2 Ribonuclease gene, function in nodulation. 3 Biotech 2021; 11:495. [PMID: 34881158 DOI: 10.1007/s13205-021-03025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/08/2021] [Indexed: 01/30/2023] Open
Abstract
T2 ribonuclease family (RNaseT2) proteins are secretory and nonspecific endoribonucleases that have a large conserved biological role. Family members of RNaseT2 are found in every organism and carry out important biological functions. However, little is known about the functions of these proteins in legumes, including potential roles in symbiotic nodulation. This study aimed to characterize and perform bioinformatic analysis of RNaseT2 genes in four legume species that their genome was sequenced. In total, 60 RNaseT2 genes were identified and characterized. By analyzing their phylogeny, we divided these RNaseT2 into five clades. Expression analysis of RNaseT2 genes indicated that these genes are expressed in various tissues, and the most expression level was related to the pod, flower, and root. Moreover, GmaRNS9 expression analysis in soybean was consistent with in silico studies and demonstrated that this gene usually has high root tip expression. GmaRNS9 expression was reduced by Bradyrhizobium japonicum inoculation and nodule formation. Reduced expression of this gene was possibly controlled by the GmNARK gene either directly or pleiotropically through increased phosphorus requirements during increased nodulation. However, the nutrient stress (phosphate and nitrate starvation) led to an increase in the expression level of GmRNS9. In silico and quantitative gene expression analyses showed that RNaseT2 genes could play important roles in the growth and development of legumes as well as nodulation.
Collapse
Affiliation(s)
- Negin Azizkhani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, 7631885356 Kerman, Iran
| | - Saeid Mirzaei
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, 7631885356 Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, 7631885356 Kerman, Iran
| |
Collapse
|
3
|
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1946-1961. [PMID: 33247920 PMCID: PMC7921302 DOI: 10.1093/jxb/eraa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
Over the last two decades, extensive studies have been performed at the molecular level to understand the evolution of carnivorous plants. As fruits, the repertoire of protein components in the digestive fluids of several carnivorous plants have gradually become clear. However, the quantitative aspects of these proteins and the expression mechanisms of the genes that encode them are still poorly understood. In this study, using the Australian sundew Drosera adelae, we identified and quantified the digestive fluid proteins. We examined the expression and methylation status of the genes corresponding to major hydrolytic enzymes in various organs; these included thaumatin-like protein, S-like RNase, cysteine protease, class I chitinase, β-1, 3-glucanase, and hevein-like protein. The genes encoding these proteins were exclusively expressed in the glandular tentacles. Furthermore, the promoters of the β-1, 3-glucanase and cysteine protease genes were demethylated only in the glandular tentacles, similar to the previously reported case of the S-like RNase gene da-I. This phenomenon correlated with high expression of the DNA demethylase DEMETER in the glandular tentacles, strongly suggesting that it performs glandular tentacle-specific demethylation of the genes. The current study strengthens and generalizes the relevance of epigenetics to trap organ-specific gene expression in D. adelae. We also suggest similarities between the trap organs of carnivorous plants and the roots of non-carnivorous plants.
Collapse
Affiliation(s)
- Naoki Arai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ohno
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinya Jumyo
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Hamaji
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
- Correspondence:
| |
Collapse
|
4
|
Potrokhov A, Sosnovska D, Ovcharenko O, Budzanivska I, Rudas V, Kuchuk M. Increased ribonuclease activity in Solanum tuberosum L. transformed with heterologous genes of apoplastic ribonucleases as a putative approach for production of virus resistant plants. ACTA ACUST UNITED AC 2021; 45:79-87. [PMID: 33597824 PMCID: PMC7877712 DOI: 10.3906/biy-2007-87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/01/2020] [Indexed: 01/09/2023]
Abstract
Viral pathogens seriously decrease the yield of potato (Solanum tuberosum L.) –an important agricultural crop. Therefore, there is a demand for potato cultivars resistant to multiple viruses. Ribonucleases (RNases) are supposed to be engaged to antiviral response in plants. Heterologous RNase gene expression provides a tool for production of cultivars with multiple resistance to viruses and viroids. Transgenic potato cultivars Luhivs’ka and Lasynak with heterologous genes bov and ZRNase II of apoplastic RNases from Bos taurus and Zinniaelegans respectively were obtained via Agrobacterium-mediated transformation. The presence of bov and ZRNase II transgenes was confirmed by PCR analysis. RNase activity was examined by modified Oleshko method. Plants with heterologous ribonuclease genes had higher level of RNase activity compared to nontransgenic ones. Transgenic plants inoculated with Potato virus Y, PVY (genus Potyvirus, family Potyviridae) demonstrated delayed and less severe symptoms of viral infection. DAS-ELISA confirmed the presence of viral antigens both in transformed and control plants. Visual manifestations of viral infection in transgenic potatoes were milder than in control plants and their development was delayed, but complete elimination of the virus did not occur.
Collapse
Affiliation(s)
- Andrii Potrokhov
- Institute of Cell Biology and Genetic Engineering NAS Ukraine, Kyiv Ukraine
| | - Daria Sosnovska
- Virology Department, Educational and Scientific Center, Institute of Biology and Medicine of Taras Shevchenko National University of Kyiv, Kyiv Ukraine
| | - Olga Ovcharenko
- Institute of Cell Biology and Genetic Engineering NAS Ukraine, Kyiv Ukraine
| | - Irena Budzanivska
- Virology Department, Educational and Scientific Center, Institute of Biology and Medicine of Taras Shevchenko National University of Kyiv, Kyiv Ukraine
| | - Volodymyr Rudas
- Institute of Cell Biology and Genetic Engineering NAS Ukraine, Kyiv Ukraine
| | - Mykola Kuchuk
- Institute of Cell Biology and Genetic Engineering NAS Ukraine, Kyiv Ukraine
| |
Collapse
|
5
|
Li JW, Zhang SB, Xi HP, Bradshaw CJA, Zhang JL. Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid. ANNALS OF BOTANY 2020; 126:261-275. [PMID: 32318689 PMCID: PMC7380463 DOI: 10.1093/aob/mcaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/18/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Development of the velamen radicum on the outer surface of the root epidermis is an important characteristic for water uptake and retention in some plant families, particularly epiphytic orchids, for survival under water-limited environments. Velamen radicum cells derive from the primary root meristem; however, following this development, velamen radicum cells die by incompletely understood processes of programmed cell death (PCD). METHODS We combined the use of transmission electron microscopy, X-ray micro-tomography and transcriptome methods to characterize the major anatomical and molecular changes that occur during the development and death of velamen radicum cells of Cymbidium tracyanum, a typical epiphytic orchid, to determine how PCD occurs. KEY RESULTS Typical changes of PCD in anatomy and gene expression were observed in the development of velamen radicum cells. During the initiation of PCD, we found that both cell and vacuole size increased, and several genes involved in brassinosteroid and ethylene pathways were upregulated. In the stage of secondary cell wall formation, significant anatomical changes included DNA degradation, cytoplasm thinning, organelle decrease, vacuole rupture and cell wall thickening. Changes were found in the expression of genes related to the biosynthesis of cellulose and lignin, which are instrumental in the formation of secondary cell walls, and are regulated by cytoskeleton-related factors and phenylalanine ammonia-lyase. In the final stage of PCD, cell autolysis was terminated from the outside to the inside of the velamen radicum. The regulation of genes related to autophagy, vacuolar processing enzyme, cysteine proteases and metacaspase was involved in the final execution of cell death and autolysis. CONCLUSIONS Our results showed that the development of the root velamen radicum in an epiphytic orchid was controlled by the process of PCD, which included initiation of PCD, followed by formation of the secondary cell wall, and execution of autolysis following cell death.
Collapse
Affiliation(s)
- Jia-Wei Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- For correspondence. E-mail or
| | - Hui-Peng Xi
- Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Corey J A Bradshaw
- Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, Australia
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, China
- For correspondence. E-mail or
| |
Collapse
|
6
|
Iakimova ET, Woltering EJ. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. PLANTA 2017; 245:681-705. [PMID: 28194564 PMCID: PMC5357506 DOI: 10.1007/s00425-017-2656-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Collapse
Affiliation(s)
| | - Ernst J Woltering
- Wageningen University and Research, Food and Biobased Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
- Wageningen University, Horticulture and Product Physiology, P.O. Box 630, 6700 AP, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Floyd BE, Mugume Y, Morriss SC, MacIntosh GC, Bassham DC. Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis. PLANTA 2017; 245:779-792. [PMID: 28025674 DOI: 10.1007/s00425-016-2644-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 05/28/2023]
Abstract
Localization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis. The Arabidopsis thaliana class II RNase T2, RNS2, is encoded by a single gene and functions in rRNA degradation. Loss of RNS2 results in RNA accumulation and constitutive activation of autophagy, possibly as a compensatory mechanism. While the majority of RNase T2 enzymes is secreted, RNS2 is located within the vacuole and in the endoplasmic reticulum (ER), possibly within ER bodies. As RNS2 has a neutral pH optimum, and the endomembrane organelles are connected by vesicle transport, the site within the endomembrane system at which RNS2 functions is unclear. Here we demonstrate that localization to the vacuole is essential for the physiological function of RNS2. A mutant allele of RNS2, rns2-1, results in production of an active RNS2 RNase but with a mutation that removes a putative C-terminal vacuolar targeting signal. The mutant protein is, therefore, secreted from the cell. This results in a constitutive autophagy phenotype similar to that observed in rns2 null mutants. These findings illustrate that the intracellular retention of RNS2 and localization within the vacuole are critical for its cellular function.
Collapse
Affiliation(s)
- Brice E Floyd
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie C Morriss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
8
|
Sugawara T, Trifonova EA, Kochetov AV, Kanayama Y. Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco. BMC PLANT BIOLOGY 2016; 16:246. [PMID: 28105959 PMCID: PMC5123310 DOI: 10.1186/s12870-016-0928-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus. RESULTS Severe mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV), whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene. CONCLUSION We have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes.
Collapse
Affiliation(s)
- Teppei Sugawara
- Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | | | - Alex V Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.
| |
Collapse
|
9
|
Stigter KA, Plaxton WC. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence. PLANTS 2015; 4:773-98. [PMID: 27135351 PMCID: PMC4844268 DOI: 10.3390/plants4040773] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 11/16/2022]
Abstract
Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.
Collapse
Affiliation(s)
- Kyla A Stigter
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
10
|
Arai N, Nishimura E, Kikuchi Y, Ohyama T. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases. Biochem Biophys Res Commun 2015; 465:108-12. [DOI: 10.1016/j.bbrc.2015.07.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
11
|
Nishimura E, Jumyo S, Arai N, Kanna K, Kume M, Nishikawa JI, Tanase JI, Ohyama T. Structural and functional characteristics of S-like ribonucleases from carnivorous plants. PLANTA 2014; 240:147-59. [PMID: 24771022 DOI: 10.1007/s00425-014-2072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/24/2014] [Indexed: 05/09/2023]
Abstract
Although the S-like ribonucleases (RNases) share sequence homology with the S-RNases involved in the self-incompatibility mechanism in plants, they are not associated with this mechanism. They usually function in stress responses in non-carnivorous plants and in carnivory in carnivorous plants. In this study, we clarified the structures of the S-like RNases of Aldrovanda vesiculosa, Nepenthes bicalcarata and Sarracenia leucophylla, and compared them with those of other plants. At ten positions, amino acid residues are conserved or almost conserved only for carnivorous plants (six in total). In contrast, two positions are specific to non-carnivorous plants. A phylogenetic analysis revealed that the S-like RNases of the carnivorous plants form a group beyond the phylogenetic relationships of the plants. We also prepared and characterized recombinant S-like RNases of Dionaea muscipula, Cephalotus follicularis, A. vesiculosa, N. bicalcarata and S. leucophylla, and RNS1 of Arabidopsis thaliana. The recombinant carnivorous plant enzymes showed optimum activities at about pH 4.0. Generally, poly(C) was digested less efficiently than poly(A), poly(I) and poly(U). The kinetic parameters of the recombinant D. muscipula enzyme (DM-I) and A. thaliana enzyme RNS1 were similar. The k cat/K m of recombinant RNS1 was the highest among the enzymes, followed closely by that of recombinant DM-I. On the other hand, the k cat/K m of the recombinant S. leucophylla enzyme was the lowest, and was ~1/30 of that for recombinant RNS1. The magnitudes of the k cat/K m values or k cat values for carnivorous plant S-like RNases seem to correlate negatively with the dependency on symbionts for prey digestion.
Collapse
Affiliation(s)
- Emi Nishimura
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Escamez S, Tuominen H. Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1313-21. [PMID: 24554761 DOI: 10.1093/jxb/eru057] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tracheary element (TE) differentiation represents a unique system to study plant developmental programmed cell death (PCD). TE PCD occurs after deposition of the secondary cell walls when an unknown signal induces tonoplast rupture and the arrest of cytoplasmic streaming. TE PCD is tightly followed by autolysis of the protoplast and partial hydrolysis of the primary cell walls. This review integrates TE differentiation, programmed cell death (PCD), and autolysis in a biological and evolutionary context. The collective evidence from the evolutionary and molecular studies suggests that TE differentiation consists primarily of a programme for cell death and autolysis under the direct control of the transcriptional master switches VASCULAR NAC DOMAIN 6 (VND6) and VND7. In this scenario, secondary cell walls represent a later innovation to improve the water transport capacity of TEs which necessitates transcriptional regulators downstream of VND6 and VND7. One of the most fascinating features of TEs is that they need to prepare their own corpse removal by expression and accumulation of hydrolases that are released from the vacuole after TE cell death. Therefore, TE differentiation involves, in addition to PCD, a programmed autolysis which is initiated before cell death and executed post-mortem. It has recently become clear that TE PCD and autolysis are separate processes with separate molecular regulation. Therefore, the importance of distinguishing between the cell death programme per se and autolysis in all plant PCD research and of careful description of the morphological, biochemical, and molecular sequences in each of these processes, is advocated.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
13
|
Ciesielska K, Van Bogaert I, Chevineau S, Li B, Groeneboer S, Soetaert W, Van de Peer Y, Devreese B. Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase required for lactonization of sophorolipids. J Proteomics 2014; 98:159-74. [DOI: 10.1016/j.jprot.2013.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/13/2013] [Accepted: 12/30/2013] [Indexed: 01/25/2023]
|
14
|
Rojas HJ, Roldán JA, Goldraij A. NnSR1, a class III non-S-RNase constitutively expressed in styles, is induced in roots and stems under phosphate deficiency in Nicotiana alata. ANNALS OF BOTANY 2013; 112:1351-60. [PMID: 24047716 PMCID: PMC3806536 DOI: 10.1093/aob/mct207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/11/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Non-S-ribonucleases (non-S-RNases) are class III T2 RNases constitutively expressed in styles of species with S-RNase-based self-incompatibility. So far, no function has been attributed to these RNases. The aim of this work is to examine if NnSR1, a non-S-RNase from Nicotiana alata, is induced under conditions of phosphate (Pi) deprivation. The hypothesis is that under Pi-limited conditions, non-S-RNase functions may resemble the role of S-like RNases. To date, the only RNases reported to be induced by Pi deficiency are class I and class II S-like RNases, which are phylogenetically different from the class III clade of RNases. METHODS Gene and protein expression of NnSR1 were assayed in plants grown hydroponically with and without Pi, by combining RT-PCR, immunoblot and enzymatic activity approaches. KEY RESULTS NnSR1 transcripts were detected in roots 7 d after Pi deprivation and remained stable for several days. Transcript expression was correlated based on Pi availability in the culture medium. Antiserum against a peptide based on a hypervariable domain of NnSR1 recognized NnSR1 in roots and stems but not leaves exposed to Pi shortage. NnSR1 was not detected in culture medium and was pelleted with the microsomal fraction, suggesting that it was membrane-associated or included in large compartments. The anti-NnSR1 inhibited selectively the enzymatic activity of a 31-kDa RNase indicating that NnSR1 was induced in an enzymatically active form. CONCLUSIONS The induction of NnSR1 indicates that there is a general recruitment of all classes of T2 RNases in response to Pi shortage. NnSR1 appears to have regained ancestral functions of class III RNases related to strategies to cope with Pi limitation and also possibly with other environmental challenges. This constitutes the first report for a specific function of class III RNases other than S-RNases.
Collapse
Affiliation(s)
| | | | - Ariel Goldraij
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC–CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
15
|
Nishimura E, Kawahara M, Kodaira R, Kume M, Arai N, Nishikawa JI, Ohyama T. S-like ribonuclease gene expression in carnivorous plants. PLANTA 2013; 238:955-67. [PMID: 23959189 DOI: 10.1007/s00425-013-1945-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 05/09/2023]
Abstract
Functions of S-like ribonucleases (RNases) differ considerably from those of S-RNases that function in self-incompatibility. Expression of S-like RNases is usually induced by low nutrition, vermin damage or senescence. However, interestingly, an Australian carnivorous plant Drosera adelae (a sundew), which traps prey with a sticky digestive liquid, abundantly secretes an S-like RNase DA-I in the digestive liquid even in ordinary states. Here, using D. adelae, Dionaea muscipula (Venus flytrap) and Cephalotus follicularis (Australian pitcher plant), we show that carnivorous plants use S-like RNases for carnivory: the gene da-I encoding DA-I and its ortholog cf-I of C. follicularis are highly expressed and constitutively active in each trap/digestion organ, while the ortholog dm-I of D. muscipula becomes highly active after trapping insects. The da-I promoter is unmethylated only in its trap/digestion organ, glandular tentacles (which comprise a small percentage of the weight of the whole plant), but methylated in other organs, which explains the glandular tentacles-specific expression of the gene and indicates a very rare gene regulation system. In contrast, the promoters of dm-I, which shows induced expression, and cf-I, which has constitutive expression, were not methylated in any organs examined. Thus, it seems that the regulatory mechanisms of the da-I, dm-I and cf-I genes differ from each other and do not correlate with the phylogenetic relationship. The current study suggests that under environmental pressure in specific habitats carnivorous plants have managed to evolve their S-like RNase genes to function in carnivory.
Collapse
|
16
|
Köthke S, Köck M. The Solanum lycopersicum RNaseLER is a class II enzyme of the RNase T2 family and shows preferential expression in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:840-7. [PMID: 21237531 DOI: 10.1016/j.jplph.2010.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/12/2010] [Accepted: 11/08/2010] [Indexed: 05/30/2023]
Abstract
Ribonucleases (RNases) occur in different gene families, functioning in RNA processing and degradation. In this study, we report on cloning and characterization of RNaseLER, the first class II gene of the RNase T2 family in tomato (Solanum lycopersicum). The family also includes the class I members RNaseLE and RNaseLX, and the class III group of S-RNases acting in self incompatibility. The RNaseLER gene was cloned by polymerase chain reaction (PCR)-assisted methods. Structural analyses of RNaseLER and homologous genes revealed unique key features of class II RNase T2 genes. RNaseLER is a single copy gene in tomato and codes for a primary protein of 260 amino acids. Subcellular localization analyzed with a RNaseLER-eYFP fusion protein and co-localization experiments revealed an intracellular accumulation in the endoplasmic reticulum. Transgenic Nicotiana benthamiana plants carrying the uidA reporter gene under the control of a 900-bp RNaseLER promoter sequence express the reporter gene predominantly in guard cells and trichomes. This previously unknown spatial expression of a RNase T2 gene is consistent with ubiquitous detection of low RNaseLER transcript abundances in almost all parts of tomato plants. As revealed by quantitative real-time RT-PCR analysis treatments with abscisic acid, ethylene or other abiotic and biotic stress factors did not affect RNaseLER expression significantly. Unlike tomato class I genes, RNaseLER represents a constitutively expressed gene with a cell-specific role in stomata and trichomes and no involvement in stress responses.
Collapse
Affiliation(s)
- Sabine Köthke
- Martin-Luther-Universität Halle-Wittenberg, Biozentrum, Weinbergweg 22, D-06120 Halle, Germany
| | | |
Collapse
|
17
|
MacIntosh GC. RNase T2 Family: Enzymatic Properties, Functional Diversity, and Evolution of Ancient Ribonucleases. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2011. [DOI: 10.1007/978-3-642-21078-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Hillwig MS, Liu X, Liu G, Thornburg RW, MacIntosh GC. Petunia nectar proteins have ribonuclease activity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2951-65. [PMID: 20460362 PMCID: PMC2892141 DOI: 10.1093/jxb/erq119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/31/2010] [Accepted: 04/09/2010] [Indexed: 05/22/2023]
Abstract
Plants requiring an insect pollinator often produce nectar as a reward for the pollinator's visitations. This rich secretion needs mechanisms to inhibit microbial growth. In Nicotiana spp. nectar, anti-microbial activity is due to the production of hydrogen peroxide. In a close relative, Petunia hybrida, limited production of hydrogen peroxide was found; yet petunia nectar still has anti-bacterial properties, suggesting that a different mechanism may exist for this inhibition. The nectar proteins of petunia plants were compared with those of ornamental tobacco and significant differences were found in protein profiles and function between these two closely related species. Among those proteins, RNase activities unique to petunia nectar were identified. The genes corresponding to four RNase T2 proteins from Petunia hybrida that show unique expression patterns in different plant tissues were cloned. Two of these enzymes, RNase Phy3 and RNase Phy4 are unique among the T2 family and contain characteristics similar to both S- and S-like RNases. Analysis of amino acid patterns suggest that these proteins are an intermediate between S- and S-like RNases, and support the hypothesis that S-RNases evolved from defence RNases expressed in floral parts. This is the first report of RNase activities in nectar.
Collapse
Affiliation(s)
| | | | | | - Robert W. Thornburg
- To whom correspondence should be addressed: E-mail: Robert Thornburg: ; Gustavo MacIntosh:
| | - Gustavo C. MacIntosh
- To whom correspondence should be addressed: E-mail: Robert Thornburg: ; Gustavo MacIntosh:
| |
Collapse
|
19
|
RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. Mol Genet Genomics 2010; 283:381-96. [PMID: 20182746 DOI: 10.1007/s00438-010-0524-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/02/2010] [Indexed: 12/31/2022]
Abstract
The plant RNase T2 family is divided into two different subfamilies. S-RNases are involved in rejection of self-pollen during the establishment of self-incompatibility in three plant families. S-like RNases, on the other hand, are not involved in self-incompatibility, and although gene expression studies point to a role in plant defense and phosphate recycling, their biological roles are less well understood. Although S-RNases have been subjects of many phylogenetic studies, few have included an extensive analysis of S-like RNases, and genome-wide analyses to determine the number of S-like RNases in fully sequenced plant genomes are missing. We characterized the eight RNase T2 genes present in the Oryza sativa genome; and we also identified the full complement of RNase T2 genes present in other fully sequenced plant genomes. Phylogenetics and gene expression analyses identified two classes among the S-like RNase subfamily. Class I genes show tissue specificity and stress regulation. Inactivation of RNase activity has occurred repeatedly throughout evolution. On the other hand, Class II seems to have conserved more ancestral characteristics; and, unlike other S-like RNases, genes in this class are conserved in all plant species analyzed and most are constitutively expressed. Our results suggest that gene duplication resulted in high diversification of Class I genes. Many of these genes are differentially expressed in response to stress, and we propose that protein characteristics, such as the increase in basic residues can have a defense role independent of RNase activity. On the other hand, constitutive expression and phylogenetic conservation suggest that Class II S-like RNases may have a housekeeping role.
Collapse
|
20
|
Sangaev SS, Trifonova EA, Titov SE, Romanova AV, Kolodyazhnaya YS, Sapotsky MV, Malinovsky VI, Kochetov AV. Silencing of the Nk1 gene in the SR1 Nicotiana tabacum plants by RNA interference. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chakrabarti M, Bowen SW, Coleman NP, Meekins KM, Dewey RE, Siminszky B. CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway. PLANT MOLECULAR BIOLOGY 2008; 66:415-27. [PMID: 18196465 DOI: 10.1007/s11103-007-9280-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/21/2007] [Indexed: 05/08/2023]
Abstract
Nicotine to nornicotine conversion in tobacco (Nicotiana tabacum L.) is regulated by an unstable converter locus which in its activated state gives rise to a high nornicotine, low nicotine phenotype in the senescing leaves. In plants that carry the high nornicotine trait, nicotine conversion is primarily catalyzed by a cytochrome P450 protein, designated CYP82E4 whose transcription is strongly upregulated during leaf senescence. To further investigate the regulation of CYP82E4 expression, we examined the spatiotemporal distribution and the stress- and signaling molecule-elicited expression patterns of CYP82E4 using alkaloid analysis and a fusion construct between the 2.2 kb upstream regulatory region of CYP82E4 and the beta-glucurodinase (GUS) gene. Histochemical and fluorometric analyses of GUS expression revealed that the CYP82E4 promoter confers high levels of expression in the senescing leaves and flowers, and in the green stems of young and mature plants, but only very low activity was detected in the roots. In the leaves, GUS activity was strongly correlated with the progression of senescence. Treatments of leaf tissue with various signaling molecules including abscisic acid, ethylene, jasmonic acid, salicylic acid and yeast extract; and stresses, such as drought, wounding and tobacco mosaic virus infection did not enhance nicotine conversion or GUS activity in the green leaves, but an increase in CYP82E4 expression was observed in response to ethylene- or tobacco mosaic virus-induced senescence. These results suggest that the expression of CYP82E4 is senescence-specific in the leaves and the use of the CYP82E4 promoter could provide a valuable tool for regulating gene expression in the senescing leaves.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, 409 Plant Sci Bldg, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | | | | | | | | | | |
Collapse
|
22
|
Trifonova EA, Sapotsky MV, Komarova ML, Scherban AB, Shumny VK, Polyakova AM, Lapshina LA, Kochetov AV, Malinovsky VI. Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against tobacco mosaic virus. PLANT CELL REPORTS 2007; 26:1121-6. [PMID: 17242942 DOI: 10.1007/s00299-006-0298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/25/2006] [Accepted: 12/31/2006] [Indexed: 05/13/2023]
Abstract
Transgenic tobacco plants (Nicotiana tabacum cv. SR1) expressing extracellular pancreatic ribonuclease from Bos taurus and characterized by an increased level of ribonuclease activity in leaf extracts were challenged with tobacco mosaic virus. The transgenic plants exhibited a significantly higher level of protection against the virus infection than the control non-transformed plants. The protection was evidenced by the absence (or significant delay) of the appearance of typical mosaic symptoms and the retarded accumulation of infectious virus and viral antigen. These results demonstrate that modulation of extracellular nuclease expression can be efficiently used in promoting protection against viral diseases.
Collapse
|
23
|
Sangaev SS, Trifonova EA, Titov SE, Romanova AV, Kolodyazhnaya YS, Komarova ML, Sapotsky MV, Malinovsky VI, Kochetov AV, Shumny VK. Effective expression of the gene encoding an extracellular ribonuclease of Zinnia elegans in the SR1 Nicotiana tabacum plants. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407070186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Lers A, Sonego L, Green PJ, Burd S. Suppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission. PLANT PHYSIOLOGY 2006; 142:710-21. [PMID: 16920876 PMCID: PMC1586048 DOI: 10.1104/pp.106.080135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although present in different organisms and conserved in their protein sequence, the biological functions of T2 ribonucleases (RNase) are generally unknown. Tomato (Lycopersicon esculentum) LX is a T2/S-like RNase and its expression is known to be associated with phosphate starvation, ethylene responses, and senescence and programmed cell death. In this study, LX function was investigated using antisense tomato plants in which the LX protein level was reduced. LX protein levels normally become elevated when leaves senesce and antisense inhibition of LX retarded the progression of senescence. Moreover, we observed a marked delay of leaf abscission in LX-deficient plants. This correlated with specific induction of LX protein in the tomato mature abscission zone tissue. LX RNase gene regulation and the consequences of antisense inhibition indicate that LX has an important functional role in both abscission and senescence.
Collapse
Affiliation(s)
- Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel.
| | | | | | | |
Collapse
|
25
|
Van Beveren KS, Spokevicius AV, Tibbits J, Wang Q, Bossinger G. Transformation of cambial tissue in vivo provides an efficient means for induced somatic sector analysis and gene testing in stems of woody plant species. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:629-638. [PMID: 32689272 DOI: 10.1071/fp06057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/28/2006] [Indexed: 06/11/2023]
Abstract
Large-scale functional analysis of genes and transgenes suspected to be involved in wood development in trees is hindered by long generation times, low transformation and regeneration efficiencies and difficulties with phenotypic assessment of traits, especially those that appear late in a tree's development. To avoid such obstacles many researchers have turned to model plants such as Arabidopsis thaliana (L.) Heynh., Zinnia elegans Jacq. and Nicotiana ssp., or have focused their attention on in vitro wood formation systems or in vivo approaches targeting primary meristems for transformation. Complementing such efforts, we report the use of Agrobacterium to introduce transgenes directly into cambial cells of glasshouse-grown trees in order to create transgenic somatic tissue sectors. These sectors are suitable for phenotypic evaluation and analysis of target gene function. In our experiments the wood formation zone containing the cambium of Eucalyptus, Populus and Pinus species of varying age was inoculated with Agrobacterium containing a CaMV 35S::GUS construct. Following an initial wound response, frequent and stable transformation was observed in the form of distinct GUS-staining patterns (sectors) in newly formed secondary tissues. Sector size and extent depended on the cell type transformed, the species and the length of time treated plants were allowed to grow (more than two years in some cases). Induced somatic sector analysis (ISSA) can now be efficiently used to study cell fate and gene function during secondary growth in stems of forest tree species.
Collapse
Affiliation(s)
- Kim S Van Beveren
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Antanas V Spokevicius
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Josquin Tibbits
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Qing Wang
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Gerd Bossinger
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| |
Collapse
|
26
|
Wei JY, Li AM, Li Y, Wang J, Liu XB, Liu LS, Xu ZF. Cloning and characterization of an RNase-related protein gene preferentially expressed in rice stems. Biosci Biotechnol Biochem 2006; 70:1041-5. [PMID: 16636480 DOI: 10.1271/bbb.70.1041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNase-related proteins (RRPs) are S- and S-like RNase homologs lacking the active site required for RNase activity. Here we describe the cloning and characterization of the rice (Oryza sativa) RRP gene (OsRRP). A single copy of OsRRP occurs in the rice genome. OsRRP contains three introns and an open reading frame encoding 252 amino acids, with the replacement of two histidines involved in the active site of RNase by lysine and tyrosine respectively. OsRRP is preferentially expressed in stems of wild-type rice and is significantly down-regulated in an increased tillering dwarf mutant ext37.
Collapse
Affiliation(s)
- Jun-Ya Wei
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Spokevicius AV, Van Beveren KS, Bossinger G. Agrobacterium-mediated transformation of dormant lateral buds in poplar trees reveals developmental patterns in secondary stem tissues. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:133-139. [PMID: 32689220 DOI: 10.1071/fp05176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/21/2005] [Indexed: 06/11/2023]
Abstract
In an attempt to devise a method for the rapid creation of somatic transgenic wood sectors of sufficient size that would allow us to detect and analyse altered wood characteristics within them, we have explored the manual wounding and subsequent infection with Agrobacterium of dormant lateral buds in poplar. Following treatment and transformation with a 35S-GUS construct, frequent stable transformation was found in the form of distinct and specific GUS staining patterns in the outer cortex, cambial region (including primary and secondary xylem and phloem) and pith. Sector frequency and size were consistent with anatomical features of dormant lateral buds at the time of manual wounding and Agrobacterium-infection. The suitability of somatic sector analysis for functional genomic studies as well as for studies investigating pattern formation and the developmental fate of various cell-types within poplar stems is discussed.
Collapse
Affiliation(s)
- Antanas V Spokevicius
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Kim S Van Beveren
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| | - Gerd Bossinger
- School of Forest and Ecosystem Science, The University of Melbourne, Water Street, Creswick, Vic. 3363, Australia
| |
Collapse
|
28
|
Okabe T, Yoshimoto I, Hitoshi M, Ogawa T, Ohyama T. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plantDrosera adelae. FEBS Lett 2005; 579:5729-33. [PMID: 16225872 DOI: 10.1016/j.febslet.2005.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/30/2005] [Accepted: 09/15/2005] [Indexed: 11/24/2022]
Abstract
Carnivorous plants usually grow in nutrient-deficient habitats, and thus they partly depend on insects for nitrogen and phosphate needed for amino acid and nucleotide synthesis. We report that a sticky digestive liquid from a sundew, Drosera adelae, contains an abundant amount of an S-like ribonuclease (RNase) that shows high amino acid-sequence similarity to S-like RNases induced by phosphate starvation or wounding in normal plants. By giving leaves an RNase "coat", D. adelae seems to achieve two requirements simultaneously to adapt itself to its specific surroundings: it obtains phosphates from insects, and defends itself against pathogen attack.
Collapse
Affiliation(s)
- Takahiro Okabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Higashinada-ku, Kobe, Japan
| | | | | | | | | |
Collapse
|
29
|
Yamane H, Lee SJ, Kim BD, Tao R, Rose JKC. A coupled yeast signal sequence trap and transient plant expression strategy to identify genes encoding secreted proteins from peach pistils. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2229-38. [PMID: 15983008 DOI: 10.1093/jxb/eri222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many developmental processes and induced plant responses have been identified that are directly or indirectly influenced by wall-localized, or apoplastic, molecular interactions and signalling pathways. The yeast-based signal sequence trap (YSST) is a potentially valuable experimental tool to characterize the proteome of the wall and apoplast, or 'secretome', although few studies have been performed with plants and to date this strategy has not been coupled with a subsequent analysis to confirm extracellular localization of candidate proteins in planta. This current report describes the use of the YSST, together with transient expression of a selection of identified proteins as fusions with the reporter GFP, focusing on the complex extracellular interactions between peach (Prunus persica) pollen and pistil tissues. The coupled YSST and GFP localization assay was also used to confirm the extracellular localization of a recently identified pistil-specific basic RNase protein (PA1), as has been observed with S-RNases that are involved in self-incompatibility. This pilot YSST screen of pollinated and unpollinated pistil cDNAs revealed a diverse set of predicted cell wall-localized or plasma membrane-bound proteins, several of which have not previously been described. Transient GFP-fusion assays and RNA gel blot analyses were used to confirm their subcellular localization and to provide further insights into their expression or regulation, respectively. These results demonstrated that the YSST strategy represents an effective means either to confirm the extracellular localization of a specific candidate secreted protein, as demonstrated here with PA1, or to conduct a screen for new extracellular proteins.
Collapse
Affiliation(s)
- Hisayo Yamane
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Programmed cell death (PCD) is an important feature of plant development; however, the mechanisms responsible for its regulation in plants are far less well understood than those operating in animals. In this review data from a wide variety of plant PCD systems is analyzed to compare what is known about the underlying mechanisms. Although senescence is clearly an important part of plant development, only what is known about PCD during senescence is dealt with here. In each PCD system the extracellular and intracellular signals triggering PCD are considered and both cytological and molecular data are discussed to determine whether a unique model for plant PCD can be derived. In the majority of cases reviewed, PCD is accompanied by the formation of a large vacuole, which ruptures to release hydrolytic enzymes that degrade the cell contents, although this model is clearly not universal. DNA degradation and the activation of proteases is also common to most plant PCD systems, where they have been studied; however, breakdown of DNA into nucleosomal units (DNA laddering) is not observed in all systems. Caspase-like activity has also been reported in several systems, but the extent to which it is a necessary feature of all plant PCD has not yet been established. The trigger for tonoplast rupture is not fully understood, although active oxygen species (AOS) have been implicated in several systems. In two systems, self incompatibility and tapetal breakdown as a result of cytoplasmic male sterility, there is convincing evidence for the involvement of mitochondria including release of cytochrome c. However, in other systems, the role of the mitochondrion is not clear-cut. How cells surrounding the cell undergoing PCD protect themselves against death is also discussed as well as whether there is a link between the eventual fate of the cell corpse and the mechanism of its death.
Collapse
Affiliation(s)
- Hilary J Rogers
- School of Biosciences, Cardiff University, Cardiff United Kingdom CF10 3TL
| |
Collapse
|
31
|
Pyo H, Demura T, Fukuda H. Spatial and Temporal Tracing of Vessel Differentiation in Young Arabidopsis Seedlings by the Expression of an Immature Tracheary Element-specific Promoter. ACTA ACUST UNITED AC 2004; 45:1529-36. [PMID: 15564536 DOI: 10.1093/pcp/pch175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vascular system is a complex tissue composed of several vascular cell types. However, little is known about the differentiation process of each vascular cell in situ. In this study, we found that the expression of the Zinnia cysteine protease 4 (ZCP4) promoter is restricted to only immature tracheary elements (TEs) in situ. Therefore, we monitored the early TE differentiation process in young Arabidopsis seedlings using a fusion gene of the ZCP4 promoter and the beta-glucuronidase gene as a molecular marker. This approach revealed unique processes of vessel differentiation during early seedling development, in which discontinuous initiation of vessel element differentiation occurs at distinct regions, followed by the simultaneous differentiation of protoxylem vessels and bidirectional differentiation of metaxylem vessels to form a vessel in the plant body.
Collapse
Affiliation(s)
- Hyunjin Pyo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.
| | | | | |
Collapse
|
32
|
Booker FL. Influence of ozone on ribonuclease activity in wheat (Triticum aestivum) leaves. PHYSIOLOGIA PLANTARUM 2004; 120:249-255. [PMID: 15032859 DOI: 10.1111/j.0031-9317.2004.0238.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ribonucleases (RNases) degrade RNA and exert a major influence on gene expression during development and in response to biotic and abiotic stresses. RNase activity typically increases in response to pathogen attack, wounding and phosphate (P(i)) deficiency. Activity also increases during senescence and other programmed cell death processes. The air pollutant ozone (O(3)) often induces injury and accelerated senescence in many plants, but the biochemical mechanisms involved in these responses remain unclear. The objective of this study was to determine whether RNase activity and isozyme expression was stimulated in wheat (Triticum aestivum L.) flag leaves following treatment with O(3). Plants were treated in open-top chambers with charcoal-filtered air (27 nmol O(3) mol(-1)) (control) or non-filtered air plus O(3) (90 nmol O(3) mol(-1)) (O(3)) from seedling to reproductive stage. After exposure for 56 days, RNase activity was 2.1 times higher in flag leaf tissues from an O(3)-sensitive cultivar in the O(3) treatment compared with the control, which generally coincided with foliar injury and lower soluble protein concentration, but not soluble leaf [P(i)]. Soluble [P(i)] in leaf tissue extracts from the O(3) and control treatments was not significantly different. RNase activity gels indicated the presence of three major RNases and two nucleases, and their expression was enhanced by the O(3) treatment. Isozymes stimulated in the O(3) treatment were also stimulated in naturally senescent flag leaf tissues from plants in the control. However, soluble [P(i)] in extracts from naturally senescent flag leaves was 50% lower than that found in green flag leaves in the control treatment. Thus, senescence-like pathological responses induced by O(3) were accompanied by increased RNase and nuclease activities that also were observed in naturally senescent leaves. However, [P(i)] in the leaf tissue samples suggested that O(3)-induced injury and accelerated senescence was atypical of normal senescence processes in that P(i) export was not observed in O(3)-treated plants.
Collapse
Affiliation(s)
- Fitzgerald L. Booker
- US Department of Agriculture, Agricultural Research Service, Air Quality - Plant Growth and Development Research Unit, and Department of Crop Science, North Carolina State University, 3908 Inwood Road, Raleigh, NC 27603, USA
| |
Collapse
|
33
|
Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T. C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase. PLANT PHYSIOLOGY 2003; 132:1892-900. [PMID: 12913146 PMCID: PMC181275 DOI: 10.1104/pp.103.021147] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Revised: 02/26/2003] [Accepted: 04/29/2003] [Indexed: 05/18/2023]
Abstract
Sulfhydryl-endopeptidase (SH-EP) is a papain-type vacuolar proteinase expressed in cotyledons of germinated Vigna mungo seeds, and the enzyme possesses a C-terminal propeptide containing KDEL tail, an endoplasmic reticulum retention signal for soluble proteins. SH-EP is transported to vacuoles via a KDEL vesicle (KV) through a Golgi complex-independent route. To see the function of the KDEL sequence of SH-EP, wild-type SH-EP and its KDEL deletion mutant (SH-EPDeltaKDEL) were heterologously expressed in Arabidopsis and in cultured tobacco Bright Yellow 2 cells, and their intracellular transport pathways and localizations were analyzed. A combination of the results from analyses for transformed Arabidopsis and tobacco (Nicotiana tabacum) cells indicated that wild-type SH-EP is packed into KV-like vesicles through the KDEL sequence and is transported to vacuoles in the cells of transformants. In contrast, KV was not formed/induced in the cells expressing SH-EPDeltaKDEL, and the mutant protein was mainly secreted. Therefore, the C-terminal KDEL sequence of the KDEL-tailed cysteine proteinase is thought to be involved in the formation of KV, and in the efficient vacuolar transport of the proteins through KV.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397 Japan.
| | | | | | | | | |
Collapse
|
34
|
Yamane H, Tao R, Mori H, Sugiura A. Identification of a non-S RNase, a possible ancestral form of S-RNases, in Prunus. Mol Genet Genomics 2003; 269:90-100. [PMID: 12715157 DOI: 10.1007/s00438-003-0815-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 01/08/2003] [Indexed: 11/24/2022]
Abstract
This study identifies and characterizes a basic non-S RNase in the styles with stigmas of sweet cherry (Prunus avium L.), a member of the Rosaceae subfamily Amygdaloideae, which has an RNase-based gametophytic self-incompatibility system. Internal sequences of putative non-S RNases (RNase PA1 and PA2) were determined, and a cDNA for PA1 was obtained. The deduced amino acid sequence of PA1 contained two conserved sequence motifs essential for T2/ S-type RNase activity. PA1 shows 20-30% sequence identity to S-RNases of Rosaceae, Solanaceae and Scrophulariaceae, and non-S RNases of higher plants. Transcription of the PA1 gene was specific to the styles with stigmas, and the gene was not expressed in other tissues. Although PA1 resembles RNase X2, a non-S RNase from Petunia inflata, the placement of PA1 and RNase X2 in the phylogenetic tree was quite different. Placement of PA1 was also distinct from that of rosaceous S-RNases, while RNase X2 was incorporated in the clade of S-RNases from the Solanaceae. The sole intron in the PA1 gene is located at a position equivalent to that of the second intron of amygdaloid S-RNase genes, and that of the only intron in most other S-RNase genes. Genomic Southern analysis revealed the presence of sequences homologous to PA1 in all of the other four Prunus species tested, suggesting that PA1 has an important physiological function. The significance of the discovery of PA1 is discussed in terms of the origin and evolution of S-RNases and self-incompatibility in Rosaceae.
Collapse
Affiliation(s)
- H Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, 606-8502 Kyoto, Japan
| | | | | | | |
Collapse
|
35
|
Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H. Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci U S A 2002; 99:15794-9. [PMID: 12438691 PMCID: PMC137795 DOI: 10.1073/pnas.232590499] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plants have a unique transdifferentiation mechanism by which differentiated cells can initiate a new program of differentiation. We used a comprehensive analysis of gene expression in an in vitro zinnia (Zinnia elegans L.) culture model system to gather fundamental information about the gene regulation underlying the transdifferentiation of plant cells. In this model, photosynthetic mesophyll cells isolated from zinnia leaves transdifferentiate into xylem cells in a morphogenic process characterized by features such as secondary-wall formation and programmed cell death. More than 8,000 zinnia cDNA clones were isolated from an equalized cDNA library prepared from cultured cells transdifferentiating into xylem cells. Microarray analysis using these cDNAs revealed several types of unique gene regulation patterns, including: the transient expression of a set of genes during cell isolation, presumably induced by wounding; a rapid reduction in the expression of photosynthetic genes and the rapid induction of protein synthesis-associated genes during the first stage; the preferential induction of auxin-related genes during the subsequent stage; and the transient induction of genes closely associated with particular morphogenetic events, including cell-wall formation and degradation and programmed cell death during the final stage. This analysis also revealed a number of previously uncharacterized genes encoding proteins that function in signal transduction, such as protein kinases and transcription factors that are expressed in a stage-specific manner. These findings provide new clues to the molecular mechanisms of both plant transdifferentiation and wood formation.
Collapse
Affiliation(s)
- Taku Demura
- Plant Science Center, RIKEN, 230-0045 Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- M Irie
- Department of Microbiology, Hoshi College of Pharmacy, Tokyo 142-8501, Japan
| | | |
Collapse
|
37
|
Hugot K, Ponchet M, Marais A, Ricci P, Galiana E. A tobacco S-like RNase inhibits hyphal elongation of plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:243-50. [PMID: 11952127 DOI: 10.1094/mpmi.2002.15.3.243] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ribonuclease (RNase) NE gene expression is induced in tobacco leaves in response to Phytophthora parasitica. Using antibodies directed against RNase NE, we demonstrate that RNase NE is extracellular at the early steps of the interaction, while the fungal tip growth is initiated in the apoplastic compartment. After production in Pichia pastoris and biochemical purification, we show that the S-like RNase NE inhibits hyphal growth from P. parasitica zoospores and from Fusarium oxysporum conidia in vitro. Conversion into an enzymatically inactive form after mutagenesis of the active site-histidine 97 residue to phenylalanine leads to the suppression of this activity, suggesting that RNase NE inhibits the elongation of germ tubes by degradation of microbial RNAs. Exogenous application of RNase NE in the extracellular space of leaves inhibits the development of P. parasitica. Based on its induction by inoculation, its localization, and its activity against two plant pathogens, we propose that RNase NE participates in tobacco defense mechanisms by a direct action on hyphal development in the extracellular space. The RNase activity-dependent antimicrobial activity of the S-like RNase NE shares similarities with the only other biological activity demonstrated for plant RNases, the inhibition of elongation of pollen tubes by the S-RNase in gametophytic self-incompatibility, suggesting a functional link between self and nonself interactions in plants.
Collapse
|
38
|
Vieira CP, Charlesworth D. Molecular variation at the self-incompatibility locus in natural populations of the genera Antirrhinum and Misopates. Heredity (Edinb) 2002; 88:172-81. [PMID: 11920118 DOI: 10.1038/sj.hdy.6800024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2001] [Accepted: 10/29/2001] [Indexed: 11/09/2022] Open
Abstract
The self-incompatibility system of flowering plants is a classic example of extreme allelic polymorphism maintained by frequency-dependent selection. We used primers designed from three published Antirrhinum hispanicum S-allele sequences in PCR reactions with genomic DNA of plants sampled from natural populations of Antirrhinum and Misopates species. Not surprisingly, given the polymorphism of S-alleles, only a minority of individuals yielded PCR products of the expected size. These yielded 35 genomic sequences, of nine different sequence types of which eight are highly similar to the A. hispanicum S-allele sequences, and one to a very similar unpublished Antirrhinum S-like RNase sequence. The sequence types are well separated from the S-RNase sequences from Solanaceae and Rosaceae, and also from most known "S-like" RNase sequences (which encode proteins not involved in self-incompatibility). An association with incompatibility types has so far been established for only one of the putative S-alleles, but we describe evidence that the other sequences are also S-alleles. Variability in these sequences follows the pattern of conserved and hypervariable regions seen in other S-RNases, but no regions have higher replacement than silent diversity, unlike the results in some other species.
Collapse
Affiliation(s)
- C P Vieira
- Institute of Cell Animal and Population Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, W. Mains Road, Edinburgh EH9 3JT, Scotland, UK
| | | |
Collapse
|
39
|
Liu Y, Emilion G, Mungall AJ, Dunham I, Beck S, Le Meuth-Metzinger VG, Shelling AN, Charnock FML, Ganesan TS. Physical and transcript map of the region between D6S264 and D6S149 on chromosome 6q27, the minimal region of allele loss in sporadic epithelial ovarian cancer. Oncogene 2002; 21:387-99. [PMID: 11821951 DOI: 10.1038/sj.onc.1205067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Revised: 10/05/2001] [Accepted: 10/12/2001] [Indexed: 11/09/2022]
Abstract
We have previously shown a high frequency of allele loss at D6S193 (62%) on chromosomal arm 6q27 in ovarian tumours and mapped the minimal region of allele loss between D6S297 and D6S264 (3 cM). We isolated and mapped a single non-chimaeric YAC (17IA12, 260-280 kb) containing D6S193 and D6S297. A further extended bacterial contig (between D6S264 and D6S149) has been established using PACs and BACs and a transcript map has been established. We have mapped six new markers to the YAC; three of them are ESTs (WI-15078, WI-8751, and TCP10). We have isolated three cDNA clones of EST WI-15078 and one clone contains a complete open reading frame. The sequence shows homology to a new member of the ribonuclease family. The other two clones are splice variants of this new gene. The gene is expressed ubiquitously in normal tissues. It is expressed in 4/8 ovarian cancer cell lines by Northern analysis. The gene encodes for a 40 kDa protein. Direct sequencing of the gene in all the eight ovarian cancer cell lines did not identify any mutations. Clonogenic assays were performed by transfecting the full-length gene in to ovarian cancer cell lines and no suppression of growth was observed.
Collapse
Affiliation(s)
- Ying Liu
- ICRF Molecular Oncology Laboratories, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Vascular tissues, xylem and phloem, are differentiated from meristematic cells, procambium, and vascular cambium. Auxin and cytokinin have been considered essential for vascular tissue differentiation; this is supported by recent molecular and genetic analyses. Xylogenesis has long been used as a model for study of cell differentiation, and many genes involved in late stages of tracheary element formation have been characterized. A number of mutants affecting vascular differentiation and pattern formation have been isolated in Arabidopsis. Studies of some of these mutants have suggested that vascular tissue organization within the bundles and vascular pattern formation at the organ level are regulated by positional information.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
41
|
Lehmann K, Hause B, Altmann D, Köck M. Tomato ribonuclease LX with the functional endoplasmic reticulum retention motif HDEF is expressed during programmed cell death processes, including xylem differentiation, germination, and senescence. PLANT PHYSIOLOGY 2001; 127:436-449. [PMID: 11598219 DOI: 10.1104/pp.010362] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have studied the subcellular localization of the acid S-like ribonuclease (RNase) LX in tomato (Lycopersicon esculentum Mill.) cells using a combination of biochemical and immunological methods. It was found that the enzyme, unexpectedly excluded from highly purified vacuoles, accumulates in the endoplasmic reticulum. The evidence that RNase LX is a resident of the endoplasmic reticulum (ER) is supported by an independent approach showing that the C-terminal peptide HDEF of RNase LX acts as an alternative ER retention signal in plants. For functional testing, the cellular distribution of chimeric protein constructs based on a marker protein, Brazil nut (Bertholletia excelsa) 2S albumin, was analyzed immunochemically in transgenic tobacco (Nicotiana tabacum) plants. Here, we report that the peptide motif is necessary and sufficient to accumulate 2S albumin constructs of both vacuolar and extracellular final destinations in the ER. We have shown immunochemically that RNase LX is specifically expressed during endosperm mobilization and leaf and flower senescence. Using immunofluorescence, RNase LX protein was detected in immature tracheary elements, suggesting a function in xylem differentiation. These results support a physiological function of RNase LX in selective cell death processes that are also thought to involve programmed cell death. It is assumed that RNase LX accumulates in an ER-derived compartment and is released by membrane disruption into the cytoplasma of those cells that are intended to undergo autolysis. These processes are accompanied by degradation of cellular components supporting a metabolic recycling function of the intracellular RNase LX.
Collapse
Affiliation(s)
- K Lehmann
- Martin-Luther-Universität Halle-Wittenberg, Biozentrum, Weinbergweg 22, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
42
|
Hosokawa M, Suzuki S, Umezawa T, Sato Y. Progress of lignification mediated by intercellular transportation of monolignols during tracheary element differentiation of isolated Zinnia mesophyll cells. PLANT & CELL PHYSIOLOGY 2001; 42:959-68. [PMID: 11577190 DOI: 10.1093/pcp/pce124] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tracheary element (TE) differentiation is a typical example of programmed cell death (PCD) in higher plants, and maturation of TEs is completed by degradation of all cell contents. However, lignification of TEs progresses even after PCD. We investigated how and whence monolignols are supplied to TEs which have undergone PCD during differentiation of isolated Zinnia mesophyll cells into TEs. Higher densities of cell culture induced greater lignification of TEs. Whereas the continuous exchanging of culture medium suppressed lignification of TEs, further addition of coniferyl alcohol into the exchanging medium reduced the suppression of lignification. Analysis of the culture medium by HPLC and GC-MS showed that coniferyl alcohol, coniferaldehyde, and sinapyl alcohol accumulated in TE inductive culture. The concentration of coniferyl alcohol peaked at the beginning of secondary wall thickening, decreased rapidly during secondary wall thickening, then increased again. These results indicated that lignification on TEs progresses by supply of monolignols from not only TEs themselves but also surrounding xylem parenchyma-like cells through medium in vitro.
Collapse
Affiliation(s)
- M Hosokawa
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, 790-8577 Japan
| | | | | | | |
Collapse
|
43
|
Iwama M, Ogawa Y, Yamagishi M, Itagaki T, Inokuchi N, Koyama T, Imai R, Ohgi K, Tsuji T, Irie M. Amino acid sequence and characterization of a rice bran ribonuclease. Biol Pharm Bull 2001; 24:760-6. [PMID: 11456114 DOI: 10.1248/bpb.24.760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A base-nonspecific and acid ribonuclease (RNase Os) belonging to the RNase T2 family was purified from rice bran to a homogeneous state by SDS-PAGE. The primary structure of RNase Os was determined by protein chemistry and molecular cloning. The RNase Os was a simple protein and consisted of 205 amino acid residues. Its molecular weight was 22578 and its amino acid sequence showed that it was most similar to barley RNase among the known RNase T2 family enzymes having 157 amino acid residues identical with barley RNase. However, its N-terminus was blocked by a gamma-pyroglutamyl residue. The optimal pH of RNase Os was around 5.5. The base preference at the B1 and B2 site of RNase Os was estimated from the rates of hydrolysis of 16 dinucleoside phosphates, to be guanine as the case of RNase LE from tomato. RNase Os was successfully expressed from yeast cells using the E. coli yeast expression vector pYE-RNAP.
Collapse
Affiliation(s)
- M Iwama
- Department of Microbiology, Hoshi College of Pharmacy, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Obara K, Kuriyama H, Fukuda H. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. PLANT PHYSIOLOGY 2001; 125:615-26. [PMID: 11161019 PMCID: PMC64863 DOI: 10.1104/pp.125.2.615] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Revised: 08/31/2000] [Accepted: 11/02/2000] [Indexed: 05/18/2023]
Abstract
Differentiation into a tracheary element (TE) is a typical example of programmed cell death (PCD) in the developmental processes of vascular plants. In the PCD process the TE degrades its cellular contents and becomes a hollow corpse that serves as a water conduct. Using a zinnia (Zinnia elegans) cell culture we obtained serial observations of single living cells undergoing TE PCD by confocal laser scanning microscopy. Vital staining was performed and the relative fluorescence intensity was measured, revealing that the tonoplast of the swollen vacuole in TEs loses selective permeability of fluorescein just before its physical rupture. After the vacuole ruptured the nucleus was degraded rapidly within 10 to 20 min. No prominent chromatin condensation or nuclear fragmentation occurred in this process. Nucleoids in chloroplasts were also degraded in a similar time course to that of the nucleus. Degradations did not occur in non-TEs forced to rupture the vacuole by probenecid treatment. These results demonstrate that TE differentiation involves a unique type of PCD in which active and rapid nuclear degradation is triggered by vacuole rupture.
Collapse
Affiliation(s)
- K Obara
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
45
|
MacIntosh GC, Bariola PA, Newbigin E, Green PJ. Characterization of Rny1, the Saccharomyces cerevisiae member of the T2 RNase family of RNases: unexpected functions for ancient enzymes? Proc Natl Acad Sci U S A 2001; 98:1018-23. [PMID: 11158587 PMCID: PMC14701 DOI: 10.1073/pnas.98.3.1018] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T(2) family of nonspecific endoribonucleases (EC ) is a widespread family of RNases found in every organism examined thus far. Most T(2) enzymes are secretory RNases and therefore are found extracellularly or in compartments of the endomembrane system that would minimize their contact with cellular RNA. Although the biological functions of various T(2) RNases have been postulated on the basis of enzyme location or gene expression patterns, the cellular roles of these enzymes are generally unknown. In the present work, we characterized Rny1, the only T(2) RNase in Saccharomyces cerevisiae. Rny1 was found to be an active, secreted RNase whose gene expression is controlled by heat shock and osmotic stress. Inactivation of RNY1 leads to unusually large cells that are temperature-sensitive for growth. These phenotypes can be complemented not only by RNY1 but also by both structurally related and unrelated secretory RNases. Additionally, the complementation depends on RNase activity. When coupled with a recent report on the effect of specific RNAs on membrane permeability [Khvorova, A., Kwak, Y-G., Tamkun, M., Majerfeld, I. & Yarus, M. (1999) Proc. Natl. Acad. Sci. USA 96, 10649-10654], our work suggests an unexpected role for Rny1 and possibly other secretory RNases. These enzymes may regulate membrane permeability or stability, a hypothesis that could present an alternative perspective for understanding their functions.
Collapse
Affiliation(s)
- G C MacIntosh
- Departments of Energy Plant Research Laboratory and Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
46
|
Endo S, Demura T, Fukuda H. Inhibition of proteasome activity by the TED4 protein in extracellular space: a novel mechanism for protection of living cells from injury caused by dying cells. PLANT & CELL PHYSIOLOGY 2001; 42:9-19. [PMID: 11158439 DOI: 10.1093/pcp/pce002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In maturation process of tracheary element (TE) differentiation, many hydrolases are activated to execute programmed cell death of TEs. Such hydrolases are released from maturing TEs into extracellular space. The release of hydrolases should be harmful to surrounding cells. The TED4 protein, a tentative plant non-specific lipid transfer protein that is expressed preferentially in TE-induced culture of zinnia (Zinnia elegans L.), is secreted into the apoplastic space prior to and associated with morphological changes of TEs. Our studies on the interrelationship between the TED4 protein and proteolytic activities using an in vitro TE differentiation system of zinnia revealed the following facts. (1) Active proteasome is released into medium at maturation stage of TE differentiation. (2) The TED4 protein forms a complex with proteasome in culture medium. (3) The TED4 protein inhibits proteasome activity in the medium and crude extracts of zinnia cells. (4) The depletion of the TED4 protein from culture medium results in an increase in mortality of other living cells. These results strongly suggest that the secreted TED4 protein acts as an inhibitor of proteasome to protect other cells from undesirable injury due to proteolytic activities exudated from dying TEs.
Collapse
Affiliation(s)
- S Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
47
|
Final and Fatal Step of Tracheary Element Differentiation. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0921-0423(01)80053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
48
|
Fukuda H. Programmed cell death of tracheary elements as a paradigm in plants. PLANT MOLECULAR BIOLOGY 2000; 44:245-253. [PMID: 11199386 DOI: 10.1007/978-94-010-0934-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plant development involves various programmed cell death (PCD) processes. Among them, cell death occurring during differentiation of procambium into tracheary elements (TEs), which are a major component of vessels or tracheids, has been studied extensively. Recent studies of PCD during TE differentiation mainly using an in vitro differentiation system of Zinnia have revealed that PCD of TEs is a plant-specific one in which the vacuole plays a central role. Furthermore, there are recent findings of several factors that may initiate PCD of TEs and that act at autonomous degradation of cell contents. Herein I summarize the present knowledge about cell death program during TE differentiation as an excellent example of PCD in plants.
Collapse
Affiliation(s)
- H Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Japan.
| |
Collapse
|
49
|
Kuriyama. Loss of Tonoplast Integrity Programmed in Tracheary Element Differentiation. PLANT PHYSIOLOGY 1999; 121:763-774. [PMID: 10557224 PMCID: PMC59438 DOI: 10.1104/pp.121.3.763] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/1999] [Accepted: 08/04/1999] [Indexed: 05/18/2023]
Abstract
A tracheary element (TE) is a typical example of a cell type that undergoes programmed cell death in the developmental processes of vascular plants. The loss of the selective permeability of the tonoplast, which corresponds to tonoplast disintegration, occurred after the cells commenced secondary wall thickening and played a pivotal role in the programmed cell death of TEs in a zinnia (Zinnia elegans L.) cell culture. A search for events specifically associated with the TE vacuole provided an important clue to the understanding of the cell death mechanism. The transport of fluorescein, a fluorescent organic anion, across the tonoplast declined drastically in differentiating TEs. The capacity of the vacuole to accumulate the probe was also impaired. Treatment with probenecid, an inhibitor of organic anion transport, caused rapid cell death of TEs and led to the ultimate disruption of the vacuole even in other types of cultured cells. These changes in vacuolar properties during TE development were suppressed by cycloheximide. Specific mRNA accumulation in cells cultured in a TE differentiation-inductive condition was abolished by probenecid. These results suggest that a change in vacuolar membrane permeability promotes programmed cell death in TEs.
Collapse
Affiliation(s)
- Kuriyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113, Japan
| |
Collapse
|
50
|
Rogers SW, Rogers JC. Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells. PLANT PHYSIOLOGY 1999; 119:1457-64. [PMID: 10198105 PMCID: PMC32031 DOI: 10.1104/pp.119.4.1457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Accepted: 12/28/1998] [Indexed: 05/23/2023]
Abstract
We cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Nicotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of expression of mRNA for the aleurone RNase revealed that, like the pattern for alpha-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase alpha-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- Cycloheximide/pharmacology
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Enzyme Induction/drug effects
- Gene Expression
- Gibberellins/pharmacology
- Hordeum/drug effects
- Hordeum/enzymology
- Hordeum/genetics
- Molecular Sequence Data
- Plants, Genetically Modified
- Plants, Toxic
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/genetics
- Ribonucleases/biosynthesis
- Ribonucleases/genetics
- Sequence Homology, Amino Acid
- Nicotiana/genetics
Collapse
Affiliation(s)
- S W Rogers
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.
| | | |
Collapse
|