1
|
Pedroni A, Yilmaz E, Del Vecchio L, Bhattarai P, Vidal IT, Dai YWE, Koutsogiannis K, Kizil C, Ampatzis K. Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system. Nat Commun 2024; 15:10483. [PMID: 39632839 PMCID: PMC11618350 DOI: 10.1038/s41467-024-54830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
The proper functioning of the heart relies on the intricate interplay between the central nervous system and the local neuronal networks within the heart itself. While the central innervation of the heart has been extensively studied, the organization and functionality of the intracardiac nervous system (IcNS) remain largely unexplored. Here, we present a comprehensive taxonomy of the IcNS, utilizing single-cell RNA sequencing, anatomical studies, and electrophysiological techniques. Our findings reveal a diverse array of neuronal types within the IcNS, exceeding previous expectations. We identify a subset of neurons exhibiting characteristics akin to pacemaker/rhythmogenic neurons similar to those found in Central Pattern Generator networks of the central nervous system. Our results underscore the heterogeneity within the IcNS and its key role in regulating the heart's rhythmic functionality. The classification and characterization of the IcNS presented here serve as a valuable resource for further exploration into the mechanisms underlying heart functionality and the pathophysiology of associated cardiac disorders.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elanur Yilmaz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Inés Talaya Vidal
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| | | |
Collapse
|
2
|
Pandurangan K, Jayakumar J, Savoia S, Nanda R, Lata S, Kumar EH, S S, Vasudevan S, Srinivasan C, Joseph J, Sivaprakasam M, Verma R. Systematic development of immunohistochemistry protocol for large cryosections-specific to non-perfused fetal brain. J Neurosci Methods 2024; 405:110085. [PMID: 38387804 DOI: 10.1016/j.jneumeth.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an important technique in understanding the expression of neurochemical molecules in the developing human brain. Despite its routine application in the research and clinical setup, the IHC protocol specific for soft fragile fetal brains that are fixed using the non-perfusion method is still limited in studying the whole brain. NEW METHOD This study shows that the IHC protocols, using a chromogenic detection system, used in animals and adult humans are not optimal in the fetal brains. We have optimized key steps from Antigen retrieval (AR) to chromogen visualization for formalin-fixed whole-brain cryosections (20 µm) mounted on glass slides. RESULTS We show the results from six validated, commonly used antibodies to study the fetal brain. We achieved optimal antigen retrieval with 0.1 M Boric Acid, pH 9.0 at 70°C for 20 minutes. We also present the optimal incubation duration and temperature for protein blocking and the primary antibody that results in specific antigen labeling with minimal tissue damage. COMPARISON WITH EXISTING METHODS The IHC protocol commonly used for adult human and animal brains results in significant tissue damage in the fetal brains with little or suboptimal antigen expression. Our new method with important modifications including the temperature, duration, and choice of the alkaline buffer for AR addresses these pitfalls and provides high-quality results. CONCLUSION The optimized IHC protocol for the developing human brain (13-22 GW) provides a high-quality, repeatable, and reliable method for studying chemoarchitecture in neurotypical and pathological conditions across different gestational ages.
Collapse
Affiliation(s)
- Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | | | - Reetuparna Nanda
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | | | - Suresh S
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | - Sudha Vasudevan
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Holst CB, Brøchner CB, Vitting‐Seerup K, Møllgård K. The HOPX and BLBP landscape and gliogenic regions in developing human brain. J Anat 2023; 243:23-38. [PMID: 36794762 PMCID: PMC10273337 DOI: 10.1111/joa.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Outer radial glial cells (oRGs) give rise to neurons and glial cells and contribute to cell migration and expansion in developing neocortex. HOPX has been described as a marker of oRGs and possible actor in glioblastomas. Recent years' evidence points to spatiotemporal differences in brain development which may have implications for the classification of cell types in the central nervous system and understanding of a range of neurological diseases. Using the Human Embryonic/Fetal Biobank, Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark, HOPX and BLBP immunoexpression was investigated in developing frontal, parietal, temporal and occipital human neocortex, other cortical areas and brain stem regions to interrogate oRG and HOPX regional heterogeneity. Furthermore, usage of high-plex spatial profiling (Nanostring GeoMx® DSP) was tested on the same material. HOPX marked oRGs in several human developing brain regions as well as cells in known gliogenic areas but did not completely overlap with BLBP or GFAP. Interestingly, limbic structures (e.g. olfactory bulb, indusium griseum, entorhinal cortex, fimbria) showed more intense HOPX immunoreactivity than adjacent neocortex and in cerebellum and brain stem, HOPX and BLBP seemed to stain different cell populations in cerebellar cortex and corpus pontobulbare. DSP screening of corresponding regions indicated differences in cell type composition, vessel density and presence of apolipoproteins within and across regions and thereby confirming the importance of acknowledging time and place in developmental neuroscience.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- DCCC Brain Tumor CenterCopenhagen University HospitalCopenhagenDenmark
| | - Christian Beltoft Brøchner
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Pathology, Center of Diagnostic InvestigationCopenhagen University HospitalCopenhagenDenmark
| | | | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
5
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Holst CB, Brøchner CB, Vitting-Seerup K, Møllgård K. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat 2019; 235:590-615. [PMID: 30901080 DOI: 10.1111/joa.12948] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The astroglial lineage consists of heterogeneous cells instrumental for normal brain development, function and repair. Unfortunately, this heterogeneity complicates research in the field, which suffers from lack of truly specific and sensitive astroglial markers. Nevertheless, single astroglial markers are often used to describe astrocytes in different settings. We therefore investigated and compared spatiotemporal patterns of immunoreactivity in developing human brain from 12 to 21 weeks post conception and publicly available RNA expression data for four established and potential astroglial markers - GFAP, S100, AQP4 and YKL-40. In the hippocampal region, we also screened for C3, a complement component highly expressed in A1-reactive astrocytes. We found diverging partly overlapping patterns of the established astroglial markers GFAP, S100 and AQP4, confirming that none of these markers can fully describe and discriminate different developmental forms and subpopulations of astrocytes in human developing brain, although AQP4 seems to be the most sensitive and specific marker for the astroglial lineage at midgestation. AQP4 characterizes a brain-wide water transport system in cerebral cortex with regional differences in immunoreactivity at midgestation. AQP4 distinguishes a vast proportion of astrocytes and subpopulations of radial glial cells destined for the astroglial lineage, including astrocytes determined for the future glia limitans and apical truncated radial glial cells in ganglionic eminences, devoid of GFAP and S100. YKL-40 and C3d, previously found in reactive astrocytes, stain different subpopulations of astrocytes/astroglial progenitors in developing hippocampus at midgestation and may characterize specific subpopulations of 'developmental astrocytes'. Our results clearly reflect that lack of pan-astrocytic markers necessitates the consideration of time, region, context and aim when choosing appropriate astroglial markers.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Radiation Biology, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Beltoft Brøchner
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark
| | - Kjeld Møllgård
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Central Nervous System and Vertebrae Development in Horses: a Chronological Study with Differential Temporal Expression of Nestin and GFAP. J Mol Neurosci 2016; 61:61-78. [PMID: 27525635 DOI: 10.1007/s12031-016-0805-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The neural system is one of the earliest systems to develop and the last to be fully developed after birth. This study presents a detailed description of organogenesis of the central nervous system (CNS) at equine embryonic/fetal development between 19 and 115 days of pregnancy. The expression of two important biomarkers in the main structure of the nervous system responsible for neurogenesis in the adult individual, and in the choroid plexus, was demonstrated by Nestin and glial fibrillary acid protein (GFAP) co-labeling. In the 29th day of pregnancy in the undifferentiated lateral ventricle wall, the presence of many cells expressing Nestin and few expressing GFAP was observed. After the differentiation of the lateral ventricle wall zones at 60 days of pregnancy, the subventricular zone, which initially had greater number of Nestin+ cells, began to show higher numbers of GFAP+ cells at 90 days of pregnancy. A similar pattern was observed for Nestin+ and GFAP+ cells during development of the choroid plexus. This study demonstrates, for the first time, detailed chronological aspects of the equine central nervous system organogenesis associated with downregulation of Nestin and upregulation of GFAP expression.
Collapse
|
9
|
Bifari F, Berton V, Pino A, Kusalo M, Malpeli G, Di Chio M, Bersan E, Amato E, Scarpa A, Krampera M, Fumagalli G, Decimo I. Meninges harbor cells expressing neural precursor markers during development and adulthood. Front Cell Neurosci 2015; 9:383. [PMID: 26483637 PMCID: PMC4591429 DOI: 10.3389/fncel.2015.00383] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.
Collapse
Affiliation(s)
- Francesco Bifari
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marijana Kusalo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Giorgio Malpeli
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marzia Di Chio
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Emanuela Bersan
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Eliana Amato
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Aldo Scarpa
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| |
Collapse
|
10
|
Characterization of Porcine Ventral Mesencephalic Precursor Cells following Long-Term Propagation in 3D Culture. Stem Cells Int 2012; 2012:761843. [PMID: 23258982 PMCID: PMC3508616 DOI: 10.1155/2012/761843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/04/2012] [Indexed: 01/08/2023] Open
Abstract
The potential use of predifferentiated neural precursor cells for treatment of a neurological disorder like Parkinson's disease combines stem cell research with previous experimental and clinical transplantation of developing dopaminergic neurons. One current obstacle is, however, the lack of ability to generate dopaminergic neurons after long-term in vitro propagation of the cells. The domestic pig is considered a useful nonprimate large animal model in neuroscience, because of a better resemblance of the larger gyrencephalic pig brain to the human brain than the commonly used brains of smaller rodents. In the present study, porcine embryonic (28–30 days), ventral mesencephalic precursor cells were isolated and propagated as free-floating neural tissue spheres in medium containing epidermal growth factor and fibroblast growth factor 2. For passaging, the tissue spheres were cut into quarters, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. Spheres were propagated for up to 237 days with analysis of cellular content and differentiation at various time points. Our study provides the first demonstration that porcine ventral mesencephalic precursor cells can be long-term propagated as neural tissue spheres, thereby providing an experimental 3D in vitro model for studies of neural precursor cells, their niche, and differentiation capacity.
Collapse
|
11
|
Banlunara W, Tsuboi M, Uchida K, Kongmekee P, Ngamsuk P, Nakayama H. Retrobulbar primitive neuroectodermal tumor in a squirrel monkey (Saimiri sciureus). J Med Primatol 2011; 41:43-7. [PMID: 22070126 DOI: 10.1111/j.1600-0684.2011.00520.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND A 2.8-year-old female captive-bred common squirrel monkey (Saimiri sciureus) showed exophthalmos of the right eye, and the eye was surgically enucleated. A tumor mass was found in the eye. METHODS Formalin-fixed tumor samples were examined histopathologically and immunohistochemically for diagnosis. RESULTS The retrobulbar tumor mass adhered to the sclera and infiltrated the choroid. Histopathologically, tumor cells were pleomorphic, arranged in a sheet pattern, and mimicked primitive neuroectodermal cells. The tumor cells were strongly positive for precursor neuronal cell markers (beta III tubulin, neuron-specific enolase, vimentin, nestin, doublecortin, oligo2, and S-100), but negative for mature cell markers (cytokeratin, neurofilament, and glial fibrillary acidic protein) and a retinoblastoma marker (rhodopsin). CONCLUSIONS This is the first reported case for the retrobulbar location of primitive neuroectodermal tumor in non-human primates.
Collapse
Affiliation(s)
- Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
12
|
Takahashi E, Folkerth RD, Galaburda AM, Grant PE. Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 2011; 22:455-64. [PMID: 21670100 DOI: 10.1093/cercor/bhr126] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cerebral axonal connections begin to develop before birth during radial migration in each brain area. A number of theories are still actively debated regarding the link between neuronal migration, developing connectivity, and gyrification. Here, we used high angular resolution diffusion tractography on postmortem fetal human brains (postconception week (W) 17-40) to document the regression of radial and tangential organization likely to represent migration pathways and the emergence of corticocortical organization and gyrification. The dominant radial organization at W17 gradually diminished first in dorsal parieto-occipital and later in ventral frontotemporal regions with regional variation: radial organization persisted longer in the crests of gyri than at the depths of sulci. The dominant tangential organization of the ganglionic eminence at W17 also gradually disappeared by term, together with the disappearance of the ganglionic eminence. A few immature long-range association pathways were visible at W17, gradually became evident by term. Short-range corticocortical tracts emerged prior to gyrification in regions where sulci later developed. Our results suggest that the regional regression of radial organization and regional emergence of fetal brain connectivity proceeds in general from posterodorsal to anteroventral with local variations.
Collapse
Affiliation(s)
- Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
13
|
Middeldorp J, Boer K, Sluijs JA, De Filippis L, Encha-Razavi F, Vescovi AL, Swaab DF, Aronica E, Hol EM. GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex. Development 2010; 137:313-21. [PMID: 20040497 DOI: 10.1242/dev.041632] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A subpopulation of glial fibrillary acidic protein (GFAP)-expressing cells located along the length of the lateral ventricles in the subventricular zone (SVZ) have been identified as the multipotent neural stem cells of the adult mammalian brain. We have previously found that, in the adult human brain, a splice variant of GFAP, termed GFAPdelta, was expressed specifically in these cells. To investigate whether GFAPdelta is also present in the precursors of SVZ astrocytes during development and whether GFAPdelta could play a role in the developmental process, we analyzed GFAPdelta expression in the normal developing human cortex and in the cortex of foetuses with the migration disorder lissencephaly type II. We demonstrated for the first time that GFAPdelta is specifically expressed in radial glia and SVZ neural progenitors during human brain development. Expression of GFAPdelta in radial glia starts at around 13 weeks of pregnancy and disappears before birth. GFAPdelta is continuously expressed in the SVZ progenitors at later gestational ages and in the postnatal brain. Co-localization with Ki67 proved that these GFAPdelta-expressing cells are able to proliferate. Furthermore, we showed that the expression pattern of GFAPdelta was disturbed in lissencephaly type II. Overall, these results suggest that the adult SVZ is indeed a remnant of the foetal SVZ, which develops from radial glia. Furthermore, we provide evidence that GFAPdelta can distinguish resting astrocytes from proliferating SVZ progenitors.
Collapse
Affiliation(s)
- Jinte Middeldorp
- Department of Astrocyte Biology & Neurodegeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gleason D, Fallon JH, Guerra M, Liu JC, Bryant PJ. Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury. Neuroscience 2008; 156:81-8. [PMID: 18682279 DOI: 10.1016/j.neuroscience.2008.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/19/2008] [Accepted: 06/27/2008] [Indexed: 01/19/2023]
Abstract
Evidence is presented to show that cells of the ependymal layer surrounding the ventricles of the mammalian (rat) forebrain act as neural stem cells (NSCs), and that these cells can be activated to divide by a combination of injury and growth factor stimulation. Several markers of asymmetric cell division (ACD), a characteristic of true stem cells, are expressed asymmetrically in the ependymal layer but not in the underlying subventricular zone (SVZ), and when the brain is treated with a combination of local 6-hydroxydopamine (6-OHDA) with systemic delivery of transforming growth factor-alpha (TGFalpha), ependymal cells divide asymmetrically and transfer progeny into the SVZ. The SVZ cells then divide as transit amplifying cells (TACs) and their progeny enter a differentiation pathway. The stem cells in the ependymal layer may have been missed in many previous studies because they are usually quiescent and divide only in response to strong stimuli.
Collapse
Affiliation(s)
- D Gleason
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
15
|
Barraud P, Stott S, Møllgård K, Parmar M, Björklund A. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 2007; 85:250-9. [PMID: 17131412 DOI: 10.1002/jnr.21116] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we showed that both subfractions CD133(+)/SSEA4(+) and CD133(+)/CD15(+) isolated from the embryonic forebrain are enriched in neurosphere-initiating cells. In addition CD133, SSEA4, and CD15 expression is sustained in the expanded neurosphere cells and also mark subfractions of neurosphere-initiating cells. Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain.
Collapse
Affiliation(s)
- Perrine Barraud
- Research Center for Stem Cell Biology and Cell Therapy, BMC A11, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Sarnat HB. Disorders of segmentation of the neural tube: Chiari malformations. HANDBOOK OF CLINICAL NEUROLOGY 2007; 87:89-103. [DOI: 10.1016/s0072-9752(07)87006-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Jones HC, Totten CF, Mayorga DA, Yue M, Carter BJ. Genetic loci for ventricular dilatation in the LEW/Jms rat with fetal-onset hydrocephalus are influenced by gender and genetic background. Cerebrospinal Fluid Res 2005; 2:2. [PMID: 15953386 PMCID: PMC1185556 DOI: 10.1186/1743-8454-2-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 06/12/2005] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The LEW/Jms rat strain has inherited hydrocephalus, with more males affected than females and an overall expression rate of 28%. This study aimed to determine chromosomal positions for genetic loci causing the hydrocephalus. METHODS An F1 backcross was made to the parental LEW/Jms strain from a cross with non-hydrocephalic Fischer 344 rats. BC1 rats were generated for two specific crosses: the first with a male LEW/Jms rat as parent and grandparent, [(F x L) x L], designated B group, and the second with a female LEW/Jms rat as the parent and grandparent [L x (L x F)], designated C group. All hydrocephalic and a similar number of non-hydrocephalic rats from these two groups were genotyped with microsatellite markers and the data was analyzed separately for each sex by MAPMAKER. RESULTS The frequency of hydrocephalus was not significantly different between the two groups (18.2 and 19.9 %), but there was a significant excess of males in the B group. The mean severity of hydrocephalus, measured as the ventricle-to-brain width ratio, was ranked as B group < C group < LEW/Jms. For the both rat groups, there were several chromosomes that showed possible regions with association between phenotype and genotype significant at the 5% or 1.0% level, but none of these had significant LOD scores. For the C group with a female LEW/Jms parent, there was a fully significant locus on Chr2 with a LOD score of 3.81 that was associated almost exclusively with male rats. Both groups showed possible linkage on Chr17 and the data combined produced a LOD score of 2.71, between suggestive and full significance. This locus was largely associated with male rats with a LEW/Jms male parent. CONCLUSION Phenotypic expression of hydrocephalus in Lew/Jms, although not X-linked, has a strong male bias. One, and possibly two chromosomal regions are associated with the hydrocephalus.
Collapse
Affiliation(s)
- Hazel C Jones
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
- Dr. H. C. Jones, Gagle Brook House, Chesterton, Bicester, Oxon OX26 1UF, UK
| | - Crystal F Totten
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - David A Mayorga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Mei Yue
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Barbara J Carter
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Jones HC, Yehia B, Chen GF, Carter BJ. Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol 2004; 190:79-90. [PMID: 15473982 DOI: 10.1016/j.expneurol.2004.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 06/14/2004] [Accepted: 06/16/2004] [Indexed: 11/29/2022]
Abstract
Congenital hydrocephalus is a serious neurological disorder with a diverse etiology. Although there is strong evidence for genetic causes, few genes have been identified in humans. The rodent model, the H-Tx rat, has hydrocephalus with an onset in late gestation and a complex mode of inheritance. Ventricular dilatation is associated with abnormalities in the cerebral aqueduct and subcommissural organ. Quantitative trait locus (QTL) mapping was performed on DNA from the progeny of a backcross with the non-hydrocephalic Fischer F344 strain, using DNA microsatellite markers. The hydrocephalus trait was quantified by measuring the severity of the ventricular dilatation. Four chromosomes, each with a locus for hydrocephalus (Chrs 9, 10, 11, and 17), were mapped using additional markers and DNA from four subsets of backcross progeny with allelic recombination at or near each locus. The genetic positions for the markers and the loci were located using the Ensemble Rat Genome Browser. For each chromosome studied, the interval containing the locus was examined for known rat genes and for human genes identified from human-rat homology. Genes expressed in brain and with a function associated with known causes of hydrocephalus were identified as possible candidate genes. Future studies to characterize the causative genes in this animal model will improve the understanding of genetic causes in humans.
Collapse
Affiliation(s)
- Hazel C Jones
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610-0267, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Phenotypic characteristics of cells in the developing human telencephalic wall were analyzed using electron microscopy and immunocytochemistry with various glial and neuronal cell markers. The results suggest that multiple defined cell types emerge in the neocortical proliferative zones and are differentially regulated during embryonic development. At 5-6 weeks gestation, three major cell types are observed. Most proliferating ventricular zone (VZ) cells are labeled with radial glial (RG) markers such as vimentin, glial fibrillary acidic protein (GFAP), and glutamate astrocyte-specific transporter (GLAST) antibodies. A subpopulation of these RG cells also express the neuronal markers beta III-tubulin, MAP-2, and phosphorylated neurofilament SMI-31, in addition to the stem cell marker nestin, indicating their multipotential capacity. In addition, the presence of VZ cells that immunoreact only with neuronal markers indicates the emergence of restricted neuronal progenitors. The number of multipotential progenitors in the VZ gradually decreases, whereas the number of more restricted progenitors increases systematically during the 3-month course of human corticogenesis. These results suggest that multipotential progenitors coexist with restricted neuronal progenitors and RG cells during initial corticogenesis in the human telencephalon. Since the multipotential VZ cells disappear during the major wave of neocortical neurogenesis, the RG and restricted neuronal progenitors appear to serve as the main sources of cortical neurons. Thus, the diversification of cells in human VZ and overlying subventricular zone (SVZ) begins earlier and is more pronounced than in rodents.
Collapse
Affiliation(s)
- Nada Zecevic
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06030-3401, USA.
| |
Collapse
|
20
|
Fayol L, Baud O, Monier A, Pellerin L, Magistretti P, Evrard P, Verney C. Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:69-76. [PMID: 14757520 DOI: 10.1016/j.devbrainres.2003.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lactate and the other monocarboxylates are a major energy source for the developing brain. We investigated the immunocytochemical expression of two monocarboxylate transporters, MCT1 and MCT2, in the human visual cortex between 13 and 26 post-ovulatory weeks. We used immunoperoxidase and immunofluorescence techniques to determine whether these transporters co-localized with markers for blood vessels (CD34), neurons (microtubule-associated protein 2 [MAP2], SMI 311), radial glia (vimentin), or astrocytes (glial fibrillary acidic protein [GFAP], S100beta protein). MCT1 immunoreactivity was visible in blood vessel walls as early as the 13th week of gestation mainly in the cortical plate and subplate. At this stage, less than 10% of vessels in the ventricular layer expressed MCT1, whereas all blood vessels walls showed this immunoreactivity at the 26th gestational week. Starting at the 19th week of gestation, sparse MCT1 positive cell bodies were detected, some of them co-localized with MAP2 immunoreactivity. MCT2 immunoreactivity was noted in astrocytic cell bodies from week 19 and spread subsequently to the astrocyte end-feet in contact with blood vessels. MCTs immunoreactivities were most marked in the subplate and deep cortical plate, where the most differentiated neurons were located. Our findings suggest that monocarboxylate trafficking between vessels (MCT1), astrocytes (MCT2) and some postmitotic neurons (MCT1) could develop gradually toward 20 gestational weeks (g.w.). These data suggest that lactate or other monocarboxylates could represent a significant energy source for the human visual cortex at this early stage.
Collapse
Affiliation(s)
- Laurence Fayol
- INSERM E9935, Hôpital Robert Debré, 48, Bd Sérurier 75019, Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Sarnat HB. Regional ependymal upregulation of vimentin in Chiari II malformation, aqueductal stenosis, and hydromyelia. Pediatr Dev Pathol 2004; 7:48-60. [PMID: 15255035 DOI: 10.1007/s10024-003-2127-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vimentin, glial fibrillary acidic protein (GFAP) and S-100beta protein were studied by immunocytochemistry in the ependyma of patients with Chiari II malformations, congenital aqueductal stenosis, and hydromyelia. Paraffin sections of brains and spinal cords of 16 patients were examined, 14 with Chiari II malformations, most with aqueductal stenosis and/or hydromyelia as associated features, and 2 patients with congenital aqueductal stenosis without Chiari malformation. Patients ranged in age from 20-wk gestation to 48 years. The results demonstrated: 1) in the fetus and young infant with Chiari II malformations, congenital aqueductal stenosis, and hydromyelia, vimentin is focally upregulated in the ependyma only in areas of dysgenesis and not in the ependyma throughout the ventricular system; 2) GFAP and S-100beta protein are not coexpressed, indicating that the selective upregulation of vimentin is not simple maturational delay; 3) vimentin upregulation also is seen in the ependymal remnants of the congenital atretic cerebral aqueduct, not associated with Chiari malformation; 4) in the older child and adult with Chiari II malformation, vimentin overexpression in the ependyma becomes more generalized in the lateral ventricles as well, hence evolves into a nonspecific upregulation. The interpretation from these findings leads to speculation that it is unlikely that ependymal vimentin is directly involved in the pathogenesis of Chiari II malformation, but may reflect a secondary upregulation due to defective expression of another gene. This gene may be one of rhombomeric segmentation that also plays a role in defective programming of the paraxial mesoderm for the basioccipital and supraoccipital bones resulting in a small posterior fossa. This interpretation supports the hypothesis of a molecular genetic defect, rather than a mechanical cause, as the etiology of the Chiari II malformation.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pathology (Neuropathology), Cedars-Sinai Medical Center and UCLA School of Medicine, 4221 North Tower, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
22
|
Saraga-Babić M, Stefanović V, Saraga M, Wartiovaara J, Lehtonen E. Expression of intermediate filaments and desmosomal proteins during differentiation of the human spinal cord. Acta Histochem 2002; 104:157-66. [PMID: 12086336 DOI: 10.1078/0065-1281-00622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Differentiation of the human spinal cord and involution of its caudal end were investigated in 4-9-week human conceptuses using immunofluorescence and electron microscopy. In the spinal cord, several types of intermediate filament proteins and desmoglein were expressed in parallel: in early stages (4 to 6 weeks), neurofilaments were expressed in low amounts only in the neuroblast processes of the marginal layer. At 6 weeks, differences in staining intensity and distribution patterns of neurofilaments became apparent between lumbar and sacrococcygeal (tail) parts of the spinal cord. Neurofilament expression increased in the mantle and marginal layers of the lumbar spinal cord coinciding with advancing neurogenesis. In contrast, neurofilament expression decreased in the sacrococcygeal spinal cord in association with regression of all tail organs. Regression was characterized by the appearance of large amounts of dead cells and macrophages. Strong vimentin expression was found in neuroepithelial (ependymal) cells and in the radial glia of the spinal cord throughout all stages examined. Coexpression of vimentin and glial fibrillary acidic protein was found only in the radial glia in the earliest developmental stage. Desmoglein was expressed in low amounts around the central canal which was probably associated with the immature junctional complexes that were present between ependymal cells. In conclusion, temporal and spatial distribution patterns of intermediate filament proteins in specific cell populations characterizes differentiation and caudal involution of the human spinal cord.
Collapse
Affiliation(s)
- Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, Medical School, University of Split, Croatia.
| | | | | | | | | |
Collapse
|
23
|
Almqvist PM, Mah R, Lendahl U, Jacobsson B, Hendson G. Immunohistochemical detection of nestin in pediatric brain tumors. J Histochem Cytochem 2002; 50:147-58. [PMID: 11799134 DOI: 10.1177/002215540205000203] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nestin is an intermediate filament protein (IFP) expressed in undifferentiated cells during CNS development and in CNS tumors. Previous studies have arrived at different conclusions in terms of which types of CNS tumors express nestin. In this report we establish an immunohistochemical protocol using antigen retrieval, which significantly enhances staining with two polyclonal anti-nestin antisera, #130 and #4350. The staining pattern was identical for the two nestin antisera and very similar to that of vimentin, while glial fibrillary acidic protein (GFAP), immunoreactivity was absent from 9.5-week-old forebrain. The current study of 20 primary CNS tumors from pediatric patients included seven ependymomas, seven primitive neuroectodermal tumors (PNETs), five pilocytic astrocytomas, and one glioblastoma multiforme (GBM). All these tumors expressed nestin to various extents, in contrast to five brain metastases tested. Strong nestin immunoreactivity was found in malignant primary CNS tumors, whereas benign pilocytic astrocytomas showed low but consistent nestin expression. In all tumors nestin immunoreactivity was confined to the cytoplasm of tumor cells and was co-expressed with astrocyte markers vimentin, GFAP, and S-100. Vascular endothelial cells of all neoplasms also showed marked immunoreactivity for nestin and vimentin, whereas they were negative for GFAP and S-100. In conclusion, antiserum #4350 detected nestin in formalin-fixed, paraffin-embedded tissue sections by heat-induced antigen retrieval immunohistochemistry. Nestin was expressed in both highly malignant and low malignant gliomas, indicating the potential use of nestin as a diagnostic tumor marker in surgical pathology.
Collapse
Affiliation(s)
- Per M Almqvist
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM. A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 2001; 60:1105-19. [PMID: 11706940 DOI: 10.1093/jnen/60.11.1105] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrocephalic hyh mice are born with moderate hydrocephalus and a normal cerebral aqueduct. At about the fifth postnatal day the aqueduct becomes obliterated and severe hydrocephalus develops. The aim of the present investigation was to investigate the mechanism of this hydrocephalus, probably starting during fetal life when the cerebral aqueduct is still patent. By use of immunocytochemistry and scanning electron microscopy, mutant (n = 54) and normal (n = 61) hyh mouse embryos were studied at various developmental stages to trace the earliest microscopic changes occurring in the brains of embryos becoming hydrocephalic. The primary defect begins at an early developmental stage (E-12) and involves cells lining the brain cavities, which detach following a well-defined temporo-spatial pattern. This ependymal denudation mostly involves the ependyma of the basal plate derivatives. There is a relationship between ependymal denudation and ependymal differentiation evaluated by the expression of vimentin and glial fibrillary acidic protein. The ependymal cells had a normal appearance before and after detachment, suggesting that their separation from the ventricular wall might be due to abnormalities in cell adhesion molecules. The process of detachment of the ventral ependyma, clearly visualized under scanning electron microscope, is almost completed before the onset of hydrocephalus. Furthermore, this ependymal denudation does not lead to aqueductal stenosis during prenatal life. Thus, the rather massive ependymal denudation appears to be the trigger of hydrocephalus in this mutant mouse, raising the question about the mechanism responsible for this hydrocephalus. It seems likely that an uncontrolled bulk flow of brain fluid through the extended areas devoid of ependyma may be responsible for the hydrocephalus developed by the hyh mutant embryos. The defect in these embryos also includes loss of the hindbrain floor plate and a delayed in the expression of Reissner fiber glycoproteins by the subcommissural organ.
Collapse
Affiliation(s)
- A J Jiménez
- Departamento de Biología Celular y Genética, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Smirnov EB, Puchkov VF, Otellin VA. Reactive invagination of the neuroepithelium in the rudiments of the neocortex, tectum of the midbrain, and retina of the eye in humans at different stages of development. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2001; 31:605-7. [PMID: 11766898 DOI: 10.1023/a:1012369011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- E B Smirnov
- Department of Morphology, Science Research Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg
| | | | | |
Collapse
|
26
|
Verney C, Zecevic N, Puelles L. Structure of longitudinal brain zones that provide the origin for the substantia nigra and ventral tegmental area in human embryos, as revealed by cytoarchitecture and tyrosine hydroxylase, calretinin, calbindin, and GABA immunoreactions. J Comp Neurol 2001; 429:22-44. [PMID: 11086287 DOI: 10.1002/1096-9861(20000101)429:1<22::aid-cne3>3.0.co;2-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In a previous work, mapping early tyrosine hydroxylase (TH) expressing primordia in human embryos, the tegmental origin of the substantia nigra (SN) and ventral tegmental area (VTA) was located across several neuromeric domains: prosomeres 1-3, midbrain, and isthmus (Puelles and Verney, [1998] J. Comp. Neurol. 394:283-308). The present study examines in detail the architecture of the neural wall along this tegmental continuum in 6-7 week human embryos, to better define the development of the SN and VTA. TH-immunoreactive (TH-IR) structures were mapped relative to longitudinal subdivisions (floor plate, basal plate, alar plate), as well as to radially superposed strata of the neural wall (periventricular, intermediate, and superficial strata). These morphologic entities were delineated at each relevant segmental level by using Nissl-stained sections and immunocytochemical mapping of calbindin, calretinin, and GABA in adjacent sagittal or frontal sections. A numerous and varied neuronal population originates in the floor plate area, and some of its derivatives become related through lateral tangential migration with other neuronal populations born in distinct medial and lateral portions of the basal plate and in a transition zone at the border with the alar plate. Some structural differences characterize each segmental domain within this common schema. The TH-IR neuroblasts arise predominantly within the ventricular zone of the floor plate and, more sparsely, within the adjacent medial part of the basal plate. They first migrate radially from the ventricular zone to the pia and then apparently move laterally and slightly rostralward, crossing the superficial stratum of the basal plate. Several GABA-IR cell populations are present in this region. One of them, which might represent the anlage of the SN pars reticulata, is generated in the lateral part of the basal plate.
Collapse
Affiliation(s)
- C Verney
- INSERM U.106, Hôpital Salpêtrière, 75651 Paris Cedex 13, France.
| | | | | |
Collapse
|
27
|
Ulfig N, Neudörfer F, Bohl J. Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation. J Anat 1999; 195 ( Pt 1):87-100. [PMID: 10473296 PMCID: PMC1467968 DOI: 10.1046/j.1469-7580.1999.19510087.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal migration is guided by long radially oriented glial fibres. During late stages of development radial glial cells are transformed into astrocytes. A predominant intermediate filament protein within radial glial cells and immature astrocytes is vimentin. In this study fetal brain sections were used to demonstrate the transient features of vimentin-positive radial glia. In the lower half of the cerebral wall of the 6th gestational month bundles, curvature, and crossing of vimentin-positive fibres are regularly seen. Moreover, fibres terminating on vessels are observed. In the upper half fibres are radially oriented; when ascending towards the pial surface the number and diameter of fibres appears conspicuously decreased. Radially aligned fibres display numerous varicosities. In the 8th month the bulk of vimentin-positive fibres is encountered next to the ganglionic eminence and below isocortical cerebral fissures. The dentate gyrus is conspicuous due to its high amount of immunolabelled fibres. Furthermore, densely packed fibres are visible within the internal and external capsule and in the vicinity of the anterior commissure. Radial glial somata are found in the proliferative areas as well as in the adjacent white matter. In the latter location bipolar, monopolar and stellate vimentin-positive cells are present. The results demonstrate an area-specific distribution pattern of vimentin-positive structures which can be correlated with migrational events. Areas maturing late in development for instance, reveal dense immunolabelling in the 8th month. The orientation and position of radial fibres point to an additional developmental role of these fibres, i.e. their involvement in the guidance of growing axons. Moreover, the arrangement and morphology of vimentin-positive fibres, such as retraction of fibres or occurrence of varicosities, are indicative of degenerative events. Accordingly, a transformation of radial glial somata, their displacement towards the white matter and finally the growth of stellate processes can clearly be demonstrated.
Collapse
Affiliation(s)
- N Ulfig
- Department of Anatomy, University of Rostock, Germany
| | | | | |
Collapse
|
28
|
Abstract
The adult human ependyma expresses no intermediate filament proteins or secretory proteins; the fetal ependyma shows strong immunocytochemical (ICC) expression of vimentin, glial fibrillary acidic protein (GFAP), cytokeratins (CKs) of high molecular weight, glycoproteins, and S-100beta protein. Each has a precise and specific spatial distribution within the developing ependyma and a predictable time of appearance and regression in each region of the ventricular system. Several are coexpressed, but some appear earlier or persist longer than others. Secretory proteins of ependymal cells are important in several developmental processes such as the guidance of axonal growth cones. GFAP is not expressed in the floor plate ependyma at any stage of development, unlike vimentin and CK. The choroid plexus epithelium is a specialized ependyma, with an ICC profile that differs from the surface ependyma: vimentin, CK, and S-100beta protein continue to be expressed throughout fetal and adult life, but GFAP is not expressed. Certain cerebral malformations are associated with specific ICC abnormalities: ependymal S-100beta protein continues to be immunoreactive in disorders of neuroblast migration; ependymal vimentin is focally upregulated in Chiari malformations and congenital aqueductal stenosis. Other mammalian and nonmammalian species have characteristic profiles of ependymal immunoreactivity to the same proteins expressed in humans but exhibit interspecific differences.
Collapse
Affiliation(s)
- H B Sarnat
- Department of Neurology, University of Washington School of Medicine, Seattle 98105, USA
| |
Collapse
|
29
|
Chan SO, Peng D, Chiu FC. Heterogeneous expression of neurofilament proteins in forebrain and cerebellum during development: clinical implications for spinocerebellar ataxia. Brain Res 1997; 775:107-18. [PMID: 9439834 DOI: 10.1016/s0006-8993(97)00834-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using quantitative immunoblotting, we have measured the level of two mammalian neurofilament proteins, the 68-kDa NF-L and the 66-kDa NF-66 (alpha-internexin), in the rat CNS during development. NF-66 is localized in neurons and neuronal processes in both embryonic and postnatal brain. Importantly, NF-66 is more abundant than NF-L in both forebrain and cerebellum during development. The prevalence of NF-66 over NF-L is most pronounced in brain gray matter. The expression of both NF-66 and NF-L increases continuously during the first month after birth. In situ hybridization demonstrated that NF-66, but not NF-L is, expressed in the cerebellar granule cells. Our findings suggest that the neurofilaments are heterogeneous in developmental expression, among neuronal subtypes and in composition. Human NF-66 neurofilament has recently been mapped to chromosome 10q24. Careful analysis of the human genome map indicates NF-66 gene lies within the critical region of infantile-onset spinocerebellar ataxia (IOSCA). The characteristic developmental expression and spatial localization of the NF-66 gene suggests it as a candidate gene for the disease.
Collapse
Affiliation(s)
- S O Chan
- Saul Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
30
|
Okabe H, Okubo T, Adachi H, Ishikawa T, Ochi Y. Immunohistochemical demonstration of cytokeratin in human embryonic neurons arising from placodes. Brain Dev 1997; 19:347-52. [PMID: 9253488 DOI: 10.1016/s0387-7604(97)00034-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sensory neurons of the olfactory, trigeminal, facial, vestibulo-cochlear, glossopharyngeal and vagal nerves, and neurons migrating along the olfactory nerve to the brain have special anlagen, made up of placodes located in the epithelial layer. To investigate the characteristic phenotype of placode-derived neurons, immunohistochemical analysis of intermediate filaments was conducted on formalin-fixed human embryonic tissues. Neurons arising from placodes including luteinizing-hormone releasing hormone (LHRH) neurons migrating from the olfactory placode to the brain had immunoreactivity to antibodies specific to cytokeratin, AE1 and CAM5.2 during the embryonic stage. However, this immunoreactivity disappeared during the late embryonic to the post-embryonic stage and was not observed in the roots of these nerves in the post-natal stage. Immunoreactivity was detected in both the somata and processes, and the distribution differed from that described in rodent brain neurons. With this exception, no other human peripheral neurons, including spinal dorsal root ganglia, had immunoreactivity with anti-cytokeratin antibodies throughout the entire developmental stage. Although the cephalic neural crest also directly generates neurons to most of the cranial sensory ganglia, we could not find any evidence that it contributed to the genesis of cytokeratin-positive embryonic neurons. We concluded that cytokeratin is an intermediate filament common to human embryonic neurons of cephalic placodal origin and that this immunohistochemical marker may be useful in analyzing the developmental sequence of several congenital diseases involving the cranial nerves, such as Moebius syndrome and Goldenhar syndrome.
Collapse
Affiliation(s)
- H Okabe
- Department of Laboratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|
31
|
Takano T, Becker LE. Overexpression of nestin and vimentin in the ependyma of spinal cords from hydrocephalic infants. Neuropathol Appl Neurobiol 1997. [DOI: 10.1111/j.1365-2990.1997.tb01180.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Viebahn C, Lane EB, Ramaekers FC. Cytoskeleton gradients in three dimensions during neurulation in the rabbit. J Comp Neurol 1995; 363:235-48. [PMID: 8642072 DOI: 10.1002/cne.903630206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Morphogenetic movements leading to the formation of the neural tube and cellular differentiation leading to neuronal and glial cell lineages are both part of early development of the vertebrate nervous system. In order to analyze the degree of overlap between these processes, cellular differentiation during the shaping of the neural plate is investigated immunohistochemically by using monoclonal intermediate filament protein antibodies and the 7.5-8.0-day-old rabbit embryo as a model. Western blotting is used to confirm the specificity of the antibodies, which include a new monoclonal vimentin antibody suitable for double-labeling in combination with monoclonal cytokeratin (and fibronectin) antibodies. Starting in the early somite embryo and concomitant with neural plate folding, a gradual loss of cytokeratin 8 (and 18) expression in the neuroepithelium is mirrored by a gain in vimentin expression with partial coexpression of both proteins. At the prospective rhombencephalic and spino-caudal levels, vimentin expression, in particular, changes (i.e., increases) along gradients in three dimensions: along the longitudinal axis of each neuroepithelial cell from basal to apical, in the transverse plane of the embryo from dorsolateral to ventromedial and along the craniocaudal axis from prospective rhombencephalic toward spino-caudal levels of the neural plate. At the prospective mes- and prosencephalic levels, the expression change also proceeds from basal to apical within each neuroepithelial cell, but along the other axes described here, the progress in expression change is more complex. Although the functional meaning of these highly ordered expression changes is at present unclear, the gradients suggest a novel pattern of neuroepithelial differentiation which may be functionally related to the process of interkinetic nuclear migration (Sauer [1935] J. Comp. Neurol. 62:377-402) and which partially coincides with the morphogenetic movements involved in the shaping of the neural plate.
Collapse
Affiliation(s)
- C Viebahn
- Institute of Anatomy, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | | | | |
Collapse
|
33
|
Gocht A, Löhler J, Sçheidel P, Stegner HE, Saeger W. Gliomatosis peritonei combined with mature ovarian teratoma: immunohistochemical observations. Pathol Res Pract 1995; 191:1029-35. [PMID: 8838372 DOI: 10.1016/s0344-0338(11)80603-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gliomatosis peritonei (GP) is the metastatic implantation of glial cells within the peritoneal cavity of patients with ovarian teratomas. The case of a young woman is presented, who initially developed a mature teratoma in the left ovary that was surgically removed. Nine years later a mature teratoma in the right ovary was excised, upon which GP was found in the greater omentum. To identify the cellular composition of the ovarian teratoma and of the omental implants, immunostainings were performed using antibodies against glial and neuronal antigens as well as against determinants of hematopoietic cells. In the teratoma the neuroectodermal part was strongly HNK-1-positive and contained GFAP- and vimentin-positive astrocytes and some NSE-positive neuron-like cells. In addition, neuroectodermal tissue was infiltrated by numerous CD68-positive macrophages/histiocytes and CD20-positive B lymphocytes. The omental nodules consisted of astrocytes, which expressed GFAP, vimentin and desmin. The implants also contained macrophages/histiocytes, which exhibited morphologic features reminiscent of microglial cells. In GP, macrophages might release glia-promoting trophic factors, which could allow the neural component of ovarian teratoma to implant in the peritoneal cavity and survive there for many years. Macrophage-derived factors might induce astroglial differentiation, which could explain why the peritoneal implants are mostly mature even when they originate from immature teratomas.
Collapse
Affiliation(s)
- A Gocht
- Abteilung für Pathologie, Universität Hamburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Aoki K, Osumi-Yamashita N, Ninomiya Y, Eto K. Differential expression of N-CAM, vimentin and MAP1B during initial pathfinding of olfactory receptor neurons in the mouse embryo. ANATOMY AND EMBRYOLOGY 1995; 192:211-20. [PMID: 8651505 DOI: 10.1007/bf00184745] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Olfactory receptor neurons extend their primary axons from the nasal epithelium to the olfactory bulb primordium via the frontonasal mesenchyme. In the present study, expression of neuronal markers (vimentin and MAP1B) and N-CAM was immunohistochemically investigated in the development of the olfactory system in mouse embryos. Expression of vimentin and MAP1B was first observed at early day 10 of gestation (D10) in the posterosuperior region of the medial nasal epithelium, while N-CAM was initially detected in the mesenchyme adjacent to the vimentin- and MAP1B-positive nasal epithelium. As development proceeded, the localization of neuronal marker-positive cells was mostly included in the N-CAM positive region. In addition, we adopted in situ labelling with vital dye (DiI) to directly determine the localization of the olfactory nerve and N-CAM on the same sections. We demonstrated that most extending axons were located in the N-CAM positive region. These results suggest that the expression of N-CAM plays a crucial role in the initial pathfinding of the olfactory nerve.
Collapse
Affiliation(s)
- K Aoki
- Department of Developmental Biology, Graduate School of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
35
|
Götz W, Kasper M, Fischer G, Herken R. Intermediate filament typing of the human embryonic and fetal notochord. Cell Tissue Res 1995; 280:455-62. [PMID: 7781042 DOI: 10.1007/bf00307819] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to characterize human notochordal tissue we investigated notochords from 32 human embryos and fetuses ranging between the 5th and 13th gestational week, using immunohistochemistry to detect intermediate filament proteins cytokeratin, vimentin and desmin, the cytokeratin subtypes 7, 8, 18, 19 and 20, epithelial membrane antigen (EMA), and adhesion molecules pan-cadherin and E-cadherin. Strong immunoreactions could be demonstrated for pan-cytokeratin, but not for desmin or EMA. Staining for pan-cadherin and weak staining for E-cadherin was found on cell membranes of notochordal cells. Also it was demonstrated that notochordal cells of all developmental stages contain the cytokeratins 8, 18 and 19, but not 7 or 20. Some cells in the embryonic notochord also contained some vimentin. Vimentin reactivity increased between the 8th and 13th gestational week parallel to morphological changes leading from an epithelial phenotype to the chorda reticulum which represents a mesenchymal tissue within the intervertebral disc anlagen. This coexpression reflects the epithelial-mesenchymal transformation of the notochord, which also loses E-cadherin expression during later stages. Our findings cannot elucidate a histogenetic germ layer origin of the human notochord but demonstrate its epithelial character. Thus, morphogenetic inductive processes between the human notochord and its surrounding vertebral column anlagen can be classified as epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- W Götz
- Zentrum Anatomie der Georg-August-Universität Göttingen, Abt. Histologie, Germany
| | | | | | | |
Collapse
|
36
|
Sabaté O, Horellou P, Vigne E, Colin P, Perricaudet M, Buc-Caron MH, Mallet J. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nat Genet 1995; 9:256-60. [PMID: 7773288 DOI: 10.1038/ng0395-256] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transplantations for neurological disorders are limited by the supply of human fetal tissue. To generate larger numbers of cells of appropriate phenotype, we investigated whether human neural progenitors expanded in vitro could be modified with recombinant adenoviruses. Strong expression of beta-galactosidase was obtained in vitro. Two or three weeks after transplantation of engineered cells to the rat brain, we observed a small percentage of surviving neuroblasts strongly expressing beta-galactosidase in four out of 13 rats. Thus human precursor cells that have been genetically modified using adenoviruses are a promising tool for ex vivo gene therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- O Sabaté
- C 9923 CNRS, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Kato M, Takashima S. Immunohistochemical and morphometrical development of the dorsal root ganglion as a neural crest derivative: comparison with the fetal CNS. Early Hum Dev 1994; 38:81-90. [PMID: 7851308 DOI: 10.1016/0378-3782(94)90219-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The developmental difference between the dorsal root ganglion (DRG), paravertebral ganglion (PVG) and the central nervous system (CNS) in embryos and fetuses was investigated using immunohistochemical (neuron-specific enolase (NSE) and human natural killer-1 (HNK-1)) and morphometrical methods. NSE positive cells developed from 7 weeks of gestation in the DRG as early as the anterior horn cells of the spinal cord, while the pyramidal cells of the cerebral cortex matured after 20 weeks of gestation. HNK-1 positive granules were present until 14 weeks gestation in the spinal cord and until 26-27 weeks in the DRG and PVG. This early development of DRG cells may be closely related to the peripheral organ maturation during the embryonic or early fetal period.
Collapse
Affiliation(s)
- M Kato
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, Japan
| | | |
Collapse
|
38
|
Møllgård K, Balslev Y, Janas MS, Treherne JM, Saunders NR, Nichols JG. Development of spinal cord in the isolated CNS of a neonatal mammal (the opossum Monodelphis domestica) maintained in longterm culture. JOURNAL OF NEUROCYTOLOGY 1994; 23:151-65. [PMID: 8006676 DOI: 10.1007/bf01181557] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The CNS of the newly born opossum removed in its entirety survives and maintains its electrical excitability in suitable culture media for up to ten days at 25 degrees C. The structure of the developing neonatal spinal cord has been studied in the intact animal and in the cultured CNS. The differentiation and survival of individual cells and subcellular structures were followed at the light and electron microscopic level. The expression of cell markers in neuronal and glial cells was studied immunocytochemically using commercially available antibodies. Both mono- and polyclonal antibodies raised against antigens from several other species cross-reacted with Monodelphis antigens. The spinal cord of preparations removed from three-day-old-animals showed many neuron specific enolase-positive large neurons in the ventral horn as well as vimentin- and glial fibrillary acidic protein-positive radial glial cells and numerous small diameter unmyelinated axons, abundant dendrites and synaptic structures. From post natal day 5 to post natal day 8 continued differentiation of neurons and differentiation of radial glial cells into astrocytes were apparent. Radial glial fibres and astrocytes reacted positively to antibodies against glial fibrillary acidic protein. Myelin had not appeared at 8 days. A comparison of material obtained from postnatal day 3-postnatal day 4 preparations fixed immediately after dissection and from postnatal day 3-postnatal day 4 preparations fixed after 5 days in culture showed growth with continued mitotic activity of the neuroepithelial cells and further neuronal and glial maturation in the spinal cord especially in the more rostral end. In successful experiments in vitro, the preservation of individual cells, organelles, membranes and synapses was similar in the freshly dissected and cultured preparations apart from a distinct loss of the youngest and some of the oldest neurons in the spinal cord. Also the main fibre tracts (dorsal, lateral and ventromedial funiculus) survived. Virtually all preparations that had not been damaged or injured showed these results. Possible reasons for the death or survival of individual neuronal or glial cell populations in these preparations are discussed.
Collapse
Affiliation(s)
- K Møllgård
- Institute of Medical Anatomy, University of Copenhagen, Panum Institute, Denmark
| | | | | | | | | | | |
Collapse
|
39
|
Lukás Z, Dráber P, Bucek J, Dráberová E, Viklický V, Dolezel S. Expression of phosphorylated high molecular weight neurofilament protein (NF-H) and vimentin in human developing dorsal root ganglia and spinal cord. HISTOCHEMISTRY 1993; 100:495-502. [PMID: 8163392 DOI: 10.1007/bf00267831] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of vimentin and the phosphorylated variant of high molecular weight neurofilament protein (NF-H) was studied in developing human fetal dorsal root ganglia and spinal cord. The technique used for examination of cryosections was double-label fluorescence with monoclonal antibodies. Both proteins were present in the nerve fibres inside the ganglia of 6- and 8-week-old embryos. During further development the expression of vimentin continued to increase in the satellite cells, but was found to be decreasing in the ganglion cells. Phosphorylated NF-H was found in the processes of ganglion cells, as well as in the perikarya at all developmental stages. In the spinal cord of 6- and 8-week-old embryos, phosphorylated NF-H protein was found in the longitudinal fibres of the marginal layer and in processes of the mantle zone; some of the fibres also contained vimentin. Later the co-expression of the two proteins ceased and vimentin was found only in glial and mesenchymal derivatives. Phosphorylated NF-H was located, at all developmental stages, in the axons of both white and grey matter, but not in the neuronal perikarya. The results indicate that phosphorylation of the NF-H in human dorsal root ganglia starts in the perikarya of the ganglion cells while in the ganglion cells of the spinal cord it takes place in the axons.
Collapse
Affiliation(s)
- Z Lukás
- 2nd Department of Pathology, Medical Faculty of Masaryk University, Children's hospital, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The ependyma in six infants dying with cerebro-hepato-renal (CHR) disease showed similar but less extensive morphological and immunohistochemical abnormalities to those previously demonstrated in lissencephaly/pachygyria. More than two-thirds of the ependyma lining all ventricles was a pseudostratified columnar epithelium resembling midfetal life. Discontinuities did not correlate with minimal ventriculomegaly. Subventricular rosettes were common and not confined to regions of gaps in the overlying ependyma. Subependymal gliosis and glial nodules were absent. Immunoreactivity of ependymal cells for vimentin and GFAP was normal for age, but abnormally positive for S-100 protein and cytokeratin, as in lissencephaly; unlike lissencephaly, the rosettes in CHR disease also are reactive. Ependymal abnormalities may contribute to the pathogenesis of cerebral dysgenesis in CHR disease as in other genetic disorders of neuroblast migration.
Collapse
Affiliation(s)
- H B Sarnat
- Department of Pathology, University of Calgary Faculty of Medicine, Alta, Canada
| | | | | |
Collapse
|
41
|
McKanna JA. Optic chiasm and infundibular decussation sites in the developing rat diencephalon are defined by glial raphes expressing p35 (lipocortin 1, annexin I). Dev Dyn 1992; 195:75-86. [PMID: 1297458 DOI: 10.1002/aja.1001950202] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
p35, a Ca(++)-phospholipid-binding protein that serves as a substrate for the EGF receptor tyrosine kinase, is expressed by primitive glial ependymal cells to define a raphe occupying the ventral midline in the spinal cord and hindbrain of rat embryos (McKanna and Cohen, Science 243:1477-1479, 1989). p35 appears transiently in the median one-third (80 microns) of the floor plate at precisely the time and place where axons cross to form the ventral commissure. We postulated that if p35 is involved with commissure development, homologous p35 raphes might be found at decussation sites rostral to the floor plate, including the optic chiasm. The present report describes two developmentally regulated p35 raphes in the diencephalon. One raphe is present for 2-3 days at the rostral lip of the nascent infundibulum, the reported decussation site of axons running from the supraoptic nucleus to the neurohypophysis; the other raphe appears in the rostral two-thirds of the optic chiasm, the site traversed by the optic axons. p35 is never expressed in the caudal one-third of the chiasm that accommodates non-retinal axons. To the best of our knowledge, this is the first identification of a specific marker for the retinal component of the optic chiasm. Because the p35 is gone by embryonic day 18.5, it is absent during final stages of chiasm formation when axons from the temporal retina decussate. Thus, p35 also may contribute to the "barrier" perceived by fibers that remain ipsilateral. Our data suggest that the p35 raphe contributes to the midline's role in commisure morphogenesis. Putative lipocortin activities including regulating PLA2, eicosanoids, or intracellular Ca++ could be involved in altering cue specificity as decussating axon growth cones traverse the p35 compartment.
Collapse
Affiliation(s)
- J A McKanna
- Department of Cell Biology, Vanderbilt Univeristy, School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
42
|
Wolozin B, Sunderland T, Zheng BB, Resau J, Dufy B, Barker J, Swerdlow R, Coon H. Continuous culture of neuronal cells from adult human olfactory epithelium. J Mol Neurosci 1992; 3:137-46. [PMID: 1320921 DOI: 10.1007/bf02919405] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells from the olfactory epithelium of adult human cadavers have been propagated in primary culture and subsequently cloned. These cells exhibit neuronal properties including: neuron-specific enolase, olfactory marker protein, neurofilaments, and growth-associated protein 43. Simultaneously, the cells exhibit nonneuronal properties such as glial fibrillary acidic protein and keratin, the latter suggesting properties of neuroblasts or stem cells. These clonal cultures contain 5-10% of cells sufficiently differentiated to show odorant-dependent cyclic adenosine 3',5'-monophosphate (cAMP) or calcium-release responses when challenged with submicromolar concentrations of odorants. The potential of culturing neuronal cells from patients with neuropsychiatric disorders, such as Alzheimer's disease or schizophrenia, could enable the study of the pathophysiology of these neurons in the culture dish and allow new approaches to the study of mental illness.
Collapse
Affiliation(s)
- B Wolozin
- Laboratory of Clinical Science, NIMH, Bethesda, MD 20892
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Using immunohistochemical techniques both at light and electron microscopic levels, the arrangement and distribution of intermediate filaments in Sertoli cells of normal testis (in rat and human), during pre- and postnatal development (in rabbit, rat, and mouse) and under experimental and pathological conditions (human, rat), have been studied and related to the pertinent literature. Intermediate filaments are centered around the nucleus, where they apparently terminate in the nuclear envelope providing a perinuclear stable core area. From this area they radiate to the plasma membranes; apically often a close association with microtubules is seen. Basally, direct contacts of the filaments with focal adhesions occur, while the relationship to the different junctions of Sertoli cells is only incompletely elucidated. In the rat (not in human) a group of filaments is closely associated with the ectoplasmic specializations surrounding the head of elongating spermatids. Both in rat and human, changes in cell shape during the spermatogenic cycle are associated with a redistribution of intermediate filaments. As inferred from in vitro studies reported in the literature, these changes are at least partly hormone-dependent (vimentin phosphorylation subsequent to FSH stimulation) and influenced by local factors (basal lamina, germ cells). Intermediate filaments, therefore, are suggested to be involved in the hormone-dependent mechanical integration of exogenous and endogenous cell shaping forces. They permit a cycle-dependent compartmentation of the Sertoli cell into a perinuclear stable zone and a peripheral trafficking zone with fluctuating shape. The latter is important with respect to the germ cell-supporting surface of the cell which seems to limit the spermatogenetic potential of the male gonad.
Collapse
Affiliation(s)
- G Aumüller
- Department of Anatomy and Cell Biology, Philipps-Universität, Marburg, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Porteus MH, Brice AE, Bulfone A, Usdin TB, Ciaranello RD, Rubenstein JL. Isolation and characterization of a library of cDNA clones that are preferentially expressed in the embryonic telencephalon. ACTA ACUST UNITED AC 1992; 12:7-22. [PMID: 1372074 DOI: 10.1016/0169-328x(92)90063-h] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to isolate genes involved in development of the mammalian telencephalon we employed an efficient cDNA library procedure. By subtracting an adult mouse telencephalic cDNA library from an embryonic day 15 (E15) mouse telencephalic cDNA library we generated two subtracted libraries (ES1 and ES2). We estimate that ES1 contains between 200 and 600 different cDNA clones, which approximates the number of genes that are preferentially expressed in the E15 telencephalon, compared to the adult telencephalon. Northern analysis of 20 different cDNA clones shows that 14 of these are expressed at least 5-fold more in the E15 telencephalon than the adult telencephalon. Limited sequencing of the 14 differentially expressed clones reveals that 10 have no significant identity to sequences in GenBank and EMBL databases, whereas the other 4 have significant sequence identity to vimentin, histone 3.3, topoisomerase I and the B2 repeat element. In situ hybridization using one of the differentially expressed cDNAs, TES-1, demonstrates that it is transiently expressed in the anlage of the basal ganglia. In situ hybridization with another differentially expressed cDNA clone, TES-4, shows that it is specifically expressed in differentiating cells of the neural axis with a distinctive rostral-caudal temporal pattern. These findings, and the methods that we have developed, provide a framework for future investigations of the genetic control of telencephalon development.
Collapse
Affiliation(s)
- M H Porteus
- Nancy Prizker Laboratory of Developmental and Molecular Neurobiology, Department of Psychiatry and Behavioral Sciences, Stanford University, CA 94305
| | | | | | | | | | | |
Collapse
|
45
|
Stagaard Janas M, Nowakowski RS, Møllgård K. Glial cell differentiation in neuron-free and neuron-rich regions. II. Early appearance of S-100 protein positive astrocytes in human fetal hippocampus. ANATOMY AND EMBRYOLOGY 1991; 184:559-69. [PMID: 1776702 DOI: 10.1007/bf00942578] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of the human fetal hippocampus and dentate gyrus has been studied immunocytochemically. The first glial cells to appear are vimentin-positive radial glial cells. A gradual transition from vimentin to glial fibrillary acidic protein (GFAP) reactivity in the radial glial cells occurs at week 8. The GFAP-positive radial glial cells transform into astrocytes from week 14. A population of small S-100-positive somata which morphologically and spatially are distinct from GFAP-positive radial glial cells and their transformed progeny, are found as early as week 9.5 in the hippocampus during the period of peak neurogenesis. The well-defined immunoreactivity of the morphologically homogenous cell subpopulation for S-100 protein, which has been used as an astrocytic marker in the adult hippocampus, indicates that astrocytes may differentiate at very early gestational ages in human fetuses. The S-100-positive astrocytes are thought to be derived from ventricular zone cells, which at the time of their appearance do not express any of the applied astrocytic markers (S-100, GFAP, vimentin). It is suggested that the S-100-positive astrocytic cell population interacts with the first incoming projection fibers, so modulating the pattern of connectivity.
Collapse
Affiliation(s)
- M Stagaard Janas
- Institute of Medical Anatomy A, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
46
|
Stagaard Janas M, Nowakowski RS, Terkelsen OB, Møllgård K. Glial cell differentiation in neuron-free and neuron-rich regions. I. Selective appearance of S-100 protein in radial glial cells of the hippocampal fimbria in human fetuses. ANATOMY AND EMBRYOLOGY 1991; 184:549-58. [PMID: 1776701 DOI: 10.1007/bf00942577] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The proliferative cells of the developing hippocampal fiber tract fimbria have only the potential for gliogenesis; thus the developing fimbria provides an ideal model for the study of the development and differentiation of its constituent glial cells. In the first stage of development, the fimbrial primordium can be distinguished morphologically, and during the second stage, the fimbria becomes a well-defined fiber tract. In the third stage, a divergent immunocytochemical staining pattern clearly demarcates the neuron-free fimbria from the hippocampus, where a mixed neuro- and gliogenesis occurs. The distinct expression of S-100 protein in radial glial cells is restricted to the fimbria. During the final stage of development, the ventricular lining of the fimbria will mature into an ependyma. It is suggested that the S-100-positive radial glial cells of the fimbria, which probably retain their proliferative capacity, represent a homogeneous population of precursor cells that will give rise to the glial cells of the adult fimbria. The appearance of S-100 in the fimbrial radial glial cells seems to occur coincidentally with the establishment of hippocampal commissural connections. The S-100-positive radial glial cells of the fimbria may guide and segregate populations of growing axons by providing physical and chemical cues. Thus, S-100 protein per se seems to be intimately involved in modulation and regulation of axonal growth and patterning.
Collapse
Affiliation(s)
- M Stagaard Janas
- Institute of Medical Anatomy A, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
47
|
Müller F, O'Rahilly R. The human rhombencephalon at the end of the embryonic period proper. THE AMERICAN JOURNAL OF ANATOMY 1990; 189:127-45. [PMID: 2244584 DOI: 10.1002/aja.1001890204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human rhombencephalon at 8 postovulatory weeks (stage 23) is described and illustrated for the first time with the aid of silver-impregnated sections and graphic reconstructions. The motor and sensory trigeminal nuclei were among those studied, and the latter was found to be almost contiguous to the dentate nucleus. Fibers to the principal sensory nucleus join the mesencephalic trigeminal tract, which also seems to be connected with the motor fibers. Fine fibers from the sensory root join the tractus solitarius, which appears to receive connections from the facial, glossopharyngeal, and vagal nerves. Main and accessory abducent nuclei are evident. A part (the Kappenkern des Facialisknies) of the nucleus funiculi teretis is particularly prominent. The presence of the pyramidal decussation during the embryonic period is noted for the first time. The arrangement of nuclei and tracts at 8 weeks is shown to be closely similar to that present in the newborn, and it is likely that the rapid growth of the rhombencephalon during the embryonic period proper is associated with correspondingly early functional activity.
Collapse
Affiliation(s)
- F Müller
- Carnegie Laboratories of Embryology, California Primate Research Center, Davis 95616
| | | |
Collapse
|
48
|
Hassall CJ, Penketh R, Rodeck C, Burnstock G. Immunocytochemical studies of cardiac myocytes and other non-neuronal cells of the fetal human heart in culture. ANATOMY AND EMBRYOLOGY 1990; 182:339-46. [PMID: 2147545 DOI: 10.1007/bf02433494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-neuronal cell types present in cultures dissociated from the atria and ventricles of human fetal hearts, from 9 to 21 weeks' gestation, were studied using phase-contrast optics and immunocytochemistry. All atrial myocytes and many, if not all, ventricular myocytes observed in culture contained atrial natriuretic peptide-like immunoreactivity. Generally, the atrial natriuretic peptide-like immunoreaction in atrial myocytes was more intense and widespread than in ventricular myocytes. Atrial and ventricular fibroblasts expressed extracellular fibronectin-like immunoreactivity. A population of cells with the appearance and growth properties of endothelial cells was observed in both atrial and ventricular cultures, and was classified as endothelioid since their precise origin was not known. Only a subpopulation of these endothelioid cells contained factor VIII-related antigen immunoreactivity, and some cells that did not display the other growth characteristics of endothelial cells were also factor VIII-related antigen immunoreactive in culture. Glial cells were S-100-like immunoreactive; they were usually more numerous in atrial than ventricular preparations. There was no close association between glial cells and neurones in the atrial cultures.
Collapse
Affiliation(s)
- C J Hassall
- Department of Anatomy, University College, London, United Kingdom
| | | | | | | |
Collapse
|
49
|
Gocht A, Löhler J. Changes in glial cell markers in recent and old demyelinated lesions in central pontine myelinolysis. Acta Neuropathol 1990; 80:46-58. [PMID: 1694384 DOI: 10.1007/bf00294221] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An immunohistochemical study was performed to compare glial reactions in recent and old lesions of central pontine myelinolysis (CPM). Regions of demyelination and destruction of oligodendrocytes, showed reduced immunoreactivity of myelin basic protein (MBP), myelin-associated glycoprotein (MAG), transferrin, and carbonic anhydrase C (CA C). In addition, labeling of glial fibrillary acidic protein (GFAP) and S-100 protein revealed distinct dystrophic alterations of the astroglia. Remarkably, immunolabeling of GFAP was drastically reduced in astrocytic cytoplasm within freshly demyelinated lesions. Immunostaining of vimentin revealed a differential intracytoplasmic decoration of hypertrophic and dystrophic astrocytes in recent and old CPM lesions. Immunolabeling of desmin failed to stain glial cells. Monoclonal antibodies against HNK-1 exhibited greatly increased immunoreactivity both of persisting oligodendrocytes and of reactive fibrillary astrocytes in old CPM foci. In freshly demyelinated lesions, enhanced immunoreactivity of the X-hapten (3-fucosyl-N-acetyllactosamine) was prominent in astroglia and oligodendrocytes. Simultaneously, reactive astrocytes revealed intracytoplasmic labeling of laminin. Quantitation of GFAP+ astroglia in fresh CPM and control cases revealed an increase in the number of astrocytes within the demyelinated foci and in the surrounding non-demyelinated pontine tissue of CPM cases. The occurrence of astroglial alterations in the demyelinated foci of CPM could be interpreted as "astroglial dystrophy" which may represent a pathogenic factor in CPM. Furthermore, it is possible that changes of the glial microenvironment may influence the astroglia to revert transiently back to an immature phenotype as indicated by the enhanced expression of the X-hapten and HNK-1, and the de novo synthesis of vimentin and laminin.
Collapse
Affiliation(s)
- A Gocht
- Anatomisches Institut, Universität Hamburg, Federal Republic of Germany
| | | |
Collapse
|
50
|
Hansen SH, Stagaard M, Møllgård K. Neurofilament-like pattern of reactivity in human foetal PNS and spinal cord following immunostaining with polyclonal anti-glial fibrillary acidic protein antibodies. JOURNAL OF NEUROCYTOLOGY 1989; 18:427-36. [PMID: 2681541 DOI: 10.1007/bf01474540] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intermediate filament protein, glial fibrillary acidic protein (GFAP), is widely used as a cell-specific marker molecule for immunocytochemical identification of astrocyte lineages in cell culture, in tissues during development, and in tissues undergoing pathological changes. This study demonstrates that a reaction pattern of two commercially available polyclonal anti-GFAP antibodies shows extensive similarity to the pattern of reactivity obtained with monoclonal antibodies to neurofilaments in the PNS and spinal cord of human embryos and foetuses, at 5 to 12 weeks of gestation. The polyclonal antibodies to GFAP labelled populations of neurons and their processes in the PNS and in the spinal cord. Monoclonal antibodies to GFAP only labelled glial cells in the spinal cord. Neurofilament adsorption of one of the anti-GFAP antisera abolished the neurofilament-like reaction pattern, while the structures also labelled with monoclonal antibodies to GFAP remained immunostained. The results presented may question previously published data obtained with these and possibly other polyclonal anti-GFAP antibodies.
Collapse
Affiliation(s)
- S H Hansen
- Department A, University of Copenhagen, Panum Institute, Denmark
| | | | | |
Collapse
|