1
|
Sarnat HB, Rao VTS. Neuroglia pathology in genetic and epigenetic disorders of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:87-99. [PMID: 40148059 DOI: 10.1016/b978-0-443-19102-2.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glial cells are increasingly recognized for their important interactions with both developing and mature neurons, in particular for maintenance of dendritic ramifications and spines, synapses, and neurotransmitter uptake. MicroRNA abnormalities are demonstrated in individual astrocytes with alterations in neurological diseases. Alexander disease is a prototype astrocytic disease because of genetically altered glial fibrillary acidic protein (GFAP) filaments. Other genetic diseases are now recognized as involving glial cells in their pathogenesis: Rett, Fragile-X, Aicardi-Goutières, and Down syndromes, as well as epigenetic effects in the mechanism of fetal alcohol spectrum disorder. Many involve glial production of cytokines and neuroinflammation. Microglia also may contribute. The heat-shock protein α-B-crystallin is expressed in the Rosenthal fibers of Alexander disease, in which the molecular structure of GFAP is altered, in astrocytes secreting neurotoxic cytokines, and focally at or near epileptic foci. Satellite glial cells adherent to neuronal soma are frequent and diagnostically nonspecific but may contribute to neuronal degeneration, especially of hypermetabolic epileptogenic neurons. Glial cells have distorted size and morphology in mTOR malformations. Failure of glial apoptosis in the fetal lamina terminalis is the likely pathogenesis of callosal agenesis and of other cerebral dysgeneses.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics (Neurology), Pathology and Laboratory Medicine (Neuropathology), and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada; Medical Affairs Laboratory, Argenx US, Inc., Boston, MA, United States.
| | - Vijayaraghava T S Rao
- Departments of Paediatrics (Neurology), Pathology and Laboratory Medicine (Neuropathology), and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada; Medical Affairs Laboratory, Argenx US, Inc., Boston, MA, United States
| |
Collapse
|
2
|
Kharlamova A, Krivova Y, Proshchina A, Godovalova O, Otlyga D, Andreeva E, Shachina M, Grushetskaya E, Saveliev S. Spatial-temporal representation of the astroglial markers in the developing human cortex. Brain Struct Funct 2024:10.1007/s00429-024-02850-z. [PMID: 39153086 DOI: 10.1007/s00429-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.
Collapse
Affiliation(s)
- A Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418.
| | - Yu Krivova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - A Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - O Godovalova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - D Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - E Andreeva
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
- FGBEU APE Russian Medical Academy Continuous Professional Education, Barrikadnaya St., 2/1, S.1, Moscow, Russia, 125993
| | - M Shachina
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
| | - E Grushetskaya
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - S Saveliev
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| |
Collapse
|
3
|
Pandurangan K, Jayakumar J, Savoia S, Nanda R, Lata S, Kumar EH, S S, Vasudevan S, Srinivasan C, Joseph J, Sivaprakasam M, Verma R. Systematic development of immunohistochemistry protocol for large cryosections-specific to non-perfused fetal brain. J Neurosci Methods 2024; 405:110085. [PMID: 38387804 DOI: 10.1016/j.jneumeth.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Immunohistochemistry (IHC) is an important technique in understanding the expression of neurochemical molecules in the developing human brain. Despite its routine application in the research and clinical setup, the IHC protocol specific for soft fragile fetal brains that are fixed using the non-perfusion method is still limited in studying the whole brain. NEW METHOD This study shows that the IHC protocols, using a chromogenic detection system, used in animals and adult humans are not optimal in the fetal brains. We have optimized key steps from Antigen retrieval (AR) to chromogen visualization for formalin-fixed whole-brain cryosections (20 µm) mounted on glass slides. RESULTS We show the results from six validated, commonly used antibodies to study the fetal brain. We achieved optimal antigen retrieval with 0.1 M Boric Acid, pH 9.0 at 70°C for 20 minutes. We also present the optimal incubation duration and temperature for protein blocking and the primary antibody that results in specific antigen labeling with minimal tissue damage. COMPARISON WITH EXISTING METHODS The IHC protocol commonly used for adult human and animal brains results in significant tissue damage in the fetal brains with little or suboptimal antigen expression. Our new method with important modifications including the temperature, duration, and choice of the alkaline buffer for AR addresses these pitfalls and provides high-quality results. CONCLUSION The optimized IHC protocol for the developing human brain (13-22 GW) provides a high-quality, repeatable, and reliable method for studying chemoarchitecture in neurotypical and pathological conditions across different gestational ages.
Collapse
Affiliation(s)
- Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | | | - Reetuparna Nanda
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | | | - Suresh S
- Mediscan Systems, Chennai, Tamil Nadu, India.
| | - Sudha Vasudevan
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India.
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India.
| | - Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Verma R, Jayakumar J, Folkerth R, Manger PR, Bota M, Majumder M, Pandurangan K, Savoia S, Karthik S, Kumarasami R, Joseph J, Rohini G, Vasudevan S, Srinivasan C, Lata S, Kumar EH, Rangasami R, Kumutha J, Suresh S, Šimić G, Mitra PP, Sivaprakasam M. Histological characterization and development of mesial surface sulci in the human brain at 13-15 gestational weeks through high-resolution histology. J Comp Neurol 2024; 532:e25612. [PMID: 38591638 DOI: 10.1002/cne.25612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.
Collapse
Affiliation(s)
- Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Rebecca Folkerth
- Department of Forensic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mihail Bota
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Moitrayee Majumder
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | | | - Srinivasa Karthik
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ramdayalan Kumarasami
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| | - G Rohini
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Sudha Vasudevan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India
| | | | - Rajeswaran Rangasami
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jayaraman Kumutha
- Department of Neonatology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Suresh
- Mediscan Systems, Chennai, Tamil Nadu, India
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Hrvatska, Croatia
| | - Partha P Mitra
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Cold Spring Harbor Laboratory, New York, New York, USA
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Holst CB, Brøchner CB, Vitting-Seerup K, Møllgård K. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat 2019; 235:590-615. [PMID: 30901080 DOI: 10.1111/joa.12948] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The astroglial lineage consists of heterogeneous cells instrumental for normal brain development, function and repair. Unfortunately, this heterogeneity complicates research in the field, which suffers from lack of truly specific and sensitive astroglial markers. Nevertheless, single astroglial markers are often used to describe astrocytes in different settings. We therefore investigated and compared spatiotemporal patterns of immunoreactivity in developing human brain from 12 to 21 weeks post conception and publicly available RNA expression data for four established and potential astroglial markers - GFAP, S100, AQP4 and YKL-40. In the hippocampal region, we also screened for C3, a complement component highly expressed in A1-reactive astrocytes. We found diverging partly overlapping patterns of the established astroglial markers GFAP, S100 and AQP4, confirming that none of these markers can fully describe and discriminate different developmental forms and subpopulations of astrocytes in human developing brain, although AQP4 seems to be the most sensitive and specific marker for the astroglial lineage at midgestation. AQP4 characterizes a brain-wide water transport system in cerebral cortex with regional differences in immunoreactivity at midgestation. AQP4 distinguishes a vast proportion of astrocytes and subpopulations of radial glial cells destined for the astroglial lineage, including astrocytes determined for the future glia limitans and apical truncated radial glial cells in ganglionic eminences, devoid of GFAP and S100. YKL-40 and C3d, previously found in reactive astrocytes, stain different subpopulations of astrocytes/astroglial progenitors in developing hippocampus at midgestation and may characterize specific subpopulations of 'developmental astrocytes'. Our results clearly reflect that lack of pan-astrocytic markers necessitates the consideration of time, region, context and aim when choosing appropriate astroglial markers.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Radiation Biology, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Beltoft Brøchner
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark
| | - Kjeld Møllgård
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat Commun 2017; 8:14167. [PMID: 28139695 PMCID: PMC5290330 DOI: 10.1038/ncomms14167] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022] Open
Abstract
To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. The dynamics of progenitor cells in human neocortex development has not been studied directly. Here, the authors timelapse image human neuroepithelial (NE) and radial glial (RG) cells in embryonic brain slices and find properties of NE cells and RG that are mimicked in cerebral organoids.
Collapse
|
7
|
Holmberg Olausson K, Maire CL, Haidar S, Ling J, Learner E, Nistér M, Ligon KL. Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS One 2014; 9:e106694. [PMID: 25184684 PMCID: PMC4153667 DOI: 10.1371/journal.pone.0106694] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
Prominin-1 (CD133) is a commonly used cancer stem cell marker in central nervous system (CNS) tumors including glioblastoma (GBM). Expression of Prom1 in cancer is thought to parallel expression and function in normal stem cells. Using RNA in situ hybridization and antibody tools capable of detecting multiple isoforms of Prom1, we find evidence for two distinct Prom1 cell populations in mouse brain. Prom1 RNA is first expressed in stem/progenitor cells of the ventricular zone in embryonic brain. Conversely, in adult mouse brain Prom1 RNA is low in SVZ/SGZ stem cell zones but high in a rare but widely distributed cell population (Prom1hi). Lineage marker analysis reveals Prom1hi cells are Olig2+Sox2+ glia but Olig1/2 knockout mice lacking oligodendroglia retain Prom1hi cells. Bromodeoxyuridine labeling identifies Prom1hi as slow-dividing distributed progenitors distinct from NG2+Olig2+ oligodendrocyte progenitors. In adult human brain, PROM1 cells are rarely positive for OLIG2, but express astroglial markers GFAP and SOX2. Variability of PROM1 expression levels in human GBM and patient-derived xenografts (PDX) – from no expression to strong, uniform expression – highlights that PROM1 may not always be associated with or restricted to cancer stem cells. TCGA and PDX data show that high expression of PROM1 correlates with poor overall survival. Within proneural subclass tumors, high PROM1 expression correlates inversely with IDH1 (R132H) mutation. These findings support PROM1 as a tumor cell-intrinsic marker related to GBM survival, independent of its stem cell properties, and highlight potentially divergent roles for this protein in normal mouse and human glia.
Collapse
Affiliation(s)
- Karl Holmberg Olausson
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Oncology Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Cecile L. Maire
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sam Haidar
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jason Ling
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Emily Learner
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Monica Nistér
- Department of Oncology Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Keith L. Ligon
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Del Bigio MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 2011; 134:1344-61. [PMID: 21478186 DOI: 10.1093/brain/awr052] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In premature infants, germinal matrix haemorrhage in the brain is a common occurrence. However, cell proliferation and fate determination in the normal human germinal matrix is poorly understood. Human ganglionic eminence samples were collected prospectively from autopsies of premature and term infants with no evidence of pathological process (n=78; dying at post-menstrual age 14-88 weeks). The ganglionic eminence was thickest at 20-26 weeks and involuted by 34-36 weeks. Proliferating cells, detected by Ki67 immunoreactivity, were abundant throughout the ganglionic eminence prior to 18 weeks, after which a sharp boundary between the dorsal and ventral ganglionic eminence appeared with reduced cell proliferation in the dorsal region. Ki67 immunoreactivity persisted in the majority of ventral cells until ∼28 weeks, after which time the proportion of proliferating cells dropped quickly. The expression of cell lineage markers (such as Olig2, SOX2, platelet-derived growth factor receptor alpha) showed partitioning at the microscopic level. The hypothesis that germinal matrix haemorrhage suppresses cell proliferation was then addressed. In comparison to controls, germinal matrix haemorrhage (n=47; born at post-menstrual age 18-34 weeks followed by survival of 0 h to 98 days) was associated with significantly decreased cell proliferation if survival was >12 h. The cell cycle arrest transcription factor p53 was transiently increased and the oligodendroglial lineage markers Olig2 and platelet-derived growth factor receptor alpha were decreased. Cell death was negligible. A low level of microglial activation was detected. Haemorrhage-associated suppression of cell proliferation in premature human infants could partially explain the reduced brain size and clinical effects in children who suffer germinal matrix haemorrhage after premature birth.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, 401 Brodie Centre, 727 McDermot Avenue, Winnipeg MB, R3E 3P5, Canada.
| |
Collapse
|
9
|
Middeldorp J, Boer K, Sluijs JA, De Filippis L, Encha-Razavi F, Vescovi AL, Swaab DF, Aronica E, Hol EM. GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex. Development 2010; 137:313-21. [PMID: 20040497 DOI: 10.1242/dev.041632] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A subpopulation of glial fibrillary acidic protein (GFAP)-expressing cells located along the length of the lateral ventricles in the subventricular zone (SVZ) have been identified as the multipotent neural stem cells of the adult mammalian brain. We have previously found that, in the adult human brain, a splice variant of GFAP, termed GFAPdelta, was expressed specifically in these cells. To investigate whether GFAPdelta is also present in the precursors of SVZ astrocytes during development and whether GFAPdelta could play a role in the developmental process, we analyzed GFAPdelta expression in the normal developing human cortex and in the cortex of foetuses with the migration disorder lissencephaly type II. We demonstrated for the first time that GFAPdelta is specifically expressed in radial glia and SVZ neural progenitors during human brain development. Expression of GFAPdelta in radial glia starts at around 13 weeks of pregnancy and disappears before birth. GFAPdelta is continuously expressed in the SVZ progenitors at later gestational ages and in the postnatal brain. Co-localization with Ki67 proved that these GFAPdelta-expressing cells are able to proliferate. Furthermore, we showed that the expression pattern of GFAPdelta was disturbed in lissencephaly type II. Overall, these results suggest that the adult SVZ is indeed a remnant of the foetal SVZ, which develops from radial glia. Furthermore, we provide evidence that GFAPdelta can distinguish resting astrocytes from proliferating SVZ progenitors.
Collapse
Affiliation(s)
- Jinte Middeldorp
- Department of Astrocyte Biology & Neurodegeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Matsumoto M, Horiuchi K, Sato T, Oinuma M, Sakuma J, Suzuki K, Sasaki T, Kodama N, Watanabe K, Suzuki T. Cerebral medulloepithelioma with long survival. Neurol Med Chir (Tokyo) 2007; 47:428-33. [PMID: 17895618 DOI: 10.2176/nmc.47.428] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An 8-year-old boy presented with a rare cerebral medulloepithelioma manifesting as headache, nausea, and vomiting. Neuroimaging demonstrated a mass containing a cyst in the left frontal lobe. Gross total resection of the tumor with a 1-cm margin was performed under intraoperative monitoring. The histological diagnosis was medulloepithelioma. Stereotactic radiotherapy (total dose 20 Gy) was given to the brain up to 1 cm from the surgical margin. Follow-up neuroimaging 5 years later showed no signs of recurrence. He now attends junior high school, with normal mental and physiological development. Medulloepitheliomas are rare, highly malignant embryonal tumors of the central nervous system. Combined gross total tumor resection and radiotherapy are recommended to obtain the most favorable outcome.
Collapse
Affiliation(s)
- Masato Matsumoto
- Department of Neurosurgery, Fukushima Medical University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sarnat HB. Disorders of segmentation of the neural tube: Chiari malformations. HANDBOOK OF CLINICAL NEUROLOGY 2007; 87:89-103. [DOI: 10.1016/s0072-9752(07)87006-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, Ballabh P. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 2006; 59:673-9. [PMID: 16627880 DOI: 10.1203/01.pdr.0000214975.85311.9c] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocyte end-feet ensheathe blood vessels in the brain and are believed to provide structural integrity to the cerebral vasculature. We sought to determine in developing infants whether the coverage of blood vessels by astrocyte end-feet is decreased in germinal matrix (GM) compared with cerebral cortex and white matter (WM), which may cause fragility of the GM vasculature. Therefore, we evaluated the perivascular coverage by astrocyte end-feet in these areas. We double-labeled the brain sections with astroglial markers [glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), and S-100beta] and a vascular marker, laminin. Perivascular coverage by GFAP+ astrocyte end-feet increased consistently as a function of gestational age (GA) in cortex and WM from 19 to 40 wk. Compared with GFAP, AQP4+ astrocyte end-feet developed at an earlier GA, ensheathing about 63% of blood vessels for 23-40 wk in cortex, WM, and GM. Coverage by GFAP+ perivascular end-feet was decreased in GM compared with cortex and WM from 23 to 34 wk. There was no difference in the coverage by AQP4+ end-feet among the three areas in these infants. The expression of AQP4, a water channel molecule, in the astrocyte end-feet was not significantly different between premature and mature infants, suggesting similar risk of brain edema in preterm and term infants in pathologic conditions. More importantly, the lesser degree of GFAP expression in astrocyte end-feet of GM compared with cortex and WM may reflect a cytoskeletal structural difference that contributes to the fragility of GM vasculature and propensity to hemorrhage.
Collapse
Affiliation(s)
- Nadine El-Khoury
- Department of Pediatrics, Westchester Medical Center, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Haynes RL, Borenstein NS, Desilva TM, Folkerth RD, Liu LG, Volpe JJ, Kinney HC. Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol 2005; 484:156-67. [PMID: 15736232 DOI: 10.1002/cne.20453] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
After completion of neuronal migration to form the cerebral cortex, axons undergo rapid elongation to their intra- and subcortical targets, from midgestation through infancy. We define axonal development in the human parietal white matter in this critical period. Immunocytochemistry and Western blot analysis were performed on 46 normative cases from 20-183 postconceptional (PC) weeks. Anti-SMI 312, a pan-marker of neurofilaments, stained axons as early as 23 weeks. Anti-SMI 32, a marker for nonphosphorylated neurofilament high molecular weight (NFH), primarily stained neuronal cell bodies (cortical, subcortical, and Cajal-Retzius). Anti-SMI 31, which stains phosphorylated NFH, was used as a marker of axonal maturity, and showed relatively low levels of staining (approximately one-fourth of adult levels) from 24-34 PC weeks. GAP-43, a marker of axonal growth and elongation, showed high levels of expression in the white matter from 21-64 PC weeks and lower, adult-like levels beyond 17 postnatal months. The onset of myelination, as seen by myelin basic protein expression, was approximately 54 weeks, with progression to "adult-like" staining by 72-92 PC weeks. This study provides major insight into axonal maturation during a critical period of growth, over an age range not previously examined and one coinciding with the peak period of periventricular leukomalacia (PVL), the major disorder underlying cerebral palsy in premature infants. These data suggest that immature axons are susceptible to damage in PVL and that the timing of axonal maturation must be considered toward establishing its pathology relative to the oligodendrocyte/myelin/axonal unit.
Collapse
Affiliation(s)
- Robin L Haynes
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Phenotypic characteristics of cells in the developing human telencephalic wall were analyzed using electron microscopy and immunocytochemistry with various glial and neuronal cell markers. The results suggest that multiple defined cell types emerge in the neocortical proliferative zones and are differentially regulated during embryonic development. At 5-6 weeks gestation, three major cell types are observed. Most proliferating ventricular zone (VZ) cells are labeled with radial glial (RG) markers such as vimentin, glial fibrillary acidic protein (GFAP), and glutamate astrocyte-specific transporter (GLAST) antibodies. A subpopulation of these RG cells also express the neuronal markers beta III-tubulin, MAP-2, and phosphorylated neurofilament SMI-31, in addition to the stem cell marker nestin, indicating their multipotential capacity. In addition, the presence of VZ cells that immunoreact only with neuronal markers indicates the emergence of restricted neuronal progenitors. The number of multipotential progenitors in the VZ gradually decreases, whereas the number of more restricted progenitors increases systematically during the 3-month course of human corticogenesis. These results suggest that multipotential progenitors coexist with restricted neuronal progenitors and RG cells during initial corticogenesis in the human telencephalon. Since the multipotential VZ cells disappear during the major wave of neocortical neurogenesis, the RG and restricted neuronal progenitors appear to serve as the main sources of cortical neurons. Thus, the diversification of cells in human VZ and overlying subventricular zone (SVZ) begins earlier and is more pronounced than in rodents.
Collapse
Affiliation(s)
- Nada Zecevic
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06030-3401, USA.
| |
Collapse
|
15
|
Rezaie P, Dean A, Male D, Ulfig N. Microglia in the cerebral wall of the human telencephalon at second trimester. ACTA ACUST UNITED AC 2004; 15:938-49. [PMID: 15483047 DOI: 10.1093/cercor/bhh194] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have recently begun to gain a clearer understanding of the phasing and patterns of colonization of the developing human brain by microglia. In this study we investigated the distribution, morphology and phenotype of microglia specifically within the wall of the human telencephalon from 12 to 24 gestational weeks (gw), a period that corresponds to the development of thalamocortical fibres passing through the transient subplate region of the developing cerebral wall. Sections from a total of 45 human fetal brains were immunoreacted to detect CD68 and MHC class II antigens and histochemically reacted with RCA-1 and tomato lectins. These markers were differentially expressed by anatomically discrete populations of microglia in the cerebral wall: two cell populations were noted during the initial phase of colonization (12-14 gw): (i) CD68++ RCA-1+ MHC II- amoeboid cells aligned within the subplate, and (ii) RCA-1++ CD68- MHC II- progenitors in the marginal layer and lower cortical plate that progressively ramified within the subplate, without seemingly passing through an 'amoeboid' state. At this stage microglia were largely absent from the germinal layers and the intermediate zone. From 14 to 15 gw, however, MHC class II positive cells were also detected within germinal layers and in the corpus callosum, and these cells, which coexpressed CD68 antigen (a marker associated with phagocytosis), further populated the lower half of the telencephalon from 18 to 24 gw. These findings are discussed in relation to developmental events that take place during the second trimester within the wall of the telencephalon.
Collapse
Affiliation(s)
- Payam Rezaie
- Department of Biological Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | |
Collapse
|
16
|
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16:1-13. [PMID: 15207256 DOI: 10.1016/j.nbd.2003.12.016] [Citation(s) in RCA: 1566] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 11/21/2003] [Accepted: 12/10/2003] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a diffusion barrier, which impedes influx of most compounds from blood to brain. Three cellular elements of the brain microvasculature compose the BBB-endothelial cells, astrocyte end-feet, and pericytes (PCs). Tight junctions (TJs), present between the cerebral endothelial cells, form a diffusion barrier, which selectively excludes most blood-borne substances from entering the brain. Astrocytic end-feet tightly ensheath the vessel wall and appear to be critical for the induction and maintenance of the TJ barrier, but astrocytes are not believed to have a barrier function in the mammalian brain. Dysfunction of the BBB, for example, impairment of the TJ seal, complicates a number of neurologic diseases including stroke and neuroinflammatory disorders. We review here the recent developments in our understanding of the BBB and the role of the BBB dysfunction in CNS disease. We have focused on intraventricular hemorrhage (IVH) in premature infants, which may involve dysfunction of the TJ seal as well as immaturity of the BBB in the germinal matrix (GM). A paucity of TJs or PCs, coupled with incomplete coverage of blood vessels by astrocyte end-feet, may account for the fragility of blood vessels in the GM of premature infants. Finally, this review describes the pathogenesis of increased BBB permeability in hypoxia-ischemia and inflammatory mechanisms involving the BBB in septic encephalopathy, HIV-induced dementia, multiple sclerosis, and Alzheimer disease.
Collapse
Affiliation(s)
- Praveen Ballabh
- Department of Pediatrics, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
17
|
Sarnat HB. Regional ependymal upregulation of vimentin in Chiari II malformation, aqueductal stenosis, and hydromyelia. Pediatr Dev Pathol 2004; 7:48-60. [PMID: 15255035 DOI: 10.1007/s10024-003-2127-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vimentin, glial fibrillary acidic protein (GFAP) and S-100beta protein were studied by immunocytochemistry in the ependyma of patients with Chiari II malformations, congenital aqueductal stenosis, and hydromyelia. Paraffin sections of brains and spinal cords of 16 patients were examined, 14 with Chiari II malformations, most with aqueductal stenosis and/or hydromyelia as associated features, and 2 patients with congenital aqueductal stenosis without Chiari malformation. Patients ranged in age from 20-wk gestation to 48 years. The results demonstrated: 1) in the fetus and young infant with Chiari II malformations, congenital aqueductal stenosis, and hydromyelia, vimentin is focally upregulated in the ependyma only in areas of dysgenesis and not in the ependyma throughout the ventricular system; 2) GFAP and S-100beta protein are not coexpressed, indicating that the selective upregulation of vimentin is not simple maturational delay; 3) vimentin upregulation also is seen in the ependymal remnants of the congenital atretic cerebral aqueduct, not associated with Chiari malformation; 4) in the older child and adult with Chiari II malformation, vimentin overexpression in the ependyma becomes more generalized in the lateral ventricles as well, hence evolves into a nonspecific upregulation. The interpretation from these findings leads to speculation that it is unlikely that ependymal vimentin is directly involved in the pathogenesis of Chiari II malformation, but may reflect a secondary upregulation due to defective expression of another gene. This gene may be one of rhombomeric segmentation that also plays a role in defective programming of the paraxial mesoderm for the basioccipital and supraoccipital bones resulting in a small posterior fossa. This interpretation supports the hypothesis of a molecular genetic defect, rather than a mechanical cause, as the etiology of the Chiari II malformation.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pathology (Neuropathology), Cedars-Sinai Medical Center and UCLA School of Medicine, 4221 North Tower, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
18
|
Schröder H, Schütz U, Burghaus L, Lindstrom J, Kuryatov A, Monteggia L, deVos RA, van Noort G, Wevers A, Nowacki S, Happich E, Moser N, Arneric SP, Maelicke A. Expression of the alpha4 isoform of the nicotinic acetylcholine receptor in the fetal human cerebral cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 132:33-45. [PMID: 11744105 DOI: 10.1016/s0165-3806(01)00293-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nicotinic acetylcholine receptors are likely to play an important role in neuronal migration during development. Furthermore, the alpha4 receptor subunit gene is related to a hereditary juvenile form of epilepsy. Only little information is available, however, on the expression of cerebrocortical nicotinic acetylcholine receptors during human fetal development. Using non-isotopic in situ hybridization and immunohistochemistry, we have studied the distribution of the alpha4 subunit of the nicotinic acetylcholine receptor mRNA and protein in the human frontal cortex at middle (17-24 weeks of gestation) and late (34-42 weeks of gestation) fetal stages. Both, alpha4 receptor mRNA and alpha4 receptor protein were observed beginning during week 17-18 of gestation. At this time of development, a few weakly labeled mRNA-containing cells were present mainly in the ventricular zone, the subplate and the cortical plate. A similar distribution pattern was found for the receptor protein. Around week 38 of gestation, the distribution in the cerebral cortex of alpha4 subunit-containing cells was similar to that of adult human cortices with the highest densities of labeled neurons found in layers II/III, followed by layers V and VI. Nicotinic acetylcholine receptor-containing neurons appear rather early in human fetal development. Given functional maturity, they may interact during cortical development with acetylcholine released from corticopetal fibers or other yet unknown sources subserving the process of neuronal migration and pathfinding.
Collapse
Affiliation(s)
- H Schröder
- Department of Anatomy, University of Köln, J. Stelzmann-Strasse 9, 50931 Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Programmed cell death (PCD) in the form of apoptosis is recognized as one of the central events in the development of the central nervous system. To study the time of onset, extent and distribution of PCD in the human telencephalon, embryos and fetuses from 4.5 to 27 gestational weeks (g.w.) were examined using the TUNEL (TdT-mediated dUTP-biotin nick-end labelling) in situ method. At 4.5 g.w. sparse TUNEL(+) nuclei were observed in the ventricular zone of the neural tube. With the formation of the cortical plate at 7-8 g.w. , TUNEL(+) nuclei were seen in all developmental layers of the cortical anlage, as well as in the subcortical regions such as the ganglionic eminence and the internal capsule. The proliferative zones (the ventricular zone, the subventricular zone and the ganglionic eminence) contained the majority of all apoptotic nuclei observed in each specimen. However, the apoptotic index was highest in the subplate zone and in layer I. Double-labelling experiments suggested that neuronal precursors were the main population of cells undergoing PCD in the first trimester of gestation, whereas glial cells probably start dying around midgestation. The onset of labelling of microglial cells and apoptotic nuclei were synchronous, indicating the involvement of microglia in PCD. In conclusion, two distinct types of PCD were observed during human telencephalic development: embryonic apoptosis, which was synchronous with proliferation and migration of neuronal cells and probably not related to establishment of neuronal circuitry, and fetal apoptosis, which coincided with differentiation and synaptogenesis, and therefore may be related to the development of axonal-target connectivity.
Collapse
Affiliation(s)
- S Rakic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | |
Collapse
|
20
|
Ulfig N, Neudörfer F, Bohl J. Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation. J Anat 1999; 195 ( Pt 1):87-100. [PMID: 10473296 PMCID: PMC1467968 DOI: 10.1046/j.1469-7580.1999.19510087.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal migration is guided by long radially oriented glial fibres. During late stages of development radial glial cells are transformed into astrocytes. A predominant intermediate filament protein within radial glial cells and immature astrocytes is vimentin. In this study fetal brain sections were used to demonstrate the transient features of vimentin-positive radial glia. In the lower half of the cerebral wall of the 6th gestational month bundles, curvature, and crossing of vimentin-positive fibres are regularly seen. Moreover, fibres terminating on vessels are observed. In the upper half fibres are radially oriented; when ascending towards the pial surface the number and diameter of fibres appears conspicuously decreased. Radially aligned fibres display numerous varicosities. In the 8th month the bulk of vimentin-positive fibres is encountered next to the ganglionic eminence and below isocortical cerebral fissures. The dentate gyrus is conspicuous due to its high amount of immunolabelled fibres. Furthermore, densely packed fibres are visible within the internal and external capsule and in the vicinity of the anterior commissure. Radial glial somata are found in the proliferative areas as well as in the adjacent white matter. In the latter location bipolar, monopolar and stellate vimentin-positive cells are present. The results demonstrate an area-specific distribution pattern of vimentin-positive structures which can be correlated with migrational events. Areas maturing late in development for instance, reveal dense immunolabelling in the 8th month. The orientation and position of radial fibres point to an additional developmental role of these fibres, i.e. their involvement in the guidance of growing axons. Moreover, the arrangement and morphology of vimentin-positive fibres, such as retraction of fibres or occurrence of varicosities, are indicative of degenerative events. Accordingly, a transformation of radial glial somata, their displacement towards the white matter and finally the growth of stellate processes can clearly be demonstrated.
Collapse
Affiliation(s)
- N Ulfig
- Department of Anatomy, University of Rostock, Germany
| | | | | |
Collapse
|
21
|
Abstract
Microglia are the immune effector cells of the nervous system. The prevailing view is that microglia are derived from circulating precursors in the blood, which originate from the bone-marrow. Colonisation of the central nervous system (CNS) by microglia is an orchestrated response during human fetal development related to the maturation of the nervous system. It coincides with vascularisation, formation of radial glia, neuronal migration and myelination primarily in the 4th-5th months and beyond. Microglial influx generally conforms to a route following white matter tracts to gray areas. We have observed that colonisation of the spinal cord begins around 9 weeks, with the major influx and distribution of microglia commencing around 16 weeks. In the cerebrum, colonisation is in progress during the second trimester, and ramified microglial forms are widely distributed within the intermediate zone by the first half of intra-uterine life (20-22 weeks). A distinct pattern of migration occurs along radial glia, white matter tracts and vasculature. The distribution of these cells is likely to be co-ordinated by spatially and temporally regulated, anatomical expression of chemokines including RANTES and MCP-1 in the cortex; by ICAM-2 and PECAM on radiating cerebral vessels and on capillaries within the germinal layer, and apoptotic cell death overlying this region. The phenotype and functional characteristics of fetal microglia are also outlined in this review. The need for specific cellular interactions and targeting is greater within the central nervous system than in other tissues. In this respect, microglia may additionally contribute towards CNS histogenesis.
Collapse
Affiliation(s)
- P Rezaie
- Department of Neuropathology, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, United Kingdom.
| | | |
Collapse
|
22
|
Rezaie P, Patel K, Male DK. Microglia in the human fetal spinal cord--patterns of distribution, morphology and phenotype. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 115:71-81. [PMID: 10366704 DOI: 10.1016/s0165-3806(99)00043-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microglia, the intrinsic macrophages of the nervous system, colonise the cerebrum around the second trimester in man. In order to determine the extent of microglial influx into the nervous system, we have examined their distribution within the human fetal spinal cord in relation to astrocytic and vascular development between 9 and 16 weeks of gestation, using conventional immunohistochemistry [CD11b; CD45; CD64; CD68; ICAM-1; ICAM-2; VCAM-1; PECAM; GFAP; vimentin] and lectin histochemistry [RCA-1]. Microglia are identifiable by 9 weeks, within the ventricular/sub-ventricular zones. Human fetal microglia display heterogeneity in phenotype and are more readily identified by CD68 in the spinal cord. There is a marked influx of cells dorsal and ventral to the neural cavity, from the marginal layer [meninges/connective tissue] with advancing gestational age, with greatest cell densities towards the end of the time period in this study. This inward migration is associated with progressive vascularisation, ICAM-2 expression and co-localises with GFAP and vimentin positive radial glia. The patterns of microglial migration in human fetal cord differ from that within the cerebrum, but generally conform to a route following white to gray matter.
Collapse
Affiliation(s)
- P Rezaie
- Department of Neuropathology, Institute of Psychiatry, De Crespigny Park, London SE5 8JN, UK.
| | | | | |
Collapse
|
23
|
Sarnat HB. Vimentin immunohistochemistry in human fetal brain: methods of standard incubation versus thermal intensification achieve different objectives. Pediatr Dev Pathol 1998; 1:222-9. [PMID: 10463282 DOI: 10.1007/s100249900030] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vimentin is transiently expressed in many cells of neuroectodermal origin in the fetal central nervous system and may be demonstrated by immunohistochemistry in paraffin sections. Traditional methods incubate antibodies with tissue sections at room temperature, but boiling the incubating solution in a microwave oven enhances antigen retrieval and greatly intensifies immunoreactivity. This study compares vimentin immunoreactivity using various dilutions of a commercial monoclonal antibody and various incubation conditions including room temperature, overnight at 4 degrees C, and after heating to boiling either in a microwave oven or on a hot plate. Fifteen fetal brains and spinal cords were examined, ranging in age from 8 to 24 wk gestation. Normal brains of four term or near-term neonates and two with hypoxic/ischemic lesions were also studied. Hot plate and microwave heating were equivalent. No differences in immunoreactivity could be attributed to gestational age per se. Boiling for 10 min in a microwave oven at a dilution of 1:200 is recommended for the enhanced demonstration of fetal histological structures such as radial glial fibers, but it is not recommended for studies of maturational gradients of cellular vimentin that differ at each gestational age, as in fetal ependymal cells or during the conversion of radial glia to mature astrocytes. For semiquantitative developmental studies, vimentin incubation at room temperature or overnight in the refrigerator is recommended at a dilution of 1:25 or 1:50 to avoid misinterpretation of apparent excessive staining after thermal intensification. Recommendations of commercial suppliers focus on the identification of neoplastic cells and must be modified to demonstrate subtle developmental changes in fetal tissues.
Collapse
Affiliation(s)
- H B Sarnat
- Department of Neurology, Pathology (Neuropathology), University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
24
|
Zompa EA, Cain LD, Everhart AW, Moyer MP, Hulsebosch CE. Transplant therapy: recovery of function after spinal cord injury. J Neurotrauma 1997; 14:479-506. [PMID: 9300561 DOI: 10.1089/neu.1997.14.479] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injuries (SCI) result in devastating loss of function and altered sensation. Presently, victims of SCI have few remedies for the loss of motor function and the altered sensation often experienced subsequent to the injury. A goal in SCI research is to improve function in both acute and chronic injuries. Among the most successful interventions is the utilization of transplanted tissues toward improved recovery. The theory is that the transplanted tissue could (1) bridge the spinal lesion and provide chemical and/or mechanical guidance for host neurons to grow across the lesion, (2) bridge the spinal lesion and provide additional cellular elements to repair the damaged circuitry, (3) provide factors that would rescue neurons that would otherwise die and/or modulate neural circuits to improve function. A variety of tissues and cells have been added to the adult mammalian spinal cord to encourage restoration of function. These include Schwann cells, motor neurons, dorsal root ganglia, adrenal tissue, hybridomas, peripheral nerves, and fetal spinal cord (FSC) tissue en bloc or as disassociated cells. It is postulated that these tissues would rescue or replace injured adult neurons, which would then integrate or promote the regeneration of the spinal cord circuitry and restore function. In some instances, host-appropriate circuitry is supplied by the transplant and functional improvement is demonstrated. In this presentation, specific examples of recent work with transplanted tissue and cells that demonstrate improved behavioral outcome are presented. New recent work describing the in vitro propagation and characterization of human fetal spinal cord multipotential progenitor cells are also described in the context of a potential resource for transplantable cells. Additionally, data from transplantation experiments of human FSC cells into nonimmunosuppressed rat spinal cord are described, and the resultant improvements in behavioral outcome reported. Lastly, directions for future SCI research are proposed.
Collapse
Affiliation(s)
- E A Zompa
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | | | | | | | |
Collapse
|
25
|
Takano T, Becker LE. Overexpression of nestin and vimentin in the ependyma of spinal cords from hydrocephalic infants. Neuropathol Appl Neurobiol 1997. [DOI: 10.1111/j.1365-2990.1997.tb01180.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Grever WE, Chiu FC, Tricoche M, Rashbaum WK, Weidenheim KM, Lyman WD. Quantification of myelin basic protein in the human fetal spinal cord during the midtrimester of gestation. J Comp Neurol 1996; 376:306-14. [PMID: 8951645 DOI: 10.1002/(sici)1096-9861(19961209)376:2<306::aid-cne11>3.0.co;2-j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The amount of myelin basic protein (MBP) was quantified in human fetal spinal cords from 12 to 24 gestational weeks (GW). MBP expression was determined by Northern blot, quantitative immunoblot, and immunocytochemistry. The development of compact myelin was analyzed by electron microscopy. Thirty-eight human fetal spinal cords were obtained after elective termination of intrauterine pregnancies from healthy women. Northern blot analysis showed a 15.8-fold increase in MBP mRNA between 12 and 18 GW. From 18 to 24 GW, MBP mRNA increased by 2.2-fold. The mRNA data paralleled immunoblot results that showed a 90.5-fold increase in MBP (0.147 ng/mg to 13.3 ng/mg tissue) between 12 and 18 GW and an approximately 11.5-fold increase between 18 and 24 GW (13.3 ng/mg to 154 ng/mg tissue). Immunocytochemical analysis also showed increased staining for MBP with advancing gestational age. At 12 GW, MBP immunoreactivity was observed in all three spinal cord funiculi. By 18 GW, MBP was expressed throughout the spinal cord white matter with the exception of the lateral corticospinal tracts and in the rostral levels of the fasciculus gracilis. With respect to myelin, at 12 GW, rare, noncompacted myelin lamellae were observed by electron microscopy. By 18 GW, discrete areas of compact myelin were observed in areas that showed MBP immunoreactivity, and at 24 GW, compact myelin was prominent throughout the white matter of the spinal cord. This study demonstrates a quantitative increase in MBP expression that is associated with myelin formation during the second trimester of human gestation. This information may provide normative data that can aid in the diagnosis of myelin disorders of the preterm, neonatal, and pediatric spinal cord.
Collapse
Affiliation(s)
- W E Grever
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
In this study of the developing human hippocampus, we monitor the timing of onset and the sequential patterns of expression of 11 developmentally regulated proteins that are important components of the neuronal cytoskeleton. Immunohistochemistry using well-characterized antibodies was conducted with fixed paraffin-embedded sections from hippocampi at various stages of fetal and postnatal development. At 9 weeks gestational age, immunoreactivity was evident for the microtubule-associated proteins (MAPs), MAP2 and MAP5, low molecular weight (Mr) neurofilament (NF) protein (NF-L), poorly phosphorylated mid-Mr NF protein (NF-M/P-), vimentin, and alpha-and beta-tubulins within the somatodendritic domain of neurons of the hippocampal plate. Weak immunoreactivity for moderately phosphorylated, high Mr NF protein (NF-H/P + + +), tau, and nestin was observed. Highly phosphorylated mid-Mr NF protein (NF-M/P + + +) and alpha-internexin were first detected at 15 weeks and highly phosphorylated, high Mr NF protein (NF-H/P+3) at 20 weeks. At 15 weeks, MAP2, MAP5, and tubulins were expressed in an "inside-out" gradient and in a gradient between hippocampal subfields with subiculum > ammonic subfields > dentate gyrus. These gradients paralleled the maturational gradients seen in cytoarchitectural and neuronal morphologic studies. The adult pattern of neuronal cytoskeletal protein expression in the hippocampus was attained by the second postnatal year for all proteins. Our findings demonstrate an elaborate orchestration of cytoskeletal protein expression within the hippocampus that is qualitatively similar to what is seen in other brain regions and in nonhuman species but which also has some important differences in timing and pattern. The differences in the developmentally regulated expression of neuronal cytoskeletal proteins in separate regions of the central nervous system (CNS) suggest that there are region-specific differences in composition and function of the neuronal cytoskeleton. These observations have implications for understanding the role of the neuronal cytoskeleton in the developing, mature, and diseased CNS.
Collapse
Affiliation(s)
- S E Arnold
- Department of Psychiatry and Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
28
|
Molloy PT, Yachnis AT, Rorke LB, Dattilo JJ, Needle MN, Millar WS, Goldwein JW, Sutton LN, Phillips PC. Central nervous system medulloepithelioma: a series of eight cases including two arising in the pons. J Neurosurg 1996; 84:430-6. [PMID: 8609554 DOI: 10.3171/jns.1996.84.3.0430] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Medulloepithelioma is an uncommon childhood tumor of the central nervous system (CNS) whose histopathological appearance has been confused with medulloblastoma and other childhood primitive neuroectodermal tumors (PNETs), but which has a vastly different clinical course. The authors have reviewed the clinical features and treatment responses of eight children with these rare tumors, the largest series to date. In this series, the medulloepitheliomas were equally distributed between supratentorial and infratentorial primary sites. Four patients underwent gross- or near-total resections, one patient's tumor was partially resected, and one patient had biopsy only. Biopsy and ablative surgery were not attempted in two children with pontine tumors. Treatment included both radiation and chemotherapy (four patients), radiation alone (one patient), chemotherapy alone (one patient), and no post-operative treatment (two patients). Six patients died with a mean survival of 10 months and two are disease free with neurological impairment. Both long-term survivors underwent gross-total resections of their tumors. Postmortem examination revealed diffuse CNS tumor dissemination in four patients. Medulloepithelioma, often confused with less aggressive PNETs, can mimic intrinsic brainstem glioma, responds poorly to treatment, and is prone to CNS dissemination at the time of tumor progression.
Collapse
Affiliation(s)
- P T Molloy
- Department of Pathology, The Children's Hospital of Philadelphia, Department of Pathology, The Children's Hospital of Philadelphia Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sancho-Tello M, Vallés S, Montoliu C, Renau-Piqueras J, Guerri C. Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 1995; 15:157-66. [PMID: 8567067 DOI: 10.1002/glia.440150208] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study we analyze the events which occur during the early stages of astrogliogenesis by examining the pattern of both GFAP and vimentin gene expression and their corresponding immunoreactive proteins during rat brain development. This study was carried out "in vivo" (whole brain) and "in vitro" (primary culture of radial glia) using immunofluorescence, immunoblotting, and Northern blot analysis. Our results demonstrate that although GFAP immunostaining appeared late in gestation and at day 5 in radial glia cultures, GFAP mRNA expression was first detected, at very low levels, on fetal (F) day 15 and increased to F21. During postnatal development a striking increase in GFAP and its encoding messenger occurs. In contrast, the levels of vimentin and its mRNA expression were very high during the fetal stage (F15 to F21). Thereafter vimentin expression declined during postnatal (P) development until P21 and then remained constant at adult levels. In contrast, an increase in vimentin expression was observed in glial cells throughout the entire culture period. The biological significance of the developmental patterns of GFAP and vimentin expression in astroglial cells. during brain development is discussed.
Collapse
Affiliation(s)
- M Sancho-Tello
- Instituto Investigaciones Citológicas, FIB, Valencia, Spain
| | | | | | | | | |
Collapse
|
30
|
Kato M, Takashima S. Immunohistochemical and morphometrical development of the dorsal root ganglion as a neural crest derivative: comparison with the fetal CNS. Early Hum Dev 1994; 38:81-90. [PMID: 7851308 DOI: 10.1016/0378-3782(94)90219-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The developmental difference between the dorsal root ganglion (DRG), paravertebral ganglion (PVG) and the central nervous system (CNS) in embryos and fetuses was investigated using immunohistochemical (neuron-specific enolase (NSE) and human natural killer-1 (HNK-1)) and morphometrical methods. NSE positive cells developed from 7 weeks of gestation in the DRG as early as the anterior horn cells of the spinal cord, while the pyramidal cells of the cerebral cortex matured after 20 weeks of gestation. HNK-1 positive granules were present until 14 weeks gestation in the spinal cord and until 26-27 weeks in the DRG and PVG. This early development of DRG cells may be closely related to the peripheral organ maturation during the embryonic or early fetal period.
Collapse
Affiliation(s)
- M Kato
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, Japan
| | | |
Collapse
|
31
|
Weidenheim KM, Epshteyn I, Rashbaum WK, Lyman WD. Patterns of glial development in the human foetal spinal cord during the late first and second trimester. JOURNAL OF NEUROCYTOLOGY 1994; 23:343-53. [PMID: 7522270 DOI: 10.1007/bf01666524] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although the presence of radial glia, astrocytes, oligodendrocytes and microglia has been reported in the human foetal spinal cord by ten gestational weeks, neuroanatomic studies employing molecular probes that describe the interrelated development of these cells from the late first trimester through the late second trimester are few. In this study, immunocytochemical methods using antibodies to vimentin and glial fibrillary acidic protein were used to identify radial glial and/or astrocytes. An antibody to myelin basic protein was used for oligodendrocytes and myelin; and, an antibody to phosphorylated high and medium molecular weight neurofilaments identified axons. Lectin histochemistry using Ricinus communis agglutinin-I was employed to identify microglia. Vibratome sections from 35 human foetal spinal cord ranging in age from 9-20 gestation weeks were studied. By 12 gestational weeks, vimentin-positive radial glia were present at all three levels of the spinal cord. Their processes were easily identified in the dorsal two-thirds of cord sections, and reaction product for vimentin was more intense at cervical and thoracic levels than lumbosacral sections. By 15 gestational weeks, vimentin-positive processes were radially arranged in the white matter. At this time, glial fibrillary acidic protein-positive astrocytes were more obvious in both the anterior and anterolateral funiculi than in the dorsal funiculus, and the same rostral to caudal gradient was seen for glial fibrillary acidic protein as it was for vimentin. Myelin basic protein expression followed similar temporal and spatial patterns. Ricinus communis agglutinin-I labelling revealed more microglia in the white matter than in grey matter throughout the spinal cord from 10-20 gestational weeks. By 20 gestational weeks, the gradients of glial fibrillary acidic protein and vimentin expression were more difficult to discern. White matter contained more microglia than grey matter. These results suggest that astrocytes as well as oligodendrocytes follow anterior-to-posterior and rostral-to-caudal developmental patterns in the human foetus during middle trimester development.
Collapse
Affiliation(s)
- K M Weidenheim
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, New York
| | | | | | | |
Collapse
|
32
|
Lukás Z, Dráber P, Bucek J, Dráberová E, Viklický V, Dolezel S. Expression of phosphorylated high molecular weight neurofilament protein (NF-H) and vimentin in human developing dorsal root ganglia and spinal cord. HISTOCHEMISTRY 1993; 100:495-502. [PMID: 8163392 DOI: 10.1007/bf00267831] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of vimentin and the phosphorylated variant of high molecular weight neurofilament protein (NF-H) was studied in developing human fetal dorsal root ganglia and spinal cord. The technique used for examination of cryosections was double-label fluorescence with monoclonal antibodies. Both proteins were present in the nerve fibres inside the ganglia of 6- and 8-week-old embryos. During further development the expression of vimentin continued to increase in the satellite cells, but was found to be decreasing in the ganglion cells. Phosphorylated NF-H was found in the processes of ganglion cells, as well as in the perikarya at all developmental stages. In the spinal cord of 6- and 8-week-old embryos, phosphorylated NF-H protein was found in the longitudinal fibres of the marginal layer and in processes of the mantle zone; some of the fibres also contained vimentin. Later the co-expression of the two proteins ceased and vimentin was found only in glial and mesenchymal derivatives. Phosphorylated NF-H was located, at all developmental stages, in the axons of both white and grey matter, but not in the neuronal perikarya. The results indicate that phosphorylation of the NF-H in human dorsal root ganglia starts in the perikarya of the ganglion cells while in the ganglion cells of the spinal cord it takes place in the axons.
Collapse
Affiliation(s)
- Z Lukás
- 2nd Department of Pathology, Medical Faculty of Masaryk University, Children's hospital, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
33
|
Yachnis AT, Rorke LB, Lee VM, Trojanowski JQ. Expression of neuronal and glial polypeptides during histogenesis of the human cerebellar cortex including observations on the dentate nucleus. J Comp Neurol 1993; 334:356-69. [PMID: 7690783 DOI: 10.1002/cne.903340303] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to gain a more complete understanding of the sequential pattern of gene expression during neurogenesis and gliogenesis in humans, we followed the expression of well-characterized, developmentally regulated polypeptides in the cerebellar cortex and dentate nucleus by immunohistochemistry using monoclonal antibodies of highly defined specificity. At 8-10 weeks gestational age (GA), progenitor cells and their immediate progeny in the rhombencephalic ventricular zone expressed vimentin and nestin and, to a lesser extent, microtubule-associated protein 5 (MAP5) and glial fibrillary acidic protein (GFAP), but not the low affinity nerve growth factor receptor (NGFR). In contrast, postmitotic, migrating immature neurons in the intermediate zone gave strong reactions for MAP2, tau, and a nonphosphorylated form of middle molecular weight neurofilament (NF) protein (NF-M) and weak reactivity for NGFR. At 15 weeks GA, proliferating cells of the superficial part of the cerebellar external granular layer stained only for NGFR, while more deeply situated cells of the external granular layer stained positively for NGFR, MAP2, MAP5, tau, and chromogranin A, which correlates with the early outgrowth of parallel fibers. All phosphoisoforms of NF-M as well as the low (NF-L) and high (NF-H) molecular weight NF proteins and alpha-internexin were expressed in the somatodendritic domain of Purkinje cells and dentate nucleus neurons from about 20 weeks GA with a gradual compartmentalization of highly phosphorylated forms of NF-M and NF-H into axons by the end of gestation. Alpha-internexin was also expressed strongly in axons of the deep white matter from 20 weeks GA to adulthood. MAP2, synaptophysin, and NGFR showed early, transient expression in the somatodendritic domain of Purkinje cells followed by the appearance of a 220 kDa nestin-like peptide that continued to be expressed in adult Purkinje cells. Notably, developing dentate nucleus neurons expressed many of these proteins in a similar temporal sequence. Early in the developing cerebellar cortex, the expression of NF protein and synaptophysin occurred in discrete patches or columns similar to those described for other antigens (i.e., zebrins). Finally, radial glia were positive for vimentin, GFAP, and nestin from 8 weeks GA to 8 months postnatal. This study describes the distinct molecular programs of lineage commitment in cerebellar progenitor cells and in differentiating neurons and astrocytes of the human cerebellum. The acquisition of a mature molecular neuronal phenotype correlates with the establishment of structural polarity in cerebellar neurons.
Collapse
Affiliation(s)
- A T Yachnis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | |
Collapse
|
34
|
Weidenheim KM, Epshteyn I, Rashbaum WK, Lyman WD. Neuroanatomical localization of myelin basic protein in the late first and early second trimester human foetal spinal cord and brainstem. JOURNAL OF NEUROCYTOLOGY 1993; 22:507-16. [PMID: 7691995 DOI: 10.1007/bf01189039] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The temporal and spatial expression of myelin basic protein in the first and second trimester human foetal spinal cord and brainstem from 9 to 20 gestational weeks was determined by immunocytochemistry in sections of cervical, thoracic and lumbosacral levels from 41 human foetal spinal cords and ten brainstems. Myelin basic protein-positive oligodendrocytes were observed peripheral to the ependyma at 9-10 gestational weeks. Oligodendrocytes expressing myelin basic protein were seen at 10-12 gestational weeks in the anterior and lateral funiculi. Myelin basic protein was detected later in the posterior funiculi than in the anterolateral white matter and most spinal cord tracts could not be identified by means of variation in myelin basic protein expression. Myelin basic protein was found in the midline of the brainstem at ten gestational weeks and spread laterally during the second trimester. We conclude that in the human foetal spinal cord, myelin basic protein is present by 10 gestational weeks in the anterolateral cervical spinal cord and midline of the brainstem. It is expressed in a rostral-to-caudal and anterolateral-to-posterior manner in most tracts of the spinal cord. However, an exception to these findings is that the fasciculus gracilis, upon developing into a defined region, had more myelin basic protein-positive cells at the lumbar level than in more rostral regions. Definition of the kinetics of myelin basic protein expression in the normal human foetal spinal cord provides a baseline for study of aberrant myelination and demyelination.
Collapse
Affiliation(s)
- K M Weidenheim
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | |
Collapse
|
35
|
Elder GA, Liang Z, Lee N, Friedrich VL, Lazzarini RA. Novel DNA binding proteins participate in the regulation of human neurofilament H gene expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 15:85-98. [PMID: 1279352 DOI: 10.1016/0169-328x(92)90155-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By a combination of DNase I footprinting, methylation interference, and gel shift analyses we have identified multiple binding sites for nuclear proteins within the promoter region of the human neurofilament H gene. Two sites likely bind the transcription factor Sp1 while two others may be targets for previously unrecognized DNA binding proteins. One site, PAL, occurs within the 10 bp sequence GGGGAGGAGG. Two copies of the PAL sequence form an interrupted palindrome around one of the Sp1 sites. A second site, PROX, is found within the sequence GGTTGGACC. Nuclear extracts prepared from both neural and non-neural cell lines, mouse brain, and mouse liver contain proteins that recognize and bind to the PROX and PAL sequences indicating that proteins which bind to these target sequences are widespread. The appearance of these target sequences in the 5' upstream region of several neuron specific genes suggests that they play key roles in the transcription of neuron specific genes. The functional activity of these target DNA sequences was demonstrated by transfection assays using a reporter gene fused to nested deletions of the NF(H) promoter region. Interestingly, these assays revealed that maximal transient expression was obtained with DNA fusion genes containing the PAL, PROX and TATA sequences. Inclusion of the Sp1 sites into the fusion genes failed to enhance the expression of the reporter gene. To determine if the NF(H) promoter can be activated in a tissue specific manner during development transgenic mice containing the promoter region linked to a beta-galactosidase reporter gene were generated. In one line sporadic expression of the transgene occurred in the CNS and testis while in four other lines no expression occurred. Collectively these results suggest that the NF(H) gene promoter is active in a tissue specific manner only by interactions with regulatory elements that lie further upstream or downstream of the start site of initiation.
Collapse
Affiliation(s)
- G A Elder
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | | | |
Collapse
|
36
|
Abstract
Fetal ependyma is an active secretory structure for the programming of developmental events, including the arrest of neuronogenesis, the guidance of axonal growth cones, motor neuron differentiation, and probably also the maintenance and transformation of radial glial cells that guide migratory neuroblasts. The floor plate, induced by the notochord, is the first part of the neuroepithelium to differentiate. It establishes polarity and growth gradients of the neural tube and has immunohistochemical features that differ from all other regions of the ependyma. The dorsal and ventral median septa, formed by floor and roof plate ependymal processes, prevent aberrant decussations of developing long tracts, but permit the passage of commissural axons. Fetal ependyma synthesizes several intermediate filament proteins absent from mature ependymal cells, although some are also expressed in undifferentiated neuroepithelial cells. Fetal ependyma also produces diffusible molecules, such as neural cell adhesion molecule, proteoglycans, nerve growth factor, and S-100 protein, all in specific temporal and spatial distributions. Maturation of the ependyma is not complete until the postnatal period. An abnormal fetal ependyma may play a primary role in the pathogenesis of some cerebral malformations, such as lissencephaly/pachygyria and holoprosencephaly.
Collapse
Affiliation(s)
- H B Sarnat
- Department of Paediatrics, University of Calgary Faculty of Medicine, Canada
| |
Collapse
|
37
|
Hutchins KD, Dickson DW, Rashbaum WK, Lyman WD. Localization of microglia in the human fetal cervical spinal cord. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 66:270-3. [PMID: 1606692 DOI: 10.1016/0165-3806(92)90091-a] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differential morphologic subtypes of microglia have been identified in the human fetal frontal cerebrum using a lectin, Ricinus communis agglutinin 1 (RCA-1), and a monoclonal antibody, EBM-11. In this report, microglia were characterized in the human fetal cervical spinal cord. RCA-1-positive microglia were ramified in the developing gray matter while in the developing white matter they had a less differentiated (ameboid) appearance. EBM-11, a monoclonal antibody that recognizes CD68 on human macrophages, and microglia labeled only ameboid-type microglia in the developing white matter. This suggests that distinct subpopulations of microglia exist, which may represent different stages in microglial development, and that CD68 may be a differentiation marker for less mature forms. Therefore, cytologically less differentiated forms of microglia appear to be associated with myelination.
Collapse
Affiliation(s)
- K D Hutchins
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | |
Collapse
|
38
|
Sasaki A, Nakazato Y. The identity of cells expressing MHC class II antigens in normal and pathological human brain. Neuropathol Appl Neurobiol 1992; 18:13-26. [PMID: 1579197 DOI: 10.1111/j.1365-2990.1992.tb00761.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major histocompatibility complex class II antigen (Ag) expression in human brain was investigated in autopsied human brain tissues, using anti-human class II monoclonal antibodies. In normal brains, class II Ag was usually absent or was low in positivity. When it was found immunohistochemically, it appeared more frequently in the meninges (meningeal macrophages) and the neurohypophysis (pituicytes) than in the cerebral cortex (microglia and perivascular cells). The identity of the latter cell types was confirmed by immunoelectron microscopy. Class II-positive microglial cells were usually present in the cerebral white matter, but in senile brains showing numerous senile plaques, their numbers were increased in the grey matter. In diseased brains, numerous reactive microglia and macrophages containing class II Ag were observed in the affected lesions of neural tissue destruction, neuronal degeneration, and inflammation. Astrocytes, which were identified with an antibody to glial fibrillary acidic protein, did not contain class II Ag, although a small number of reactive astrocytes showed an equivocal class II staining. Staining for class II Ag on cerebral endothelial cells was mostly negative; however, class II Ag was microscopically identified in a case of secondary CNS T-cell lymphoma.
Collapse
Affiliation(s)
- A Sasaki
- Department of Pathology, Gunma University School of Medicine, Japan
| | | |
Collapse
|
39
|
Suburo AM, Gibson SJ, Moscoso G, Terenghi G, Polak JM. Transient expression of neuropeptide Y and its C-flanking peptide immunoreactivities in the spinal cord and ganglia of human embryos and fetuses. Neuroscience 1992; 46:571-84. [PMID: 1372113 DOI: 10.1016/0306-4522(92)90145-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An immunohistochemical study of spinal cord, dorsal root and sympathetic ganglia of human embryos and fetuses demonstrated that neuropeptide Y and its C-flanking peptide could be detected in seven-week-old embryos but were absent or difficult to demonstrate after the 17th week of gestation. The peptides were found in several structures of the spinal cord, e.g. fibres in the dorsal portion of the lateral funiculus, cell bodies and fibres in the dorsal horn, and motoneurons, and also in numerous primary sensory neurons of dorsal root ganglia. They were also present in sympathetic neurons and since these are the only structures expressing neuropeptide Y and its C-flanking peptide in the adult, it must be concluded that their presence in other neurons is a transient developmental feature. To assist in understanding the relationship of these transient structures with other spinal and sensory neurons, a comparison was made with other neuronal structures showing immunoreactivity for two general neuronal markers, neurofilaments and protein gene product 9.5, and two neuropeptides present in primary sensory afferents, somatostatin and substance P. In the dorsal root ganglia, numerous neuropeptide Y- and C-flanking peptide-immunoreactive neurons were observed before substance P- or somatostatin-immunoreactive cells could be detected. Therefore, neuropeptide Y and its C-flanking peptide could represent a primitive peptidergic system appearing before primary sensory neurons express their characteristic adult phenotype. The fibres of the lateral funiculus showing immunoreactivity for neuropeptide Y and its C-flanking peptide were longitudinally orientated and could be detected at all cephalocaudal levels of the spinal cord. Comparison with the other immunohistochemical markers indicated that they were not primary sensory afferents. At least some of them probably originated from neuropeptide Y- and C-flanking peptide-immunoreactive neurons of the dorsal horn, that may be considered to be a subset of early-appearing interneurons.
Collapse
Affiliation(s)
- A M Suburo
- Department of Histochemistry, Royal Postgraduate Medical School, Hammersmith Hospital, London, U.K
| | | | | | | | | |
Collapse
|
40
|
Kleinert R. Immunohistochemical characterization of primitive neuroectodermal tumors and their possible relationship to the stepwise ontogenetic development of the central nervous system. 1. Ontogenetic studies. Acta Neuropathol 1991; 82:502-7. [PMID: 1723830 DOI: 10.1007/bf00293385] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aim of the present study was to establish different immunohistochemical staining patterns for a subsequent comparison with those of primitive neuroectodermal (PNET) subsets, i.e. PNET-NOS (not otherwise specified) or PNET with focal neuronal, astrocytic or ependymal differentiation, to relate neoplastic to embryonal development. Tissue of the developing central nervous system, with special emphasis on the stepwise development of the rhombencephalon, the cerebellar and the retinal anlage, from 20 different human embryos and fetuses ranging from 3 to 30 weeks of gestational age (GA) was examined. Six neuronal markers, synaptophysin, chromogranin A, neuron-specific enolase (NSE), neurofilament protein (NFP; 160 kDa, 200 kDa, 70 and 200 kDa) and six other markers, glial fibrillary acidic protein (GFAP), S-100 protein, vimentin, myoglobin, desmin, cytokeratin, were assessed immunohistochemically. GFAP and S-100 protein appeared at the 6th week of GA in primitive glial cells of the cerebellar anlage, brain stem, rhombencephalon, and developing spinal cord, together with--as first neuronal marker--chromogranin A, then NFP (70 and 200 kDa, and 160 kDa) from the 8th week onward. NSE started in the 11th week and synaptophysin not earlier than the 16th week of GA. Interestingly, the differentiation of the retinal anlage started rather late with NSE positivity beginning from the 16th week and positive reactions to synaptophysin and NFPs only from the 25th and chromogranin A from the 28th week of GA onward.
Collapse
Affiliation(s)
- R Kleinert
- Laboratory of Neuropathology, University of Graz, School of Medicine, Austria
| |
Collapse
|
41
|
Zimmer C, Figols J, Patt S, Cervos-Navarro J. Cytokeratin expression in a congenital multipotential primitive neuroectodermal tumor. Childs Nerv Syst 1991; 7:405-9. [PMID: 1724412 DOI: 10.1007/bf00304208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A case of an uncommon congenital primitive neuroectodermal cerebellar tumor (PNET) in a 5-month-old child is reported. After subtotal surgical resection, the residual tumor did not respond to radiation and chemotherapy. Histologically, the tumor was composed of small, round, undifferentiated cells and several other patterns like astrocytomatous, oligodendrogliomatous, and ependymomatous structures. Immunostaining was positive for most of the cells for vimentin and S 100, fewer were positive for glial fibrillary acid protein (GFAP) and neuron-specific enolase, and only a few for synaptophysin. Surprisingly, the tumor showed strong expression of several monoclonal cytokeratins (CK) with different molecular weights, together with epithelial membrane antigen. Furthermore, we found a coexpression of the tumor cells for CK and vimentin, while CK-GFAP and CK-S 100 were negative. Ultrastructurally, intracytoplasmic intermediate filaments could be observed corresponding to immunohistochemical CK expression. The very strong CK and vimentin expression in this case was interpreted as a sign of the embryonic nature of the tumor.
Collapse
Affiliation(s)
- C Zimmer
- Institut für Neuropathologie, Freien Universität, Berlin, Federal Republic of Germany
| | | | | | | |
Collapse
|
42
|
Kleinert R. Immunohistochemical characterization of primitive neuroectodermal tumors and their possible relationship to the stepwise ontogenetic development of the central nervous system. 2. Tumor studies. Acta Neuropathol 1991; 82:508-15. [PMID: 1664631 DOI: 10.1007/bf00293386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thirty-five selected intracranial tumors qualifying as primitive neuroectodermal tumors (PNETs) were investigated; these included medulloblastomas, cerebral neuroblastomas, pinealoblastomas, retinoblastomas, polar spongioblastomas, ependymoblastomas. For control purposes 11 tumors, including glioblastomas (small cell, spongioblastic variants), one anaplastic astrocytoma (astroblastic component), anaplastic oligo-astrocytomas, gangliogliomas, one primary melanoblastoma, and one pineal germinoma, were also studied. Six neuronal markers, i.e., synaptophysin, chromogranin A, neuron-specific enolase (NSE), neurofilament protein (NFP) (160 kDa, 200 kDa, 70 and 200 kDa), and six other markers (glial fibrillary acidic protein, S-100 protein, vimentin, myoglobin, desmin, cytokeratin) were investigated immunohistochemically. A certain recapitulation of the ontogenetic development of neuronal differentiation in PNETs is given by the fact that chromogranin A immunoreactivity can regularly be seen already in poorly differentiated neurons and synaptophysin in well-differentiated ones. Immunostaining for NFPs showed different results depending on the subunit investigated. NSE reaction gave different results even within the single tumor groups. This study is, to the best of our knowledge, the first attempt to evaluate and compare, by combined morphological and immunohistochemical methods, PNETs without and with different stages of cellular differentiation with the stepwise differentiation of the human embryonic neuroectoderm.
Collapse
Affiliation(s)
- R Kleinert
- Laboratory of Neuropathology, University of Graz, School of Medicine, Austria
| |
Collapse
|
43
|
Abstract
Intraventricular hemorrhage, or hemorrhage into the germinal matrix tissues of the developing brain, remains a common problem of preterm infants. The "risk period" for this insult is the first 3-4 postnatal days. We hypothesized that this risk period for hemorrhage is related to rapid perinatal maturation of the germinal matrix vasculature and employed the newborn beagle pup model for the study of this maturation. Newborn beagle pups (n = 30) were anesthetized and systemically perfused with buffered formalin; the brains were removed and prepared for immunohistochemical study. Sections stained with Bandeiraea lectin demonstrated that there was no difference in germinal matrix vessel density between postnatal days 1 and 4. Germinal matrix sections were also stained for antibodies to alpha-smooth muscle actin, collagen IV, collagen V, desmin, factor VIII-related antigen, fibronectin, glial fibrillary acidic protein, laminin, transferrin, and vimentin. Vasculature staining by alpha-smooth muscle actin was not noted until postnatal day 10, and differential staining was detected for antibodies to laminin and collagen V. Quantification of staining intensity by confocal microscopy demonstrated a significant increase in both extracellular matrix components at postnatal day 4 compared with day 1 (p less than 0.05 for both). These basement membrane proteins may add sufficient structural integrity to germinal matrix vessels to prevent capillary rupture and thus intraventricular hemorrhage.
Collapse
Affiliation(s)
- L R Ment
- Department of Pediatrics, Yale University School of Medicine, New Haven, Conn. 06510
| | | | | | | |
Collapse
|
44
|
Stagaard Janas M, Nowakowski RS, Møllgård K. Glial cell differentiation in neuron-free and neuron-rich regions. II. Early appearance of S-100 protein positive astrocytes in human fetal hippocampus. ANATOMY AND EMBRYOLOGY 1991; 184:559-69. [PMID: 1776702 DOI: 10.1007/bf00942578] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of the human fetal hippocampus and dentate gyrus has been studied immunocytochemically. The first glial cells to appear are vimentin-positive radial glial cells. A gradual transition from vimentin to glial fibrillary acidic protein (GFAP) reactivity in the radial glial cells occurs at week 8. The GFAP-positive radial glial cells transform into astrocytes from week 14. A population of small S-100-positive somata which morphologically and spatially are distinct from GFAP-positive radial glial cells and their transformed progeny, are found as early as week 9.5 in the hippocampus during the period of peak neurogenesis. The well-defined immunoreactivity of the morphologically homogenous cell subpopulation for S-100 protein, which has been used as an astrocytic marker in the adult hippocampus, indicates that astrocytes may differentiate at very early gestational ages in human fetuses. The S-100-positive astrocytes are thought to be derived from ventricular zone cells, which at the time of their appearance do not express any of the applied astrocytic markers (S-100, GFAP, vimentin). It is suggested that the S-100-positive astrocytic cell population interacts with the first incoming projection fibers, so modulating the pattern of connectivity.
Collapse
Affiliation(s)
- M Stagaard Janas
- Institute of Medical Anatomy A, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
45
|
Abstract
In this study, the developmental proliferation of human brain vessels, from the fetal to the adult stage, was analyzed by immunohistochemical methods using antitype IV collagen, antilaminin, and antifibronectin antibodies. Examination of the frontal lobe indicates that these antibodies bind to the vessels, both arteries and veins. During cortical angiogenesis, the density and diameter of vessels increase rapidly from about 26 weeks gestation and peak at 35 weeks; after 35 weeks, the density and diameter of vessels are the same as those in adult brain. The white matter demonstrates no major changes in vessel density, although the pattern of the changes in vessel diameter resembles that of the cortex. Small immunopositive spots suggesting neovascularization reveal the same developmental tendency as the density of vessels in the cortex and white matter; therefore, it appears that neovascularization in the fetal brain during development is more rapid than cortical expansion and is equal to the growth of white matter. Neovascularization may be closely related to normal brain development and may play an undefined role in perinatal cerebrovascular insults.
Collapse
Affiliation(s)
- T Mito
- Division of Mental Retardation, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | |
Collapse
|
46
|
Wilkinson M, Hume R, Strange R, Bell JE. Glial and neuronal differentiation in the human fetal brain 9-23 weeks of gestation. Neuropathol Appl Neurobiol 1990; 16:193-204. [PMID: 2402329 DOI: 10.1111/j.1365-2990.1990.tb01156.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nineteen human fetal brains ranging from 9-23 weeks of gestation were examined immunocytochemically for evidence of glial and neuronal differentiation. Radial glia were positive for vimentin and glial fibrillary acidic protein (GFAP) throughout the age range. S100-positive cells which were presumed to be astrocytes were present from 9 weeks; they were always more widespread in the cerebrum and the brainstem than GFAP-positive mature astrocytes, which could be detected with certainty only at 14 weeks. Carbonic anhydrase II (CA II)-positive oligodendrocytes were present in the brainstem in small numbers from 17 weeks. Neuronal fibre tracts in the cerebrum were positive for 160 kD phosphorylated neurofilament protein (BF10) from 9 weeks, but negative for 200 kD phosphorylated neurofilament protein (RT97) and for 70 and 200 kD non-phosphorylated neurofilament protein (NFP) whereas most tracts in the brainstem were positive for BF10 from 9 weeks and positive for the other neurofilament proteins from 14 weeks. Corticospinal tracts differed in remaining negative for neurofilament proteins other than BF10, which showed positive reaction throughout. Perikarya of differentiated neurons in all areas of the brain were neurofilament-negative but neuron specific enolase (NSE)-positive. Germinal eminence cells were focally vimentin-positive from 15 weeks, focally GFAP-positive from 17 weeks, and negative for all NFP and for NSE. The value of a short fixation time and pretreatment with trypsin in the immunocytochemical demonstration of GFAP is stressed.
Collapse
Affiliation(s)
- M Wilkinson
- Department of Pathology, University of Edinburgh
| | | | | | | |
Collapse
|
47
|
Ogawa A, Sugihara S, Hasegawa M, Sasaki A, Nakazato Y, Kawada T, Ishiuchi S, Tamura M. Intermediate filament expression in pituitary adenomas. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1989; 58:341-9. [PMID: 1692653 DOI: 10.1007/bf02890090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seventy-five formalin-fixed and 18 alcohol-fixed pituitary adenomas were studied immunohistochemically using antibodies to keratin, vimentin, neurofilaments (NFs), glial fibrillary acidic protein, desmin, actin, S-100 protein and a variety of pituitary hormones. The pituitary adenoma cells were positive for keratin, vimentin and NFs (68 kDa and 160 kDa) and in a few instances there was co-expression of these three types of intermediate filaments (IMFs). The pattern of keratin-specific staining showed diffuse cytoplasmic or patchy paranuclear reactivity and of NF- or vimentin-specific staining showed fibrillar or patchy paranuclear reactivity. The patchy staining seemed to decorate the fibrous body. There was no correlation between the distribution of IMFs and pituitary hormones in pituitary adenomas except that melanocyte-stimulating-hormone-positive reactivity was limited to the NF-positive adenomas. The pattern of IMF staining did not depend on hormone production in adenomas.
Collapse
Affiliation(s)
- A Ogawa
- Department of Pathology, Gunma Cancer Center Hospital, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Caccamo DV, Herman MM, Rubinstein LJ. An immunohistochemical study of the primitive and maturing elements of human cerebral medulloepitheliomas. Acta Neuropathol 1989; 79:248-54. [PMID: 2609935 DOI: 10.1007/bf00294658] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Four examples of human cerebral medulloepithelioma were studied immunohistochemically with a panel of antibodies and antisera to neuronal and glial proteins. The tumors, in addition to primitive medullary epithelium, contained areas of neuroblastic, ganglionic, astrocytic, ependymoblastic and ependymal differentiation, and in one tumor, areas resembling polar spongioblastoma. Tumor cells throughout the primitive medullary epithelium displayed focal immunoreactivity for vimentin, glial fibrillary acidic (GFA) protein and for the neuron-associated class III beta-tubulin isotype. Neuroblasts showed immunoreactivity for the class III beta-tubulin isotype, microtubule-associated protein 2 and neuron-specific enolase. Immunoreactivity for neurofilament epitopes and synaptophysin was detected in areas of ganglionic differentiation and coincided with the demonstration of neurofibrils in Bielschowsky's silver impregnations. Vimentin was the only marker detected in ependymoblastic and ependymal rosettes or in areas of polar spongioblastoma, as well as in mesenchymal cells. The results indicate that, even in very primitive neoplastic neuroepithelium, immunocytochemical evidence of early commitment of some of the cells to a neuronal or glial lineage can be demonstrated. The neuron-associated class III beta-tubulin isotype appears to be one of the earliest markers indicative of neuronal differentiation in normal and neoplastic primitive neuroepithelium.
Collapse
Affiliation(s)
- D V Caccamo
- Department of Pathology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
49
|
Hansen SH, Stagaard M, Møllgård K. Neurofilament-like pattern of reactivity in human foetal PNS and spinal cord following immunostaining with polyclonal anti-glial fibrillary acidic protein antibodies. JOURNAL OF NEUROCYTOLOGY 1989; 18:427-36. [PMID: 2681541 DOI: 10.1007/bf01474540] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intermediate filament protein, glial fibrillary acidic protein (GFAP), is widely used as a cell-specific marker molecule for immunocytochemical identification of astrocyte lineages in cell culture, in tissues during development, and in tissues undergoing pathological changes. This study demonstrates that a reaction pattern of two commercially available polyclonal anti-GFAP antibodies shows extensive similarity to the pattern of reactivity obtained with monoclonal antibodies to neurofilaments in the PNS and spinal cord of human embryos and foetuses, at 5 to 12 weeks of gestation. The polyclonal antibodies to GFAP labelled populations of neurons and their processes in the PNS and in the spinal cord. Monoclonal antibodies to GFAP only labelled glial cells in the spinal cord. Neurofilament adsorption of one of the anti-GFAP antisera abolished the neurofilament-like reaction pattern, while the structures also labelled with monoclonal antibodies to GFAP remained immunostained. The results presented may question previously published data obtained with these and possibly other polyclonal anti-GFAP antibodies.
Collapse
Affiliation(s)
- S H Hansen
- Department A, University of Copenhagen, Panum Institute, Denmark
| | | | | |
Collapse
|
50
|
Stagaard M, Møllgård K. The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry. ANATOMY AND EMBRYOLOGY 1989; 180:17-28. [PMID: 2476946 DOI: 10.1007/bf00321896] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neuroepithelial cells, which constitute the primordium of the CNS, are potentially capable of generating neuronal and glial cell lineages concomitantly. The appearance and morphological development of vimentin-positive neuroepithelial cells in human embryonic and fetal brain (4-16 weeks) were studied with immunocytochemistry. In embryos aged 4-6 weeks, vimentin-reactivity was seen in all neuroepithelial cells, including those which exhibited mitotic figures. The distribution of reactivity changed according to a general developmental pattern, which commenced and proceeded temporally different in various regions of the CNS. All regions exhibited vimentin-positive neuroepithelial cells, the distribution and morphology of which gradually changed, resulting in lamination of the neural wall into two and subsequently three layers. The neocortex and midline raphe were the only regions to differ significantly from the general pattern. When reactivity to glial fibrillary acidic protein developed at 7-8 weeks, the distribution was very much like that of vimentin at the same stage. Reactivity to glial, neuronal and other cellular markers (S-100, neurofilament, neuron specific enolase, desmin, and cytokeratin) revealed different distributions. Although cells retaining vimentin beyond the ventricular zone stage are radial glial cells and presumptive fibrous astrocytes, it seems unlikely that vimentin is a marker for a distinct cell lineage during early CNS development. It is suggested that all neuroepithelial cells in vivo differentiate to a stage where they express vimentin, and that vimentin may have a functional role in cellular movements and during the interkinetic nuclear migration.
Collapse
Affiliation(s)
- M Stagaard
- Department of Medical Anatomy A, Panum Institute, Copenhagen N, Denmark
| | | |
Collapse
|