1
|
Faas MM, Smink AM. Shaping immunity: the influence of the maternal gut bacteria on fetal immune development. Semin Immunopathol 2025; 47:13. [PMID: 39891756 PMCID: PMC11787218 DOI: 10.1007/s00281-025-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
The development of the fetal immune response is a highly complex process. In the present review, we describe the development of the fetal immune response and the role of the maternal gut bacteria in this process. In contrast to the previous belief that the fetal immune response is inert, it is now thought that the fetal immune response is uniquely tolerant to maternal and allo-antigens, but able to respond to infectious agents, such as bacteria. This is accomplished by the development of T cells toward regulatory T cells rather than toward effector T cells, but also by the presence of functional innate immune cells, such as monocytes and NK cells. Moreover, in fetuses there is different programming of CD8 + T cells and memory T cells toward innate immune cells rather than to adaptive immune cells. The maternal gut bacteria are important in shaping the fetal immune response by producing bacterial products and metabolites that pass the placenta into the fetus and influence development of the fetal immune response. Insight into how and when these products affect the fetal immune response may open new treatment options with pre- or probiotics to affect the maternal gut bacteria and therewith the fetal immune response.
Collapse
Affiliation(s)
- Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
2
|
Locher V, Park S, Bunis DG, Makredes S, Mayer M, Burt TD, Fragiadakis GK, Halkias J. Homeostatic cytokines reciprocally modulate the emergence of prenatal effector PLZF+CD4+ T cells in humans. JCI Insight 2023; 8:e164672. [PMID: 37856221 PMCID: PMC10721317 DOI: 10.1172/jci.insight.164672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The development of human prenatal adaptive immunity progresses faster than previously appreciated, with the emergence of memory CD4+ T cells alongside regulatory T cells by midgestation. We previously identified a prenatal specific population of promyelocytic leukemia zinc finger-positive (PLZF+) CD4+ T cells with heightened effector potential that were enriched in the developing intestine and accumulated in the cord blood of infants exposed to prenatal inflammation. However, the signals that drive their tissue distribution and effector maturation are unknown. Here, we define the transcriptional and functional heterogeneity of human prenatal PLZF+CD4+ T cells and identify the compartmentalization of T helper-like (Th-like) effector function across the small intestine (SI) and mesenteric lymph nodes (MLNs). IL-7 was more abundant in the SI relative to the MLNs and drove the preferential expansion of naive PLZF+CD4+ T cells via enhanced STAT5 and MEK/ERK signaling. Exposure to IL-7 was sufficient to induce the acquisition of CD45RO expression and rapid effector function in a subset of PLZF+CD4+ T cells, identifying a human analog of memory phenotype CD4+ T cells. Further, IL-7 modulated the differentiation of Th1- and Th17-like PLZF+CD4+ T cells and thus likely contributes to the anatomic compartmentalization of human prenatal CD4+ T cell effector function.
Collapse
Affiliation(s)
- Veronica Locher
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Sara Park
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Daniel G. Bunis
- Bakar ImmunoX Initiative and
- CoLabs, UCSF, San Francisco, California, USA
| | - Stephanie Makredes
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Margareta Mayer
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Trevor D. Burt
- Division of Neonatology and the Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gabriela K. Fragiadakis
- Bakar ImmunoX Initiative and
- CoLabs, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Joanna Halkias
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
- Bakar ImmunoX Initiative and
| |
Collapse
|
3
|
Yayon N, Kedlian VR, Boehme L, Suo C, Wachter B, Beuschel RT, Amsalem O, Polanski K, Koplev S, Tuck E, Dann E, Van Hulle J, Perera S, Putteman T, Predeus AV, Dabrowska M, Richardson L, Tudor C, Kreins AY, Engelbert J, Stephenson E, Kleshchevnikov V, De Rita F, Crossland D, Bosticardo M, Pala F, Prigmore E, Chipampe NJ, Prete M, Fei L, To K, Barker RA, He X, Van Nieuwerburgh F, Bayraktar O, Patel M, Davies GE, Haniffa MA, Uhlmann V, Notarangelo LD, Germain RN, Radtke AJ, Marioni JC, Taghon T, Teichmann SA. A spatial human thymus cell atlas mapped to a continuous tissue axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.562925. [PMID: 37986877 PMCID: PMC10659407 DOI: 10.1101/2023.10.25.562925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.
Collapse
Affiliation(s)
- Nadav Yayon
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | | | - Lena Boehme
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Chenqu Suo
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Brianna Wachter
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Rebecca T Beuschel
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Oren Amsalem
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Endocrinology, Diabetes and Metabolism, Boston, MA, United States
| | | | - Simon Koplev
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Emma Dann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Jolien Van Hulle
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Shani Perera
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Tom Putteman
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | | | - Monika Dabrowska
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Catherine Tudor
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Alexandra Y Kreins
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Justin Engelbert
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | | | - Fabrizio De Rita
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - David Crossland
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - Marita Bosticardo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Francesca Pala
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Elena Prigmore
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | | | - Martin Prete
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Lijiang Fei
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Ken To
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Roger A Barker
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Xiaoling He
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Omer Bayraktar
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Minal Patel
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Graham E Davies
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Muzlifah A Haniffa
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Virginie Uhlmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Andrea J Radtke
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK, Cambridge, United Kingdom
| | - Tom Taghon
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
4
|
Sun S, Wijanarko K, Liani O, Strumila K, Ng ES, Elefanty AG, Stanley EG. Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunol Rev 2023; 315:154-170. [PMID: 36939073 PMCID: PMC10952469 DOI: 10.1111/imr.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kevin Wijanarko
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Oniko Liani
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kathleen Strumila
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elizabeth S. Ng
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andrew G. Elefanty
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Edouard G. Stanley
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
5
|
Cordes M, Pike-Overzet K, Van Den Akker EB, Staal FJT, Canté-Barrett K. Multi-omic analyses in immune cell development with lessons learned from T cell development. Front Cell Dev Biol 2023; 11:1163529. [PMID: 37091971 PMCID: PMC10118026 DOI: 10.3389/fcell.2023.1163529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Traditionally, flow cytometry has been the preferred method to characterize immune cells at the single-cell level. Flow cytometry is used in immunology mostly to measure the expression of identifying markers on the cell surface, but-with good antibodies-can also be used to assess the expression of intracellular proteins. The advent of single-cell RNA-sequencing has paved the road to study immune development at an unprecedented resolution. Single-cell RNA-sequencing studies have not only allowed us to efficiently chart the make-up of heterogeneous tissues, including their most rare cell populations, it also increasingly contributes to our understanding how different omics modalities interplay at a single cell resolution. Particularly for investigating the immune system, this means that these single-cell techniques can be integrated to combine and correlate RNA and protein data at the single-cell level. While RNA data usually reveals a large heterogeneity of a given population identified solely by a combination of surface protein markers, the integration of different omics modalities at a single cell resolution is expected to greatly contribute to our understanding of the immune system.
Collapse
Affiliation(s)
- Martijn Cordes
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik B. Van Den Akker
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Frank J. T. Staal,
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Rota IA, Handel AE, Maio S, Klein F, Dhalla F, Deadman ME, Cheuk S, Newman JA, Michaels YS, Zuklys S, Prevot N, Hublitz P, Charles PD, Gkazi AS, Adamopoulou E, Qasim W, Davies EG, Hanson I, Pagnamenta AT, Camps C, Dreau HM, White A, James K, Fischer R, Gileadi O, Taylor JC, Fulga T, Lagerholm BC, Anderson G, Sezgin E, Holländer GA. FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. SCIENCE ADVANCES 2021; 7:eabj9247. [PMID: 34860543 PMCID: PMC8641933 DOI: 10.1126/sciadv.abj9247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 05/04/2023]
Abstract
The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor’s transcriptional activity. FOXN1’s C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.
Collapse
Affiliation(s)
- Ioanna A. Rota
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam E. Handel
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fabian Klein
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joseph A. Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Yale S. Michaels
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saulius Zuklys
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
| | - Nicolas Prevot
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Philip Hublitz
- MRC Weatherall Institute of Molecular Medicine, Genome engineering services, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D. Charles
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Athina Soragia Gkazi
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Eleni Adamopoulou
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Waseem Qasim
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Edward Graham Davies
- Great Ormond Street Hospital and Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Imelda Hanson
- Department of Pediatrics, Section of Pediatric Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Carme Camps
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helene M. Dreau
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrea White
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Kieran James
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tudor Fulga
- Genome Engineering and Synthetic Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - B. Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Erdinc Sezgin
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Georg A. Holländer
- Department of Paediatrics and the MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
7
|
Hartvigsson O, Barman M, Rabe H, Sandin A, Wold AE, Brunius C, Sandberg AS. Associations of maternal and infant metabolomes with immune maturation and allergy development at 12 months in the Swedish NICE-cohort. Sci Rep 2021; 11:12706. [PMID: 34135462 PMCID: PMC8209090 DOI: 10.1038/s41598-021-92239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Allergic diseases are the most common chronic diseases in childrenin the Western world, but little is know about what factors influence immune maturation and allergy development. We therefore aimed to associate infant and maternal metabolomes to T- and B-cell subpopulations and allergy diagnosis. We performed liquid chromatography-mass spectrometry based untargeted metabolomics on blood plasma from mothers (third trimester, n = 605; delivery, n = 558) and from the umbilical cord (n = 366). The measured metabolomes were associated to T- and B-cell subpopulations up to 4 months after delivery and to doctor´s diagnosed eczema, food allergy and asthma at one year of age using random forest analysis. Maternal and cord plasma at delivery could predict the number of CD24+CD38low memory B-cells (p = 0.033, n = 26 and p = 0.009, n = 22), but future allergy status could not be distinguished from any of the three measured metabolomes. Replication of previous literature findings showed hypoxanthine to be upregulated in the umbilical cord of children with subsequent asthma. This exploratory study suggests foetal immune programming occuring during pregnancy as the metabolomic profiles of mothers and infants at delivery related to infants' B-cell maturation.
Collapse
Affiliation(s)
- Olle Hartvigsson
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| | - Malin Barman
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Anna Sandin
- Department of Clinical Sciences, Unit of Pediatrics, Umeå University, Umeå, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Carl Brunius
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
8
|
Deng Y, Chen H, Zeng Y, Wang K, Zhang H, Hu H. Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing. Semin Immunopathol 2021; 43:29-43. [PMID: 33449155 DOI: 10.1007/s00281-020-00834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
The thymus is the primary organ for T-cell development, providing an essential microenvironment consisting of the appropriate cytokine milieu and specialized stromal cells. Thymus-seeding progenitors from circulation immigrate into the thymus and undergo the stepwise T-cell specification, commitment, and selection processes. The transcriptional factors, epigenetic regulators, and signaling pathways involved in the T-cell development have been intensively studied using mouse models. Despite our growing knowledge of T-cell development, major questions remain unanswered regarding the ontogeny and early events of T-cell development at the fetal stage, especially in humans. The recently developed single-cell RNA-sequencing technique provides an ideal tool to investigate the heterogeneity of T-cell precursors and the molecular mechanisms underlying the divergent fates of certain T-cell precursors at the single-cell level. In this review, we aim to summarize the current progress of the study on human thymus organogenesis and thymocyte and thymic epithelial cell development, which is to shed new lights on developing novel strategies for in vitro T-cell regeneration and thymus rejuvenation.
Collapse
Affiliation(s)
- Yujun Deng
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Chen
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Keyue Wang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
9
|
Liu C, Lan Y, Liu B, Zhang H, Hu H. T Cell Development: Old Tales Retold By Single-Cell RNA Sequencing. Trends Immunol 2021; 42:165-175. [PMID: 33446417 DOI: 10.1016/j.it.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Mammalian T cell development initiates from the migration of hematopoietic progenitors to the thymus, which undergo cell proliferation, T-lineage specification and commitment, as well as positive and negative selection. These processes are precisely controlled at multiple levels and have been intensively studied using gene-modified animal models and in vitro coculture systems. However, several long-standing questions, including the characterization of the rare but crucial progenitors/precursors and the molecular mechanisms underlying their fate decision, have been dampened because of cell scarcity and lack of appropriate techniques. Single-cell RNA sequencing (scRNA-seq) makes it possible to investigate and resolve some of these questions, leading to new remarkable progress in identifying and characterizing early thymic progenitors and delineating the refined developmental trajectories of conventional and unconventional T cells.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
10
|
Knapek KJ, Georges HM, Van Campen H, Bishop JV, Bielefeldt-Ohmann H, Smirnova NP, Hansen TR. Fetal Lymphoid Organ Immune Responses to Transient and Persistent Infection with Bovine Viral Diarrhea Virus. Viruses 2020; 12:v12080816. [PMID: 32731575 PMCID: PMC7472107 DOI: 10.3390/v12080816] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) fetal infections occur in two forms; persistent infection (PI) or transient infection (TI), depending on what stage of gestation the fetus is infected. Examination of lymphoid organs from both PI and TI fetuses reveals drastically different fetal responses, dependent upon the developmental stage of the fetal immune system. Total RNA was extracted from the thymuses and spleens of uninfected control, PI, and TI fetuses collected on day 190 of gestation to test the hypothesis that BVDV infection impairs the innate and adaptive immune response in the fetal thymus and spleen of both infection types. Transcripts of genes representing the innate immune response and adaptive immune response genes were assayed by Reverse Transcription quatitative PCR (RT-qPCR) (2−ΔΔCq; fold change). Genes of the innate immune response, interferon (IFN) inducible genes, antigen presentation to lymphocytes, and activation of B cells were downregulated in day 190 fetal PI thymuses compared to controls. In contrast, innate immune response genes were upregulated in TI fetal thymuses compared to controls and tended to be upregulated in TI fetal spleens. Genes associated with the innate immune system were not different in PI fetal spleens; however, adaptive immune system genes were downregulated, indicating that PI fetal BVDV infection has profound inhibitory effects on the expression of genes involved in the innate and adaptive immune response. The downregulation of these genes in lymphocytes and antigen-presenting cells in the developing thymus and spleen may explain the incomplete clearance of BVDV and the persistence of the virus in PI animals while the upregulation of the TI innate immune response indicates a more mature immune system, able to clear the virus.
Collapse
Affiliation(s)
- Katie J. Knapek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre and School of Veterinary Science, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Natalia P. Smirnova
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Correspondence: ; Tel.: +1-970-988-4582
| |
Collapse
|
11
|
Botting RA, Haniffa M. The developing immune network in human prenatal skin. Immunology 2020; 160:149-156. [PMID: 32173857 PMCID: PMC7218404 DOI: 10.1111/imm.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Establishment of a well‐functioning immune network in skin is crucial for its barrier function. This begins in utero alongside the structural differentiation and maturation of skin, and continues to expand and diversify across the human lifespan. The microenvironment of the developing human skin supports immune cell differentiation and has an overall anti‐inflammatory profile. Immunologically inert and skewed immune populations found in developing human skin promote wound healing, and as such may play a crucial role in the structural changes occurring during skin development.
Collapse
Affiliation(s)
- Rachel Anne Botting
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front Immunol 2020; 11:588. [PMID: 32328065 PMCID: PMC7160249 DOI: 10.3389/fimmu.2020.00588] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
The developing human fetus generates both tolerogenic and protective immune responses in response to the unique requirements of gestation. Thus, a successful human pregnancy depends on a fine balance between two opposing immunological forces: the semi-allogeneic fetus learns to tolerate both self- and maternal- antigens and, in parallel, develops protective immunity in preparation for birth. This critical window of immune development bridges prenatal immune tolerance with the need for postnatal environmental protection, resulting in a vulnerable neonatal period with heightened risk of infection. The fetal immune system is highly specialized to mediate this transition and thus serves a different function from that of the adult. Adaptive immune memory is already evident in the fetal intestine. Fetal T cells with pro-inflammatory potential are born in a tolerogenic environment and are tightly controlled by both cell-intrinsic and -extrinsic mechanisms, suggesting that compartmentalization and specialization, rather than immaturity, define the fetal immune system. Dysregulation of fetal tolerance generates an inflammatory response with deleterious effects to the pregnancy. This review aims to discuss the recent advances in our understanding of the cellular and molecular composition of fetal adaptive immunity and the mechanisms that govern T cell development and function. We also discuss the tolerance promoting environment that impacts fetal immunity and the consequences of its breakdown. A greater understanding of fetal mechanisms of immune activation and regulation has the potential to uncover novel paradigms of immune balance which may be leveraged to develop therapies for transplantation, autoimmune disease, and birth-associated inflammatory pathologies.
Collapse
Affiliation(s)
- Elze Rackaityte
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Joanna Halkias
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, United States
| |
Collapse
|
13
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. Immunity 2019; 51:930-948.e6. [PMID: 31604687 DOI: 10.1016/j.immuni.2019.09.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Siyuan Hou
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Hui Shi
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, Rare Disease Center, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy. Chengdu 610041, China.
| |
Collapse
|
15
|
García-León MJ, Fuentes P, de la Pompa JL, Toribio ML. Dynamic regulation of NOTCH1 activation and Notch ligand expression in human thymus development. Development 2018; 145:dev.165597. [PMID: 30042180 DOI: 10.1242/dev.165597] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023]
Abstract
T-cell development is a complex dynamic process that relies on ordered stromal signals delivered to thymus-seeding progenitors that migrate throughout different thymus microenvironments (TMEs). Particularly, Notch signaling provided by thymic epithelial cells (TECs) is crucial for T-cell fate specification and generation of mature T cells. Four canonical Notch ligands (Dll1, Dll4, Jag1 and Jag2) are expressed in the thymus, but their spatial distribution in functional TMEs is largely unknown, especially in humans, and their impact on Notch1 activation during T-lymphopoiesis remains undefined. Based on immunohistochemistry and quantitative confocal microscopy of fetal, postnatal and adult human and mouse thymus samples, we show that spatial regulation of Notch ligand expression defines discrete Notch signaling niches and dynamic species-specific TMEs. We further show that Notch ligand expression, particularly DLL4, is tightly regulated in cortical TECs during human thymus ontogeny and involution. Also, we provide the first evidence that NOTCH1 activation is induced in vivo in CD34+ progenitors and developing thymocytes at particular cortical niches of the human fetal and postnatal thymus. Collectively, our results show that human thymopoiesis involves complex spatiotemporal regulation of Notch ligand expression, which ensures the coordinated delivery of niche-specific NOTCH1 signals required for dynamic T-cell development.
Collapse
Affiliation(s)
- María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo de Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Patricia Fuentes
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo de Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.,CIBER CV, 28029 Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo de Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
16
|
van den Broek T, Madi A, Delemarre EM, Schadenberg AWL, Tesselaar K, Borghans JAM, Nierkens S, Redegeld FA, Otten HG, Rossetti M, Albani S, Sorek R, Cohen IR, Jansen NJG, van Wijk F. Human neonatal thymectomy induces altered B-cell responses and autoreactivity. Eur J Immunol 2017; 47:1970-1981. [PMID: 28691750 PMCID: PMC5697610 DOI: 10.1002/eji.201746971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/19/2023]
Abstract
An association between T‐cell lymphopenia and autoimmunity has long been proposed, but it remains to be elucidated whether T‐cell lymphopenia affects B‐cell responses to autoantigens. Human neonatal thymectomy (Tx) results in a decrease in T‐cell numbers and we used this model to study the development of autoreactivity. Two cohorts of neonatally thymectomized individuals were examined, a cohort of young (1–5 years post‐Tx, n = 10–27) and older children (>10 years, n = 26), and compared to healthy age‐matched controls. T‐cell and B‐cell subsets were assessed and autoantibody profiling performed. Early post‐Tx, a decrease in T‐cell numbers (2.75 × 109/L vs. 0.71 × 109/L) and an increased proportion of memory T cells (19.72 vs. 57.43%) were observed. The presence of autoantibodies was correlated with an increased proportion of memory T cells in thymectomized children. No differences were seen in percentages of different B‐cell subsets between the groups. The autoantigen microarray showed a skewed autoantibody response after Tx. In the cohort of older individuals, autoantibodies were present in 62% of the thymectomized children, while they were found in only 33% of the healthy controls. Overall, our data suggest that neonatal Tx skews the autoantibody profile. Preferential expansion and preservation of Treg (regulatory T) cell stability and function, may contribute to preventing autoimmune disease development after Tx.
Collapse
Affiliation(s)
- Theo van den Broek
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Asaf Madi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eveline M Delemarre
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Alvin W L Schadenberg
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands.,Department of Pediatric Intensive Care, Bristol Royal Hospital for Children, Bristol, UK
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Frank A Redegeld
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Maura Rossetti
- Duke-National University of Singapore Graduate Medical School, Singapore.,SingHealth Translational Immunology and Inflammation Centre, SingHealth, Singapore
| | - Salvatore Albani
- Duke-National University of Singapore Graduate Medical School, Singapore.,SingHealth Translational Immunology and Inflammation Centre, SingHealth, Singapore
| | | | - Irun R Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Pediatric Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
17
|
Abstract
BACKGROUND In utero transplantation (IUT) of hematopoietic stem cells has the potential to treat a large number of hematologic and metabolic diseases amenable to partial replacement of the hematopoietic system. METHODS A review of the literature was conducted that focused on the clinical and experimental experience with IUT and, in this context, the development of the hematopoietic and immune systems. RESULTS Successful application of IUT has been limited to the treatment of various types of immunodeficiencies that affect lymphocyte development and function. Other congenital defects such as the thalassemias have not resulted in clinically significant engraftment. Recent efforts at understanding and overcoming the barriers to engraftment in the fetus have focused on providing a selective advantage to donor stem cells and fostering immune tolerance toward the donor cells. The critical cellular components of the graft that promote engraftment and tolerance induction are being evaluated in animal models. Improvements in engraftment have resulted from the inclusion of T cells and/or dendritic cells in the graft, as well as a strategy of combined prenatal and postnatal transplantation. CONCLUSIONS The advantages, necessity, and benefits of early treatment will continue to encourage development of IUT as a means to treat hematopoietic and other types of birth defects.
Collapse
Affiliation(s)
- Marcus O Muench
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
18
|
Medrano G, Guan P, Barlow-Anacker AJ, Gosain A. Comprehensive selection of reference genes for quantitative RT-PCR analysis of murine extramedullary hematopoiesis during development. PLoS One 2017; 12:e0181881. [PMID: 28732075 PMCID: PMC5521956 DOI: 10.1371/journal.pone.0181881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/08/2017] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to perform a comprehensive evaluation and selection of reference genes for the study of extramedullary hematopoiesis during development and the early post-natal period. A total of six candidate reference genes (ACTB, GAPDH, HPRT1, PPID, TBP, TUBB3) in four organs (heart, liver, spleen, and thymus) over five perinatal time points (Embryonic days 14.5, 16.5, 18.5, Post-natal days 0, 21) were evaluated by quantitative real-time PCR. The expression stability of the candidate reference genes were analyzed using geNorm, NormFinder, Bestkeeper, Delta CT method, and RefFinder software packages. Detailed methodology for isolation of high quality/purity RNA and analysis is presented. Detailed analysis demonstrated that TBP is the best single reference gene for embryonic samples and HPRT1 is the best single reference gene for post-natal and pooled embryonic and post-natal samples. Organ-level analysis demonstrated that HPRT1 was the most suitable reference gene for heart, liver and thymus samples, while TBP was the best candidate for spleen samples. In general, TUBB3 was consistently the least stable gene for normalization. This is the first study to describe a systematic comprehensive selection of reference genes for murine extramedullary hematopoietic tissues over a developmental time course. We provide suggested reference genes for individual tissues and developmental stages and propose that a combination of reference genes affords flexibility in experimental design and analysis.
Collapse
Affiliation(s)
- Giuliana Medrano
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Peihong Guan
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
19
|
Walraven M, Talhout W, Beelen RHJ, van Egmond M, Ulrich MMW. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen 2016; 24:533-41. [PMID: 26873861 DOI: 10.1111/wrr.12421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
The lack of immune cells in mid-gestational fetal skin is often mentioned as a key factor underlying scarless healing. However, the scarless healing ability is conserved until long after the immune system in the fetus is fully developed. Therefore, we studied human second-trimester fetal skin and compared the numbers of immune cells and chemokine levels from fetal skin with adult skin. By using immunohistochemistry, we show that healthy fetal skin contains significant lower numbers of CD68(+) -macrophages, Tryptase(+) -mast cells, Langerin(+) -Langerhans cells, CD1a(+) -dendritic cells, and CD3(+) -T cells compared to adult skin. Staining with an early lineage leukocyte marker, i.e., CD45, verified that the number of CD45(+) -immune cells was indeed significantly lower in fetal skin but that sufficient numbers of immune cells were present in the fetal lymph node. No differences in the vascular network were observed between fetal and adult skin. Moreover, significant lower levels of lymphocyte chemokines CCL17, CCL21, and CCL27 were observed in fetal skin. However, levels of inflammatory interleukins such as IL-6, IL-8, and IL-10 were undetectable and levels of CCL2 were similar in healthy fetal and adult skin. In conclusion, this study shows that second-trimester fetal skin contains low levels of immune cells and leukocyte chemokines compared to adult skin. This immune cell deficiency includes CD45(+) leukocytes, despite the abundant presence of these cells in the lymph node. The immune deficiency in healthy second-trimester fetal skin may result in reduced inflammation during wound healing, and could underlie the scarless healing capacities of the fetal skin.
Collapse
Affiliation(s)
- Mariëlle Walraven
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Wendy Talhout
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands.,Association of Dutch Burn Centers, Beverwijk, The Netherlands
| | - Robert H J Beelen
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Abstract
The discovery of induced pluripotent stem cells (iPSCs) and concurrent development of protocols for their cell-type specific differentiation have revolutionized studies of diseases and raised the possibility that personalized medicine may be achievable. Realizing the full potential of iPSC will require addressing the challenges inherent in obtaining appropriate cells for millions of individuals while meeting the regulatory requirements of delivering therapy and keeping costs affordable. Critical to making PSC based cell therapy widely accessible is determining which mode of cell collection, storage and distribution, will work. In this manuscript we suggest that moderate sized bank where a diverse set of lines carrying different combinations of commonly present HLA alleles are banked and differentiated cells are made available to matched recipients as need dictates may be a solution. We discuss the issues related to developing such a bank and how it could be constructed and propose a bank of selected HLA phenotypes from carefully screened healthy individuals as a solution to delivering personalized medicine.
Collapse
Affiliation(s)
- Susan Solomon
- New York Stem Cell Foundation, 1995 S. Broadway, New York, NY, 10023, USA
| | | | | |
Collapse
|
21
|
D'Assante R, Fusco A, Palamaro L, Giardino G, Gallo V, Cirillo E, Pignata C. Unraveling the Link Between Ectodermal Disorders and Primary Immunodeficiencies. Int Rev Immunol 2015; 35:25-38. [PMID: 25774666 DOI: 10.3109/08830185.2015.1010724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary immunodeficiencies (PIDs) include a heterogeneous group of mostly monogenic diseases characterized by functional/developmental alterations of the immune system. Skin and skin annexa abnormalities may be a warning sign of immunodeficiency, since both epidermal and thymic epithelium have ectodermal origin. In this review, we will focus on the most common immune disorders associated with ectodermal alterations. Elevated IgE levels represent the immunological hallmark of hyper-IgE syndrome, characterized by severe eczema and susceptibility to infections. Ectodermal dysplasia (ED) is a group of rare disorders that affect tissues of ectodermal origin. Hypoidrotic ED (HED), the most common form, is inherited as autosomal dominant, autosomal recessive or X-linked trait (XLHED). HED and XLHED are caused by mutations in NEMO and EDA-1 genes, respectively, and show similarities in the cutaneous involvement but differences in the susceptibility to infections and immunological phenotype. Alterations in the transcription factor FOXN1 gene, expressed in the mature thymic and skin epithelia, are responsible for human and murine athymia and prevent the development of the T-cell compartment associated to ectodermal abnormalities such as alopecia and nail dystrophy. The association between developmental abnormalities of the skin and immunodeficiencies suggest a role of the skin as a primary lymphoid organ. Recently, it has been demonstrated that a co-culture of human skin-derived keratinocytes and fibroblasts, in the absence of thymic components, can support the survival of human haematopoietic stem cells and their differentiation into T-lineage committed cells.
Collapse
Affiliation(s)
- Roberta D'Assante
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Anna Fusco
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Loredana Palamaro
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Giuliana Giardino
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Vera Gallo
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Emilia Cirillo
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| | - Claudio Pignata
- a Department of Translational Medical Sciences , Federico II University , Naples , Italy
| |
Collapse
|
22
|
Dubey A, Jethani S, Singh D. Estimation of gestational age from histogenesis of the thymus in human fetuses. J ANAT SOC INDIA 2014. [DOI: 10.1016/j.jasi.2014.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Roberts N, Horsley V. Developing stratified epithelia: lessons from the epidermis and thymus. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:389-402. [PMID: 25176390 PMCID: PMC4283209 DOI: 10.1002/wdev.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
Stratified squamous epithelial cells are found in a number of organs, including the skin epidermis and the thymus. The progenitor cells of the developing epidermis form a multi-layered epithelium and appendages, like the hair follicle, to generate an essential barrier to protect against water loss and invasion of foreign pathogens. In contrast, the thymic epithelium forms a three-dimensional mesh of keratinocytes that are essential for positive and negative selection of self-restricted T cells. While these distinct stratified epithelial tissues derive from distinct embryonic germ layers, both tissues instruct immunity, and the epithelial differentiation programs and molecular mechanisms that control their development are remarkably similar. In this review, we aim to highlight some of the similarities between the thymus and the skin epidermis and its appendages during developmental specification.
Collapse
Affiliation(s)
- Natalie Roberts
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
24
|
Halkias J, Melichar HJ, Taylor KT, Robey EA. Tracking migration during human T cell development. Cell Mol Life Sci 2014; 71:3101-17. [PMID: 24682469 PMCID: PMC11113765 DOI: 10.1007/s00018-014-1607-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/21/2014] [Accepted: 03/11/2014] [Indexed: 01/06/2023]
Abstract
Specialized microenvironments within the thymus are comprised of unique cell types with distinct roles in directing the development of a diverse, functional, and self-tolerant T cell repertoire. As they differentiate, thymocytes transit through a number of developmental intermediates that are associated with unique localization and migration patterns. For example, during one particular developmental transition, immature thymocytes more than double in speed as they become mature T cells that are among the fastest cells in the body. This transition is associated with dramatic changes in the expression of chemokine receptors and their antagonists, cell adhesion molecules, and cytoskeletal components to direct the maturing thymocyte population from the cortex to medulla. Here we discuss the dynamic changes in behavior that occur throughout thymocyte development, and provide an overview of the cell-intrinsic and extrinsic mechanisms that regulate human thymocyte migration.
Collapse
Affiliation(s)
- Joanna Halkias
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, #3200, Berkeley, CA, 94720-3200, USA,
| | | | | | | |
Collapse
|
25
|
Pagenkemper M, Diemert A. Monitoring fetal immune development in human pregnancies: current concepts and future goals. J Reprod Immunol 2014; 104-105:49-53. [PMID: 25124491 DOI: 10.1016/j.jri.2014.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 12/16/2022]
Abstract
The vast majority of the current knowledge on immune development in the fetal period has been gained from animal studies, particularly from mouse models. This has led to a great improvement in our current understanding of immune ontogeny. However, it has also become clear that in many ways the mouse model of pregnancy differs from the situation in human pregnancy, such as the degree and importance of trophoblast invasion, the kind of MHC class repertoire of the extravillous trophoblast cells, and differences concerning the development and regulation of T-cells. It will be of paramount importance to develop non-invasive screening methods to assess fetal immune development in humans. The focus of this mini-review is to discuss how prenatal ultrasound evaluation can be used as a tool to monitor fetal immune development in human pregnancies. To identify the fetuses at risk of immune disorders could be the first step to developing prevention strategies in the future.
Collapse
Affiliation(s)
- Mirja Pagenkemper
- Department for Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Anke Diemert
- Department for Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
26
|
Active Wnt/beta-catenin signaling is required for embryonic thymic epithelial development and functionality ex vivo. Immunobiology 2014; 219:644-52. [PMID: 24768153 DOI: 10.1016/j.imbio.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
The Wnt/beta-catenin signaling pathway plays an important role in the commitment and development of thymic epithelial precursors. Here we document similarities of thymic epithelial development during embryogenesis in human and mouse. We stained for thymic epithelial surface markers (EpCAM1, Ly51, K8) and ligand/receptor pair (Wnt4, Fz4). Our results confirm the relevance of using murine test systems to model human embryonic thymic epithelial cell development. We have efficiently transduced murine embryonic epithelial cells using mock (GFP) and Wnt/beta-catenin-inhibiting (ICAT-encoding) recombinant adenoviral vectors. The effect of Wnt4 was assayed in the form of Wnt4-containing supernatant. Gene expressional changes were assessed by Q-PCR and also morphology using conventional and confocal fluorescent microscopy. Functional aberration caused by ICAT was assessed through evaluation of thymocyte maturation. Our results demonstrate that ICAT and Wnt4 have reciprocal effects during embryonic thymic epithelial cell development. While Wnt4 is capable of increasing the expression level of characteristic intracellular (FoxN1), surface (MHCII) and secreted (IL7) molecules, Wnt/beta-catenin inhibition through ICAT can moderately decrease their expression. Morphological changes induced by ICAT resulted in the development of hollow, inflated thymic lobes with reduced epithelial cell numbers. The ICAT-treated thymic lobes also showed significant impairment in supporting thymocyte development and maturation.
Collapse
|
27
|
Kallapur SG, Presicce P, Rueda CM, Jobe AH, Chougnet CA. Fetal immune response to chorioamnionitis. Semin Reprod Med 2014; 32:56-67. [PMID: 24390922 DOI: 10.1055/s-0033-1361823] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chorioamnionitis is a frequent cause of preterm birth and is associated with an increased risk for injury responses in the lung, gastrointestinal tract, brain, and other fetal organs. Chorioamnionitis is a polymicrobial nontraditional infectious disease because the organisms causing chorioamnionitis are generally of low virulence and colonize the amniotic fluid often for extended periods, and the host (mother and the fetus) does not have typical infection-related symptoms such as fever. In this review, we discuss the effects of chorioamnionitis in experimental animal models that mimic the human disease. Our focus is on the immune changes in multiple fetal organs and the pathogenesis of chorioamnionitis-induced injury in different fetal compartments. As chorioamnionitis disproportionately affects preterm infants, we discuss the relevant developmental context for the immune system. We also provide a clinical context for the fetal responses.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Pietro Presicce
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Cesar M Rueda
- Division of Immunobiology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Alan H Jobe
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati
| | - Claire A Chougnet
- Division of Immunobiology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
28
|
Farley AM, Morris LX, Vroegindeweij E, Depreter MLG, Vaidya H, Stenhouse FH, Tomlinson SR, Anderson RA, Cupedo T, Cornelissen JJ, Blackburn CC. Dynamics of thymus organogenesis and colonization in early human development. Development 2013; 140:2015-26. [PMID: 23571219 PMCID: PMC3631974 DOI: 10.1242/dev.087320] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus is the central site of T-cell development and thus is of fundamental importance to the immune system, but little information exists regarding molecular regulation of thymus development in humans. Here we demonstrate, via spatial and temporal expression analyses, that the genetic mechanisms known to regulate mouse thymus organogenesis are conserved in humans. In addition, we provide molecular evidence that the human thymic epithelium derives solely from the third pharyngeal pouch, as in the mouse, in contrast to previous suggestions. Finally, we define the timing of onset of hematopoietic cell colonization and epithelial cell differentiation in the human thymic primordium, showing, unexpectedly, that the first colonizing hematopoietic cells are CD45(+)CD34(int/-). Collectively, our data provide essential information for translation of principles established in the mouse to the human, and are of particular relevance to development of improved strategies for enhancing immune reconstitution in patients.
Collapse
Affiliation(s)
- Alison M Farley
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, CRM Building, 5 Little France Drive, Edinburgh
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Halkias J, Melichar HJ, Taylor KT, Ross JO, Yen B, Cooper SB, Winoto A, Robey EA. Opposing chemokine gradients control human thymocyte migration in situ. J Clin Invest 2013; 123:2131-42. [PMID: 23585474 DOI: 10.1172/jci67175] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/15/2013] [Indexed: 12/23/2022] Open
Abstract
The ordered migration of thymocytes from the cortex to the medulla is critical for the appropriate selection of the mature T cell repertoire. Most studies of thymocyte migration rely on mouse models, but we know relatively little about how human thymocytes find their appropriate anatomical niches within the thymus. Moreover, the signals that retain CD4+CD8+ double-positive (DP) thymocytes in the cortex and prevent them from entering the medulla prior to positive selection have not been identified in mice or humans. Here, we examined the intrathymic migration of human thymocytes in both mouse and human thymic stroma and found that human thymocyte subsets localized appropriately to the cortex on mouse thymic stroma and that MHC-dependent interactions between human thymocytes and mouse stroma could maintain the activation and motility of DP cells. We also showed that CXCR4 was required to retain human DP thymocytes in the cortex, whereas CCR7 promoted migration of mature human thymocytes to the medulla. Thus, 2 opposing chemokine gradients control the migration of thymocytes from the cortex to the medulla. These findings point to significant interspecies conservation in thymocyte-stroma interactions and provide the first evidence that chemokines not only attract mature thymocytes to the medulla, but also play an active role in retaining DP thymocytes in the cortex prior to positive selection.
Collapse
Affiliation(s)
- Joanna Halkias
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li B, Li J, Devlin BH, Markert ML. Thymic microenvironment reconstitution after postnatal human thymus transplantation. Clin Immunol 2011; 140:244-59. [PMID: 21565561 PMCID: PMC3159734 DOI: 10.1016/j.clim.2011.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 01/13/2023]
Abstract
A functional thymus develops after cultured thymus tissue is transplanted into subjects with complete DiGeorge anomaly. To gain insight into how the process occurs, 7 post-transplantation thymus biopsy tissues were evaluated. In 5 of 7 biopsies, the thymus appeared to be predominantly cortex with thymocytes expressing cortical markers. Unexpectedly, the epithelium expressed both cortical [cortical dendritic reticulum antigen 2 (CDR2)] and medullary [cytokeratin (CK) 14] markers. Early medullary development was suggested by epithelial cell adhesion molecule (EpCAM) reactivity in small areas of biopsies. Two other biopsies had distinct mature cortex and medulla with normal restriction of CK14 to the medulla and subcapsular cortex, and of CDR2 to cortex. These data are consistent with a model in which thymic epithelium contains CK14+ "progenitor epithelial cells". After transplantation these cells proliferate as CK14+CDR2+ thymic epithelial cells that are associated with cortical thymocytes. Later these cells differentiate into distinct cortical and medullary epithelia.
Collapse
Affiliation(s)
- Bin Li
- Department of Pediatrics, Duke University Medical Center
| | - Jie Li
- Department of Pediatrics, Duke University Medical Center
| | | | - M. Louise Markert
- Department of Pediatrics, Duke University Medical Center
- Department of Immunology, Duke University Medical Center
| |
Collapse
|
31
|
Abstract
The reticulo-epithelial (RE) cellular network of the thymic stromal cellular microenvironment plays a vital role in neuroendocrine regulation and lymphoid cell homing and development. Transmission electronmicroscopic observations have confirmed that there are four functional subtypes of medullar RE cells: undifferentiated; squamous; villous; and cystic. Immunocytochemical observations have shown that the secreted thymic hormones, thymosin alpha1 and thymopoietin (and its short form, thymopentin or TP5), are both produced by RE cells. Thymic RE cells also produce numerous cytokines, including IL-1 and -6, G-CSF, macrophage-CSF and GM-CSF that likely are important during the various stages of thymocyte activation and differentiation. The coexistence of pituitary hormone and neuropeptide secretion, such as growth hormone, prolactin, adrenocorticotopic hormone and thyroid-stimulating hormone, among many others, and the production of a number of interleukins and growth factors, as well as the expression of receptors for all, by the same RE cell, is an unique molecular biological phenomenon. The thymic RE cell network represents an important cellular and humoral microenvironment in the neuroendocrine homeopathic regulatory mechanisms of the multicellular organism.
Collapse
Affiliation(s)
- Bela Bodey
- University of Southern California, Department of Pathology, Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Průková D, Vernerová Z, Pilcík T, Stepanets V, Indrová M, Geryk J, Plachý J, Hejnar J, Svoboda J. Differences in pathogenicity among strains of the same or different avian leukosis virus subgroups. Avian Pathol 2007; 36:15-27. [PMID: 17364506 DOI: 10.1080/03079450601102921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient induction of wasting disease in chickens by avian leukosis virus (ALV), particularly ALV subgroup C, requires >102 infectious units virus inoculated in mid embryogenesis. The most conspicuous symptoms of the disease were induced by ALV subgroup C; however, significant differences in the occurrence of wasting disease were found among individual members of this subgroup. Almost comparable pathogenicity was exhibited by ALV subgroup D, whereas viruses of subgroups B and A proved to be moderately and almost non-pathogenic, respectively. Using antibodies to cellular antigens, tissue alterations were shown clearly in ALV-C-infected chickens. An essential feature was depletion of lymphocytes in the thymus, bursa and spleen. While the number of dendritic cells in the bursa was increased, their representation in the thymus and spleen was reduced. In the spleen, however, the reduction of dendritic cells concerned only an ellipsoid compartment, which in itself was also markedly reduced. An increased number of macrophages in the thymus and spleen corresponded with the observed general activation of the monocyte-macrophage system. In the spleen, CD4+ T cells were reduced while CD8+ T cells were increased. In agreement with this finding was a failure of chickens to respond to Brucella antigen and an inability of their splenocytes to respond to Concanavalin A, both of which pointed to the damage of immune reactivity. Variation in the pathogenicity among individual ALV strains provides ground for depicting gene sequences playing an important role in ALV acute pathogenicity.
Collapse
Affiliation(s)
- Dana Průková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 37, Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
T-cell development occurs principally in the thymus. Here, immature progenitor cells are guided through the differentiation and selection steps required to generate a complex T-cell repertoire that is both self-tolerant and has propensity to bind self major histocompatibility complex. These processes depend on an array of functionally distinct epithelial cell types within the thymic stroma, which have a common developmental origin in the pharyngeal endoderm. Here, we describe the structural and phenotypic attributes of the thymic stroma, and review current cellular and molecular understanding of thymus organogenesis.
Collapse
Affiliation(s)
- Craig S Nowell
- Institute for Stem Cell Research, University of Edinburgh, UK
| | | | | |
Collapse
|
34
|
Weerkamp F, de Haas EFE, Naber BAE, Comans-Bitter WM, Bogers AJJC, van Dongen JJM, Staal FJT. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol 2005; 115:834-40. [PMID: 15806007 DOI: 10.1016/j.jaci.2004.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND T-cell development in the thymus is an extensively studied subject, mainly in mice. Nevertheless, the normal composition and cell numbers of the noninvoluted human thymus are largely unknown. OBJECTIVE We aimed to gain insight into age-related changes in different thymic subpopulations and to provide reference values for the distribution of thymocyte subsets. The composition of the normal thymus may serve as a reference for thymi in pathological conditions and may aid diagnoses of immunodeficiency diseases. METHODS Thymic lobes of 70 children (58 immunologically normal and 12 diseased), ranging in age from 8 days to 8 years old, were studied by 4-color flow-cytometric analysis. Detailed staining and gating strategies allowed us to dissect small subsets, including immature CD4(-) CD8(-) populations and thymic B, natural killer, and T-cell receptor gammadelta + cells. RESULTS We demonstrate that distribution of thymocyte subsets changes with age and correlates with age-related fluctuations of T-lymphocyte counts in peripheral blood. Thymi of children 3 to 6 months old appear to be the most active: they have high numbers of total thymocytes, the highest percentage of double-positive cells, and large numbers of CD34 + progenitors in their thymi. Furthermore, we show that the human thymus is a site for B-cell development, because all B-cell progenitor stages that can be found in the bone marrow are also present in the thymus. CONCLUSION We conclude that T-cell development in children is a dynamic process, answering the demands of a maturing and expanding immune system.
Collapse
Affiliation(s)
- Floor Weerkamp
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Phenotypic characteristics of thymic micro-environment in WR-638-protected rats after whole-body irradiation: Epithelial cells. ACTA VET-BEOGRAD 2005. [DOI: 10.2298/avb0503085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Holsapple MP, West LJ, Landreth KS. Species comparison of anatomical and functional immune system development. ACTA ACUST UNITED AC 2004; 68:321-34. [PMID: 14666995 DOI: 10.1002/bdrb.10035] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The components of the immune system have not been traditionally emphasized as potential target organs in standard developmental and reproductive toxicity (DART) protocols. A number of workshops have been organized in recent years to examine scientific questions that underlie developmental immunotoxicity tests, and the interpretation of results as they relate to human risk assessment. A key question that must be addressed is to determine the most appropriate species and strains to model the developing human immune system. The objective of this review is to compare the anatomical and functional development of the immune system in several species important to either preclinical studies for drug development or safety assessments for chemicals, with what is known in humans. The development of the immune system in humans will be compared to what is known in mice, rats, dogs and nonhuman primates.
Collapse
Affiliation(s)
- Michael P Holsapple
- ILSI Health and Environmental Sciences Institute, Washington, DC 20005-5802, USA.
| | | | | |
Collapse
|
37
|
Abstract
Dogs play an important role in toxicology because of their importance as a large animal, pre-clinical model for evaluating potential toxicity in human drug development including the effects of investigational drugs on the immune system. The purpose of this paper is to review the development of the canine immune system during the fetal, neonatal and postnatal periods and to compare it with that of the human immune system. Unlike rodents, the development of the canine immune system shares many similarities to that of the human. In both dogs and humans, the immune system, including the mucosal immune system, is fully developed before birth although the maturity of the immune response may continue into the postnatal period.
Collapse
Affiliation(s)
- P J Felsburg
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
38
|
Mazzitelli N, Vauthay L, Grandi C, Fuksman R, Rittler M. Reviewing old concepts at the start of a new millenium: growth restriction, adrenal hypoplasia, and thymomegaly in human anencephaly. TERATOLOGY 2002; 66:105-14. [PMID: 12210471 DOI: 10.1002/tera.10053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Anencephaly has been associated frequently with intrauterine growth retardation (IUGR), consistently with adrenal hypoplasia, and occasionally with an enlarged thymus. Few studies have analyzed the relationship between gestational age (GA), IUGR, associated anomalies and thymomegaly in anencephaly. The aims of our study were to evaluate this relationship and to highlight the usefulness of anencephaly as a model when investigating immune-endocrine interactions. METHODS Fifty-two anencephalics' autopsies were reviewed retrospectively. Body weight, adrenal, and thymus weights were compared to prenatal, postnatal, and stillborn control values, and between associated and isolated anencephalic cases (presenting with and without other unrelated anomalies). Comparisons of adrenal and thymus weights were done by GA and by body weight. Thymus weight:body weight (TW:BW) ratios were compared to expected values. RESULTS Anencephalics' body and adrenal weights were lower than their control values, whereas thymus weights did not differ. Body and thymus weights were twice as high in isolated than in associated anencephaly, whereas adrenal weights did not differ. Anencephalics TW:BW ratios were higher than their control values, higher in cases with IUGR, and higher in isolated rather than associated cases. When distributed by GA, thymus weights in anencephaly increased at a higher-than-expected rate. CONCLUSIONS Our results suggest that adrenal hypoplasia is invariably present in anencephaly, and depending on an underdeveloped pituitary gland, seems to be independent of its etiology. On the contrary, IUGR mainly exists in associated cases and thymus enlargement mainly exists in isolated cases, suggesting a relationship with the underlying cause.
Collapse
Affiliation(s)
- Nancy Mazzitelli
- Unit of Pathology, Hospital Materno Infantil Ramón Sardá, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
39
|
Muench MO, Suskind DL, Bárcena A. Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver. Biol Proced Online 2002; 4:10-23. [PMID: 12734573 PMCID: PMC145552 DOI: 10.1251/bpo29] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 05/16/2002] [Accepted: 05/27/2002] [Indexed: 12/04/2022] Open
Abstract
The study of hematopoietic stem cells (HSCs) and the process by which they differentiate into committed progenitors has been hampered by the lack of in vitro clonal assays that can support erythroid, myeloid and lymphoid differentiation. We describe a method for the isolation from human fetal liver of highly purified candidate HSCs and progenitors based on the phenotypes CD38(-)CD34(++) and CD38(+)CD34(++), respectively. We also describe a method for the growth of colony-forming cells (CFCs) from these cell populations, under defined culture conditions, that supports the differentiation of erythroid, CD14/CD15(+) myeloid, CD1a(+) dendritic cell and CD56(+) NK cell lineages. Flow cytometric analyses of individual colonies demonstrate that CFCs with erythroid, myeloid and lymphoid potential are distributed among both the CD38(-) and CD38(+) populations of CD34(++) progenitors.
Collapse
Affiliation(s)
- Marcus O Muench
- Department of Laboratory Medicine, University of California at San Francisco. 3rd & Parnassus Ave., Room U-440; San Francisco, CA 94143-0793.
| | | | | |
Collapse
|
40
|
Oner H, Ozan E. Effects of gonadal hormones on thymus gland after bilateral ovariectomy and orchidectomy in rats. ARCHIVES OF ANDROLOGY 2002; 48:115-26. [PMID: 11868624 DOI: 10.1080/014850102317267427] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This study examined the histological changes that occurred in the thymus gland after gonadectomy and the administration of various sex steroids following gonadectomy. Male and female Wistar albino rats that were 6 weeks of age were used. The rats were subjected to bilaterally gonadectomy and then gonadal steroid hormones (testosterone, estrogen, and progesterone, 2.5 mg/kg) were given. Effects of gonadal steroid hormones on the thymus gland were microscopically examined. Thymic weight increased in all the groups after gonadectomy. Testosterone, estrogen, and estrogen + progesterone treatment decreased thymic weight after gonadectomy. Progesterone treatment also decreased weight, but there was no statistical significance. In the light microscopy, testosterone and estrogen treatment induced a loss of lymphoid elements from the thymic cortex, increased the number of phagocytic macrophages and mast cells, and enlarged blood vessels and connective tissue were observed in the thymic medulla. In the electron microscopic study it was observed that rough endoplasmic reticulum enlarged in the thymic lymphocytes. The same results were also found after estrogen + progesterone treatment. No histologically identifiable changes were observed in the thymus gland after progesterone treatment. This study demonstrated that the thymus gland undergoes involution after testosterone and estrogen treatment, but not progesterone, following gonadectomy.
Collapse
Affiliation(s)
- H Oner
- Firat University, Faculty of Medicine, Department of Histology and Embryology, Elaziğ, Turkey.
| | | |
Collapse
|
41
|
Glavina-Durdov M, Forempoher G. Thymus tissue in ovarian cystic teratoma: possible clues to its histogenesis. Pathol Res Pract 2001; 196:795-797; discussion 798-9. [PMID: 11186178 DOI: 10.1016/s0344-0338(00)80116-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Thymus tissue was found in a mature cystic teratoma in conjunction with respiratory tissues. Its immunohistochemical pattern of CD99, CD3, CD68 and cytokeratins was that of the normal thymus. The main point raised by this unusual case concerns the origin of its T lymphocytes from either a tumor (parthenogenetic origin) or a secondary colonization of the teratoma from host T cells.
Collapse
|
42
|
Parrens M, Dubus P, Groppi A, Velly JF, Labouyrie E, de Mascarel A, Merlio JP. Differential expression of NGF receptors in human thymic epithelial tumors. Pathol Res Pract 1999; 195:549-53. [PMID: 10483585 DOI: 10.1016/s0344-0338(99)80004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NGF receptor (TrkA and p75NGFR) expression was investigated in human thymuses, including normal thymuses, thymic hyperplasias, thymomas and thymic carcinomas. TrkAI but not TrkAII transcripts were demonstrated by RT-PCR. In normal thymuses, immunohistochemistry revealed a restricted TrkA-immunoreactivity to epithelial and interdigitated reticular cells, while only interdigitaded reticular cells were immunoreactive for p75NGFR. Thymocytes were negative for both receptors. A switch from the normal TrkA positive-p75NGFR negative phenotype to a TrkA negative-p75NGFR positive phenotype was found in histologically aggressive epithelial cell tumors, suggesting that NGF and its receptors are potentially involved in thymus stroma organogenesis and proliferation.
Collapse
Affiliation(s)
- M Parrens
- Laboratoire d'Histologie-Embryologie, CHU de Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Vacca A, Di Marcotullio L, Giannini G, Farina M, Scarpa S, Stoppacciaro A, Calce A, Maroder M, Frati L, Screpanti I, Gulino A. Thrombospondin-1 is a mediator of the neurotypic differentiation induced by EGF in thymic epithelial cells. Exp Cell Res 1999; 248:79-86. [PMID: 10094815 DOI: 10.1006/excr.1999.4394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymic epithelial cell component originates from cranial neural crest as well as from endoderm and ectoderm of the third pharyngeal pouch and branchial cleft. Epidermal growth factor (EGF) has been previously shown to play a crucial role in directing thymic epithelial cells toward a neural-oriented cell fate. To identify genes that are involved in the EGF-induced neurotypic differentiation of the thymic stroma-derived TC-1S cell line, we studied EGF-treated and untreated cells by RNA fingerprinting PCR-based differential screening. We obtained 23 distinct sequences including 18 known genes and 5 sequences previously unreported, which are currently under characterization. Here, we describe the involvement of one of the isolated genes, the thrombospondin-1, as a mediator of the neurotypic differentiation induced by EGF in TC-1S cells. We show that thrombospondin-1 mRNA and protein levels are increased by EGF. Moreover, exogenous thrombospondin-1 is able to enhance the outgrowth of neurite-like processes as well as the expression of neurofilaments and neural cell adhesion molecule in TC-1S cells. These observations suggest that the up-regulation of thrombospondin-1 synthesis induced by EGF contributes to the differentiation choice of thymic epithelial cells toward a neural fate, reminiscent of their neural crest origin.
Collapse
Affiliation(s)
- A Vacca
- Department of Experimental Medicine and Pathology, University "La Sapienza" of Rome, Rome, 00161, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Parrens M, Labouyrie E, Groppi A, Dubus P, Carles D, Velly JF, de Mascarel A, Merlio JP. Expression of NGF receptors in normal and pathological human thymus. J Neuroimmunol 1998; 85:11-21. [PMID: 9626993 DOI: 10.1016/s0165-5728(97)00242-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of NGF receptors was investigated in normal human thymus and in thymic hyperplasias, thymomas and thymic carcinomas. By RT-PCR, we detected TrkAI transcripts encoding for the high-affinity NGF receptor. Western blot analysis showed the presence of both TrkA and p75NGFR proteins. In normal thymuses, epithelial subcapsular and medullar cells were TrkA immunoreactive. Interdigitated medullar cells were stained for both TrkA and p75NGFR. While epithelial cells of normal thymuses or benign thymomas exhibited a TrkA positive-p75NGFR negative phenotype, a switch to a TrkA negative-p75NGFR positive phenotype was observed in malignant epithelial cell tumours and was associated with cell proliferation-associated MIB1 expression. Our results argue for a local role of NGF and its receptors on thymic stromal cells both in normal and neoplastic conditions.
Collapse
Affiliation(s)
- M Parrens
- Laboratoire d'Histologie-Embryologie, UFR III, Service d'Anatomie Pathologique, CHU de Bordeaux et Université de Bordeaux 2, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Livant EJ, Welles EG, Ewald SJ. Chronic Ethanol Exposure Alters Leukocyte Subsets in Repopulating Spleens, But Does Not Alter Negative Selection in Thymuses of Sublethally Irradiated Mice. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb04484.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Suster S, Moran CA, Chan JK. Thymoma with pseudosarcomatous stroma: report of an unusual histologic variant of thymic epithelial neoplasm that may simulate carcinosarcoma. Am J Surg Pathol 1997; 21:1316-23. [PMID: 9351569 DOI: 10.1097/00000478-199711000-00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Six cases are described of an unusual type of primary thymic epithelial neoplasm characterized by a biphasic epithelial/spindle cell morphology that closely resembled a carcinosarcoma. The patients were two women and four men 28-70 years of age. The tumors presented clinically as asymptomatic anterior mediastinal masses found incidentally on routine chest radiographs. All patients were treated by complete surgical excision. Grossly, the tumors consisted of well-circumscribed, encapsulated masses that measured 6-14 cm in greatest diameter and showed a gray-white, homogeneous, rubbery cut surface. Histologically, the lesions were composed of anastomosing islands and cords of oval to polygonal epithelial cells displaying large nuclei with occasional prominent nucleoli and rare mitotic figures, separated by areas containing a highly cellular spindle cell proliferation without nuclear atypia. Thymic remnants could be identified in the periphery of the lesions in four cases. Immunohistochemical stains showed diffuse strong positivity for keratin and focally for epithelial membrane antigen (EMA) in the epithelial cell component, and strong positivity for vimentin and focally for actin in the spindle cell stromal component. Stains for keratin, EMA, desmin, S-100 protein, and CD34 were negative in the spindle stromal cells in all cases except one, in which EMA positivity was present; CD5 stains were negative in the epithelial cells in all cases examined. Electron microscopic examination in one case showed well-formed desmosomes and tonofilaments in the epithelial elements, as well as features indicative of fibroblastic differentiation in the spindle stromal cells. Because of the unusually florid spindle cell stromal component and the focally atypical features of the epithelial cells, some of these tumors initially were misinterpreted as examples of carcinosarcoma. Clinical follow-up in five cases showed that the patients were alive and without evidence of disease over a period of 5-20 years (mean follow-up 10 years), suggesting a benign or very low grade malignant biologic behavior. The present cases appear to represent an unusual, previously undescribed morphologic variant of thymoma characterized by a prominent pseudosarcomatous stromal component. Because of the distinctive histologic appearance and indolent clinical behavior, these lesions should be distinguished from other more aggressive anterior mediastinal neoplasms displaying a biphasic morphology.
Collapse
Affiliation(s)
- S Suster
- Arkadi M. Rywlin Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center and University of Miami School of Medicine, Florida 33140, USA
| | | | | |
Collapse
|
47
|
Mihovilovic M, Denning S, Mai Y, Whichard LP, Patel DD, Roses AD. Thymocytes and cultured thymic epithelial cells express transcripts encoding alpha-3, alpha-5 and beta-4 subunits of neuronal nicotinic acetylcholine receptors: preferential transcription of the alpha-3 and beta-4 genes by immature CD4 + 8 + thymocytes. J Neuroimmunol 1997; 79:176-84. [PMID: 9394790 DOI: 10.1016/s0165-5728(97)00120-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thymic tissues express transcripts encoding the alpha-3, alpha-5 and beta-4 subunits of nicotinic neuronal acetylcholine receptors (AcChRs) suggesting that neuronal AcChRs similar to those expressed in ganglia are expressed in the thymus. Transcription occurs in both isolated thymocytes and thymic epithelial cells. RT-PCR analyses of thymocyte subsets indicate that immature CD4 + 8 + thymocytes express higher levels of the alpha-3 and beta-4 transcripts than more mature thymocytes. Compared to freshly isolated thymocytes, peripheral blood lymphocytes do not express alpha-3 and beta-4 AcChR subunit transcripts. Cultured thymocytes rapidly down-regulate transcription of the alpha-3 and beta-4 AcChR subunit genes by a process that is not reversed by stimulation with phytohemagglutinin and IL-2. Thus our results indicate that there is transcriptional regulation of neuronal AcChR subunit genes during the process of thymocyte maturation and that factors within the thymic microenvironment influence expression of the alpha-3 and beta-4 AcChR subunit genes by developing T cells.
Collapse
Affiliation(s)
- M Mihovilovic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The recipients of hematopoietic stem cell transplants are characterized by an immunodeficiency of varying severity and duration. Their immunoincompetence is due in part to: 1) a lack of sustained transfer of donor immunity, 2) a recapitulation of lymphoid ontogeny, 3) the effects of graft-versus-host disease and its therapy, and 4) a reduction in thymic function. Recipients can have delays in the production of naive T lymphocytes following transplantation which result in defects in the production of new antigen-specific T lymphocytes and an inability to produce antibodies, especially to carbohydrate antigens.
Collapse
Affiliation(s)
- R Parkman
- Division of Research Immunology/Bone Marrow Transplantation, Children's Hospital, Los Angeles, CA 90027, USA. rparkman%
| | | |
Collapse
|
49
|
Davis CM, McLaughlin TM, Watson TJ, Buckley RH, Schiff SE, Hale LP, Haynes BF, Markert ML. Normalization of the peripheral blood T cell receptor V beta repertoire after cultured postnatal human thymic transplantation in DiGeorge syndrome. J Clin Immunol 1997; 17:167-75. [PMID: 9083893 DOI: 10.1023/a:1027382600143] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complete DiGeorge syndrome is an immunodeficiency disease characterized by thymic aplasia and the absence of functioning peripheral T cells. A patient with this syndrome was transplanted with cultured postnatal human thymic tissue. Within 5 weeks of transplantation, flow cytometry, T cell receptor V beta sequence analysis, and cell function studies showed the presence of oligoclonal populations of nonfunctional clonally expanded peripheral T cells that were derived from pretransplantation T cells present in the skin. However, at 3 months posttransplantation, a biopsy of the transplanted thymus showed normal intrathymic T cell maturation of host T cells with normal TCR V beta expression on thymocytes. By 9 months postransplantation, peripheral T cell function was restored and the TCR V beta repertoire became polyclonal, coincident with the appearance of normal T cell function. These data suggest that the transplanted thymus was responsible for the establishment of a new T cell repertoire via thymopoiesis in the chimeric thymic graft.
Collapse
Affiliation(s)
- C M Davis
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Montecino-Rodriguez E, Dorshkind K. Thymocyte development in vitro: implications for studies of ageing and thymic involution. Mech Ageing Dev 1997; 93:47-57. [PMID: 9089570 DOI: 10.1016/s0047-6374(96)01818-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Functional defects that accumulate in the T cell compartment are thought to be responsible for the pronounced immunodeficiency that develops during ageing, and reduced production of T cells by the thymus as it undergoes involution has been suggested to contribute to this phenomenon. Understanding the mechanisms responsible for thymic involution requires a thorough knowledge of how thymopoiesis is regulated. Obtaining such information is dependent upon the availability of defined experimental systems that permit analysis of thymopoiesis at the cellular and molecular levels. Recent advances have been made in the development of such human and murine in vitro systems, and their analysis has the potential to identify thymic microenvironmental signals that regulate T cell production. This information should, in turn, provide a basis for understanding changes in thymopoiesis that occur during ageing. The features of these culture systems are reviewed in this article, and their potential application to the study of T cell production during ageing is discussed.
Collapse
Affiliation(s)
- E Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles 90025, USA
| | | |
Collapse
|