1
|
Georgiades E, Harrold C, Roberts N, Kassouf M, Riva SG, Sanders E, Downes D, Francis HS, Blayney J, Oudelaar AM, Milne TA, Higgs D, Hughes JR. Active regulatory elements recruit cohesin to establish cell specific chromatin domains. Sci Rep 2025; 15:11780. [PMID: 40189615 PMCID: PMC11973168 DOI: 10.1038/s41598-025-96248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
As the 3D structure of the genome is analysed at ever increasing resolution it is clear that there is considerable variation in the 3D chromatin architecture across different cell types. It has been proposed that this may, in part, be due to increased recruitment of cohesin to activated cis-elements (enhancers and promoters) leading to cell-type specific loop extrusion underlying the formation of new sub-TADs. Here we show that cohesin correlates well with the presence of active enhancers and that this varies in an allele-specific manner with the presence or absence of polymorphic enhancers which vary from one individual to another. Using the alpha globin cluster as a model, we show that when all enhancers are removed, peaks of cohesin disappear from these regions and the erythroid specific sub-TAD is no longer formed. Re-insertion of the major alpha globin enhancer (R2) is associated with re-establishment of recruitment and increased interactions. In complementary experiments insertion of the R2 enhancer element into a "neutral" region of the genome recruits cohesin, induces transcription and creates a new large (75 kb) erythroid-specific domain. Together these findings support the proposal that active enhancers recruit cohesin, stimulate loop extrusion and promote the formation of cell specific sub-TADs.
Collapse
Affiliation(s)
- Emily Georgiades
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Caroline Harrold
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Simone G Riva
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edward Sanders
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Helena S Francis
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joseph Blayney
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
3
|
Blayney JW, Francis H, Rampasekova A, Camellato B, Mitchell L, Stolper R, Cornell L, Babbs C, Boeke JD, Higgs DR, Kassouf M. Super-enhancers include classical enhancers and facilitators to fully activate gene expression. Cell 2023; 186:5826-5839.e18. [PMID: 38101409 PMCID: PMC10858684 DOI: 10.1016/j.cell.2023.11.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 07/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.
Collapse
Affiliation(s)
- Joseph W Blayney
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Helena Francis
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Alexandra Rampasekova
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Brendan Camellato
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Leslie Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Rosa Stolper
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Lucy Cornell
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Chinese Academy of Medical Sciences Oxford Institute, Oxford OX3 7BN, UK.
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
4
|
Das R, Harper L, Kitajima K, Osman TAH, Cimpan MR, Johannssen AC, Suliman S, Mackenzie IC, Costea DE. Embryonic Stem Cells Can Generate Oral Epithelia under Matrix Instruction. Int J Mol Sci 2023; 24:ijms24097694. [PMID: 37175400 PMCID: PMC10177836 DOI: 10.3390/ijms24097694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023] Open
Abstract
We aimed to investigate whether molecular clues from the extracellular matrix (ECM) can induce oral epithelial differentiation of pluripotent stem cells. Mouse embryonic stem cells (ESC) of the feeder-independent cell line E14 were used as a model for pluripotent stem cells. They were first grown in 2D on various matrices in media containing vitamin C and without leukemia inhibitory factor (LIF). Matrices investigated were gelatin, laminin, and extracellular matrices (ECM) synthesized by primary normal oral fibroblasts and keratinocytes in culture. Differentiation into epithelial lineages was assessed by light microscopy, immunocytochemistry, and flow cytometry for cytokeratins and stem cell markers. ESC grown in 2D on various matrices were afterwards grown in 3D organotypic cultures with or without oral fibroblasts in the collagen matrix and examined histologically and by immunohistochemistry for epithelial (keratin pairs 1/10 and 4/13 to distinguish epidermal from oral epithelia and keratins 8,18,19 to phenotype simple epithelia) and mesenchymal (vimentin) phenotypes. ECM synthesized by either oral fibroblasts or keratinocytes was able to induce, in 2D cultures, the expression of cytokeratins of the stratified epithelial phenotype. When grown in 3D, all ESC developed into two morphologically distinct cell populations on collagen gels: (i) epithelial-like cells organized in islands with occasional cyst- or duct-like structures and (ii) spindle-shaped cells suggestive of mesenchymal differentiation. The 3D culture on oral fibroblast-populated collagen matrices was necessary for further differentiation into oral epithelia. Only ESC initially grown on 2D keratinocyte or fibroblast-synthesized matrices reached full epithelial maturation. In conclusion, ESC can generate oral epithelia under matrix instruction.
Collapse
Affiliation(s)
- Ridhima Das
- Gade Laboratory for Pathology and Center for Cancer Biomarkers CCBIO, Institute for Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Lisa Harper
- Institute for Cell and Molecular Science, Queen Mary University of London, London E1 4NS, UK
| | - Kayoko Kitajima
- Department of Endodontics, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan
| | | | | | - Anne Chr Johannssen
- Gade Laboratory for Pathology and Center for Cancer Biomarkers CCBIO, Institute for Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, University of Bergen, 5020 Bergen, Norway
| | - Ian C Mackenzie
- Institute for Cell and Molecular Science, Queen Mary University of London, London E1 4NS, UK
| | - Daniela-Elena Costea
- Gade Laboratory for Pathology and Center for Cancer Biomarkers CCBIO, Institute for Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
5
|
Jeziorska DM, Tunnacliffe EAJ, Brown JM, Ayyub H, Sloane-Stanley J, Sharpe JA, Lagerholm BC, Babbs C, Smith AJH, Buckle VJ, Higgs DR. On-microscope staging of live cells reveals changes in the dynamics of transcriptional bursting during differentiation. Nat Commun 2022; 13:6641. [PMID: 36333299 PMCID: PMC9636426 DOI: 10.1038/s41467-022-33977-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Determining the mechanisms by which genes are switched on and off during development is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate. To investigate this, using an on-microscope analysis, we monitored mouse α-globin transcription in live cells throughout erythropoiesis. We find that changes in the overall levels of α-globin transcription are most closely associated with changes in the fraction of time a gene spends in the active transcriptional state. We identify differences in the patterns of transcriptional bursting throughout differentiation, with maximal transcriptional activity occurring in the mid-phase of differentiation. Early in differentiation, we observe increased fluctuation in transcriptional activity whereas at the peak of gene expression, in early erythroblasts, transcription is relatively stable. Later during differentiation as α-globin expression declines, we again observe more variability in transcription within individual cells. We propose that the observed changes in transcriptional behaviour may reflect changes in the stability of active transcriptional compartments as gene expression is regulated during differentiation.
Collapse
Affiliation(s)
- D M Jeziorska
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nucleome Therapeutics Ltd., BioEscalator, The Innovation Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - E A J Tunnacliffe
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J M Brown
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - H Ayyub
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J Sloane-Stanley
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J A Sharpe
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - B C Lagerholm
- Wolfson Imaging Centre, MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- The Kennedy Institute Of Rheumatology, University of Oxford, Old Road Campus, Oxford, OX3 7FY, UK
| | - C Babbs
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - A J H Smith
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - V J Buckle
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - D R Higgs
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK.
| |
Collapse
|
6
|
Francis HS, Harold CL, Beagrie RA, King AJ, Gosden ME, Blayney JW, Jeziorska DM, Babbs C, Higgs DR, Kassouf MT. Scalable in vitro production of defined mouse erythroblasts. PLoS One 2022; 17:e0261950. [PMID: 34995303 PMCID: PMC8741028 DOI: 10.1371/journal.pone.0261950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios.
Collapse
Affiliation(s)
- Helena S. Francis
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Caroline L. Harold
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew E. Gosden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Joseph W. Blayney
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Danuta M. Jeziorska
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R. Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mira T. Kassouf
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Prasad R, Jung H, Tan A, Song Y, Moon S, Shaker MR, Sun W, Lee J, Ryu H, Lim HK, Jho EH. Hypermethylation of Mest promoter causes aberrant Wnt signaling in patients with Alzheimer's disease. Sci Rep 2021; 11:20075. [PMID: 34625606 PMCID: PMC8501037 DOI: 10.1038/s41598-021-99562-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and behavioral changes. Extracellular deposition of amyloid plaques (Aβ) and intracellular deposition of neurofibrillary tangles in neurons are the major pathogenicities of AD. However, drugs targeting these therapeutic targets are not effective. Therefore, novel targets for the treatment of AD urgently need to be identified. Expression of the mesoderm-specific transcript (Mest) is regulated by genomic imprinting, where only the paternal allele is active for transcription. We identified hypermethylation on the Mest promoter, which led to a reduction in Mest mRNA levels and activation of Wnt signaling in brain tissues of AD patients. Mest knockout (KO) using the CRIPSR/Cas9 system in mouse embryonic stem cells and P19 embryonic carcinoma cells leads to neuronal differentiation arrest. Depletion of Mest in primary hippocampal neurons via lentivirus expressing shMest or inducible KO system causes neurodegeneration. Notably, depletion of Mest in primary cortical neurons of rats leads to tau phosphorylation at the S199 and T231 sites. Overall, our data suggest that hypermethylation of the Mest promoter may cause or facilitate the progression of AD.
Collapse
Affiliation(s)
- Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hwajin Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yonghee Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sungho Moon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
8
|
Prieto J, García-Cañaveras JC, León M, Sendra R, Ponsoda X, Izpisúa Belmonte JC, Lahoz A, Torres J. c-MYC Triggers Lipid Remodelling During Early Somatic Cell Reprogramming to Pluripotency. Stem Cell Rev Rep 2021; 17:2245-2261. [PMID: 34476741 PMCID: PMC8599373 DOI: 10.1007/s12015-021-10239-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Metabolic rewiring and mitochondrial dynamics remodelling are hallmarks of cell reprogramming, but the roles of the reprogramming factors in these changes are not fully understood. Here we show that c-MYC induces biosynthesis of fatty acids and increases the rate of pentose phosphate pathway. Time-course profiling of fatty acids and complex lipids during cell reprogramming using lipidomics revealed a profound remodelling of the lipid content, as well as the saturation and length of their acyl chains, in a c-MYC-dependent manner. Pluripotent cells displayed abundant cardiolipins and scarce phosphatidylcholines, with a prevalence of monounsaturated acyl chains. Cells undergoing cell reprogramming showed an increase in mitochondrial membrane potential that paralleled that of mitochondrial-specific cardiolipins. We conclude that c-MYC controls the rewiring of somatic cell metabolism early in cell reprogramming by orchestrating cell proliferation, synthesis of macromolecular components and lipid remodelling, all necessary processes for a successful phenotypic transition to pluripotency.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Marian León
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Ramón Sendra
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain
| | | | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain. .,Instituto de Investigación Sanitaria (INCLIVA), 46010, Valencia, Spain.
| |
Collapse
|
9
|
Ariyath A, Kanthi JM, Paul-Prasanth B. Differentiation Potential of Cultured Extracellular DEAD-Box Helicase 4+ Oogonial Stem Cells from Adult Human Ovaries into Somatic Lineages. Cells Tissues Organs 2021; 211:577-588. [PMID: 34412061 DOI: 10.1159/000519087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ajish Ariyath
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Janu Mangala Kanthi
- Department of Gynaecology and Obstetrics, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bindhu Paul-Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
10
|
Tan A, Prasad R, Jho EH. TFEB regulates pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy-lysosomal biogenesis. Cell Death Dis 2021; 12:343. [PMID: 33795648 PMCID: PMC8016867 DOI: 10.1038/s41419-021-03632-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Transcription factor EB (TFEB), a well-known master regulator of autophagy and lysosomal biogenesis, is a member of the microphthalmia family of transcription factors (MiT family). Over the years, TFEB has been shown to have diverse roles in various physiological processes such as clearance for intracellular pathogenic factors and having developmental functions such as dendritic maturation, as well as osteoclast, and endoderm differentiation. However, in the present study, we propose a novel mechanism for TFEB governing pluripotency of mouse ESCs (mESCs) by regulating the pluripotency transcriptional network (PTN) in these cells. We observed high levels of TFEB mRNA and protein levels in undifferentiated mESCs. Interestingly, we found a reduction of Nanog and Sox2 levels in TFEB knockout (KO) mESCs while pluripotency was maintained as there was an upregulation of TFE3, a potent stem cell maintenance factor. In consistent, double knockout of TFEB/TFE3 (TFEB/3 DKO) reduced mESC pluripotency, as indicated by the loss of ESC morphology, reduction of ESC markers, and the emergence of differentiation markers. We further discovered that Nanog was a TFEB target gene in undifferentiated mESCs. TFEB also promoted sex-determining region Y-box2 (Sox2) transcription by forming a heterodimer with Sox2 in mESCs. Notably, Sox2, Oct4, and Nanog were also binding to the TFEB promoter and thus generating a feed-forward loop in relation to TFEB. Although high levels of nuclear TFEB are expected to enhance autophagy-lysosomal activity, undifferentiated mESC remarkably displayed low basal autophagy-lysosomal activity. Overexpression or knockout of TFEB did not affect the expression of TFEB lysosomal-autophagy target genes and TFEB also had a lesser binding affinity to its own lysosomal promoter-target genes in mESCs compared to differentiated cells. Collectively, these findings define a newly incorporative, moonlighting function for TFEB in regulating PTN, independent of its autophagy-lysosomal biogenesis roles.
Collapse
Affiliation(s)
- Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| | - Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea.
| |
Collapse
|
11
|
Rao C, Malaguti M, Mason JO, Lowell S. The transcription factor E2A drives neural differentiation in pluripotent cells. Development 2020; 147:dev184093. [PMID: 32487737 PMCID: PMC7328008 DOI: 10.1242/dev.184093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
The intrinsic mechanisms that link extracellular signalling to the onset of neural differentiation are not well understood. In pluripotent mouse cells, BMP blocks entry into the neural lineage via transcriptional upregulation of inhibitor of differentiation (Id) factors. We have previously identified the major binding partner of Id proteins in pluripotent cells as the basic helix-loop-helix (bHLH) transcription factor (TF) E2A. Id1 can prevent E2A from forming heterodimers with bHLH TFs or from forming homodimers. Here, we show that overexpression of a forced E2A homodimer is sufficient to drive robust neural commitment in pluripotent cells, even under non-permissive conditions. Conversely, we find that E2A null cells display a defect in their neural differentiation capacity. E2A acts as an upstream activator of neural lineage genes, including Sox1 and Foxd4, and as a repressor of Nodal signalling. Our results suggest a crucial role for E2A in establishing neural lineage commitment in pluripotent cells.
Collapse
Affiliation(s)
- Chandrika Rao
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - John O Mason
- Centre for Discovery Brain Sciences, University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
12
|
Calvo-Sánchez MI, Fernández-Martos S, Carrasco E, Moreno-Bueno G, Bernabéu C, Quintanilla M, Espada J. A role for the Tgf-β/Bmp co-receptor Endoglin in the molecular oscillator that regulates the hair follicle cycle. J Mol Cell Biol 2020; 11:39-52. [PMID: 30239775 PMCID: PMC6359924 DOI: 10.1093/jmcb/mjy051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
The hair follicle is a biological oscillator that alternates growth, regression, and rest phases driven by the sequential activation of the proliferation/differentiation programs of resident stem cell populations. The activation of hair follicle stem cell niches and subsequent entry into the growing phase is mainly regulated by Wnt/β-catenin signalling, while regression and resting phases are mainly regulated by Tgf-β/Bmp/Smad activity. A major question still unresolved is the nature of the molecular switch that dictates the coordinated transition between both signalling pathways. Here we have focused on the role of Endoglin (Eng), a key co-receptor for members of the Tgf-β/Bmp family of growth factors. Using an Eng haploinsufficient mouse model, we report that Eng is required to maintain a correct follicle cycling pattern and for an adequate stimulation of hair follicle stem cell niches. We further report that β-catenin binds to the Eng promoter depending on Bmp signalling. Moreover, we show that β-catenin interacts with Smad4 in a Bmp/Eng-dependent context and both proteins act synergistically to activate Eng promoter transcription. These observations point to the existence of a growth/rest switching mechanism in the hair follicle that is based on an Eng-dependent feedback cross-talk between Wnt/β-catenin and Bmp/Smad signals.
Collapse
Affiliation(s)
- María I Calvo-Sánchez
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | | | - Elisa Carrasco
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gema Moreno-Bueno
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jesús Espada
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC)-Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O´Higgins, Santiago, Chile
| |
Collapse
|
13
|
Sato S, Kikuchi T, Nishimura Y, Yugami Y, Sakuraoka M, Kita Y, Fukuda T, Kobayashi M. Generation of mouse iPS cells using an inducible expression of transgenes via the cumate gene-switch. Anal Biochem 2020; 599:113748. [PMID: 32333903 DOI: 10.1016/j.ab.2020.113748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/18/2020] [Indexed: 11/19/2022]
Abstract
We applied an inducible gene expression system that utilizes the p-cmt operon, the cumate gene-switch, to generate mouse induced pluripotent stem (iPS) cells. Mouse embryonic fibroblast (MEF) E6E7-MEF cells were transfected with a single cumate gene-switch vector enabling concomitant expression of Oct4, Sox2, c-Myc, Klf4, and Gfp. Then, the cells were cultured with cumate, a monoterpene. An increase in colonies positive for alkaline phosphatase activity was observed dose-dependently with cumate. In the absence of cumate, the expression of GFP, a marker for transgene expression, was undetectable in tightly aggregated iPS cell-like colonies with endogenous expression of NANOG and OCT4. From primary MEFs using the cumate gene-switch, we also isolated iPS cells expressing endogenous NANOG, OCT4, SOX2, KLF4, and SSEA1 with hypo-methylated genomic promoter regions of endogenous Nanog and Oct4. In embryoid bodies with the progression of differentiation, expression of markers for all three germ layers was detected, and contracting cardiomyocytes were observed. Overall, we suggest that the cumate gene-switch is applicable for the generation of mouse iPS cells. The cumate gene-switch in combination with other inducible systems, such as the tet system, may provide useful approaches for analyzing the roles of transgenes underlying the establishment of iPS cells.
Collapse
Affiliation(s)
- Suguru Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Takahiro Kikuchi
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Yuka Nishimura
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Yoshimi Yugami
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Mizuki Sakuraoka
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Yuto Kita
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Masayuki Kobayashi
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidoh-batanishi, Shimoshinjho Nakano, Akita 010-0195, Japan.
| |
Collapse
|
14
|
Tripathi J, Segeritz CP, Griffiths G, Bushell W, Vallier L, Skarnes WC, Mota MM, Billker O. A Novel Chemically Differentiated Mouse Embryonic Stem Cell-Based Model to Study Liver Stages of Plasmodium berghei. Stem Cell Reports 2020; 14:1123-1134. [PMID: 32442532 PMCID: PMC7355138 DOI: 10.1016/j.stemcr.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
Asymptomatic and obligatory liver stage (LS) infection of Plasmodium parasites presents an attractive target for antimalarial vaccine and drug development. Lack of robust cellular models to study LS infection has hindered the discovery and validation of host genes essential for intrahepatic parasite development. Here, we present a chemically differentiated mouse embryonic stem cell (ESC)-based LS model, which supports complete development of Plasmodium berghei exoerythrocytic forms (EEFs) and can be used to define new host-parasite interactions. Using our model, we established that host Pnpla2, coding for adipose triglyceride lipase, is dispensable for P. berghei EEF development. In addition, we also evaluated in-vitro-differentiated human hepatocyte-like cells (iHLCs) to study LS of P. berghei and found it to be a sub-optimal infection model. Overall, our results present a new mouse ESC-based P. berghei LS infection model that can be utilized to study the impact of host genetic variation on parasite development.
Collapse
Affiliation(s)
- Jaishree Tripathi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Charis-Patricia Segeritz
- Wellcome Trust and Medical Research Council Stem Cell Institute, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Gareth Griffiths
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Wendy Bushell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Wellcome Trust and Medical Research Council Stem Cell Institute, Department of Surgery, University of Cambridge, Cambridge, UK
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Ten Discovery Drive, Farmington, CT 06032, USA
| | - Maria M Mota
- Unidade de Malária, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Molecular Infection Medicine Sweden and Molecular Biology Department, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
15
|
Fernandes MB, Costa M, Ribeiro MF, Siquenique S, Sá Santos S, Martins J, Coelho AV, Silva MFB, Rodrigues CMP, Solá S. Reprogramming of Lipid Metabolism as a New Driving Force Behind Tauroursodeoxycholic Acid-Induced Neural Stem Cell Proliferation. Front Cell Dev Biol 2020; 8:335. [PMID: 32582686 PMCID: PMC7286385 DOI: 10.3389/fcell.2020.00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recent evidence suggests that neural stem cell (NSC) fate is highly dependent on mitochondrial bioenergetics. Tauroursodeoxycholic acid (TUDCA), an endogenous neuroprotective bile acid and a metabolic regulator, stimulates NSC proliferation and enhances adult NSC pool in vitro and in vivo. In this study, we dissected the mechanism triggered by this proliferation-inducing molecule, namely in mediating metabolic reprogramming. Liquid chromatography coupled with mass spectrometry (LC-MS) based detection of differential proteomics revealed that TUDCA reduces the mitochondrial levels of the long-chain acyl-CoA dehydrogenase (LCAD), an enzyme crucial for β-oxidation of long-chain fatty acids (FA). TUDCA impact on NSC mitochondrial proteome was further confirmed, including in neurogenic regions of adult rats. We show that LCAD raises throughout NSC differentiation, while its silencing promotes NSC proliferation. In contrast, nuclear levels of sterol regulatory element-binding protein (SREBP-1), a major transcription factor of lipid biosynthesis, changes in the opposite manner of LCAD, being upregulated by TUDCA. In addition, alterations in some metabolic intermediates, such as palmitic acid, also supported the TUDCA-induced de novo lipogenesis. More interestingly, a metabolic shift from FA to glucose catabolism appears to occur in TUDCA-treated NSCs, since mitochondrial levels of pyruvate dehydrogenase E1-α (PDHE1-α) were significant enhanced by TUDCA. At last, the mitochondria-nucleus translocation of PDHE1-α was potentiated by TUDCA, associated with an increase of H3-histones and acetylated forms. In conclusion, TUDCA-induced proliferation of NSCs involves metabolic plasticity and mitochondria-nucleus crosstalk, in which nuclear PDHE1-α might be required to assure pyruvate-derived acetyl-CoA for histone acetylation and NSC cycle progression.
Collapse
Affiliation(s)
- Marta B Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Márcia Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Filipe Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Siquenique
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana V Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Margarida F B Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Punovuori K, Migueles RP, Malaguti M, Blin G, Macleod KG, Carragher NO, Pieters T, van Roy F, Stemmler MP, Lowell S. N-cadherin stabilises neural identity by dampening anti-neural signals. Development 2019; 146:dev.183269. [PMID: 31601548 PMCID: PMC6857587 DOI: 10.1242/dev.183269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
A switch from E- to N-cadherin regulates the transition from pluripotency to neural identity, but the mechanism by which cadherins regulate differentiation was previously unknown. Here, we show that the acquisition of N-cadherin stabilises neural identity by dampening anti-neural signals. We use quantitative image analysis to show that N-cadherin promotes neural differentiation independently of its effects on cell cohesiveness. We reveal that cadherin switching diminishes the level of nuclear β-catenin, and that N-cadherin also dampens FGF activity and consequently stabilises neural fate. Finally, we compare the timing of cadherin switching and differentiation in vivo and in vitro, and find that this process becomes dysregulated during in vitro differentiation. We propose that N-cadherin helps to propagate a stable neural identity throughout the emerging neuroepithelium, and that dysregulation of this process contributes to asynchronous differentiation in culture. Summary: As pluripotent cells undergo neural differentiation they swap E-cadherin for N-cadherin. This switch in adhesion molecules modulates signalling in order to facilitate the differentiation process.
Collapse
Affiliation(s)
- Karolina Punovuori
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosa P Migueles
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kenneth G Macleod
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Tim Pieters
- Department of Biomedical Molecular Biology, Ghent University; Inflammation Research Center, VIB; Center for Medical Genetics, Ghent University Hospital; Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University; Inflammation Research Center, VIB; Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
17
|
Shapson-Coe A, Valeiras B, Wall C, Rada C. Aicardi-Goutières Syndrome associated mutations of RNase H2B impair its interaction with ZMYM3 and the CoREST histone-modifying complex. PLoS One 2019; 14:e0213553. [PMID: 30889214 PMCID: PMC6424451 DOI: 10.1371/journal.pone.0213553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/24/2019] [Indexed: 11/18/2022] Open
Abstract
DNA-RNA hybrids arise in all cell types, and are removed by multiple enzymes, including the trimeric ribonuclease, RNase H2. Mutations in human RNase H2 result in Aicardi–Goutières syndrome (AGS), an inflammatory brain disorder notable for being a Mendelian mimic of congenital viral infection. Previous studies have shown that several AGS-associated mutations of the RNase H2B subunit do not affect trimer stability or catalytic activity and are clustered on the surface of the complex, leading us to speculate that these mutations might impair important interactions of RNase H2 with so far unidentified proteins. In this study, we show that AGS mutations in this cluster impair the interaction of RNase H2 with several members of the CoREST chromatin-silencing complex that include the histone deacetylase HDAC2 and the demethylase KDM1A, the transcriptional regulators RCOR1 and GTFII-I as well as ZMYM3, an MYM-type zinc finger protein. We also show that the interaction is mediated by the zinc finger protein ZMYM3, suggesting that ZMYM3 acts as a novel type of scaffold protein coordinating interactions between deacetylase, demethylase and RNase H type enzymes, raising the question of whether coordination between histone modifications and the degradation of RNA-DNA hybrids may be required to prevent inflammation in humans.
Collapse
Affiliation(s)
- Alexander Shapson-Coe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| | - Brenda Valeiras
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Christopher Wall
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| |
Collapse
|
18
|
Festuccia N, Halbritter F, Corsinotti A, Gagliardi A, Colby D, Tomlinson SR, Chambers I. Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation. EMBO J 2018; 37:e95476. [PMID: 30275266 PMCID: PMC6213284 DOI: 10.15252/embj.201695476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
Self-renewal of embryonic stem cells (ESCs) cultured in LIF/fetal calf serum (FCS) is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here, we purify ESCs with distinct TF expression levels from LIF/FCS cultures to uncover early events during commitment from naïve pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in Nanoglow cells. Independent Esrrb reporter lines demonstrate that Esrrbnegative ESCs cannot effectively self-renew. Upon Esrrb loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in Esrrbpositive cells. Class I elements lose NANOG and OCT4 binding in Esrrbnegative ESCs and associate with genes expressed preferentially in naïve ESCs. In contrast, Class II elements retain OCT4 but not NANOG binding in ESRRB-negative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from naïve pluripotency.
Collapse
Affiliation(s)
- Nicola Festuccia
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Alessia Gagliardi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Abstract
The successful segregation of germ cells from somatic lineages is vital for sexual reproduction and species survival. In the mouse, primordial germ cells (PGCs), precursors of all germ cells, are induced from the post-implantation epiblast1. Induction requires BMP4 signalling to prospective PGCs2 and the intrinsic action of PGC transcription factors (TFs)3–6. However, the molecular mechanisms connecting BMP4 to induction of the PGC TFs responsible for segregating PGCs from somatic lineages are unknown. Here we show that the transcription factor OTX2 is a key regulator of these processes. Down-regulation of Otx2 precedes the initiation of the PGC programme both in vitro and in vivo. Deletion of Otx2 in vitro dramatically increases PGCLC differentiation efficiency and prolongs the period of PGC competence. In the absence of Otx2 activity, PGCLC differentiation becomes independent of the otherwise essential cytokine signals, with germline entry initiating even in the absence of the PGC TF Blimp1. Deletion of Otx2 in vivo increases PGC numbers. These data demonstrate that OTX2 functions repressively upstream of PGC TFs, acting as a roadblock to limit entry of epiblast cells to the germline to a small window in space and time, thereby ensuring correct numerical segregation of germline cells from the soma.
Collapse
|
20
|
Sutherland L, Ruhe M, Gattegno-Ho D, Mann K, Greaves J, Koscielniak M, Meek S, Lu Z, Waterfall M, Taylor R, Tsakiridis A, Brown H, Maciver SK, Joshi A, Clinton M, Chamberlain LH, Smith A, Burdon T. LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. J Cell Sci 2018; 131:jcs222257. [PMID: 30154213 PMCID: PMC6176924 DOI: 10.1242/jcs.222257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1β) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1β directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.
Collapse
Affiliation(s)
- Linda Sutherland
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Madeleine Ruhe
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Daniela Gattegno-Ho
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Karanjit Mann
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Jennifer Greaves
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Magdalena Koscielniak
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Stephen Meek
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Zen Lu
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Martin Waterfall
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ryan Taylor
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anestis Tsakiridis
- Department of Biomedical Science, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Helen Brown
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anagha Joshi
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael Clinton
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QT, UK
| | - Tom Burdon
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
21
|
Abstract
In vitro generated mammalian cardiomyocytes provide experimental models for studying normal mammalian cardiomyocyte development, for disease modeling and for drug development. They also promise to inform future therapeutic strategies for repair of injured or diseased myocardium. Here we provide reliable protocols for differentiation of mouse embryonic stem cells into functional cardiomyocytes, together with Notes about trouble shooting and optimizing such protocols for specific cell lines.
Collapse
Affiliation(s)
- Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK
| | - Silvia Mazzotta
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK.
| |
Collapse
|
22
|
Madaboosi N, Uhlig K, Schmidt S, Vikulina AS, Möhwald H, Duschl C, Volodkin D. A “Cell-Friendly” Window for the Interaction of Cells with Hyaluronic Acid/Poly-l
-Lysine Multilayers. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/27/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Narayanan Madaboosi
- Fraunhofer Institute for Cell Therapy and Immunology; Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB); Department Cellular Biotechnology & Biochips; Am Mühlenberg 13 14476 Potsdam-Golm Germany
- Max Planck Institute for Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Katja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology; Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB); Department Cellular Biotechnology & Biochips; Am Mühlenberg 13 14476 Potsdam-Golm Germany
| | - Stephan Schmidt
- Fraunhofer Institute for Cell Therapy and Immunology; Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB); Department Cellular Biotechnology & Biochips; Am Mühlenberg 13 14476 Potsdam-Golm Germany
- Heinrich-Heine-Universität Düsseldorf; Institut für Organische und Makromolekulare Chemie; Universiätsstr.1 40225 Düsseldorf Germany
| | - Anna S. Vikulina
- School of Science and Technology; Nottingham Trent University; Clifton Lane Nottingham NG11 8NS UK
| | - Helmuth Möhwald
- Max Planck Institute for Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Claus Duschl
- Fraunhofer Institute for Cell Therapy and Immunology; Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB); Department Cellular Biotechnology & Biochips; Am Mühlenberg 13 14476 Potsdam-Golm Germany
| | - Dmitry Volodkin
- Fraunhofer Institute for Cell Therapy and Immunology; Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB); Department Cellular Biotechnology & Biochips; Am Mühlenberg 13 14476 Potsdam-Golm Germany
- School of Science and Technology; Nottingham Trent University; Clifton Lane Nottingham NG11 8NS UK
| |
Collapse
|
23
|
Sato Y, Sato S, Kikuchi T, Nonaka A, Kumagai Y, Sasaki A, Kobayashi M. Knockdown of gene expression by antisense morpholino oligos in preimplantation mouse embryos cultured in vitro. Anal Biochem 2016; 509:41-45. [PMID: 27381842 DOI: 10.1016/j.ab.2016.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/11/2016] [Accepted: 06/30/2016] [Indexed: 11/26/2022]
Abstract
Knockdown of gene expression by antisense morpholino oligos (MOs) is a simple and effective method for analyzing the roles of genes in mammalian cells. Here, we demonstrate the efficient delivery of MOs by Endo-Porter (EP), a special transfection reagent for MOs, into preimplantation mouse embryos cultured in vitro. A fluorescein-labeled control MO was applied for monitoring the incorporation of MOs into developing 2-cell embryos in the presence of varying amounts of EP and bovine serum albumin. In optimized conditions, fluorescence was detected in 2-cell embryos within a 3-h incubation period. In order to analyze the validity of the optimized conditions, an antisense Oct4 MO was applied for knockdown of the synthesis of OCT4 protein in developing embryos from the 2-cell stage. In blastocysts, the antisense Oct4 MO induced a decrease in the amount in OCT4 protein to less than half. An almost complete absence of OCT4-positive cells and nearly complete disappearance of the inner cell mass in the outgrowths of blastocysts were also noted. These phenotypes corresponded with those of Oct4-deficient mouse embryos. Overall, we suggest that the delivery of MOs using EP is useful for the knockdown of gene expression in preimplantation mouse embryos cultured in vitro.
Collapse
Affiliation(s)
- Yuki Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Shiori Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Takahiro Kikuchi
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Asumi Nonaka
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Yuki Kumagai
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Shimoshinjho Nakano, Akita 010-0195, Japan
| | - Akira Sasaki
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Shimoshinjho Nakano, Akita 010-0195, Japan; Akita Research Institute of Food and Brewing, 4-26 Sanuki, Araya-machi, Akita 010-1623, Japan
| | - Masayuki Kobayashi
- Graduate School of Bioresource Sciences, Akita Prefectural University, 241-438 Shimoshinjho Nakano, Akita 010-0195, Japan.
| |
Collapse
|
24
|
Exogenous expression of homeoprotein EGAM1N prevents in vitro cardiomyogenesis by impairing expression of T and Nkx2.5, but not Mef2c, in mouse embryonic stem cells. Cytotechnology 2016; 68:2431-2436. [PMID: 26983934 DOI: 10.1007/s10616-016-9961-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/02/2016] [Indexed: 12/22/2022] Open
Abstract
Generation of multiple cell types from embryonic stem (ES) cells and induced pluripotent stem cells is crucial to provide materials for regenerative medicine. EGAM1N has been found in preimplantation mouse embryos and mouse ES cells as a functionally unclassified homeoprotein. Recently, we reported that expression of EGAM1N suppressed the in vitro differentiation of ES cells into progenitor cells that arise in early embryogenesis. To clarify the effect of EGAM1N on terminal differentiation, embryoid bodies (EBs) were prepared from ES cells expressing exogenous Egam1n. In EBs expressing Egam1n, cardiomyogenesis was inhibited by impairing the expression of crucial transcription factors Brachyury T and Nkx2.5 in the generation of mesoderm and cardiomyocytes, respectively. Expression levels of Mef2c, another crucial gene for cardiomyogenesis, were unaffected. Conversely, the expression levels of Gata6 and Plat, markers for the primitive endoderm lineage, and Cdx2, a marker for the trophectoderm lineage, were increased. These results suggested that certain cell populations in EBs expressing Egam1n preferentially differentiated to such cell lineages. Our results suggest that EGAM1N not only affects the generation of progenitor cells during early embryogenesis, but also the progression of terminal differentiation, such as cardiomyogenesis, in mouse ES cells.
Collapse
|
25
|
Omelyanenko A, Sekyrova P, Andäng M. ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner. SPRINGERPLUS 2016; 5:41. [PMID: 26835223 PMCID: PMC4715829 DOI: 10.1186/s40064-016-1678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022]
Abstract
Pluripotent stem cells are the starting cell type of choice for the development of many cell-based regenerative therapies due to their rapid and unlimited proliferation and broad differentiation potential. The unique pluripotent cell cycle underlies both these properties. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) family channels have previously been reported to modulate mouse embryonic stem cell (ESC) proliferation and here we characterize the effects of HCN inhibitor ZD7288 on ESC proliferation and stem cell identity. The doubling time of cells treated with the HCN blocker increased by ~30 % due to longer G1 and S phases, resulting in a nearly twofold reduction in ESC numbers after 4 day serum-free culture. Slower progression through S phase was not accompanied by H2AX phosphorylation or cell stalling at transition points, although EdU incorporation in treated cells was reduced. Despite the drastic cell cycle perturbations, the pluripotent status of the cells was not compromised by treatment. Cultures treated with the HCN blocker in maintenance conditions maintained pluripotency marker expression on both RNA and protein level, although we observed a reversible effect on morphology and colony formation frequency. Addition of ZD7288 in differentiating media improved FBS-driven differentiation, but not directed differentiation to neuroectoderm, further indicating that altered cell cycle structure does not necessarily compromise pluripotency and drive ESCs to differentiation. The categorically different outcomes of ZD7288 use during differentiation indicate that cell culture context can be determinative for effects of ion-modulatory molecules and underscores the need for exploring their action in serum-free conditions demanded by potential clinical use.
Collapse
Affiliation(s)
- Anna Omelyanenko
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Petra Sekyrova
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden ; Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Michael Andäng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden ; Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| |
Collapse
|
26
|
Kuehlfluck P, Moghaddam A, Helbig L, Child C, Wildemann B, Schmidmaier G. RIA fractions contain mesenchymal stroma cells with high osteogenic potency. Injury 2015; 46 Suppl 8:S23-32. [PMID: 26747914 DOI: 10.1016/s0020-1383(15)30051-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The gold standard for treatment of non-union is the transplantation of autologous bone from iliac crest. As an alternative, material can be harvested by femoral reaming with the Reamer-Irrigator-Aspirator(®) (RIA)-System. This material might be a source for human mesenchymal stroma cells (MSCs) with osteogenic potency. The aim of this study was the characterisation of cells harvested with the RIA system and the comparison of their properties with cells isolated from bone marrow ("BM") and fat tissue ("adipose"). The RIA material was separated into the liquid aspiration fraction ("liquid") and the solid RIA fraction. From the solid RIA fraction the cells were cultured either directly ("native") or after collagenase digestion and filtration ("filtrate"). Stem cell characteristics were analysed and the osteogenic potential was investigated in vitro and in vivo. MATERIALS & METHODS Fat tissue and bone marrow were harvested from nine patients (three women, six males, with a mean of 48.1 years) with atrophic non-union RIA material. The cells were isolated and characterised by flow cytometry, three lineage differentiation capacities and colony-forming unit fibroblast assay. Gene expression profiles were performed and osteogenic differentiation in vivo was analysed. RESULTS All three RIA fractions contained mesenchymal stromal cells (MSCs) as demonstrated by CFU-F assay, three linage differentiation and surface marker analysis. The RIA-MSCs exhibited a significantly higher osteogenic potential in vitro compared to adipose-MSCs, whereas no difference was seen compared to BM-MSCs. Quantitative RT-PCR analysis revealed an expression of osteogenic markers in all isolated cells. The implantation of MSCs with β-TCP scaffolds into the mice muscle showed significantly higher bone formation for the filtrate RIA-MSC, native RIA-MSC and BM-MSC groups compared to the adipose-MSC group. The filtrate RIA-MSCs formed twice as much new bone in vivo compared to BM-MSCs. CONCLUSION The present study showed high potency of cells isolated by reaming. Even in the irrigation fluid, which is normally discarded, cells with the characteristics of stromal stem cells were isolated. In comparison to adipose-MSCs and BM-MSCs, the RIA-MSCs showed a similar or even better osteogenic potential in vitro and in vivo and this supports their usability in orthopaedic surgery.
Collapse
Affiliation(s)
- Pamela Kuehlfluck
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Arash Moghaddam
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Lars Helbig
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Christopher Child
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group
| | - Britt Wildemann
- Julius Wolff Institute, Berlin-Brandenburg Center for Regenerative Therapies, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Gerhard Schmidmaier
- Trauma and Reconstructive Surgery, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraβe 200a, D-69118 Heidelberg, Germany, HTRG - Heidelberg Trauma Research Group.
| | | |
Collapse
|
27
|
Partial inhibition of differentiation associated with elevated protein levels of pluripotency factors in mouse embryonic stem cells expressing exogenous EGAM1N homeoprotein. J Biosci Bioeng 2015; 120:562-9. [DOI: 10.1016/j.jbiosc.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/14/2023]
|
28
|
Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15020. [PMID: 26151065 PMCID: PMC4470365 DOI: 10.1038/mtm.2015.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.
Collapse
|
29
|
Coating the Outer Surface of Glass Nanopipette with Chlorobenzene-Terminated Polysiloxane. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2015. [DOI: 10.1380/ejssnt.2015.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J. Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties. Sci Rep 2014; 4:7357. [PMID: 25483805 PMCID: PMC4258658 DOI: 10.1038/srep07357] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/18/2014] [Indexed: 12/29/2022] Open
Abstract
Hedgehog (Hh) is a secreted morphogen that elicits differentiation and patterning in developing tissues. Multiple proposed mechanisms to regulate Hh dispersion includes lipoprotein particles and exosomes. Here we report that vertebrate Sonic Hedgehog (Shh) is secreted on two types of extracellular-vesicles/exosomes, from human cell lines and primary chick notochord cells. Although largely overlapping in size as estimated from electron micrographs, the two exosomal fractions exhibited distinct protein and RNA composition. We have probed the functional properties of these vesicles using cell-based assays of Hh-elicited gene expression. Our results suggest that while both Shh-containing exo-vesicular fractions can activate an ectopic Gli-luciferase construct, only exosomes co-expressing Integrins can activate endogenous Shh target genes HNF3β and Olig2 during the differentiation of mouse ES cells to ventral neuronal progenitors. Taken together, our results demonstrate that primary vertebrate cells secrete Shh in distinct vesicular forms, and support a model where packaging of Shh along with other signaling proteins such as Integrins on exosomes modulates target gene activation. The existence of distinct classes of Shh-containing exosomes also suggests a previously unappreciated complexity for fine-tuning of Shh-mediated gradients and pattern formation.
Collapse
Affiliation(s)
- Neha Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Ankita Walvekar
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Dhananjay Tate
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | | | - Dhiru Bansal
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Alessandra Lo Cicero
- 1] Institut Curie, UMR 144, CNRS, F-75248 Paris, France [2] Structure and Membrane Compartments, Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France [3] Cell and Tissue Imaging Facility, Infrastructures en Biologie Sante et Agronomie (IBiSA), Paris F-75248, France
| | - Graca Raposo
- 1] Institut Curie, UMR 144, CNRS, F-75248 Paris, France [2] Structure and Membrane Compartments, Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France [3] Cell and Tissue Imaging Facility, Infrastructures en Biologie Sante et Agronomie (IBiSA), Paris F-75248, France
| | | | - Jyotsna Dhawan
- 1] Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India [2] CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
31
|
Zhou X, Smith AJH, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I, Lowell S. Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 2014; 31:1511-22. [PMID: 23649667 PMCID: PMC4063271 DOI: 10.1002/stem.1426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 04/03/2013] [Indexed: 01/22/2023]
Abstract
Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously. Stem Cells 2013;31:1511–1522
Collapse
Affiliation(s)
- Xinzhi Zhou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abe H, Nakazawa M, Kasuga K, Kojima I, Kobayashi M. The CAG Promoter is More Active than the CEF Promoter for the Expression of Transgenes in a Mouse ES Cell Line E14-Derived EB3 Cells. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Dang-Nguyen TQ, Haraguchi S, Kikuchi K, Somfai T, Bodó S, Nagai T. Leukemia inhibitory factor promotes porcine oocyte maturation and is accompanied by activation of signal transducer and activator of transcription 3. Mol Reprod Dev 2013; 81:230-9. [PMID: 24307388 DOI: 10.1002/mrd.22289] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/02/2013] [Indexed: 11/08/2022]
Abstract
We produced recombinant porcine leukemia inhibitory factor (pLIF) and examined its effect on in vitro maturation (IVM) of porcine oocytes and their developmental competence after in vitro fertilization. Porcine cumulus-oocyte complexes (COCs) were matured in a medium supplemented with pLIF during the first 22 hr, last 22 hr, or entire 44 hr duration of IVM. Oocytes in all groups tended to show enhanced nuclear maturation rates by the metaphase II (MII) stage (76.1%, 82.1%, and 86.6%, respectively) compared to the without-pLIF treatment group (69.6%, control). A significant increase in MII rate (P < 0.05) and obvious induction of cumulus expansion were observed over the whole time span (44 hr) in the IVM group. When cumulus cells were removed at 22 hr and denuded oocytes were further cultured, pLIF showed no effect on maturation rate. Oocytes matured in pLIF-supplemented medium showed a tendency for more rapid blastocyst development (21.1% vs. 16.2%, P = 0.0715). Examination of transcripts and proteins of the LIF signaling pathway in COCs revealed that LIF, LIF receptors, and signal transducer and activator of transcription 3 (STAT3) are present in both cumulus cells and oocytes. The amount of phosphorylated STAT3 (p-STAT3) markedly increased in both cumulus cells and oocytes cultured in pLIF-supplemented media, although oocyte p-STAT3 disappeared after 44 hr of IVM. These results suggest that the LIF/STAT3 pathway is functional during IVM of porcine oocytes, and supplementing pLIF in the IVM medium can improve oocyte maturation by activating this pathway.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- Animal Breeding and Reproduction Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Malaguti M, Nistor PA, Blin G, Pegg A, Zhou X, Lowell S. Bone morphogenic protein signalling suppresses differentiation of pluripotent cells by maintaining expression of E-Cadherin. eLife 2013; 2:e01197. [PMID: 24347544 PMCID: PMC3865744 DOI: 10.7554/elife.01197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenic protein (BMP) signalling contributes towards maintenance of pluripotency and favours mesodermal over neural fates upon differentiation, but the mechanisms by which BMP controls differentiation are not well understood. We report that BMP regulates differentiation by blocking downregulation of Cdh1, an event that accompanies the earliest stages of neural and mesodermal differentiation. We find that loss of Cdh1 is a limiting requirement for differentiation of pluripotent cells, and that experimental suppression of Cdh1 activity rescues the BMP-imposed block to differentiation. We further show that BMP acts prior to and independently of Cdh1 to prime pluripotent cells for mesoderm differentiation, thus helping to reinforce the block to neural differentiation. We conclude that differentiation depends not only on exposure to appropriate extrinsic cues but also on morphogenetic events that control receptivity to those differentiation cues, and we explain how a key pluripotency signal, BMP, feeds into this control mechanism. DOI:http://dx.doi.org/10.7554/eLife.01197.001 The human body is made up of about 200 different types of cell, all of which are descended from a single fertilised egg. As an embryo develops, its cells divide and specialise into distinct lineages. Cells in each lineage go on to form a restricted number of cell types that are required to make a specific tissue. As such, during early development, cells switch from being ‘pluripotent’, with the potential to become the many different cell types, to committing to one particular cell lineage. Controlling this process involves a huge number of signalling proteins and pathways. One such protein is bone morphogenetic protein, or BMP for short, which has a number of different roles in embryo development: for example, it stops pluripotent cells turning into nerve tissue, and it also encourages embryonic stem cells to contribute to the ‘mesoderm’ of the early embryo (which goes on to form the muscles, connective tissues and some blood cells). How these two actions are linked, and whether they depend on similar signalling pathways, was unknown. BMP is also known to trigger the production of proteins known as ‘Id factors’—which stands for ‘inhibitor of differentiation’. Now, Malaguti et al. have investigated the roles of BMP and Id factors in controlling mouse embryo development and found, somewhat surprisingly, that these proteins needed help from a third protein to stop pluripotent cells turning into nerve tissue. This third protein, which is called E-Cadherin, normally helps cells to adhere to other cells. Malaguti et al. showed that losing this protein encourages cells to become either nerve or mesoderm tissues, and that a drop in E-Cadherin levels must occur before nerve tissue can form. Malaguti et al. also showed that encouraging cells to become part of the mesoderm requires BMP to activate another pathway, which does not require E-Cadherin. The two effects of BMP can be uncoupled by adjusting the levels of this protein. At low concentrations, BMP can keep cells pluripotent, but it cannot encourage cells to commit to a mesoderm fate. At higher doses, however, BMP ‘primes’ cells to respond to the signals that trigger their development into mesoderm tissue. The findings of Malaguti et al. suggest that manipulating both E-Cadherin and BMP signalling could improve our ability to generate useful cell types, such as neurons, from stem cells grown in laboratory cultures. DOI:http://dx.doi.org/10.7554/eLife.01197.002
Collapse
Affiliation(s)
- Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Tamm C, Pijuan Galitó S, Annerén C. A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One 2013; 8:e81156. [PMID: 24339907 PMCID: PMC3858223 DOI: 10.1371/journal.pone.0081156] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Most stem cell laboratories still rely on old culture methods to support the expansion and maintenance of mouse embryonic stem (ES) cells. These involve growing cells on mouse embryonic fibroblast feeder cells or on gelatin in media supplemented with fetal bovine serum and leukemia inhibitory factor (LIF). However, these techniques have several drawbacks including the need for feeder-cells and/or use of undefined media containing animal derived components. Culture of stem cells under undefined conditions can induce spontaneous differentiation and reduce reproducibility of experiments. In recent years several new ES cell culture protocols, using more well-defined conditions, have been published and we have compared the standard culture protocols with two of the newly described ones: 1) growing cells in semi-adherence in a medium containing two small molecule inhibitors (CHIR99021, PD0325901) and; 2) growing cells in a spheroid suspension culture in a defined medium containing LIF and bFGF. Two feeder-dependent mouse ES (mES) cell lines and two cell lines adapted to feeder-independent growth were used in the study. The overall aim has not only been to compare self-renewal and differentiation capacity, but also ease-of-use and cost efficiency. We show that mES cells when grown adherently proliferate much faster than when grown in suspension as free-floating spheres, independent of media used. Although all the tested culture protocols could maintain sustained pluripotency after prolonged culturing, our data confirm previous reports showing that the media containing two chemical inhibitors generate more pure stem cell cultures with negligible signs of spontaneous differentiation as compared to standard mES media. Furthermore, we show that this medium effectively rescues and cleans up cultures that have started to deteriorate, as well as allow for effective adaption of feeder-dependent mES cell lines to be maintained in feeder-free conditions.
Collapse
Affiliation(s)
- Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sara Pijuan Galitó
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Annerén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- GE Healthcare Bio-Sciences AB, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
36
|
Sugawara S, Ito T, Sato S, Sato Y, Kasuga K, Kojima I, Kobayashi M. Production of an aminoterminally truncated, stable type of bioactive mouse fibroblast growth factor 4 in Escherichia coli. J Biosci Bioeng 2013; 117:525-30. [PMID: 24210555 DOI: 10.1016/j.jbiosc.2013.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022]
Abstract
In mice, fibroblast growth factor 4 (Fgf4) is a crucial gene for the generation of trophectoderm, progenitor cells of the placenta. Therefore, exogenous FGF4 promotes the isolation and maintenance of trophoblast stem cells from preimplantation embryos. We previously produced a 6× histidine (His)-tagged, mouse FGF4 (Pro(31)-Leu(202)) without a secretory signal peptide at the amino-terminus, referred to as HismFGF4, in Escherichia coli. Here, we found that HismFGF4 was unstable, such as in phosphate-buffered saline. In these conditions, site-specific cleavage between Ser(50) and Leu(51) was identified. In order to generate stable mouse FGF4 derivatives, a 6× His-tagged mouse FGF4 (Leu(51)-Leu(202)), termed HismFGF4L, was expressed in E. coli. HismFGF4L could be purified from the supernatant of cell lysates by heparin column chromatography. In phosphate-buffered saline, HismFGF4L was relatively stable. HismFGF4L exerted significant mitogenic activities at concentrations as low as 0.01 nM (P < 0.01) in mouse embryonic fibroblast Balb/c 3T3 cells expressing FGF receptor 2. In the presence of PD173074, an FGF receptor inhibitor, the growth-promoting activity of HismFGF4L was abolished. Taken together, we suggest that aminoterminally truncated HismFGF4L is capable of promoting the proliferation of mouse-derived cells via an authentic FGF signaling pathway. We consider that HismFGF4L is useful as a derivative of mouse FGF4 protein for analyzing the effects of mouse FGF4 and for stimulating cell growth of mouse-derived cells, such as trophoblast stem cells. Our study provides a simple method for the production of a bioactive, stable mouse FGF4 derivative in E. coli.
Collapse
Affiliation(s)
- Saiko Sugawara
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Toshihiko Ito
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Shiori Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Yuki Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Kano Kasuga
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Ikuo Kojima
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Masayuki Kobayashi
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| |
Collapse
|
37
|
de Wit E, Bouwman BAM, Zhu Y, Klous P, Splinter E, Verstegen MJAM, Krijger PHL, Festuccia N, Nora EP, Welling M, Heard E, Geijsen N, Poot RA, Chambers I, de Laat W. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 2013; 501:227-31. [PMID: 23883933 DOI: 10.1038/nature12420] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/26/2013] [Indexed: 01/06/2023]
Abstract
It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types. Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.
Collapse
Affiliation(s)
- Elzo de Wit
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gagliardi A, Mullin NP, Ying Tan Z, Colby D, Kousa AI, Halbritter F, Weiss JT, Felker A, Bezstarosti K, Favaro R, Demmers J, Nicolis SK, Tomlinson SR, Poot RA, Chambers I. A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal. EMBO J 2013; 32:2231-47. [PMID: 23892456 PMCID: PMC3746198 DOI: 10.1038/emboj.2013.161] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal. This paper features a comprehensive proteomic view on the Nanog interactome. Further, it molecularly and functionally defines the intimate interplay of Nanog with another pluripotency determinant Sox2.
Collapse
Affiliation(s)
- Alessia Gagliardi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Karwacki-Neisius V, Göke J, Osorno R, Halbritter F, Ng J, Weiße A, Wong F, Gagliardi A, Mullin N, Festuccia N, Colby D, Tomlinson S, Ng HH, Chambers I. Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell 2013; 12:531-45. [PMID: 23642364 PMCID: PMC3650585 DOI: 10.1016/j.stem.2013.04.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 03/10/2013] [Accepted: 04/19/2013] [Indexed: 01/06/2023]
Abstract
Embryonic stem cell (ESC) pluripotency is governed by a gene regulatory network centered on the transcription factors Oct4 and Nanog. To date, robust self-renewing ESC states have only been obtained through the chemical inhibition of signaling pathways or enforced transgene expression. Here, we show that ESCs with reduced Oct4 expression resulting from heterozygosity also exhibit a stabilized pluripotent state. Despite having reduced Oct4 expression, Oct4(+/-) ESCs show increased genome-wide binding of Oct4, particularly at pluripotency-associated enhancers, homogeneous expression of pluripotency transcription factors, enhanced self-renewal efficiency, and delayed differentiation kinetics. Cells also exhibit increased Wnt expression, enhanced leukemia inhibitory factor (LIF) sensitivity, and reduced responsiveness to fibroblast growth factor. Although they are able to maintain pluripotency in the absence of bone morphogenetic protein, removal of LIF destabilizes pluripotency. Our findings suggest that cells with a reduced Oct4 concentration range are maintained in a robust pluripotent state and that the wild-type Oct4 concentration range enables effective differentiation.
Collapse
Affiliation(s)
- Violetta Karwacki-Neisius
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Jonathan Göke
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Rodrigo Osorno
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Jia Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Andrea Y. Weiße
- SyntheSys, Synthetic & Systems Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JD, Scotland, UK
| | - Frederick C.K. Wong
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Alessia Gagliardi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Nicholas P. Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Nicola Festuccia
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Simon R. Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Huck-Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
- Graduate School for Integrative Sciences and Engineering, Department of Biological Sciences, and Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| |
Collapse
|
40
|
Festuccia N, Osorno R, Halbritter F, Karwacki-Neisius V, Navarro P, Colby D, Wong F, Yates A, Tomlinson SR, Chambers I. Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 2013; 11:477-90. [PMID: 23040477 PMCID: PMC3473361 DOI: 10.1016/j.stem.2012.08.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022]
Abstract
Embryonic stem cell (ESC) self-renewal efficiency is determined by the level of Nanog expression. However, the mechanisms by which Nanog functions remain unclear, and in particular, direct Nanog target genes are uncharacterized. Here we investigate ESCs expressing different Nanog levels and Nanog−/− cells with distinct functionally inducible Nanog proteins to identify Nanog-responsive genes. Surprisingly, these constitute a minor fraction of genes that Nanog binds. Prominent among Nanog-reponsive genes is Estrogen-related receptor b (Esrrb). Nanog binds directly to Esrrb, enhances binding of RNAPolII, and stimulates Esrrb transcription. Overexpression of Esrrb in ESCs maintains cytokine-independent self-renewal and pluripotency. Remarkably, this activity is retained in Nanog−/− ESCs. Moreover, Esrrb can reprogram Nanog−/− EpiSCs and can rescue stalled reprogramming in Nanog−/− pre-iPSCs. Finally, Esrrb deletion abolishes the defining ability of Nanog to confer LIF-independent ESC self-renewal. These findings are consistent with the functional placement of Esrrb downstream of Nanog.
Collapse
Affiliation(s)
- Nicola Festuccia
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Davies O, Lin CY, Radzisheuskaya A, Zhou X, Taube J, Blin G, Waterhouse A, Smith A, Lowell S. Tcf15 primes pluripotent cells for differentiation. Cell Rep 2013; 3:472-84. [PMID: 23395635 PMCID: PMC3607254 DOI: 10.1016/j.celrep.2013.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 02/02/2023] Open
Abstract
The events that prime pluripotent cells for differentiation are not well understood. Inhibitor of DNA binding/differentiation (Id) proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factor activity, contribute to pluripotency by blocking sequential transitions toward differentiation. Using yeast-two-hybrid screens, we have identified Id-regulated transcription factors that are expressed in embryonic stem cells (ESCs). One of these, Tcf15, is also expressed in the embryonic day 4.5 embryo and is specifically associated with a novel subpopulation of primed ESCs. An Id-resistant form of Tcf15 rapidly downregulates Nanog and accelerates somatic lineage commitment. We propose that because Tcf15 can be held in an inactive state through Id activity, it may prime pluripotent cells for entry to somatic lineages upon downregulation of Id. We also find that Tcf15 expression is dependent on fibroblast growth factor (FGF) signaling, providing an explanation for how FGF can prime for differentiation without driving cells out of the pluripotent state.
Collapse
Affiliation(s)
- Owen R. Davies
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Chia-Yi Lin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Aliaksandra Radzisheuskaya
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Xinzhi Zhou
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jessica Taube
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anna Waterhouse
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew J.H. Smith
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
42
|
Soma M, Iha M, Kihara Y, Sato S, Sato Y, Sato S, Mori Y, Sugawara S, Kasuga K, Kojima I, Kobayashi M. Preferential emergence of cell types expressing markers for primitive endoderm lineages in mouse embryonic stem cells expressing exogenous EGAM1 homeoprotein. J Biosci Bioeng 2012; 114:342-6. [PMID: 22608553 DOI: 10.1016/j.jbiosc.2012.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
Abstract
Embryonic stem (ES) cells have been considered as a valuable renewable source of materials in regenerative medicine. Recently, we identified the homeoprotein EGAM1 both in preimplantation mouse embryos and mouse ES cells. Expression of the Egam1 transcript and its encoded protein was detectable in differentiating mouse ES cells, while it was almost undetectable in undifferentiated cells. In the present study, in order to clarify the effect of forced expression of EGAM1 on the differentiation of mouse ES cells in vitro, transfectants expressing exogenous EGAM1 were generated. Egam1 transfectants promoted differentiation into cell types expressing Gata6, Gata4, Afp, or Plat, genes associated with emergence of the extra-embryonic endoderm lineages. On the other hand, Egam1 transfectants inhibited the expression of specific genes for the embryonic lineages, including Fgf5 (epiblast) and T (mesoderm), in addition to Cdx2, a specific gene for the extra-embryonic trophectoderm lineages. Changes in the percentage of cells recognizing by antibodies against specific marker proteins closely correlated with the expression patterns of their transcripts. Taken together, the results obtained in this study suggested that mouse ES cells expressing exogenous EGAM1 preferentially differentiate into extra-embryonic primitive endoderm lineages, rather than embryonic lineages or extra-embryonic trophectoderm lineages.
Collapse
Affiliation(s)
- Miki Soma
- Laboratory for Advanced Animal Cell Technology, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Iha M, Watanabe M, Kihara Y, Sugawara S, Saito K, Soma M, Sato S, Mori Y, Kasuga K, Kojima I, Sasamura R, Murata J, Kobayashi M. Effect of ectopic expression of homeoprotein EGAM1C on the cell morphology, growth, and differentiation in a mouse embryonic stem cell line, MG1.19 cells. Reproduction 2012; 143:477-89. [DOI: 10.1530/rep-11-0379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The homeoprotein EGAM1C was identified in preimplantation mouse embryos and embryonic stem (ES) cells. To explore the impact of EGAM1C on the hallmarks of mouse ES cells, MG1.19 cells stably expressing EGAM1C at levels similar to those in blastocysts were established using an episomal expression system. In the presence of leukemia inhibitory factor (+LIF), control transfectants with an empty vector formed flattened cell colonies, whileEgam1ctransfectants formed compacted colonies with increased E-CADHERIN expression. InEgam1ctransfectants, the cellular contents of POU5F1 (OCT4), SOX2, TBX3, and NANOG increased. Cell growth was accelerated in an undifferentiated state sustained by LIF and in the course of differentiation. During clonal proliferation, EGAM1C stabilized the undifferentiated state. In adherent culture conditions, EGAM1C partly inhibited the progression of differentiation at least within a 4-day culture period in the presence of retinoic acid by preventing the downregulation of LIF signaling with a robust increase in TBX3 expression. Conversely, EGAM1C enhanced the expression of lineage marker genesFgf5(epiblast),T(mesoderm),Gata6(primitive endoderm), andCdx2(trophectoderm) in −LIF conditions. In embryoid bodies expressing EGAM1C, the expression of marker genes for extraembryonic cell lineages, includingTpbpa(spongiotrophoblast) andPlat(parietal endoderm), increased. These results demonstrated that the ectopic expression of EGAM1C is capable of affecting the stabilization of an undifferentiated state and the progression of differentiation in MG1.19 ES cells, in addition to affecting cellular morphology and growth.
Collapse
|
44
|
Migdalska AM, van der Weyden L, Ismail O, White JK, Project SMG, Sánchez-Andrade G, Logan DW, Arends MJ, Adams DJ. Modeling partial monosomy for human chromosome 21q11.2-q21.1 reveals haploinsufficient genes influencing behavior and fat deposition. PLoS One 2012; 7:e29681. [PMID: 22276124 PMCID: PMC3262805 DOI: 10.1371/journal.pone.0029681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/02/2011] [Indexed: 01/10/2023] Open
Abstract
Haploinsufficiency of part of human chromosome 21 results in a rare condition known as Monosomy 21. This disease displays a variety of clinical phenotypes, including intellectual disability, craniofacial dysmorphology, skeletal and cardiac abnormalities, and respiratory complications. To search for dosage-sensitive genes involved in this disorder, we used chromosome engineering to generate a mouse model carrying a deletion of the Lipi-Usp25 interval, syntenic with 21q11.2-q21.1 in humans. Haploinsufficiency for the 6 genes in this interval resulted in no gross morphological defects and behavioral analysis performed using an open field test, a test of anxiety, and tests for social interaction were normal in monosomic mice. Monosomic mice did, however, display impaired memory retention compared to control animals. Moreover, when fed a high-fat diet (HFD) monosomic mice exhibited a significant increase in fat mass/fat percentage estimate compared with controls, severe fatty changes in their livers, and thickened subcutaneous fat. Thus, genes within the Lipi-Usp25 interval may participate in memory retention and in the regulation of fat deposition.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Behavior, Animal
- Blotting, Southern
- Cell Line
- Chromosome Deletion
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Diet, High-Fat
- Female
- Haploinsufficiency/genetics
- Haploinsufficiency/physiology
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Male
- Maze Learning
- Mice
- Monosomy/genetics
- Recognition, Psychology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | - Ozama Ismail
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | | | | | - Darren W. Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mark J. Arends
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
45
|
Westerman BA, Braat AK, Taub N, Potman M, Vissers JHA, Blom M, Verhoeven E, Stoop H, Gillis A, Velds A, Nijkamp W, Beijersbergen R, Huber LA, Looijenga LHJ, van Lohuizen M. A genome-wide RNAi screen in mouse embryonic stem cells identifies Mp1 as a key mediator of differentiation. ACTA ACUST UNITED AC 2011; 208:2675-89. [PMID: 22143885 PMCID: PMC3244037 DOI: 10.1084/jem.20102037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite intense investigation of intrinsic and extrinsic factors that regulate pluripotency, the process of initial fate commitment of embryonic stem (ES) cells is still poorly understood. We used a genome-wide short hairpin RNA screen in mouse ES cells to identify genes that are essential for initiation of differentiation. Knockdown of the scaffolding protein Mek binding protein 1 (Mp1, also known as Lamtor3 or Map2k1ip1) stimulated self-renewal of ES cells, blocked differentiation, and promoted proliferation. Fibroblast growth factor 4 (FGF4) signaling is required for initial fate commitment of ES cells. Knockdown of Mp1 inhibited FGF4-induced differentiation but did not alter FGF4-driven proliferation. This uncoupling of differentiation and proliferation was also observed when oncogenic Ras isoforms were overexpressed in ES cells. Knockdown of Mp1 redirected FGF4 signaling from differentiation toward pluripotency and up-regulated the pluripotency-related genes Esrrb, Rex1, Tcl1, and Sox2. We also found that human germ cell tumors (GCTs) express low amounts of Mp1 in the invasive embryonic carcinoma and seminoma histologies and higher amounts of Mp1 in the noninvasive carcinoma in situ precursor and differentiated components. Knockdown of Mp1 in invasive GCT cells resulted in resistance to differentiation, thereby showing a functional role for Mp1 both in normal differentiation of ES cells and in germ cell cancer.
Collapse
Affiliation(s)
- Bart A Westerman
- Division of Molecular Genetics, the Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Festuccia N, Chambers I. Quantification of pluripotency transcription factor levels in embryonic stem cells by flow cytometry. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2011; Chapter 1:Unit 1B.9. [PMID: 22135081 DOI: 10.1002/9780470151808.sc01b09s19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Embryonic stem (ES) cell lines are derived from the inner cell mass of the pre-implantation blastocyst and are characterized by the ability to undergo indefinite self-renewal while retaining the potential to differentiate into each of the three primary germ layers. The ability of individual ES cells to self-renew or appropriately respond to differentiation signals is influenced by the intracellular level of a number of crucial transcription factors. It is therefore important to be able to reliably quantify the levels of these proteins in single cells. Here we present an intracellular staining technique for flow cytometry suitable for monitoring transcription factor expression in ES cells. We illustrate the application of this technique to the detection of Oct4 and Nanog proteins and the coupling of this approach with fluorescent reporters of gene activity.
Collapse
Affiliation(s)
- Nicola Festuccia
- Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | |
Collapse
|
47
|
A PiggyBac-based recessive screening method to identify pluripotency regulators. PLoS One 2011; 6:e18189. [PMID: 21533166 PMCID: PMC3078921 DOI: 10.1371/journal.pone.0018189] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/28/2011] [Indexed: 02/02/2023] Open
Abstract
Phenotype driven genetic screens allow unbiased exploration of the genome to discover new biological regulators. Bloom syndrome gene (Blm) deficient embryonic stem (ES) cells provide an opportunity for recessive screening due to frequent loss of heterozygosity. We describe a strategy for isolating regulators of mammalian pluripotency based on conversion to homozygosity of PiggyBac gene trap insertions combined with stringent selection for differentiation resistance. From a screen of 2000 mutants we obtained a disruptive integration in the Tcf3 gene. Homozygous Tcf3 mutants showed impaired differentiation and enhanced self-renewal. This phenotype was reverted in a dosage sensitive manner by excision of one or both copies of the gene trap. These results provide new evidence confirming that Tcf3 is a potent negative regulator of pluripotency and validate a forward screening methodology to identify modulators of pluripotent stem cell biology.
Collapse
|
48
|
HOSOI Y, ANDO Y, ARAKAWA M, KASUGA K, KOJIMA I, KOBAYASHI M. Production of Mouse Fibroblast Growth Factor 4 in E. coli and Its Application for Isolation and Maintenance of Mouse Trophoblast Stem Cells In Vitro. J Reprod Dev 2011; 57:650-4. [DOI: 10.1262/jrd.11-043h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yusuke HOSOI
- Laboratory for Advanced Animal Cell Technology, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Yumi ANDO
- Laboratory for Advanced Animal Cell Technology, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Megumi ARAKAWA
- Laboratory for Advanced Animal Cell Technology, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Kano KASUGA
- Laboratory for Biological Chemistry, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Ikuo KOJIMA
- Laboratory for Biological Chemistry, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Masayuki KOBAYASHI
- Laboratory for Advanced Animal Cell Technology, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| |
Collapse
|
49
|
Guo G, Smith A. A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development 2010; 137:3185-92. [PMID: 20823062 DOI: 10.1242/dev.052753] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In rodents, the naïve early epiblast undergoes profound morphogenetic, transcriptional and epigenetic changes after implantation. These differences are maintained between blastocyst-derived embryonic stem (ES) cells and egg cylinder-derived epiblast stem cells (EpiSCs). Notably, ES cells robustly colonise chimaeras, whereas EpiSCs show little or no contribution. ES cells self-renew independently of mitogenic growth factors, whereas EpiSCs require fibroblast growth factor. However, EpiSCs retain the core pluripotency factors Oct4 and Sox2 and the developmental barrier dividing them from unrestricted pluripotency can be surmounted by a single reprogramming factor. This provides an opportunity to identify molecules that can reset the naïve state. We undertook a forward genetic screen for effectors of EpiSC reprogramming, employing piggyBac transposition to activate endogenous gene expression at random and selecting for undifferentiated colonies in the absence of growth factor signalling. Three recovered clones harboured integrations that activate the closely related orphan nuclear receptor genes Nr5a1 and Nr5a2. Activity of Nr5a1 and Nr5a2 was confirmed by direct transfection. Reprogrammed colonies were obtained without transgene integration and at 10-fold higher frequency than with other single factors. Converted cells exhibited the diagnostic self-renewal characteristics, gene expression profile and X chromosome activation signature of ground state pluripotency. They efficiently produced adult chimaeras and gave germline transmission. Nr5a receptors regulate Oct4 transcription but this is insufficient for reprogramming. Intriguingly, unlike previously identified reprogramming molecules, Nr5a receptors play no evident role in ES cell self-renewal. This implies a different foundation for their capacity to reset pluripotency and suggests that further factors remain to be identified.
Collapse
Affiliation(s)
- Ge Guo
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
50
|
Kawaguchi J, Nichols J, Gierl MS, Faial T, Smith A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development 2010; 137:693-704. [PMID: 20147374 PMCID: PMC2827682 DOI: 10.1242/dev.046896] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural crest is a source of diverse cell types, including the peripheral nervous system. The transcription factor Sox10 is expressed throughout early neural crest. We exploited Sox10 reporter and selection markers created by homologous recombination to investigate the generation, maintenance and expansion of neural crest progenitors. Sox10-GFP-positive cells are produced transiently from mouse embryonic stem (ES) cells by treatment with retinoic acid in combination with Fgf8b and the cytokine leukaemia inhibitory factor (Lif). We found that expression of Sox10 can be maintained using noggin, Wnt3a, Lif and endothelin (NWLE). ES cell-derived Sox10-GFP-positive cells cultured in NWLE exhibit molecular markers of neural crest progenitors. They differentiate into peripheral neurons in vitro and are able to colonise the enteric network in organotypic gut cultures. Neural crest cells purified from embryos using the Sox10 reporter also survive in NWLE, but progressively succumb to differentiation. We therefore applied selection to eliminate differentiating cells. Sox10-selected cells could be clonally expanded, cryopreserved, and multiplied for over 50 days in adherent culture. They remained neurogenic in vitro and in foetal gut grafts. Generation of neural crest from mouse ES cells opens a new route to the identification and validation of determination factors. Furthermore, the ability to propagate undifferentiated progenitors creates an opportunity for experimental dissection of the stimuli and molecular circu that govern neural crest lineage progression. Finally, the demonstration of robust enteric neurogenesis provides a system for investigating and modelling cell therapeutic approaches to neurocristopathies such as Hirschsprung's disease.
Collapse
Affiliation(s)
- Jitsutaro Kawaguchi
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK
| | - Mathias S. Gierl
- Max-Delbruck-Centrum for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany
| | - Tiago Faial
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Author for correspondence ()
| |
Collapse
|