1
|
Subramaniam M, Loewen ME. Review: A species comparison of the kinetic homogeneous and heterogeneous organization of sodium-dependent glucose transport systems along the intestine. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111492. [PMID: 37536429 DOI: 10.1016/j.cbpa.2023.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
2
|
Subramaniam M, Enns CB, Luu K, Weber LP, Loewen ME. Comparison of intestinal glucose flux and electrogenic current demonstrates two absorptive pathways in pig and one in Nile tilapia and rainbow trout. Am J Physiol Regul Integr Comp Physiol 2019; 318:R245-R255. [PMID: 31746628 DOI: 10.1152/ajpregu.00160.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mucosal-to-serosal flux of 14C 3-O-methyl-d-glucose was compared against the electrogenic transport of d-glucose across ex vivo intestinal segments of Nile tilapia, rainbow trout, and pig in Ussing chambers. The difference in affinities (Km "fingerprints") between pig flux and electrogenic transport of glucose, and the absence of this difference in tilapia and trout, suggest two absorptive pathways in the pig and one in the fish species examined. More specifically, the total mucosal-to-serosal flux revealed a super high-affinity, high-capacity (sHa/Hc) total glucose transport system in tilapia; a super high-affinity, low-capacity (sHa/Lc) total glucose transport system in trout and a low-affinity, low-capacity (La/Lc) total glucose transport system in pig. Comparatively, electrogenic glucose absorption revealed similar Km in both fish species, with a super high-affinity, high capacity (sHa/Hc) system in tilapia; a super high-affinity/super low-capacity (sHa/sLc) system in trout; but a different Km fingerprint in the pig, with a high-affinity, low-capacity (Ha/Lc) system. This was supported by different responses to inhibitors of sodium-dependent glucose transporters (SGLTs) and glucose transporter type 2 (GLUT2) administered on the apical side between species. More specifically, tilapia flux was inhibited by SGLT inhibitors, but not the GLUT2 inhibitor, whereas trout lacked response to inhibitors. In contrast, the pig responded to inhibition by both SGLT and GLUT2 inhibitors with a higher expression of GLUT2. Altogether, it would appear that two pathways are working together in the pig, allowing it to have continued absorption at high glucose concentrations, whereas this is not present in both tilapia and trout.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole B Enns
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Khanh Luu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Subramaniam M, Enns CB, Loewen ME. Sigmoidal kinetics define porcine intestinal segregation of electrogenic monosaccharide transport systems as having multiple transporter population involvement. Physiol Rep 2019; 7:e14090. [PMID: 31062524 PMCID: PMC6503033 DOI: 10.14814/phy2.14090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Kinetic characterization of electrogenic sodium-dependent transport in Ussing chambers of d-glucose and d-galactose demonstrated sigmoidal/Hill kinetics in the porcine jejunum and ileum, with the absence of transport in the distal colon. In the jejunum, a high-affinity, super-low-capacity (Ha/sLc) kinetic system accounted for glucose transport, and a low-affinity, low-capacity (La/Lc) kinetic system accounted for galactose transport. In contrast, the ileum demonstrated a high-affinity, super-high-capacity (Ha/sHc) glucose transport and a low-affinity, high-capacity (La/Hc) galactose transport systems. Jejunal glucose transport was not inhibited by dapagliflozin, but galactose transport was inhibited. Comparatively, ileal glucose and galactose transport were both sensitive to dapagliflozin. Genomic and gene expression analyses identified 10 of the 12 known SLC5A family members in the porcine jejunum, ileum, and distal colon. Dominant SGLT1 (SLC5A1) and SGLT3 (SLC5A4) expression was associated with the sigmoidal Ha/sLc glucose and La/Lc galactose transport systems in the jejunum. Comparatively, the dominant expression of SGLT1 (SLC5A1) in the ileum was only associated with Ha glucose and La galactose kinetic systems. However, the sigmoidal kinetics and overall high capacity (Hc) of transport is unlikely accounted for by SGLT1 (SLC5A1) alone. Finally, the absence of transport and lack of pharmacological inhibition in the colon was associated with the poor expression of SLC5A genes. Altogether, the results demonstrated intestinal segregation of monosaccharide transport fit different sigmoidal kinetic systems. This reveals multiple transporter populations in each system, supported by gene expression profiles and pharmacological inhibition. Overall, this work demonstrates a complexity to transporter involvement in intestinal electrogenic monosaccharide absorption systems not previously defined.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Cole B. Enns
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Matthew E. Loewen
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
4
|
Subramaniam M, Weber LP, Loewen ME. Intestinal electrogenic sodium-dependent glucose absorption in tilapia and trout reveal species differences in SLC5A-associated kinetic segmental segregation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R222-R234. [PMID: 30601703 PMCID: PMC6459381 DOI: 10.1152/ajpregu.00304.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
Electrogenic sodium-dependent glucose transport along the length of the intestine was compared between the omnivorous Nile tilapia ( Oreochromis niloticus) and the carnivorous rainbow trout ( Oncorhynchus mykiss) in Ussing chambers. In tilapia, a high-affinity, high-capacity kinetic system accounted for the transport throughout the proximal intestine, midintestine, and hindgut segments. Similar dapagliflozin and phloridzin dihydrate inhibition across all segments support this homogenous high-affinity, high-capacity system throughout the tilapia intestine. Genomic and gene expression analysis supported findings by identifying 10 of the known 12 SLC5A family members, with homogeneous expression throughout the segments with dominant expression of sodium-glucose cotransporter 1 (SGLT1; SLC5A1) and sodium-myoinositol cotransporter 2 (SMIT2; SLC5A11). In contrast, trout's electrogenic sodium-dependent glucose absorption was 20-35 times lower and segregated into three significantly different kinetic systems found in different anatomical segments: a high-affinity, low-capacity system in the pyloric ceca; a super-high-affinity, low-capacity system in the midgut; and a low-affinity, low-capacity system in the hindgut. Genomic and gene expression analysis found 5 of the known 12 SLC5A family members with dominant expression of SGLT1 ( SLC5A1), sodium-glucose cotransporter 2 (SGLT2; SLC5A2), and SMIT2 ( SLC5A11) in the pyloric ceca, and only SGLT1 ( SLC5A1) in the midgut, accounting for differences in kinetics between the two. The hindgut presented a low-affinity, low-capacity system partially attributed to a decrease in SGLT1 ( SLC5A1). Overall, the omnivorous tilapia had a higher electrogenic glucose absorption than the carnivorous trout, represented with different kinetic systems and a greater expression and number of SLC5A orthologs. Fish differ from mammals, having hindgut electrogenic glucose absorption and segment specific transport kinetics.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
5
|
Karasov WH. Integrative physiology of transcellular and paracellular intestinal absorption. ACTA ACUST UNITED AC 2018; 220:2495-2501. [PMID: 28724701 DOI: 10.1242/jeb.144048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucose absorption by the small intestine has been studied for nearly a century. Despite extensive knowledge about the identity, functioning and regulation of the relevant transporters, there has been and there remains controversy about how these transporters work in concert to determine the overall epithelial absorption of key nutrients (e.g. sugars, amino acids) over a wide range of dietary and/or luminal concentrations. Our broader, integrative understanding of intestinal absorption requires more than the reductionist dissection of all the components and their elaboration at molecular and genetic levels. This Commentary emphasizes the integration of discrete molecular players and processes (including paracellular absorption) that, in combination, determine the overall epithelial absorption of key nutrients (e.g. sugars, amino acids) and putative anti-nutrients (water-soluble toxins), and the integration of that absorption with other downstream processes related to metabolic demands. It identifies historic key advances, controversies and future research ideas, as well as important perspectives that arise through comparative as well as biomedical physiological research.
Collapse
Affiliation(s)
- William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
6
|
Röhe I, Boroojeni FG, Zentek J. Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers. Poult Sci 2017; 96:4075-4084. [PMID: 29050410 DOI: 10.3382/ps/pex199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Peas are locally grown legumes being rich in protein and starch. However, the broad usage of peas as a feed component in poultry nutrition is limited to anti-nutritional factors, which might impair gut morphology and function. This study investigated the effect of feeding raw or differently processed peas compared with feeding a soybean meal-based control diet (C) on intestinal morphology and nutrient transport in broilers. A total of 360 day-old broiler chicks were fed with one of the following diets: The C diet, and 3 diets containing raw peas (RP), fermented peas (FP) and enzymatically pre-digested peas (EP), each supplying 30% of dietary crude protein. After 35 d, jejunal samples of broilers were taken for analyzing histomorphological parameters, active glucose transport in Ussing chambers and the expression of genes related to glucose absorption, intestinal permeability and cell maturation. Villus length (P = 0.017) and crypt depth (P = 0.009) of EP-fed broilers were shorter compared to birds received C. The villus surface area was larger in broilers fed C compared to those fed with the pea-containing feed (P = 0.005). Glucose transport was higher for broilers fed C in comparison to birds fed with the EP diet (P = 0.044). The sodium-dependent glucose co-transporter 1 (SGLT-1) expression was down-regulated in RP (P = 0.028) and FP (P = 0.015) fed broilers. Correlation analyses show that jejunal villus length negatively correlates with the previously published number of jejunal intraepithelial T cells (P = 0.014) and that jejunal glucose transport was negatively correlated with the occurrence of jejunal intraepithelial leukocytes (P = 0.041). To conclude, the feeding of raw and processed pea containing diets compared to a soybean based diet reduced the jejunal mucosal surface area of broilers, which on average was accompanied by lower glucose transport capacities. These morphological and functional alterations were associated with observed mucosal immune reactions. Further studies are required elucidating the specific components in peas provoking such effects and whether these effects have a beneficial or detrimental impact on gut function and animal health.
Collapse
Affiliation(s)
- I Röhe
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - F Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
7
|
Röhe I, Ruhnke I, Knorr F, Mader A, Boroojeni FG, Löwe R, Zentek J. Effects of grinding method, particle size, and physical form of the diet on gastrointestinal morphology and jejunal glucose transport in laying hens. Poult Sci 2014; 93:2060-8. [PMID: 24902702 DOI: 10.3382/ps.2013-03783] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several studies illustrated that the structure of feed, i.e., the particle size, particle-size distribution, and the physical form of the diet, affects the avian gastrointestinal function and health leading to changes in productive performance. However, investigations concerning the effects of feeding differently processed diets on laying hens are limited and primarily concentrated on bird performance. The current study examines the effect of feed processing on the gastrointestinal morphology and on the jejunal glucose transport of laying hens. In 8 replicates, a total of 384 hens (Lohmann Brown) aged 20 wk were randomly allocated to 8 different groups and fed over a period of 21 d in a 3-factorial design. Diets differed in 1) grinding method, either hammer or roller mill; 2) physical form, either mash or expandate; and 3) particle size, either coarsely or finely ground. During the experimental trial, the laying performance of each feeding group was recorded daily and the feed intake and BW determined weekly. After slaughtering, the weights of the pancreas, proventriculus, gizzard, and small intestine were measured. Villus lengths and crypt depths of the duodenum, jejunum, and ileum were determined. The jejunal electrogenic glucose transport was studied in Ussing chambers. Hens that received mash instead of expandate had higher proventriculus (P = 0.011), gizzard (P < 0.001), and pancreas (P = 0.019) weights, whereas the feeding of coarsely instead of finely ground diets led to higher gizzard weights (P < 0.001). Mash-fed hens showed longer duodenal (P < 0.001) and shorter ileal villi (P = 0.047) and increased duodenal villus height-to-crypt depth ratios (P < 0.001) than those given the expandate. Mash-fed hens had higher glucose transport rates than expandate-fed hens (P < 0.001). In conclusion, the feeding of coarsely ground as well as mash diets had stimulating effects on the development of the gastrointestinal organs. Moreover, the feeding of mash influenced the intestinal microstructure of the epithelium that was accompanied by higher glucose transport capacities.
Collapse
Affiliation(s)
- I Röhe
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - I Ruhnke
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - F Knorr
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - A Mader
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - F Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - R Löwe
- International Research Association of Feed Technology e.V., Frickenmühle 1A, 38110 Braunschweig (Thune), Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
8
|
Ruhnke I, DeBiasio JV, Suchodolski JS, Newman S, Musch MW, Steiner JM. Evaluation of endoscopically obtained duodenal biopsy samples from cats and dogs in an adapter-modified Ussing chamber. J Vet Sci 2014; 15:297-307. [PMID: 24378587 PMCID: PMC4087233 DOI: 10.4142/jvs.2014.15.2.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022] Open
Abstract
This study was conducted to evaluate an adapter-modified Ussing chamber for assessment of transport physiology in endoscopically obtained duodenal biopsies from healthy cats and dogs, as well as dogs with chronic enteropathies. 17 duodenal biopsies from five cats and 51 duodenal biopsies from 13 dogs were obtained. Samples were transferred into an adapter-modified Ussing chamber and sequentially exposed to various absorbagogues and secretagogues. Overall, 78.6% of duodenal samples obtained from cats responded to at least one compound. In duodenal biopsies obtained from dogs, the rate of overall response ranged from 87.5% (healthy individuals; n = 8), to 63.6% (animals exhibiting clinical signs of gastrointestinal disease and histopathological unremarkable duodenum; n = 15), and 32.1% (animals exhibiting clinical signs of gastrointestinal diseases and moderate to severe histopathological lesions; n = 28). Detailed information regarding the magnitude and duration of the response are provided. The adapter-modified Ussing chamber enables investigation of the absorptive and secretory capacity of endoscopically obtained duodenal biopsies from cats and dogs and has the potential to become a valuable research tool. The response of samples was correlated with histopathological findings.
Collapse
Affiliation(s)
- Isabelle Ruhnke
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4474,
| | | | | | | | | | | |
Collapse
|
9
|
Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine. Biochem J 2011; 435:43-53. [PMID: 21222652 DOI: 10.1042/bj20101987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metabolic complications arising from excessive fructose consumption are increasing dramatically even in young children, but little is known about ontogenetic mechanisms regulating Glut5 [glucose transporter 5; encoded by the Slc2a5 (solute carrier family 2 member 5) gene]. Glut5 expression is low postnatally and does not increase, unless luminal fructose and systemic glucocorticoids are present, until ≥ 14 days of age, suggesting substrate-inducible age- and hormone-sensitive regulation. In the present study, we perfused intestines of 10- and 20-day-old rats with either fructose or glucose then analysed the binding of Pol II (RNA polymerase II) and GR (glucocorticoid receptor), as well as acetylation of histones H3 and H4 by chromatin immunoprecipitation. Abundance of Glut5 mRNA increased only with fructose perfusion and age, a pattern that matched that of Pol II binding and histone H3 acetylation to the Glut5 promoter. Although many regions of the Glut5 promoter respond to developmental signals, fewer regions perceive dietary signals. Age- but not fructose-dependent expression of Sglt1 [sodium-dependent glucose co-transporter 1 encoded by the Slc5a1(solute carrier family 5 member 1) gene] also correlated with Pol II binding and histone H3 acetylation. In contrast, G6Pase (glucose-6-phosphatase; encoded by the G6pc gene) expression, which decreases with age and increases with fructose, is associated only with age-dependent changes in histone H4 acetylation. Induction of Glut5 during ontogenetic development appears to be specifically mediated by GR translocation to the nucleus and subsequent binding to the Glut5 promoter, whereas the glucocorticoid-independent regulation of Sglt1 by age was not associated with any GR binding to the Sglt1 promoter.
Collapse
|
10
|
|
11
|
|
12
|
Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am J Clin Nutr 2008; 87:1028-38. [PMID: 18400728 PMCID: PMC2430509 DOI: 10.1093/ajcn/87.4.1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. OBJECTIVE We tested the hypothesis that luminal fructose regulates NaPi-2b. DESIGN We perfused into the intestine fructose, glucose, and nonmetabolizable or poorly transported glucose analogs as well as phlorizin. RESULTS NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were approximately 30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)-activator AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) enhanced and the fatty acid synthase-AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylenebutyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. CONCLUSIONS Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies approximately 10% of caloric intake by Americans clearly affects absorption of Pi and may promote Pi homeostasis in patients with impaired renal function.
Collapse
Affiliation(s)
- Séverine Kirchner
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
13
|
Casirola DM, Ferraris RP. alpha-Glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism 2006; 55:832-41. [PMID: 16713445 DOI: 10.1016/j.metabol.2006.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
The recommended diet for diabetes mellitus is rich in complex carbohydrates. We have previously shown that high carbohydrate levels in the intestinal lumen induce adaptive increases in sugar absorption which in turn exacerbate postprandial hyperglycemia in diabetic mice. alpha-Glucosidase inhibitors (AGIs) hinder digestion of complex carbohydrates and therefore alleviate postprandial glycemic excursions. In this study, we tested the hypothesis that AGIs prevent the carbohydrate-induced upregulation of intestinal glucose and fructose transport in diabetes. Streptozotocin-diabetic mice were fed the following isocaloric diets: high carbohydrate (H), H plus acarbose (HA), H plus deoxy-nojirimycin (HD), and low carbohydrate (L), then nutrient uptakes were determined after 2 and 4 weeks. Body weight, intestinal weight, and length were independent of diet. Fasting and postprandial blood glucose levels were lower in HA and HD than in H mice. Uptakes of D-glucose and D-fructose were 2 to 3 times greater in H than in L mice, but HA and HM diets gradually reduced D-glucose uptakes to rates similar to L mice. Only HA diets reduced D-fructose uptake. Intestinal proline, aspartate, and glutamine uptakes were each greater in L than in H, HA, and HD mice. alpha-Glucosidase inhibitors did not alter intestinal permeability and amino acid transport rates. alpha-Glucosidase inhibitor-inhibitable increases in total intestinal absorptive capacity for sugars were due to carbohydrate-induced increases in V(max) of glucose transport. Clearly, one potential mechanism by which AGIs blunt postprandial glycemic excursions and lower fasting blood glucose concentrations in individuals consuming carbohydrate-containing diets is by preventing carbohydrate-induced increases in intestinal sugar transport.
Collapse
Affiliation(s)
- Donatella M Casirola
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | | |
Collapse
|
14
|
Derting TL, Hornung CA. ENERGY DEMAND, DIET QUALITY, AND CENTRAL PROCESSING ORGANS IN WILD WHITE-FOOTED MICE (PEROMYSCUS LEUCOPUS). J Mammal 2003. [DOI: 10.1644/beh-002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Gäbel G, Aschenbach JR. Influence of food deprivation on the transport of 3-O-methyl-α-D-glucose across the isolated ruminal epithelium of sheep. J Anim Sci 2002. [DOI: 10.1093/ansci/80.10.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Pei YX, Wang DH, Hume ID. Effects of dietary fibre on digesta passage, nutrient digestibility, and gastrointestinal tract morphology in the granivorous Mongolian gerbil (Meriones unguiculatus). Physiol Biochem Zool 2001; 74:742-9. [PMID: 11517459 DOI: 10.1086/322928] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2001] [Indexed: 11/04/2022]
Abstract
To investigate digestive tract performance in Mongolian gerbils (Meriones unguiculatus), food intake and digestibility, digesta passage rate, and gastrointestinal tract morphology were measured in captive animals fed low- or high-fibre diets. We used two markers (Co-ethylene diamine tetra-acetic acid for solutes and Cr-mordanted cell walls for particles) to measure differential passage rates of digesta fractions in order to test for the presence of a colonic separation mechanism (CSM). Although dry-matter intakes on the high-fibre diet did not differ from those on the low-fibre diet, digestibilities of dry matter, neutral-detergent fibre, acid-detergent fibre, crude protein, and crude fat were all significantly lower on the high-fibre diet. Gross energy intake on the high-fibre diet also did not differ from that on the low-fibre diet, but energy lost in faeces was much higher than on the low-fibre diet; thus, energy digestibility and digestible energy intake were significantly lower on the high-fibre diet. The lengths and dry-tissue masses of all segments of the gastrointestinal tract tended to enlarge in response to increased dietary fibre, but only the total tract contents, contents of the small intestine, and length and dry-tissue mass of the caecum increased significantly. The mean retention time (MRT) of the particle marker was significantly greater than that of the solute marker on the low-fibre but not the high-fibre diet; the solute/particle differential retention ratio was 0.62 on the low-fibre diet and 0.90 on the high-fibre diet. Thus, there was no evidence for selective retention of the solute marker on either diet. The MRT of the particle marker was significantly lower on the high-fibre diet and in the same direction as the MRT of the solute marker. These results suggest that the granivorous Mongolian gerbil has no CSM but can adjust its digestive tract capacity to accommodate greater quantities of low-quality food.
Collapse
Affiliation(s)
- Y X Pei
- State Key Laboratory for Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | |
Collapse
|
17
|
Jiang L, David ES, Espina N, Ferraris RP. GLUT-5 expression in neonatal rats: crypt-villus location and age-dependent regulation. Am J Physiol Gastrointest Liver Physiol 2001; 281:G666-74. [PMID: 11518678 DOI: 10.1152/ajpgi.2001.281.3.g666] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rat fructose transporter normally appears after completion of weaning but can be precociously induced by early feeding of a high-fructose diet. In this study, the crypt-villus site, the metabolic nature of the signal, and the age dependence of induction were determined. In weaning rats fed high-glucose pellets, GLUT-5 mRNA expression was modest, localized mainly in the upper three-fourths of the villus, and there was little expression in the villus base. When fed high-fructose pellets, GLUT-5 mRNA expression was two to three times greater in all regions except the villus base. Intestinal perfusion in vivo of a nonmetabolizable fructose analog, 3-O-methylfructose, tended to increase fructose uptake rate and moderately increased GLUT-5 mRNA abundance but had no effect on glucose uptake rates and SGLT1 mRNA abundance. Gavage feeding of high-fructose, but not high-glucose, solutions enhanced fructose uptake only in pups > or =14 days, suggesting that GLUT-5 regulation is markedly age dependent. Fructose or its metabolites upregulate GLUT-5 expression in all enterocytes, except those in the crypt and villus base and in pups <14 days old.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Animals, Newborn
- Biological Transport/drug effects
- Biological Transport/physiology
- Dietary Carbohydrates/pharmacology
- Fructose/analogs & derivatives
- Fructose/metabolism
- Fructose/pharmacokinetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glucose/metabolism
- Glucose Transporter Type 5
- In Vitro Techniques
- Intestine, Small/cytology
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intubation, Gastrointestinal
- Monosaccharide Transport Proteins/biosynthesis
- Monosaccharide Transport Proteins/genetics
- Perfusion
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- L Jiang
- Graduate School of the Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, New Jersey 07103-2714, USA
| | | | | | | |
Collapse
|
18
|
Ferraris RP, Cao QX, Prabhakaram S. Chronic but not acute energy restriction increases intestinal nutrient transport in mice. J Nutr 2001; 131:779-86. [PMID: 11238759 DOI: 10.1093/jn/131.3.779] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chronic energy restriction (ER) dramatically enhances intestinal absorption of nutrients by aged mice. Do adaptations in nutrient absorption develop only after extended ER or immediately after its initiation? To determine the time course of adaptations, we measured rates of intestinal glucose, fructose and proline transport 1-270 d after initiation of ER (70% of ad libitum) in 3-mo old mice. Mice of the same age that consumed food ad libitum (AL) served as controls; a third group was starved for 1 or 2 d only, to distinguish the effects of acute ER from those of starvation. Acute ER of 1, 2 and 10 d had no effect on nutrient absorption. Starvation significantly decreased intestinal mass per centimeter, thereby reducing transport per centimeter and intestinal absorptive capacity without significantly altering transport per milligram of intestine. ER for 24 d enhanced only fructose uptake, whereas ER for 270 d enhanced uptake of all nutrients by 20-100%. Despite marked differences in body weights, the wet weights of the stomach, small intestine, cecum and large intestine were generally similar in AL and ER mice, suggesting that the gastrointestinal tract was spared during ER. In contrast, the wet weights of the lungs, kidneys, spleen, heart, pancreas and liver each differed by 40-120% between ER and AL mice. Intestinal transport adaptations develop gradually during ER, and the main mechanism underlying these adaptations is a dramatic increase in transport activity per milligram tissue.
Collapse
Affiliation(s)
- R P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103-2714, USA.
| | | | | |
Collapse
|
19
|
Jiang L, Ferraris RP. Developmental reprogramming of rat GLUT-5 requires de novo mRNA and protein synthesis. Am J Physiol Gastrointest Liver Physiol 2001; 280:G113-20. [PMID: 11123204 DOI: 10.1152/ajpgi.2001.280.1.g113] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fructose transporter (GLUT-5) expression is low in mid-weaning rat small intestine, increases normally after weaning is completed, and can be precociously induced by premature consumption of a high-fructose (HF) diet. In this study, an in vivo perfusion model was used to determine the mechanisms regulating this substrate-induced reprogramming of GLUT-5 development. HF (100 mM) but not high-glucose (HG) perfusion increased GLUT-5 activity and mRNA abundance. In contrast, HF and HG perfusion had no effect on Na(+)-dependent glucose transporter (SGLT-1) expression but increased c-fos and c-jun expression. Intraperitoneal injection of actinomycin D before intestinal perfusion blocked the HF-induced increase in fructose uptake rate and GLUT-5 mRNA abundance. Actinomycin D also prevented the perfusion-induced increase in c-fos and c-jun mRNA abundance but did not affect glucose uptake rate and SGLT-1 mRNA abundance. Cycloheximide blocked the HF-induced increase in fructose uptake rate but not the increase in GLUT-5 mRNA abundance and had no effect on glucose uptake rate and SGLT-1 mRNA abundance. In neonatal rats, the substrate-induced reprogramming of intestinal fructose transport is likely to involve transcription and translation of the GLUT-5 gene.
Collapse
Affiliation(s)
- L Jiang
- Graduate School of the Biomedical Sciences, Newark, New Jersey 07103-2714, USA
| | | |
Collapse
|
20
|
Khan JM, Wingertzahn MA, Teichberg S, Vancurova I, Harper RG, Wapnir RA. Development of the intestinal SGLT1 transporter in rats. Mol Genet Metab 2000; 69:233-9. [PMID: 10767178 DOI: 10.1006/mgme.2000.2973] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose absorption from the small intestine is largely mediated via the sodium-coupled glucose transporter (SGLT1). The goal of this study was to investigate the ontogenesis of the SGLT1, using the rat as an animal model at three stages of development: during lactation, at weaning, and at physiologic maturity. The techniques involved upper small intestinal perfusions with solutions containing 200 mM glucose and 50 mM NaCl, with or without 1 mM phloridzin (Phl), as an inhibitor of SGLT1. Molecular expression of the SGLT1 was also investigated via Western blot analysis from intestinal specimens of the three growth periods. Glucose absorption in weanling rats, in the absence of Phl, was several times higher than in sucklings and approximately double that of mature animals, and the effects of Phl were the greatest in weanlings. Furthermore, the physiologic data correlate to the molecular analysis of the SGLT1 which showed an increase in expression of the SGLT1 in both the weanlings and the adults compared to the sucklings. At all three stages of development Phl abolished Na absorption, and in sucklings there was a net outflow of Na. Due to the coupling between Na and water transport, net water absorption and the influx/efflux ratio, a more sensitive indicator of changes in unidirectional fluid movement, were similarly affected by Phl at the three stages of development. Net water absorption was highest in weanling animals. These findings are consistent with an early development of SGLT1 in rat small intestine and an apparent burst of activity at weaning. Less than complete maturity of other absorptive mechansims is occurring at this time.
Collapse
Affiliation(s)
- J M Khan
- Division of Perinatal Medicine, New York University School of Medicine, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Monteiro IM, Jiang L, Ferraris RP. Dietary modulation of intestinal fructose transport and GLUT5 mRNA expression in hypothyroid rat pups. J Pediatr Gastroenterol Nutr 1999; 29:563-70. [PMID: 10554124 DOI: 10.1097/00005176-199911000-00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Intestinal fructose transport rates or GLUT5 mRNA levels typically show a two- to threefold increase after weaning in rats allowed to wean normally but can be enhanced precociously by high-fructose diets during early weaning. Developmental increases in serum thyroxine levels coincide with the onset of weaning and have been linked to changes in intestinal sucrase and lactase activities. METHODS Rat pups were made hypothyroid by giving the dam 0.01% propylthiouracil as drinking water from day 18 of gestation. The hypothyroid pups and age-matched euthyroid control pups were then fed high-fructose or high-glucose solutions by gavage, twice a day starting at 17 days of age for 3 days, and then killed at 20 days of age. RESULTS Serum thyroxine levels were five times lower in the hypothyroid pups. Rates of intestinal fructose uptake in the proximal and middle small intestine were 2.0 to 2.5 times higher in the hypothyroid and euthyroid pups fed high-fructose solution than in littermates fed high-glucose solution or those allowed to wean normally with the dam. Intestinal glucose uptake also increased in hypothyroid but not in euthyroid pups fed high-fructose or high-glucose solutions. GLUT5 mRNA levels increased in euthyroid and hypothyroid pups fed high fructose and paralleled the increase in fructose uptake. CONCLUSION During weaning, dietary fructose can precociously enhance intestinal fructose uptake and GLUT5 mRNA expression, independent of developmental increases in serum thyroxine levels. Modest changes in glucose transport rates indicate that nonspecific mechanisms may provide a minor contribution to diet-induced changes in nutrient absorption in hypothyroid pups.
Collapse
Affiliation(s)
- I M Monteiro
- Department of Pediatrics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark 07103, USA
| | | | | |
Collapse
|
22
|
Abstract
This review describes major factors that, singly or together, influence the concentration and distribution of D-glucose in mammals, particularly in humans, with emphasis on rest, physical activity, and alimentation. It identifies areas of uncertainty: distribution and concentrations of glucose in interstitial fluid, kinetics and mechanism of transcapillary glucose transport, kinetics and mechanism of glucose transport via its transporters into cells, detailed mechanisms by which hormones, exercise, and hypoxia affect glucose movement across cell membranes, whether translocation of glucose transporters to the cell membrane accounts completely, or even mainly, for insulin-stimulated glucose uptake, whether exercise stimulates release of a circulating insulinomimetic factor, and the relation between muscle glucose uptake and muscle blood flow. The review points out that there is no compartment of glucose in the body at which all glucose is at the same concentration, and that models of glucose metabolism, including effects of insulin on glucose metabolism based on assumptions of concentration homogeneity, cannot be entirely correct. A fresh approach to modeling is needed.
Collapse
Affiliation(s)
- K Zierler
- Endocrine and Metabolism Division, Department of Medicine, and Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-4904, USA
| |
Collapse
|
23
|
Pappenheimer JR. Scaling of dimensions of small intestines in non-ruminant eutherian mammals and its significance for absorptive mechanisms. Comp Biochem Physiol A Mol Integr Physiol 1998; 121:45-58. [PMID: 9883568 DOI: 10.1016/s1095-6433(98)10100-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mucosal surface area of small intestines in non-ruminant eutherian mammals increases approximately in proportion to the 0.6 power of body mass, whereas resting metabolic rate (RMR) increases approximately with the 0.74 power of body mass; the mass exponent for field metabolic rates (FMR) may exceed 0.8. These relationships imply that the average rate of absorption of metabolic substrates, expressed per unit area of mucosal surface, is greater in large animals than in small. In the present paper I collate data from the literature relating mucosal surface area, fluid absorption and glucose transport rates to body size. Glucose-stimulated fluid absorption per unit area of mucosal surface increases with body size, whereas transcellular, carrier-mediated glucose transport per unit area decreases with body size. In perfused jejunal segments of normal human subjects the rates of fluid absorption per unit area of mucosa are five to ten times greater than in laboratory rats. The absorbed fluid contains glucose in amounts that may greatly exceed the maximum transport capacity of the apical glucose transporter. It follows that the paracellular component of glucose absorption increases with body size. Scaling of intestinal dimensions and transport therefore provides new information about the relative contributions of transcellular and paracellular pathways to absorption of nutrients.
Collapse
Affiliation(s)
- J R Pappenheimer
- Department of Biology, Harvard University, Bedford, MA 01730, USA.
| |
Collapse
|
24
|
Mesonero J, Matosin M, Cambier D, Rodriguez-Yoldi MJ, Brot-Laroche E. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem J 1995; 312 ( Pt 3):757-62. [PMID: 8554516 PMCID: PMC1136178 DOI: 10.1042/bj3120757] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of glucose and fructose and fetal bovine serum on the expression of the fructose transporter GLUT5 was studied in clone PD7 of the human colon cancer cell line Caco-2, which has been characterized previously [Chantret, Rodoloswe, Barbat et al. (1994) J. Cell Sci. 107, 213-225; Mahraoui, Rodolosse, Barbat et al. (1994) Biochem. J. 298, 629-633]. Culture of the cells in dialysed serum and hexose-free media, down-regulated the expression of GLUT5, which was below detection within 3-4 days. This effect was reversed by fructose and glucose feeding of the cells. Fructose feeding yielded a 3-fold higher abundance of GLUT5 protein and mRNA as compared with that expressed in glucose-fed cells. Cells fed normal serum exhibited an inverse hierarchy of expression, with glucose being a better inducer than fructose for the expression of GLUT5. The GLUT5 mRNA and protein abundances obtained in fructose-fed cells did not depend on the type of serum. A linear relationship between cyclic AMP (cAMP) levels and GLUT5 mRNA abundance was found in cells fed dialysed serum, whereas in cells fed normal serum, mRNA abundances were not correlated to cAMP levels. These results indicate that glucose and fructose, together with serum-related factors and cAMP, have combined effects on the expression of GLUT5 in Caco-2 cells.
Collapse
Affiliation(s)
- J Mesonero
- Unité de Recherches sur la Différenciation Cellulaire Intestinale, INSERM U178, Villejuif, France
| | | | | | | | | |
Collapse
|
25
|
Debnam ES, Smith MW, Sharp PA, Srai SK, Turvey A, Keable SJ. The effects of streptozotocin diabetes on sodium-glucose transporter (SGLT1) expression and function in rat jejunal and ileal villus-attached enterocytes. Pflugers Arch 1995; 430:151-9. [PMID: 7675626 DOI: 10.1007/bf00374645] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rats treated with streptozotocin for 17 days were used to determine the cellular origin of enhanced brush border glucose transport in the diabetic small intestine. In the jejunum of both normal and diabetic rats, phlorizin-sensitive (SGLT1-mediated) glucose transport was shown, by section autoradiography, to take place in upper villus enterocytes. The distribution of brush border SGLT1 transporters along villi, determined using immunogold cytochemistry, was similar to that found for glucose uptake. Longer villi, supporting a larger number of absorbing enterocytes in the diabetic jejunum, appeared to be responsible for increased glucose uptake in this condition. SGLT1 protein and SGLT1-mediated glucose transport were undetectable in normal distal ileal villi. However, following treatment with streptozotocin, both SGLT1 protein and SGLT1-mediated glucose transport were found to be present in basal ileal villus enterocytes. SGLT1 protein and SGLT1-mediated glucose transport both increased during enterocyte migration to the villus tip. Cellular induction of the SGLT1 transporter, as well as longer villi contribute to enhanced glucose transport in diabetic rat distal ileum. Close correlation between the positional expression of SGLT1 protein and absorptive function suggests that transporter density is an important determinant for up-regulation of sodium-dependent glucose transport in diabetes.
Collapse
Affiliation(s)
- E S Debnam
- Department of Physiology, Royal Free Hospital School of Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
26
|
Moore R, Tzipori S, Griffiths JK, Johnson K, De Montigny L, Lomakina I. Temporal changes in permeability and structure of piglet ileum after site-specific infection by Cryptosporidium parvum. Gastroenterology 1995; 108:1030-9. [PMID: 7698569 DOI: 10.1016/0016-5085(95)90200-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND/AIMS Cryptosporidiosis is an important enteric infection associated with diarrhea in humans. The structural and functional basis for diarrhea is poorly understood. The aim of the study was to determine the structural and functional basis of diarrhea in cryptosporidiosis during evolving host cell-parasite interactions in the intestine. METHODS We used the piglet model for temporal studies of alterations in intestinal epithelial structure and function that occurred 12-48 hours postinoculation. Segments of intestine were directly inoculated in vivo, harvested, and studied in vitro using Ussing chamber techniques. RESULTS Villus architectural alterations corresponded to the extent of infection. Increased numbers of lamina propria inflammatory cells were evident at 36 hours postinoculation. Solute and macromolecular permeability was not increased. Glucose-responsive short-circuit current was diminished at 48 hours postinoculation. The short-circuit current response to theophylline was the same in control and infected tissues. CONCLUSIONS We conclude that passive solute and macromolecular permeability in infected tissues is not significantly increased during parasite-host cell interactions 12-48 hours postinoculation. Electrogenic glucose stimulated Na+ absorption, a function principally of villus absorptive cells, is impaired, and electrogenic Cl- secretion, a function of crypt epithelial cells, remains the same. These findings parallel structural observations that include loss of the Na+/glucose-transporting villus epithelium without loss of crypt epithelium.
Collapse
Affiliation(s)
- R Moore
- Department of Pathology, School of Medicine and Veterinary Medicine, Tufts University, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
27
|
Koepsell H, Spangenberg J. Function and presumed molecular structure of Na(+)-D-glucose cotransport systems. J Membr Biol 1994; 138:1-11. [PMID: 8189427 DOI: 10.1007/bf00211064] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Functional characterization of Na(+)-D-glucose cotransport in intestine and kidney indicates the existence of heterogeneous Na(+)-D-glucose cotransport systems. Target size analysis of the transporting unit and model analysis of substrate binding have been performed and proteins have been cloned which mediate (SGLT1) and modulate (RS1) the expression of Na(+)-D-glucose cotransport. The experiments support the hypothesis that functional Na(+)-D-glucose cotransport systems in mammals are composed of two SGLT1-type subunits and may contain one or two RS1-type proteins. SGLT1 contains up to twelve membrane-spanning alpha-helices, whereas RS1 is a hydrophilic extracellular protein which is anchored in the brush-border membrane by a hydrophobic alpha-helix at the C-terminus. SGLT1 alone is able to translocate glucose together with sodium; however, RS1 increases the Vmax of transport expressed by SGLT1. In addition, the biphasic glucose dependence of transport, which is typical for kidney and has been often observed in intestine, was only obtained after coexpression of SGLT1 and RS1.
Collapse
Affiliation(s)
- H Koepsell
- Anatomisches Institut, Universität Würzburg, Germany
| | | |
Collapse
|
28
|
Miyamoto K, Hase K, Takagi T, Fujii T, Taketani Y, Minami H, Oka T, Nakabou Y. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J 1993; 295 ( Pt 1):211-5. [PMID: 8216218 PMCID: PMC1134840 DOI: 10.1042/bj2950211] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dietary sugars are known to stimulate intestinal glucose transport activity, but the specific signals involved are unknown. The Na(+)-dependent glucose co-transporter (SGLT1), the liver-type facilitative glucose transporter (GLUT2) and the intestinal-type facilitative glucose transporter (GLUT5) are all expressed in rat jejunum [Miyamoto, Hase, Taketani, Minami, Oka, Nakabou and Hagihira (1991) Biochem. Biophys. Res. Commun. 181, 1110-1117]. In the present study we have investigated the effects of dietary sugars on these glucose transporter genes. A high-glucose diet stimulated glucose transport activity and increased the levels of SGLT1 and GLUT2 mRNAs in rat jejunum. 3-O-Methylglucose, D-galactose, D-fructose, D-mannose and D-xylose can mimic the regulatory effect of glucose on the SGLT1 mRNA level in rat jejunum. However, only D-galactose and D-fructose increased the levels of GLUT2 mRNA. The GLUT5 mRNA level was increased significantly only by D-fructose. Our results suggest that the increase in intestinal transport activity in rats caused by dietary glucose is due to an increase in the levels of SGLT1 and GLUT2 mRNAs, and that these increases in mRNA may be caused by an enhancement of the transcriptional rate. Furthermore, for expression of the SGLT1 gene, the signal need not be a metabolizable or transportable substrate whereas, for expression of the GLUT2 gene, metabolism of the substrate in the liver may be necessary for signalling. Only D-fructose is an effective signal for expression of the GLUT5 gene.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Minami H, Kim JR, Tada K, Takahashi F, Miyamoto K, Nakabou Y, Sakai K, Hagihira H. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats. Gastroenterology 1993; 105:692-7. [PMID: 8359641 DOI: 10.1016/0016-5085(93)90884-f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND To investigate the mechanism of regulation of intestinal disaccharidase activity and glucose absorption, the effect of dietary intake of phlorizin, a potent and specific inhibitor of intestinal glucose transport, on intestinal disaccharidase activity and Na(+)-dependent glucose transporter was examined in rats. METHODS Jejunal disaccharidase activity and the number of Na(+)-dependent glucose transporters were determined in rats maintained on a low-starch diet, a high-starch diet, or low-starch diets containing various amounts of phlorizin (0.1%-0.9% wt/wt). RESULTS Jejunal disaccharidase activity increased in a dose- and time-dependent manner. Stimulation of jejunal disaccharidase activity only occurred when phlorizin was added to starch-containing diets, not when it was added to a carbohydrate-free diet. Addition of the same amount of phloretin and glucose (constituents of phlorizin), to the diet failed to increase disaccharidase activity. The maximum binding of phlorizin to brush border membrane vesicles was increased in the rats fed phlorizin, whereas the dissociation constant remained unchanged, suggesting an increase of glucose transporter expression. CONCLUSIONS Dietary phlorizin increased the jejunal disaccharidase activity and Na(+)-dependent glucose transporter expression. The trigger for these changes may have been due to an increased luminal glucose content.
Collapse
Affiliation(s)
- H Minami
- Department of Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- B H Hirst
- Department of Physiological Sciences, University of Newcastle upon Tyne Medical School
| |
Collapse
|
31
|
Ferraris RP, Diamond JM. Crypt/villus site of substrate-dependent regulation of mouse intestinal glucose transporters. Proc Natl Acad Sci U S A 1993; 90:5868-72. [PMID: 8516339 PMCID: PMC46824 DOI: 10.1073/pnas.90.12.5868] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intestinal epithelium is in a constant state of turnover, with cells differentiating at the crypts and then migrating toward the tips of the villi. Does substrate-dependent regulation of intestinal Na+/D-glucose cotransporters occur only in crypt cells, or can transport activity be subsequently reprogrammed in mature enterocytes? We used in situ, glucose-protectable specific phlorizin binding to determine site density of brush border glucose transporters in enterocytes fractionated along the crypt/villus axis of mice that were killed shortly after drastic changes in carbohydrate levels of their diets. Dietary carbohydrate-induced changes in site density of specific phlorizin binding initially appeared only in crypt cells before spreading, over the course of several days, to the villus tips. Thus, only crypt cells perceive the signal for glucose transporter regulation, and the observed time lag of diet-induced changes in intestinal glucose uptake is due mainly to cell migration times.
Collapse
Affiliation(s)
- R P Ferraris
- Department of Physiology, University of California Medical Center, Los Angeles 90024-1751
| | | |
Collapse
|
32
|
Pappenheimer JR, Volpp K. Transmucosal impedance of small intestine: correlation with transport of sugars and amino acids. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C480-93. [PMID: 1514592 DOI: 10.1152/ajpcell.1992.263.2.c480] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transmucosal impedances of isolated perfused segments of jejunum from mice and hamsters were measured at frequencies from 10-100,000 Hz in the presence and absence of sugars and amino acids. Na-coupled transport of organic substrates caused large decreases of transmucosal impedance, reflecting contraction of cytoskeletal proteins controlling permeability of tight junctions, functional surface of basolateral membranes, and width of extracellular pathways. The observed changes of impedance were closely correlated with molar rates of Na-coupled active transport rather than with molecular species. Thus amino acids and sugars having the same molar rates of active transport also have the same effects on transmucosal impedance. It is proposed that a nonspecific increase of intracellular osmotic pressure during active transport is the first step initiating cytoskeletal contraction. Cell volume regulatory responses, including increased basolateral K+ conductance and Ca2+ influx, may be subsequent steps leading to contraction of perijunctional actomyosin, formation of junctional dilatations, and exposure of lateral membranes. Enhancement of oxygen capacity of perfusion fluids (e.g., with fluorocarbon emulsion) is required to maintain viability of isolated intestinal epithelium; in plain oxygenated Ringer-HCO3 solution, the transmucosal impedance is abnormally low and cytoskeletal contractile responses to Na-coupled transport are attenuated. An electrical circuit analog is presented that simulates almost exactly the observed transmucosal impedances and provides quantitative evaluation of the effects of Na-coupled transport of sugars and amino acids on resistances of tight junctions, capacitance of basolateral membranes, and postjunctional resistances of lateral intercellular spaces and villus cores.
Collapse
Affiliation(s)
- J R Pappenheimer
- Department of Biology, Harvard University, Bedford, Massachusetts 01730
| | | |
Collapse
|
33
|
Debnam ES, Chowrimootoo G. Streptozotocin diabetes and sugar transport by rat ileal enterocytes: evidence for adaptation caused by an increased luminal nutrient load. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1107:86-92. [PMID: 1535513 DOI: 10.1016/0005-2736(92)90332-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preparations of villus enterocytes and brush border membrane vesicles have been used to study the effects of streptozotocin-induced diabetes mellitus in rats on sugar transport across the brush border and basolateral membranes of ileal epithelial cells. In isolated cells, diabetes increased Na(+)-dependent galactose transport across the brush border of mid-villus but not upper villus cells. Galactose transport across the basolateral membrane was, however, enhanced by diabetes in both cell populations. Kinetic analysis of vesicle data suggested the presence of two transporters for Na(+)-dependent glucose transport. Diabetes induced a 5-fold increase in both KT and Vmax of the high-affinity/low-capacity system together with a 2-fold increase in the Vmax of the low-affinity/high-capacity transporter. Glucose was almost undetectable in the lumen of the upper and lower ileum in control animals but was present at high levels (26.1 +/- 4.3 mM and 6.5 +/- 1.3 mM) in diabetic rats. The possible significance of these changes in luminal sugar concentration in relation to the adaptation of transport across ileal enterocytes is discussed.
Collapse
Affiliation(s)
- E S Debnam
- Department of Physiology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
34
|
Wright SH, Pajor AM, Moon DA, Wunz TM. High-affinity phlorizin binding in Mytilus gill. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:212-8. [PMID: 1543705 DOI: 10.1016/0005-2736(92)90089-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gill of the marine mussel, Mytilus, contains a high affinity, Na-dependent D-glucose transporter capable of accumulating glucose directly from sea water. We examined the ability of the beta-glucoside, phlorizin, to act as a high-affinity ligand of this process in intact gills and isolated brush border membrane vesicles (BBMV). The time course of association of nanomolar [3H]phlorizin to gills and BBMV was slow, with t50 values between 10 and 30 min, and a half-time for dissociation of approx. 30 min. 1 mM D-glucose reduced equilibrium binding of 1 nM phlorizin by 90-95%, indicating that there was little non-specific binding of this ligand to the gill. In addition, there was little, if any, hydrolysis by the gill of phlorizin to its constituents, glucose and phloretin. Phlorizin binding to gills and BBMV was significantly inhibited by the addition of 50 microM concentrations of D-glucose and alpha-methyl-D-glucose, and unaffected by the addition of L-glucose and fructose. Binding to gills and BBMV was reduced by greater than 90% when Na+ was replaced by K+. Replacement of Na+ by Li+ effectively blocked binding to the intact gill, although Li+ did support a limited amount of glucose-specific phlorizin binding in BBMV. The Kd values for glucose-specific phlorizin binding in intact gills and BBMV were 0.5 nM and 6 nM, respectively. We conclude that phlorizin binds with extremely high affinity to the Na-dependent glucose transporter of Mytilus gill, which may be useful in future efforts to isolate and purify the protein(s) involved in integumental glucose transport.
Collapse
Affiliation(s)
- S H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson 85724
| | | | | | | |
Collapse
|
35
|
Cheeseman CI, Harley B. Adaptation of glucose transport across rat enterocyte basolateral membrane in response to altered dietary carbohydrate intake. J Physiol 1991; 437:563-75. [PMID: 1890649 PMCID: PMC1180063 DOI: 10.1113/jphysiol.1991.sp018611] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. The effect of changes in the carbohydrate content of the diet on D-glucose transport across the basolateral membrane of rat enterocytes has been compared with alterations in transport across the brush-border membrane. 2. Measurement of carrier-mediated D-glucose uptake across the jejunal brush border from animals fed a low- or high-carbohydrate diet showed a change in the maximal rate of transport by 7 days which was maintained for 14 days. The low-carbohydrate diet produced a progressive decline in uptake whereas the high-carbohydrate diet increased the transport. There was no alteration in the apparent affinity constant as a result of the dietary manipulations and no discernible trend for changes in the passive permeability to glucose. 3. Transport of D-glucose across the basolateral membrane was also affected by the dietary composition. After 7 days the maximal transport rate was greater in the animals fed the high-carbohydrate diet. However, while this increase was maintained for 14 days, uptake into vesicles prepared after 2 weeks on the low-carbohydrate diet showed a return to control levels. 4. A detailed analysis of the time course of these responses showed the effect on basolateral membrane transport to be inducible within 3 days of switching from the low- to the high-carbohydrate diet and could be reversed within a similar period. 5. Kinetic studies using purified basolateral membrane vesicles confirmed that the change in transport was the result of an increase in the maximal transport rate. Analysis of cytochalasin B binding to these membranes showed a parallel change in the number of glucose-inhibitable binding sites. 6. The component of the diet responsible for these changes was further investigated by replacing the glucose in the high-carbohydrate food with galactose, fructose, mannose or 3-O-methylglucose. Only glucose and fructose produced any significant change in the transport across the basolateral membrane. 7. It is concluded that in response to changes in the carbohydrate content of the diet there are alterations in the capacity for glucose transport across the basolateral membrane of the enterocyte as well as in the brush-border membrane. The change in transport across the basolateral membrane is best explained by an increase in the number of glucose carriers in this membrane.
Collapse
Affiliation(s)
- C I Cheeseman
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
36
|
Satoh O, Koyama S, Yamada K, Kawasaki T. Changes in amino acid and glucose transport in brush-border membrane vesicles of hyperglycemic guinea-pig small intestine. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1063:155-61. [PMID: 1826612 DOI: 10.1016/0005-2736(91)90365-f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Changes in intestinal transport of L-amino acid and D-glucose in streptozotocin (STZ)-induced hyperglycemic guinea-pig were examined using brush-border membrane vesicles. The vesicles were prepared from guinea-pigs on days 3, 10, and 21 after intravenous injection of STZ (150 mg/kg body weight), and from control animals injected with sodium citrate buffer (pH 4.5) in the same manner. Blood glucose concentration rose to greater than 300 mg/dl in the hyperglycemic guinea-pigs 24 h after STZ injection, and then remained constant. All vesicles obtained under different conditions showed a similar specific activity of alkaline phosphatase, a marker enzyme of the intestinal brush-border membrane, indicating a similar purity of the membrane vesicles. On day 3, Na(+)-dependent amino acid transport was found to be approx. 30% higher in the hyperglycemic than in the control group, and Na(+)-dependent glucose transport was 35% lower in the hyperglycemic than in the control group. On days 10 and 21, Na(+)-dependent amino acid transport had recovered to the control levels, whereas Na(+)-dependent glucose transport was twice as high as in the hyperglycemic than in the control group. Na(+)-independent amino acid and Na(+)-independent glucose transport showed no difference between the hyperglycemic and control groups after STZ injection. The changes in both Na(+)-dependent amino acid and glucose transport were attributed to significant changes in the Vmax values with no change in the apparent Km values. This study clearly demonstrates that hyperglycemia is associated with reciprocal changes in intestinal transport of amino acid and glucose in its acute phase, suggesting an important pathophysiological regulatory mechanism for absorption of nutrients by control of the numbers of specific carriers.
Collapse
Affiliation(s)
- O Satoh
- Department of Biochemistry, Hiroshima University School of Medicine, Japan
| | | | | | | |
Collapse
|
37
|
Mayhew TM. Striated brush border of intestinal absorptive epithelial cells: stereological studies on microvillous morphology in different adaptive states. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1990; 16:45-55. [PMID: 2213231 DOI: 10.1002/jemt.1060160107] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different regions of small bowel were examined in five groups of rats in three separate experiments. The effects on mucosal morphology of position along the bowel, induced hypoproliferation (due to fasting), and induced hyperproliferation (due to streptozotocin diabetes) were investigated. Intestines fixed by in situ perfusion with buffered glutaraldehyde were sampled by strictly randomised procedures. Pieces of tissue from segments of roughly equal length were processed for electron microscopy and embedded in resin. Complete transverse sections were cut for light microscopy and estimates of villous surface areas were obtained by stereological methods devised for the purpose. Ultrathin sections from random sectors of the same tissue blocks were sampled systematically to obtain micrographs of the villous surface. These were analysed for quantitative information about microvilli (length, diameter, surface area, and number). Structural quantities from individual segments were pooled to provide values for the entire small bowel. Significant regional differences in villous and microvillous dimensions were found in all groups. The numbers of microvilli per bowel were remarkably constant in all control groups. Other variables were estimated reproducibly in rats of the same sex, strain, and average body weight. Effective absorptive surfaces did not show a linear gradient but tended to peak in middle segments. Neither fasting nor induced diabetes altered the mean length, diameter, or packing density of microvilli. However, surfaces due to villi and microvilli altered commensurately during fasting and induced diabetes. Therefore cell number seems to be the key quantity for determining villous and microvillous surface areas. The findings are discussed in the context of kinetic, biochemical, and physiological changes found in different adaptive states.
Collapse
Affiliation(s)
- T M Mayhew
- Department of Anatomy, Marischal College, University of Aberdeen, Scotland, U.K
| |
Collapse
|
38
|
Collins AJ, James PS, Smith MW. Sugar-dependent selective induction of mouse jejunal disaccharidase activities. J Physiol 1989; 419:157-67. [PMID: 2516126 PMCID: PMC1190001 DOI: 10.1113/jphysiol.1989.sp017866] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Sugar-containing diets chosen not to affect intestinal structure or enterocyte turnover have been fed to mice previously maintained on a low carbohydrate diet in order to determine their ability to induce disaccharidase enzymes in the small intestine. 2. Glucose-, fructose- and 3-O-methyl-glucose-containing diets increased sucrase and maltase but not lactase activities in mouse jejunal homogenates. These effects were either absent or negligible in more distal regions of the small intestine. 3. Placing mice on glucose-, fructose- or 3-O-methyl-glucose-containing diets was further shown, by quantitative cytochemistry, to cause a 1.6-, 2.6- and 3.2-fold increase in the initial rate at which alpha-glucosidase activity (sucrase + maltase) appeared in the brush-border membrane of developing enterocytes. 4. The time during which alpha-glucosidase activity increased in enterocyte brush-border membranes fell from 30 h for low carbohydrate fed mice to 21, 19 and 17 h in mice fed glucose, fructose and 3-O-methyl-glucose respectively. Change of diet had no effect on the kinetics of lactase expression by developing enterocytes. 5. Maximal alpha-glucosidase activity detected in enterocyte brush-border membranes is equal to RT, where R is the initial rate of enzyme appearance and T is the time during which this rate operates. The ability of sugars to increase R selectively, but only at the expense of T, defines unexpected limits to the capacity of enterocytes to adapt to changes in luminal nutrition. 6. The above results are discussed in relation to other aspects of enterocyte differentiation recently subjected to quantitative analysis. The need to standardize other aspects of intestinal physiology and redefine the energy content of diets containing non-metabolizable substrates in this type of work is also emphasized.
Collapse
Affiliation(s)
- A J Collins
- AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge
| | | | | |
Collapse
|
39
|
Blank ME, Bode F, Baumann K, Diedrich DF. Computer analysis reveals changes in renal Na+-glucose cotransporter in diabetic rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1989; 257:C385-96. [PMID: 2764097 DOI: 10.1152/ajpcell.1989.257.2.c385] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel, computer-assisted program was developed to analyze the time course of Na+-glucose cotransport by rat renal cortical brush-border membrane vesicles (BBMV). Transporter characteristics can be measured, which routine kinetic analyses fail to distinguish: cotransporter membrane density is derived from the picomoles of D-glucose bound per milligram of protein. Binding is stereospecific, blocked by phlorizin, and supported equally well by Na+ or K+ (but not Cs+). Quasi-first-order influx and efflux rate constants for the composite Na+-driven influx and the (presumed) Na+-independent efflux processes were highly dependent on glucose concentration. Either two Na+-glucose transporters exist in proximal tubules or a single mechanism abruptly changes rate when glucose falls to low levels. The major operation mode is slow, has a high capacity but low affinity, and may have a 2 Na+:2 glucose stoichiometry (Hill coefficient is unity). The minor system is a fast, smaller-capacity, higher-affinity operation with a 2 Na+:1 glucose stoichiometry that was not distinguishable when the same data were analyzed in conventional kinetic plots. Results with streptozocin-induced diabetic rats illustrate the method's utility. Low-glucose-affinity cotransporters were upregulated in hyperglycemic, but not in cachectic, ketoacidotic animals. Rate constants, especially for efflux, were decreased in diabetes.
Collapse
Affiliation(s)
- M E Blank
- Department of Cell Physiology, University of Hamburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
40
|
Fedorak RN, Gershon MD, Field M. Induction of intestinal glucose carriers in streptozocin-treated chronically diabetic rats. Gastroenterology 1989; 96:37-44. [PMID: 2521211 DOI: 10.1016/0016-5085(89)90761-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The maximal transport capacity (Vmax) for intestinal glucose absorption is increased in experimentally induced chronic diabetes mellitus. Using [3H]phlorizin radioautography, we examined the relation between this increase in transport Vmax and the number and distribution of sodium-glucose co-transporters on the luminal surface of rat ileum. Male Lewis rats were made diabetic with streptozocin. Ninety days later we measured 3-O-methyl-D-glucopyranose absorption and specific [3H]phlorizin binding to the ileal mucosa of the same rats. Net 3-O-methyl-D-glucopyranose flux was 6.9-fold greater in diabetic rats compared with age-matched controls. Specific binding of [3H]phlorizin to the luminal surface was 7.2-fold greater in the diabetic rats. Radioautography revealed that, in chronic diabetes, specific phlorizin binding extends into the midvillus region of the ileum, whereas in age-matched controls, it is confined to villus tips. We believe that, in untreated diabetes, a larger fraction of intestinal villus epithelial cells participate in glucose absorption.
Collapse
Affiliation(s)
- R N Fedorak
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
41
|
Dietary Carbohydrate and the Kinetics of Intestinal Functions in Relation to Hexose Absorption. DIETARY STARCHES AND SUGARS IN MAN: A COMPARISON 1989. [DOI: 10.1007/978-1-4471-1701-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
|
43
|
Nutrient Transport Across Vertebrate Intestine. ADVANCES IN COMPARATIVE AND ENVIRONMENTAL PHYSIOLOGY 1988. [DOI: 10.1007/978-3-642-73375-8_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Abstract
Because most eukaryotic somatic cells are bathed in a constant internal milieu, most of their proteins are constitutive, unlike the adaptive enzymes of bacteria. However, intestinal mucosal cells, like bacteria, face a varying milieu. Hence, we tested for adaptive regulation of intestinal nutrient transporters, sought its functional significance, and compared it with regulation of bacterial proteins. All 12 transporters studied proved to be regulated by dietary substrate levels. Regulation in the intestine is slower than in bacteria and shows lower peak-to-basal activity levels. Regulatory patterns vary greatly among transporters: two sugars and two nonessential amino acids monotonically up-regulate their transporters, two vitamins and three minerals monotonically down-regulate their transporters, and two transporters of essential amino acids respond nonmonotonically to levels of their substrates. These varied patterns arise from trade-offs among four factors: transporter costs, calories yielded by metabolizable substrates, fixed daily requirements of essential nutrients, and toxicity of certain nutrients in large amounts. Based on these trade-offs, we predict the form of regulatory pattern for intestinal transporters not yet studied.
Collapse
|
45
|
Ferraris RP, Diamond JM. A method for measuring apical glucose transporter site density in intact intestinal mucosa by means of phlorizin binding. J Membr Biol 1986; 94:65-75. [PMID: 3806658 DOI: 10.1007/bf01901014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phlorizin binding has been widely used to estimate the site density of glucose transporters on intestinal and renal brush-border vesicles. Glucose transport measurements in the intact intestinal mucosa show that changes in transport rate postulated to arise from changes in site density occur under many physiological and pathological conditions. Exploring the basis of these regulatory phenomena would be facilitated by comparing changes in transport rate and site density measured in the same preparation. Hence we developed methods for measuring phlorizin binding in everted sleeves of intact mouse intestine. Specific binding of phlorizin to glucose carriers reached an asymptotic value within 120 sec, while nonspecific binding continued to rise thereafter. Hence we used 120-sec incubations. The rate of dissociation of specifically bound phlorizin was accelerated by Na+-free solutions and even more by 50 mM glucose, while the rate of dissociation of nonspecifically bound phlorizin was independent of these solution changes. Hence we chose a 20-sec rinse in Ringer + 50 mM mannitol, because it washes out 30-40% of the nonspecifically bound phlorizin but virtually none of the specifically bound phlorizin. Ligand-binding analysis of specific binding against phlorizin concentration suggested two classes of binding sites, of which the one with stronger affinity for phlorizin probably has the higher capacity for glucose transport in mouse jejunum. The calculated affinity and capacity of this component are independent of whether one estimates the specific component of total binding by adding glucose or by removing Na+.
Collapse
|