1
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
2
|
Yu L, Sussman H, Khmelnitsky O, Rahmati Ishka M, Srinivasan A, Nelson ADL, Julkowska MM. Development of a mobile, high-throughput, and low-cost image-based plant growth phenotyping system. PLANT PHYSIOLOGY 2024; 196:810-829. [PMID: 38696768 DOI: 10.1093/plphys/kiae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Nondestructive plant phenotyping forms a key technique for unraveling molecular processes underlying plant development and response to the environment. While the emergence of high-throughput phenotyping facilities can further our understanding of plant development and stress responses, their high costs greatly hinder scientific progress. To democratize high-throughput plant phenotyping, we developed sets of low-cost image- and weight-based devices to monitor plant shoot growth and evapotranspiration. We paired these devices to a suite of computational pipelines for integrated and straightforward data analysis. The developed tools were validated for their suitability for large genetic screens by evaluating a cowpea (Vigna unguiculata) diversity panel for responses to drought stress. The observed natural variation was used as an input for a genome-wide association study, from which we identified nine genetic loci that might contribute to cowpea drought resilience during early vegetative development. The homologs of the candidate genes were identified in Arabidopsis (Arabidopsis thaliana) and subsequently evaluated for their involvement in drought stress by using available T-DNA insertion mutant lines. These results demonstrate the varied applicability of this low-cost phenotyping system. In the future, we foresee these setups facilitating the identification of genetic components of growth, plant architecture, and stress tolerance across a wide variety of plant species.
Collapse
Affiliation(s)
- Li'ang Yu
- The Boyce Thompson Institute, Ithaca, NY 14850, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Xu G, Zheng Q, Wei P, Zhang J, Liu P, Zhang H, Zhai N, Li X, Xu X, Chen Q, Cao P, Zhao J, Zhou H. Metabolic engineering of a 1,8-cineole synthase enhances aphid repellence and increases trichome density in transgenic tobacco (Nicotiana tabacum L.). PEST MANAGEMENT SCIENCE 2023; 79:3342-3353. [PMID: 37132116 DOI: 10.1002/ps.7520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The green peach aphid (Myzus persicae Sulzer) is a harmful agricultural pest that causes severe crop damage by directly feeding or indirectly vectoring viruses. 1,8-cineole synthase (CINS) is a multiproduct enzyme that synthesizes monoterpenes, with 1,8-cineole dominating the volatile organic compound profile. However, the relationship between aphid preference and CINS remains elusive. RESULTS Here, we present evidence that SoCINS, a protein from garden sage (Salvia officinalis), enhanced aphid repellence and increased trichome density in transgenic tobacco. Our results demonstrated that overexpression of SoCINS (SoCINS-OE) led to the emission of 1,8-cineole at a level of up to 181.5 ng per g fresh leaf. Subcellular localization assay showed that SoCINS localized to chloroplasts. A Y-tube olfactometer assay and free-choice assays revealed that SoCINS-OE plants had a repellent effect on aphids, without incurring developmental or fecundity-related penalties. Intriguingly, the SoCINS-OE plants displayed an altered trichome morphology, showing increases in trichome density and in the relative proportion of glandular trichomes, as well as enlarged glandular cells. We also found that SoCINS-OE plants had significantly higher jasmonic acid (JA) levels than wild-type plants. Furthermore, application of 1,8-cineole elicited increased JA content and trichome density. CONCLUSION Our results demonstrate that SoCINS-OE plants have a repellent effect on aphids, and suggest an apparent link between 1,8-cineole, JA and trichome density. This study presents a viable and sustainable approach for aphid management by engineering the expression of 1,8-cineole synthase gene in plants, and underscores the potential usefulness of monoterpene synthase for pest control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Pan Wei
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Xiaoxu Li
- Tobacco Research Center, Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, P.R. China
| | - Xiangli Xu
- Tobacco Research Center, Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, P.R. China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Jian Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, P.R. China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| |
Collapse
|
4
|
Amri I, Khammassi M, Ben Ayed R, Khedhri S, Mansour MB, Kochti O, Pieracci Y, Flamini G, Mabrouk Y, Gargouri S, Hanana M, Hamrouni L. Essential Oils and Biological Activities of Eucalyptus falcata, E. sideroxylon and E. citriodora Growing in Tunisia. PLANTS (BASEL, SWITZERLAND) 2023; 12:816. [PMID: 36840164 PMCID: PMC9965493 DOI: 10.3390/plants12040816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Many plants are able to synthesize essential oils (EOs), which play key roles in defense against weeds, fungi and pests. This study aims to analyze the chemical composition and to highlight the antioxidant, antimicrobial and phytotoxic properties of the EOs from Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. EOs were analyzed by gas chromatography coupled to mass spectrometry (GC/MS) and their antioxidant properties were determined by total antioxidant capacity (TAC), DPPH and ABTS assays. The phytotoxic potential was assessed against weeds (Sinapis arvensis, Phalaris canariensis) and durum wheat crop (Triticum durum) and compared to chemical herbicide glyphosate. The antifungal activity was investigated in vitro against eight target fungal strains. All EOs displayed a specific richness in oxygenated monoterpenes (51.3-90%) and oxygenated sesquiterpenes (4.8-29.4%), and 1,8-cineole, citronellal, citronellol, trans-pinocarveol, globulol, spathulenol and citronellyl acetate were the main constituents. Eucalyptus EOs exhibited remarkable antioxidant activity and E. citriodora oil exhibited significant activity when compared with E. falcata and E. sideroxylon EOs. The phytotoxic potential of the tested oils had different efficacy on seed germination and the growth of seedlings and varied among tested herbs and their chemical composition variability. Their effectiveness was better than that of glyphosate. At the post-emergence stage, symptoms of chlorosis and necrosis were observed. Furthermore, a decrease in chlorophyll and relative water content, electrolyte leakage and high levels of MDA and proline were indicators of the oxidative effects of EOs and their effectiveness as bioherbicides. Moreover, all the EOs exhibited moderate fungitoxic properties against all the tested fungal strains. Therefore, according to the obtained results, Eucalyptus EOs could have potential application as natural pesticides.
Collapse
Affiliation(s)
- Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Marwa Khammassi
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Rayda Ben Ayed
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), University of Carthage-Tunis, 43 Avenue Charles Nicolle, El Mahrajène 1082, Tunisia
| | - Sana Khedhri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Manel Ben Mansour
- Laboratory of Plant Protection, National Institut of Agronomic Research of Tunisia, P.B. 10, Ariana 2080, Tunisia
| | - Oumayma Kochti
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Ylenia Pieracci
- Dipartimento di Farmacia, via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Guido Flamini
- Dipartimento di Farmacia, via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Samia Gargouri
- Laboratory of Plant Protection, National Institut of Agronomic Research of Tunisia, P.B. 10, Ariana 2080, Tunisia
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
| | - Lamia Hamrouni
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| |
Collapse
|
5
|
Park C, Woo H. Development of Native Essential Oils from Forestry Resources in South Korea. Life (Basel) 2022; 12:1995. [PMID: 36556360 PMCID: PMC9785413 DOI: 10.3390/life12121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
South Korea’s forests occupy approximately 70% of the mainland, therefore, there is considerable potential for waste coming from the forest. Extracting essential oils from underutilised biomass is an economic and sustainable method for the production of high-added-value products. These days, countries’ ownership of domestic natural resources is becoming vital, so there is an urgent need for developing the essential oils from native plants. To increase the value of native essential oils in South Korea, the National Institute of Forest Science (NiFoS) established the to develop the native essential oils as well as develop more research infrastructure by sharing information on native essential oils and enhancing their value. We review the selected essential oils which are listed in the from the literature on major chemical constituents, biological activity, and potential uses of essential oils. Those utilising forest resources for commercial essential oil production need to consider the stable supply of plant material in terms of forest management and conservation. Therefore, Pinaceae (Larix kaempferi, Pinus densiflora, Pinus koraiensis) and Cupressaceae (Chamaecyparis obtusa and Chamaecyparis pisifera) could be potential candidates for commercial essential oil as their waste materials are easily obtained from the plantation after forest management. With their unique fragrance and the bioactive compounds in their oils, potential candidates can be utilised in various industry sectors.
Collapse
Affiliation(s)
- Chanjoo Park
- College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | | |
Collapse
|
6
|
Pérez-Izquierdo C, Serrano-Pérez P, Rodríguez-Molina MDC. Chemical composition, antifungal and phytotoxic activities of Cistus ladanifer L. essential oil and hydrolate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Maurya AK, Pazouki L, Frost CJ. Priming Seeds with Indole and (Z)-3-Hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth. J Chem Ecol 2022; 48:441-454. [PMID: 35394556 DOI: 10.1007/s10886-022-01359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
A striking feature of plant ecology is the ability of plants to detect and respond to environmental cues such as herbivore-induced plant volatiles (HIPVs) by priming or directly activating defenses against future herbivores. However, whether seeds also respond to compounds that are common constituents of HIPV blends and initiate future plant resistance is unknown. Considering that seeds depend on other environmental cues to determine basic survival traits such as germination timing, we predicted that seeds exposed to synthetic constituents of HIPV blends would generate well-defended plants. We investigated the effect of seed exposure to common volatiles on growth, reproduction, and resistance characteristics in the model plants Arabidopsis thaliana and Medicago truncatula using herbivores from two feeding guilds. After seed scarification and vernalization, we treated seeds with one of seven different plant-derived volatile compounds for 24 h. Seeds were then germinated and the resulting plants were assayed for growth, herbivore resistance, and expression of inducible defense genes. Of all the synthetic volatiles tested, indole specifically reduced both beet armyworm growth on A. thaliana and pea aphid fecundity on M. truncatula. The induction of defense genes was not affected by seed exposure to indole in either plant species, indicating that activation of direct resistance rather than inducible resistance is the mechanism by which seed priming operates. Moreover, neither plant species showed any negative effect of seed exposure to any synthetic volatile on vegetative and reproductive growth. Rather, M. truncatula plants derived from seeds exposed to (Z)-3-hexanol and (Z)-3-hexenyl acetate grew larger compared to controls. Our results indicate that seeds are sensitive to specific volatiles in ways that enhance resistance profiles with no apparent costs in terms of growth. Seed priming by HIPVs may represent a novel ecological mechanism of plant-to-plant interactions, with broad potential applications in agriculture and seed conservation.
Collapse
Affiliation(s)
- Abhinav K Maurya
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Leila Pazouki
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Christopher J Frost
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA. .,BIO5 Institute, University of Arizona, 85721, Tucson, AZ, USA.
| |
Collapse
|
8
|
Appiah KS, Omari RA, Onwona-Agyeman S, Amoatey CA, Ofosu-Anim J, Smaoui A, Arfa AB, Suzuki Y, Oikawa Y, Okazaki S, Katsura K, Isoda H, Kawada K, Fujii Y. Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:673. [PMID: 35270143 PMCID: PMC8912698 DOI: 10.3390/plants11050673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Plant biodiversity has been studied to explore allelopathic species for the sustainable management of weeds to reduce the reliance on synthetic herbicides. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.), was found to have plant growth-inhibitory effects, and carnosic acid was reported as an allelochemical in the plant. In this study, the effects of seasonal variation (2011−2012) on the carnosic acid concentration and phytotoxicity of rosemary leaves from two locations in Tunisia (Fahs and Matmata) were investigated. The carnosic acid concentration in rosemary leaves was determined by HPLC, and lettuce (Lactuca sativa L.) was used as the receptor plant in the phytotoxicity bioassay. The highest carnosic acid concentration was found in rosemary samples collected in June 2011, which also had the highest inhibitory activity. Furthermore, a significant inverse correlation (r = −0.529; p < 0.01) was found between the inhibitory activity on lettuce hypocotyl and the carnosic acid concentration in rosemary leaves. Both temperature and elevation had a significant positive correlation with carnosic acid concentration, while rainfall showed a negative correlation. The results showed that the inhibitory effects of rosemary leaf samples collected in summer was highest due to their high carnosic acid concentration. The phytotoxicity of rosemary needs to be studied over time to determine if it varies by season under field conditions.
Collapse
Affiliation(s)
- Kwame Sarpong Appiah
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
- Department of Crop Science, College of Basic and Applied Science, University of Ghana, Legon, Accra P.O. Box LG 44, Ghana;
| | - Richard Ansong Omari
- Leibniz Centre for Agricultural Landscape Research, Institute of Land Use Systems, Eberswalder Str. 84, 15374 Muencheberg, Germany;
- Institute of Agriculture and Horticulture, Faculty of Life Science, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany
| | - Siaw Onwona-Agyeman
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan;
| | - Christiana Adukwei Amoatey
- Department of Crop Science, College of Basic and Applied Science, University of Ghana, Legon, Accra P.O. Box LG 44, Ghana;
| | - John Ofosu-Anim
- School of Architecture and Science, Central University, Tema P.O. Box 2305, Ghana;
| | - Abderrazak Smaoui
- Centre of Biotechnology of Borj Cédria, BP 901 Hammam-Lif, Borj Cedria 2025, Tunisia;
| | - Abdelkarim Ben Arfa
- L’Institut des Régions Arides, Route du Djorf Km 22.5, Médenine 4119, Tunisia;
| | - Yoko Suzuki
- Aromatic Repos, AHOLA, A2 Soleil Jiyugaoka, 1-21-3, Jiyugaoka, Meguro 152-0035, Tokyo, Japan;
| | - Yosei Oikawa
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| | - Shin Okazaki
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| | - Keisuke Katsura
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| | - Hiroko Isoda
- School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan;
| | - Kiyokazu Kawada
- School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan;
| | - Yoshiharu Fujii
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| |
Collapse
|
9
|
Politi M, Ferrante C, Menghini L, Angelini P, Flores GA, Muscatello B, Braca A, De Leo M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030349. [PMID: 35161330 PMCID: PMC8840401 DOI: 10.3390/plants11030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 05/12/2023]
Abstract
The present work evaluates the aromatic waters of rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.), sage (Salvia officinalis L.), and cypress (Cupressus sempervirens L.) obtained as innovative commercial products of a hydrodistillation process. All extracts were exhaustively analysed by GC-MS, 1H-NMR, and LC-MS in order to evaluate potential metabolite fingerprint differences. GC-MS appears to be the most exhaustive technique for the qualitative identification of the single constituents, although in this case, the use of 1H-NMR and LC-MS techniques allowed some useful considerations in semi-quantitative terms. Antimycotic effects were studied against Tricophyton, Candida, and Arthroderma species, resulting in weak activity. The toxicological impact was partly evaluated in vitro by means of allelopathy and brine shrimp lethality. Cytotoxicity was investigated in human colon cancer cells (HCT116) and in hypothalamic cells (Hypo-E22) challenged with hydrogen peroxide. Sage and rosemary hydrosols were the most effective antimycotics, whereas all hydrosols displayed antiradical effects. Cytotoxic effects against HCT116 cells (at 500 µL/mL) were related in silico to the endovanilloid TRPM8 and TRPV1 receptors. At lower concentrations (5-50 µL/mL), the hydrosols protected hypothalamic neurons Hypo-E22 cells from hydrogen peroxide-induced toxicity. The overall experience indicates that hydrolates are an important source of relevant phytochemicals with significant pharmacological potential.
Collapse
Affiliation(s)
- Matteo Politi
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Claudio Ferrante
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Luigi Menghini
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Paola Angelini
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Giancarlo Angeles Flores
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Beatrice Muscatello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-9688
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
10
|
Chang Y, Harmon PF, Treadwell DD, Carrillo D, Sarkhosh A, Brecht JK. Biocontrol Potential of Essential Oils in Organic Horticulture Systems: From Farm to Fork. Front Nutr 2022; 8:805138. [PMID: 35096947 PMCID: PMC8792766 DOI: 10.3389/fnut.2021.805138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
In recent decades, increasing attention has been paid to food safety and organic horticulture. Thus, people are looking for natural products to manage plant diseases, pests, and weeds. Essential oils (EOs) or EO-based products are potentially promising candidates for biocontrol agents due to their safe, bioactive, biodegradable, ecologically, and economically viable properties. Born of necessity or commercial interest to satisfy market demand for natural products, this emerging technology is highly anticipated, but its application has been limited without the benefit of a thorough analysis of the scientific evidence on efficacy, scope, and mechanism of action. This review covers the uses of EOs as broad-spectrum biocontrol agents in both preharvest and postharvest systems. The known functions of EOs in suppressing fungi, bacteria, viruses, pests, and weeds are briefly summarized. Related results and possible modes of action from recent research are listed. The weaknesses of applying EOs are also discussed, such as high volatility and low stability, low water solubility, strong influence on organoleptic properties, and phytotoxic effects. Therefore, EO formulations and methods of incorporation to enhance the strengths and compensate for the shortages are outlined. This review also concludes with research directions needed to better understand and fully evaluate EOs and provides an outlook on the prospects for future applications of EOs in organic horticulture production.
Collapse
Affiliation(s)
- Yuru Chang
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Philip F. Harmon
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Danielle D. Treadwell
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jeffrey K. Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
El Omari N, Ezzahrae Guaouguaou F, El Menyiy N, Benali T, Aanniz T, Chamkhi I, Balahbib A, Taha D, Shariati MA, Zengin G, El-Shazly M, Bouyahya A. Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113661. [PMID: 33276057 DOI: 10.1016/j.jep.2020.113661] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinus halepensis Mill., is a Mediterranean medicinal plant with numerous traditional applications such as anti-scarring, antiseptic, astringent, antifungal, and anti-tuberculosis. It is used against diarrhea, wounds, rheumatism, cough, gastrointestinal illnesses, hypertension, and hemorrhoids. AIM OF THE REVIEW We critically summarized previous reports on the botanical, taxonomical, ecological, geographical distribution, phytochemical, and pharmacological results of P. halepensis Mill. MATERIALS AND METHODS To gather data on P. halepensis Mill., different scientific search engines were consulted such as Google Scholar, Scopus, Wiley Online, Scifinder, Web of Science, ScienceDirect, SpringerLink, PubMed. The collected data on P. halepensis Mill., were organised according to ethnomedicinal use, phytochemistry, and pharmacology. RESULTS Ethnomedicinal studies indicated that P. halepensis Mill., is used as a protective remedy against respiratory and digestive disorders, arterial hypertension, microbial infections. These medicinal uses vary based on the part used and regions. The extracts and essential oils of P. halepensis Mill., demonstrated several biological effects including antimicrobial, antidiabetic anti-inflammatory, cytotoxic, antiparasitic, and hepatoprotective. Traditional uses and biological effects of P. halepensis Mill., were attributed to the numerous molecules that belong to different chemical classes such as terpenoids, phenolic acids, flavonoids, fatty acids and steroids, aldehydes and ketones. CONCLUSIONS In vitro and in vivo investigations of P. halepensis Mill., extracts and essential oils showed interesting pharmacological activities supporting the traditional use of this species. Previous reports indicated that P. halepensis Mill., extracts and their constituents exhibited potent antibacterial, antifungal, antioxidant, protective, anticoagulant, anti-hemolytic, and anti-inflammatory effects. Further investigation is needed to reveal the full biological spectra of P. halepensis Mill., extracts and essential oils (using in vivo models) and to validate their industrial applications as a food additive. However, in-depth studies are required to investigate the biological properties and molecular mechanisms of P. halepensis Mill., secondary metabolites in the management of diabetes mellitus and the prevention of the neurodegenerative disorders development such as Alzheimer's and Parkinson's disease. Studies exploring pharmacological effects of P. halepensis Mill., bioactive components such as the antimicrobial, anti-inflammatory, and antiparasitic drugs are required to validate the clinical use of these molecules. The safety of P. halepensis Mill., and its bioactive compounds should be also investigated by carrying out further pharmacokinetic and toxicological experiments.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Fatima Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco.
| | - Naoual El Menyiy
- Laboratory of Physiology, Pharmacology & Environmental Health, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco.
| | - Taoufiq Benali
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, SidiMohamed Ben Abdellah University of Fez, B.P.: 1223, Taza-Gare, Taza, Morocco.
| | - Tariq Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Rabat, Morocco.
| | - Imane Chamkhi
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Université Mohammed V, Rabat, Morocco.
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation.
| | - Ghokhan Zengin
- Biochemistry and Physiology Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
12
|
Pino-Otín MR, Val J, Ballestero D, Navarro E, Sánchez E, Mainar AM. Impact of Artemisia absinthium hydrolate extracts with nematicidal activity on non-target soil organisms of different trophic levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:565-574. [PMID: 31129435 DOI: 10.1016/j.ecoenv.2019.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Natural pesticides are considered a good alternative to synthetic pesticides to reduce environmental impacts. However, biopesticides may have unknown effects on the environment, and can affect non-target organisms. In this study, the ecotoxicological effects of an aqueous extract (hydrolate) from Spanish populations of Artemisia absinthium (var. Candial) showing a promising biopesticide activity, were evaluated on non-target soil organisms from different trophic levels (natural microbial communities characterized through 16S rRNA gene sequencing, the earthworm Eisenia fetida and the plant Allium cepa). The hydrolate usually was considered as a by-product of the distillation to obtain essential oils. However, recently has been found to have nematicide properties. The hydrolate caused acute toxicity at values of LC50 of 3.87% v/v for A. cepa and 0.07 mL/g for E. fetida. All the concentrations except for the most diluted (1% v/v) reduced the bacterial physiological activity compared to controls (LC50 = 25.72% v/v after 24 h of exposure). The hydrolate also slightly altered the ability of the microbial community to degrade carbon substrates. These results indicate that the hydrolate from A. absinthium may affect the survival and metabolic abilities of key soil organisms.
Collapse
Affiliation(s)
- M Rosa Pino-Otín
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain; Colegio Internacional Ánfora, c/ Pirineos, 8, 50410, Cuarte de Huerva, Zaragoza, Spain
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Enrique Navarro
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciónes Científicas, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Esther Sánchez
- Colegio Internacional Ánfora, c/ Pirineos, 8, 50410, Cuarte de Huerva, Zaragoza, Spain
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018, Zaragoza, Spain
| |
Collapse
|
13
|
Phytotoxic effects of several essential oils on two weed species and Tomato. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Kordali S, Usanmaz A, Cakir A, Komaki A, Ercisli S. Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes. Chem Biodivers 2016; 13:77-84. [PMID: 26765354 DOI: 10.1002/cbdv.201500018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/11/2015] [Indexed: 11/07/2022]
Abstract
The chemical composition of the essential oils isolated by hydrodistillation from the fruits of four selected Myrtus communis L. genotypes from Turkey was characterized by GC-FID and GC/MS analyses. 1,8-Cineole (29.20-31.40%), linalool (15.67-19.13%), α-terpineol (8.40-18.43%), α-pinene (6.04-20.71%), and geranyl acetate (3.98-7.54%) were found to be the major constituents of the fruit essential oils of all M. communis genotypes investigated. The oils were characterized by high amounts of oxygenated monoterpenes, representing 73.02-83.83% of the total oil compositions. The results of the fungal growth inhibition assays showed that the oils inhibited the growth of 19 phytopathogenic fungi. However, their antifungal activity was generally lower than that of the commercial pesticide benomyl. The herbicidal effects of the oils on the seed germination and seedling growth of Amaranthus retroflexus L., Chenopodium album L., Cirsium arvense (L.) Scop., Lactuca serriola L., and Rumex crispus L. were also determined. The oils completely or partly inhibited the seed germinations and seedling growths of the plants. The findings of the present study suggest that the M. communis essential oils might have potential to be used as natural herbicides as well as fungicides.
Collapse
Affiliation(s)
- Saban Kordali
- Ataturk University, Faculty of Agriculture, Department of Plant Protection, TR-25240 Erzurum
| | - Ayse Usanmaz
- Iğdır University, Faculty of Agriculture, Department of Plant Protection, TR-76100 Iğdir
| | - Ahmet Cakir
- Kilis 7 Aralık University, Faculty of Science and Art, Department of Chemistry, TR-79000 Kilis, (phone: +90-348-8222350; fax: +90-348-8222351). ,
| | - Amanmohammad Komaki
- Ataturk University, Faculty of Agriculture, Department of Plant Protection, TR-25240 Erzurum
| | - Sezai Ercisli
- Ataturk University, Faculty of Agriculture, Department of Horticulture, TR-25240 Erzurum
| |
Collapse
|
15
|
Al Harun MAY, Johnson J, Uddin MN, Robinson RW. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed). PLoS One 2015; 10:e0139992. [PMID: 26465595 PMCID: PMC4605635 DOI: 10.1371/journal.pone.0139992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 09/21/2015] [Indexed: 11/18/2022] Open
Abstract
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies.
Collapse
Affiliation(s)
- Md Abdullah Yousuf Al Harun
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, Australia
- * E-mail:
| | - Joshua Johnson
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Md Nazim Uddin
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Randall W. Robinson
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, Australia
| |
Collapse
|
16
|
Harun MAYA, Johnson J, Robinson RW. The contribution of volatilization and exudation to the allelopathic phytotoxicity of invasive Chrysanthemoides monilifera subsp. monilifera (boneseed). Biol Invasions 2015. [DOI: 10.1007/s10530-015-0983-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Polatoğlu K, Karakoç ÖC, Demirci B, Gören N, Can Başer KH. Sitophilus granarius L. (Coleoptera) Toxicity and Biological Activities of the Essential Oils of Tanacetum macrophyllum (Waldst. & Kit.) Schultz Bip. J Oleo Sci 2015; 64:881-93. [PMID: 26179008 DOI: 10.5650/jos.ess15078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insecticides of the natural origin are an important alternative to the synthetic insecticides that are being employed for the preserving stored products. The volatiles obtained from T. cinerariifolium (=Pyrethrum cinerariifolium) is being used for many types of insecticidal applications; however there is a very little information on the insecticidal activity of the essential oils of other Tanacetum species. The main purpose of the present study is to determine the chemical composition of T. macrophyllum (Waldst. & Kit.) Schultz Bip. essential oils and evaluate their insecticidal activity against S. granarius as well as its other beneficial biological activities. Highest contact toxicity was observed in the leaf oil of (88.93%) against S. granarius. The flower oil showed considerable fumigant toxicity against L. minor at 10 mg/mL application concentration (61.86 %) when compared with other samples at the same concentration. The highest DPPH (2,2-Diphenyl-1-picrylhydrazyl) scavenging activity (47.7%) and phosphomolybdenum reducing activity was observed also for the flower oil of T. macrophyllum at 10 mg/mL concentration. The essential oils were analyzed by GC, GC/MS. The flower and leaf oils were characterized with γ-eudesmol 21.5%, (E)-sesquilavandulol 20.3%, copaborneol 8.5% and copaborneol 14.1%, 1,8-cineole 11%, bornyl acetate 9.6%, borneol 6.3% respectively. AHC analysis of the qualitative and quantitative data obtained from the essential oil composition of the T. macrophyllum essential oil from the present research and previous reports pointed out that two different chemotypes could be proposed with current findings which are p-methyl benzyl alcohol/ cadinene and eudesmane chemotypes.
Collapse
Affiliation(s)
- Kaan Polatoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, İstanbul Kemerburgaz University
| | | | | | | | | |
Collapse
|
18
|
Aml AEA, Moghazy A, Gouda A, Elshatoury RS. Inhibition of Sprout Growth and Increase Storability of Processing Potato by Antisprouting Agent. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/thr.2014.31.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Oliveira GL, Moreira DDL, Mendes ADR, Guimarães EF, Figueiredo LS, Kaplan MAC, Martins ER. Growth study and essential oil analysis of Piper aduncum from two sites of Cerrado biome of Minas Gerais State, Brazil. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013000500005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Satyal P, Paudel P, Kafle A, Pokharel SK, Lamichhane B, Dosoky NS, Moriarity DM, Setzer WN. Bioactivities of Volatile Components from Nepalese Artemisia Species. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200701228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The essential oils from the leaves of Artemisia dubia, A. indica, and A. vulgaris growing wild in Nepal were obtained by hydrodistillation and analyzed by GC-MS. The major components in A. dubia oil were chrysanthenone (29.0%), coumarin (18.3%), and camphor (16.4%). A. indica oil was dominated by ascaridole (15.4%), isoascaridole (9.9%), trans-p-mentha-2,8-dien-1-ol (9.7%), and trans-verbenol (8.4%). The essential oil of Nepalese A. vulgaris was rich in α-thujone (30.5%), 1,8-cineole (12.4%), and camphor (10.3%). The essential oils were screened for phytotoxic activity against Lactuca sativa (lettuce) and Lolium perenne (perennial ryegrass) using both seed germination and seedling growth, and all three Artemisia oils exhibited notable allelopathic activity. A. dubia oil showed in-vitro cytotoxic activity on MCF-7 cells (100% kill at 100 μg/mL) and was also marginally antifungal against Aspergillus niger (MIC = 313 μg/mL). DFT calculations (B3LYP/6-31G*) revealed thermal decomposition of ascaridole to be energetically accessible at hydrodistillation and GC conditions, but these are spin-forbidden processes. If decomposition does occur, it likely proceeds by way of homolytic peroxide bond cleavage rather than retro-Diels-Alder elimination of molecular oxygen.
Collapse
Affiliation(s)
- Prabodh Satyal
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Prajwal Paudel
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Ananad Kafle
- Department of Natural Sciences, Kathmandu University, Dhulikhel, Kavre, Nepal
| | | | - Bimala Lamichhane
- Tribhuvan University, Central Department of Chemistry, Kirtipur, Nepal
| | - Noura S. Dosoky
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Debra M. Moriarity
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
21
|
Sakai A, Yoshimura H. Monoterpenes of Salvia leucophylla. ACTA ACUST UNITED AC 2012; 8:90-100. [PMID: 22754426 PMCID: PMC3382373 DOI: 10.2174/157340712799828205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 11/22/2022]
Abstract
The “ Salvia phenomenon” is one of the most famous examples of allelopathic interaction between higher plants. The Salvia thickets are surrounded by zones of bare soil (“bare zone”, 1-3 m in width), which merge into areas of inhibited grassland (“zone of inhibition”) and finally undisturbed grassland at a distance of 3-9 m. This characteristic vegetation pattern was attributed to monoterpenes, especially 1,8-cineole and camphor, which volatilized from S. leucophylla leaves, got adsorbed in the soil around the Salvia thickets, and inhibited germination and seedling growth of annual herbs. Initially, continuity of hydrophobic environment (clay soil particles – cuticular waxes on the seed/seedling surfaces – plasmodesmata - plasma membrane) was regarded to be important for the lipophilic compounds to enter the target cells. However, monoterpenes can reach the target cells via aqueous route as well. Because monoterpenes produced by S. leucophylla all induce similar symptoms in the seedlings of target plants, their mode of action appears to be essentially common. They exert various deteriorating effects on the cells of target plants, which might be totally explained if the primary point of action resides in mitochondrial function (respiratory ATP synthesis) and/or generation of reactive oxygen species. In contrast to the previous belief that cuticular waxes act as the pathway of lipophilic monoterpene to enter the site of action or reservoir of the inhibitors, they may act as “adsorptive barrier” to prevent the entering of monoterpenes inside the cell wall.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara, 630-8506, Japan
| | | |
Collapse
|
22
|
Ismail A, Lamia H, Mohsen H, Bassem J. Chemical Composition of Juniperus oxycedrus L. subsp macrocarpa Essential Oil and Study of Their Herbicidal Effects on Germination and Seedling Growth of Weeds. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajaps.2011.771.779] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Amri I, Lamia H, Gargouri S, Hanana M, Mahfoudhi M, Fezzani T, Ezzeddine F, Jamoussi B. Chemical Composition and Biological Activities of Essential Oils of Pinus patula. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100601031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly α-pinene (35.2%) and β-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.
Collapse
Affiliation(s)
- Ismail Amri
- Faculté des Sciences de Bizerte. Bizerte, 7021, Tunisia
- Institut National de Recherches en Génie Rural Eaux et Forêts, P.B. 10, 2080 Ariana Tunisia
| | - Hamrouni Lamia
- Institut National de Recherches en Génie Rural Eaux et Forêts, P.B. 10, 2080 Ariana Tunisia
| | - Samia Gargouri
- Institut National de la Recherche Agronomique de Tunisie, Rue Hédi Karray 2049, Tunisia
| | - Mohsen Hanana
- Centre de Biotechnologie de Borj-Cédria, BP 901, Hammam-lif 2050, Tunisia
| | | | - Tarek Fezzani
- Institut National de Recherches en Génie Rural Eaux et Forêts, P.B. 10, 2080 Ariana Tunisia
| | | | - Bassem Jamoussi
- Institut Supérieur d'Education et de Formation Continue. Tunis, Tunisia
| |
Collapse
|
24
|
Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. Food Chem Toxicol 2011; 49:2035-45. [DOI: 10.1016/j.fct.2011.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/11/2023]
|
25
|
Yoshimura H, Sawai Y, Tamotsu S, Sakai A. 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. J Chem Ecol 2011; 37:320-8. [PMID: 21344180 PMCID: PMC3063882 DOI: 10.1007/s10886-011-9919-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 11/29/2022]
Abstract
Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC₅₀) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC₅₀ lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed.
Collapse
Affiliation(s)
- Hiroko Yoshimura
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Yu Sawai
- Department of Biological Science and Environment, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Satoshi Tamotsu
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women’s University, Nara, 630-8506 Japan
| |
Collapse
|
26
|
Saharkhiz MJ, Smaeili S, Merikhi M. Essential oil analysis and phytotoxic activity of two ecotypes ofZataria multifloraBoiss. growing in Iran. Nat Prod Res 2010; 24:1598-609. [DOI: 10.1080/14786411003754280] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Miyamoto CT, Rocha De Sant’anna J, Da Silva Franco CC, Cunico MM, Miguel OG, Côcco LC, Yamamoto CI, Corrêa C, De Castro-Prado MAA. Genotoxic activity of Eucalyptus globulus essential oil in Aspergillus nidulans diploid cells. Folia Microbiol (Praha) 2010; 54:493-8. [DOI: 10.1007/s12223-009-0070-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/19/2009] [Indexed: 11/30/2022]
|
28
|
Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. BIORESOURCE TECHNOLOGY 2008; 99:8788-8795. [PMID: 18513954 DOI: 10.1016/j.biortech.2008.04.048] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 05/26/2023]
Abstract
The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.
Collapse
Affiliation(s)
- Saban Kordali
- Atatürk University, Department of Plant Protection, 25240 Erzurum, Turkey
| | | | | | | | | | | |
Collapse
|
29
|
Ding L, Qi L, Jing H, Li J, Wang W, Wang T. Phytotoxic effects of leukamenin E (an ent-kaurene diterpenoid) on root growth and root hair development in Lactuca sativa L. seedlings. J Chem Ecol 2008; 34:1492-500. [PMID: 18937011 DOI: 10.1007/s10886-008-9556-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/03/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Leukamenin E, an ent-kaurene diterpenoid isolated from Isodon racemosa (Hemsl) Hara, showed phytotoxic effects on root growth and root hair development of lettuce seedlings (Lactuca sativa L.). Lower concentrations (10 microM) of leukamenin E did not affect root growth, but at concentrations higher than 50 microM, the rate was inhibited. The influence of leukamenin E on root growth rate was closely correlated with alterations in the mitotic index. A low incidence of aberrant mitosis image was observed when lettuce roots were treated with higher concentrations (100 and 200 microM) of leukamenin E. This suggests that inhibition of root growth may be due to inhibition of cell division. All tested concentrations of the diterpenoid (10 microM or more) inhibited root hair development in a dose-dependent manner. At a concentration of 80 microM, leukamenin E completely blocked root hair initiation. Application of Ag(+)-an ethylene action inhibitor-to lettuce seedlings inhibited root hair elongation similar to the diterpenoid. Enhanced root hair length was stimulated by exogenous ethephon-an ethylene-releasing agent-and could be reversed by addition of leukamenin E. This suggests that leukamenin E may act as a potential ethylene action antagonist in the inhibition of lettuce root hair development. We conclude that leukamenin E may curb root hair development by interfering with ethylene action at concentrations above 10 microM and inhibits root growth via inhibition of cell division at concentrations above 50 microM.
Collapse
Affiliation(s)
- Lan Ding
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
30
|
HOFFMANN WILLIAMA, HARIDASAN M. The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. AUSTRAL ECOL 2008. [DOI: 10.1111/j.1442-9993.2007.01787.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Loi RX, Solar MC, Weidenhamer JD. Solid-Phase Microextraction Method For In Vivo Measurement of Allelochemical Uptake. J Chem Ecol 2007; 34:70-5. [DOI: 10.1007/s10886-007-9401-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 11/05/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022]
|
32
|
Salamci E, Kordali S, Kotan R, Cakir A, Kaya Y. Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. BIOCHEM SYST ECOL 2007. [DOI: 10.1016/j.bse.2007.03.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Macías FA, Molinillo JMG, Varela RM, Galindo JCG. Allelopathy--a natural alternative for weed control. PEST MANAGEMENT SCIENCE 2007; 63:327-48. [PMID: 17348068 DOI: 10.1002/ps.1342] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Allelopathy studies the interactions among plants, fungi, algae and bacteria with the organisms living in a certain ecosystem, interactions that are mediated by the secondary metabolites produced and exuded into the environment. Consequently, allelopathy is a multidisciplinary science where ecologists, chemists, soil scientists, agronomists, biologists, plant physiologists and molecular biologists offer their skills to give an overall view of the complex interactions occurring in a certain ecosystem. As a result of these studies, applications in weed and pest management are expected in such different fields as development of new agrochemicals, cultural methods, developing of allelopathic crops with increased weed resistance, etc. The present paper will focus on the chemical aspects of allelopathy, pointing out the most recent advances in the chemicals disclosed, their mode of action and their fate in the ecosystem. Also, attention will be paid to achievements in genomics and proteomics, two emerging fields in allelopathy. Rather than being exhaustive, this paper is intended to reflect a critical vision of the current state of allelopathy and to point to future lines of research where in the authors' opinion the main advances and applications could and should be expected.
Collapse
Affiliation(s)
- Francisco A Macías
- Grupo de Alelopatía, Department of Organic Chemistry, University of Cadiz, c/República Saharaui s/n, Apdo. 40, 11510-Puerto Real, Cadiz, Spain.
| | | | | | | |
Collapse
|
34
|
Zunino MP, Zygadlo JA. Changes in the Composition of Phospholipid Fatty Acids and Sterols of Maize Root in Response to Monoterpenes. J Chem Ecol 2005; 31:1269-83. [PMID: 16229065 DOI: 10.1007/s10886-005-5285-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Terpenes are thought to be important in plant plant interactions because of their phytotoxic action on seed germination and growth. Herein, the effects of five volatile monoterpenes on root sterols and phospholipid fatty acid (PLFA) composition have been studied during maize seedling germination. The investigated monoterpenes (camphor, 1-8 cineole, geraniol, menthol, and thymol) were applied at their respective IC80 (concentration causing 80% inhibition). They quantitatively affected free sterols and PLFA composition, thus producing an increase in the percentage of unsaturated PLFAs, stigmasterol of the free sterol fraction, and saturated steryl ester fatty acids. Alcoholic and nonalcoholic monoterpenes appeared to have different modes of action. The former affected unsaturated fatty acid and stigmasterol to a greater extent, and accordingly they could interfere in seedling growth by changes in the membrane lipids.
Collapse
Affiliation(s)
- María P Zunino
- Instituto Multidisciplinario de Biología Vegetal, CONICET, Cátedra de Química Orgánica, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Argentina.
| | | |
Collapse
|
35
|
Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. Allelopathic Effects of Volatile Monoterpenoids Produced by Salvia leucophylla: Inhibition of Cell Proliferation and DNA Synthesis in the Root Apical Meristem of Brassica campestris Seedlings. J Chem Ecol 2005; 31:1187-203. [PMID: 16124241 DOI: 10.1007/s10886-005-4256-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salvia leucophylla, a shrub observed in coastal south California, produces several volatile monoterpenoids (camphor, 1,8-cineole, beta-pinene, alpha-pinene, and camphene) that potentially act as allelochemicals. The effects of these were examined using Brassica campestris as the test plant. Camphor, 1,8-cineole, and beta-pinene inhibited germination of B. campestris seeds at high concentrations, whereas alpha-pinene and camphene did not. Root growth was inhibited by all five monoterpenoids in a dose-dependent manner, but hypocotyl growth was largely unaffected. The monoterpenoids did not alter the sizes of matured cells in either hypocotyls or roots, indicating that cell expansion is relatively insensitive to these compounds. They did not decrease the mitotic index in the shoot apical region, but specifically lowered mitotic index in the root apical meristem. Moreover, morphological and biochemical analyses on the incorporation of 5-bromo-2'-deoxyuridine into DNA demonstrated that the monoterpenoids inhibit both cell-nuclear and organelle DNA synthesis in the root apical meristem. These results suggest that the monoterpenoids produced by S. leucophylla could interfere with the growth of other plants in its vicinity through inhibition of cell proliferation in the root apical meristem.
Collapse
Affiliation(s)
- Nami Nishida
- Department of Biological Science, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Romero-Romero T, Anaya AL, Cruz-Ortega R. Screening for effects of phytochemical variability on cytoplasmic protein synthesis pattern of crop plants. J Chem Ecol 2002; 28:617-29. [PMID: 11944837 DOI: 10.1023/a:1014504531418] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Crop plants have to cope with phytochemical variability along with other environmental stresses. Allelochemicals affect several cellular processes. We tested the effect of toxic aqueous leachates from Sicyos deppei, Acacia sedillense, Sebastiania adenophora, and Lantana camara on the radicle growth and cytoplasmic protein synthesis patterns of Zea mays (maize), Phaseolus vulgaris (bean), Cucurbita pepo (squash), and Lycopersicon esculentum (tomato). 2D-PAGE and gel scan densitometry analysis were used to detect differences in cytoplasmic root protein pattern expression. High-, medium-, and low-molecular-weight cytoplasmic proteins were affected by the different aqueous leachates. Crop plant responses were diverse, but in general, an increase in protein synthesis was observed in the treated roots. Maize was the least affected, but both the radicle growth and also the protein pattern of tomato were severely inhibited by all allelopathic plants. The changes observed in protein expression may indicate a biochemical alteration at the cellular level of the tested crop plants.
Collapse
Affiliation(s)
- Teresa Romero-Romero
- Departamento de Ecología Funcional y Aplicada, Instituto de Ecología, UNAM, Circuito Exterior Universitario, Ciudad Universitaria, México DF
| | | | | |
Collapse
|