1
|
Mariën B, Robinson KM, Jurca M, Michelson IH, Takata N, Kozarewa I, Pin PA, Ingvarsson PK, Moritz T, Ibáñez C, Nilsson O, Jansson S, Penfield S, Yu J, Eriksson ME. Nature's Master of Ceremony: The Populus Circadian Clock as Orchestratot of Tree Growth and Phenology. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:16. [PMID: 40206183 PMCID: PMC11976295 DOI: 10.1038/s44323-025-00034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
Understanding the timely regulation of plant growth and phenology is crucial for assessing a terrestrial ecosystem's productivity and carbon budget. The circadian clock, a system of genetic oscillators, acts as 'Master of Ceremony' during plant physiological processes. The mechanism is particularly elusive in trees despite its relevance. The primary and secondary tree growth, leaf senescence, bud set, and bud burst timing were investigated in 68 constructs transformed into Populus hybrids and compared with untransformed or transformed controls grown in natural or controlled conditions. The results were analyzed using generalized additive models with ordered-factor-smooth interaction smoothers. This meta-analysis shows that several genetic components are associated with the clock. Especially core clock-regulated genes affected tree growth and phenology in both controlled and field conditions. Our results highlight the importance of field trials and the potential of using the clock to generate trees with improved characteristics for sustainable silviculture (e.g., reprogrammed to new photoperiodic regimes and increased growth).
Collapse
Affiliation(s)
- Bertold Mariën
- IceLab (Integrated Science Lab), Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Kathryn M. Robinson
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Manuela Jurca
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ingrid H. Michelson
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Naoki Takata
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki Japan
| | - Iwanka Kozarewa
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pierre A. Pin
- UPSC (Umeå Plant Science Centre), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
- SECOBRA Research, Maule, France
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Thomas Moritz
- UPSC (Umeå Plant Science Centre), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
- CBMR (Novo Nordisk Foundation Center for Basic Metabolic Research), University of Copenhagen, Copenhagen, Denmark
| | - Cristian Ibáñez
- Department of Agronomy, University of La Serena, Ovalle, Chile
| | - Ove Nilsson
- UPSC (Umeå Plant Science Centre), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Stefan Jansson
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Steve Penfield
- Department of Crop Genetics, John Innes Center, Norwich, UK
| | - Jun Yu
- IceLab (Integrated Science Lab), Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Maria E. Eriksson
- IceLab (Integrated Science Lab), Umeå University, Umeå, Sweden
- UPSC (Umeå Plant Science Centre), Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Nair A, Maurya JP, Pandey SK, Singh RK, Miskolczi PC, Aryal B, Bhalerao RP. ELF3 coordinates temperature and photoperiodic control of seasonal growth in hybrid aspen. Curr Biol 2025; 35:1484-1494.e2. [PMID: 40054469 DOI: 10.1016/j.cub.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 04/10/2025]
Abstract
Timely growth cessation before winter is crucial for the survival of perennial plants in temperate and boreal regions. Short photoperiod (SP) and low temperature (LT) are major seasonal cues regulating growth cessation. SP, sensed in the leaves, initiates growth cessation by downregulating FLOWERING LOCUS T 2 (FT2) expression, but how LT regulates seasonal growth is unclear. Genetic and cell biological approaches identified a hybrid aspen EARLY FLOWERING 3(ELF3) ortholog with a prion-like domain (PrLD) that undergoes LT-responsive phase separation as a key mediator of LT-induced growth cessation. In contrast with SP, LT acts independently of FT2 downregulation and targets the AIL1-BRC1 transcription factor network and hormonal pathways via ELF3 to induce growth cessation. Intriguingly, ELF3 also functions in SP-mediated growth cessation by downregulating FT2 in leaves. Our work thus reveals a previously unrecognized role of ELF3 in growth cessation and in coordinating temperature and photoperiodic pathways to enable robust adaptation to seasonal change.
Collapse
Affiliation(s)
- Aswin Nair
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jay P Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; Plant Development and Molecular Biology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shashank K Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Rajesh Kumar Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Pal C Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Bibek Aryal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
3
|
Wang T, Li H, Zhao J, Huang J, Zhong Y, Xu Z, He F. Exploration of Suitable Conditions for Shoot Proliferation and Rooting of Quercus robur L. in Plant Tissue Culture Technology. Life (Basel) 2025; 15:348. [PMID: 40141693 PMCID: PMC11943399 DOI: 10.3390/life15030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Quercus robur L., also referred to as "summer oak" or "English oak", is an esthetically pleasing species, making it an excellent choice for street trees and gardens. Raising Quercus presents several challenges, including its long growth period, delayed germination, and inconsistent emergence. The shoot proliferation and adventitious root formation of Q. robur are crucial for establishing a tissue culture regeneration system and are vital for the successful transplantation of seedlings. To address this, experiments were conducted to assess shoot proliferation and adventitious root formation in Q. robur using various media. The shoot proliferation time, shoot proliferation coefficient, number of rooting strips, and length indicators of roots were recorded. The results indicated that a combination of 0.3 mg/L 6-Benzylaminopurine (6-BA) and 100 mg/L cefotaxime (Cef) was optimal for shoot propagation, while a solution of 0.1 mg/L 1-Naphthaleneacetic acid (NAA) and 1/2 Murashige and Skoog Medium (1/2MS) medium was most effective for root induction. This study has identified the optimal conditions for adventitious root formation and shoot proliferation in Q. robur, providing a basis for further research into propagation, germplasm conservation and genetic transformation techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (T.W.); (H.L.); (J.Z.); (J.H.); (Y.Z.); (Z.X.)
| |
Collapse
|
4
|
Luomaranta M, Grones C, Choudhary S, Milhinhos A, Kalman TA, Nilsson O, Robinson KM, Street NR, Tuominen H. Systems genetic analysis of lignin biosynthesis in Populus tremula. THE NEW PHYTOLOGIST 2024; 243:2157-2174. [PMID: 39072753 DOI: 10.1111/nph.19993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
The genetic control underlying natural variation in lignin content and composition in trees is not fully understood. We performed a systems genetic analysis to uncover the genetic regulation of lignin biosynthesis in a natural 'SwAsp' population of aspen (Populus tremula) trees. We analyzed gene expression by RNA sequencing (RNA-seq) in differentiating xylem tissues, and lignin content and composition using Pyrolysis-GC-MS in mature wood of 268 trees from 99 genotypes. Abundant variation was observed for lignin content and composition, and genome-wide association study identified proteins in the pentose phosphate pathway and arabinogalactan protein glycosylation among the top-ranked genes that are associated with these traits. Variation in gene expression and the associated genetic polymorphism was revealed through the identification of 312 705 local and 292 003 distant expression quantitative trait loci (eQTL). A co-expression network analysis suggested modularization of lignin biosynthesis and novel functions for the lignin-biosynthetic CINNAMYL ALCOHOL DEHYDROGENASE 2 and CAFFEOYL-CoA O-METHYLTRANSFERASE 3. PHENYLALANINE AMMONIA LYASE 3 was co-expressed with HOMEOBOX PROTEIN 5 (HB5), and the role of HB5 in stimulating lignification was demonstrated in transgenic trees. The systems genetic approach allowed linking natural variation in lignin biosynthesis to trees´ responses to external cues such as mechanical stimulus and nutrient availability.
Collapse
Affiliation(s)
- Mikko Luomaranta
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Carolin Grones
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Shruti Choudhary
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Ana Milhinhos
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Teitur Ahlgren Kalman
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
- SciLifeLab, Umeå University, 90187, Umeå, Sweden
| | - Hannele Tuominen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
5
|
Hu Z, Wu Z, Zhu Q, Ma M, Li Y, Dai X, Han S, Xiang S, Yang S, Luo J, Kong Q, Ding J. Multilayer regulatory landscape and new regulators identification for bud dormancy release and bud break in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:3181-3197. [PMID: 38712996 DOI: 10.1111/pce.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For trees originating from boreal and temperate regions, the dormancy-to-active transition, also known as bud dormancy release and bud break, are crucial processes that allow trees to reactive growth in the spring. The molecular mechanisms underlying these two processes remain poorly understood. Here, through integrative multiomics analysis of the transcriptome, DNA methylome, and proteome, we gained insights into the reprogrammed cellular processes associated with bud dormancy release and bud break. Our findings revealed multilayer regulatory landscapes governing bud dormancy release and bud break regulation, providing a valuable reference framework for future functional studies. Based on the multiomics analysis, we have determined a novel long intergenic noncoding RNA named Phenology Responsive Intergenic lncRNA 1 (PRIR1) plays a role in the activation of bud break. that the molecular mechanism of PRIR1 has been preliminary explored, and it may partially promote bud break by activating its neighbouring gene, EXORDIUM LIKE 5 (PtEXL5), which has also been genetically confirmed as an activator for bud break. This study has revealed a lncRNA-mediated regulatory mechanism for the control of bud break in Populus, operating independently of known regulatory pathways.
Collapse
Affiliation(s)
- Zhenzhu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Mingru Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Shaopeng Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Siting Yang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Jie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Paasela T, Lim KJ, Pavicic M, Harju A, Venäläinen M, Paulin L, Auvinen P, Kärkkäinen K, Teeri TH. Transcriptomic Analysis Reveals Novel Regulators of the Scots Pine Stilbene Pathway. PLANT & CELL PHYSIOLOGY 2023; 64:1204-1219. [PMID: 37674261 PMCID: PMC10579783 DOI: 10.1093/pcp/pcad089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.
Collapse
Affiliation(s)
| | - Kean-Jin Lim
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki 00014, Finland
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an District, Hangzhou, Zhejiang 311300, China
| | - Mirko Pavicic
- Oak Ridge National Laboratory, Biosciences Division, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Anni Harju
- Production Systems Unit, Natural Resources Institute Finland (Luke), Vipusenkuja 5, Savonlinna 57200, Finland
| | - Martti Venäläinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Vipusenkuja 5, Savonlinna 57200, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Katri Kärkkäinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Paavo Havaksentie 3, Oulu 90570, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki 00014, Finland
| |
Collapse
|
7
|
Li H, Wang H, Guan L, Li Z, Wang H, Luo J. Optimization of High-Efficiency Tissue Culture Regeneration Systems in Gray Poplar. Life (Basel) 2023; 13:1896. [PMID: 37763300 PMCID: PMC10532866 DOI: 10.3390/life13091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
A series of tissue culture regeneration protocols were conducted on gray poplar (P. tremula × P. alba) to select the most efficient callus induction medium, adventitious shoot differentiation medium, shoot elongation medium and rooting medium, which laid the foundation for the optimization of genetic transformation technology for gray poplar. The results showed that the Woody Plant Medium (WPM) supplemented with 0.10 mg L-1 kinetin (KT) and 1.00 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) was the most suitable medium for callus induction. The callus induction rates of different tissues were greater than 85.7%. The optimal adventitious shoot differentiation medium was the WPM supplemented with 0.02 mg L-1 thidiazuron (TDZ), and the adventitious shoot differentiation rates of young tissues were 22.2-41.9%. The optimal direct differentiation medium was the Murashige and Skoog (MS) medium supplemented with 0.20 mg L-1 6-benzylaminopurine (6-BA), 0.10 mg L-1 indole butyric acid (IBA) and 0.001 mg L-1 TDZ, and the differentiation rate of adventitious shoots was greater than 94%. The best shoot elongation medium for adventitious shoots was the MS medium with 0.10 mg L-1 naphthylacetic acid (NAA). After 45 days of cultivation in the MS medium with 0.10 mg L-1 NAA, the average plant height was 1.8 cm, and the average number of elongated adventitious shoots was 11 per explant. The 1/2 MS medium with 0.10 mg L-1 NAA showed the best performance for rooting, and later, shoot growth. The direct shoot induction pathway can induce adventitious shoots much faster than the indirect adventitious shoot induction pathway can, and the time cost via the direct adventitious shoot induction pathway can be shortened by 2-6 weeks compared to that of the indirect shoot induction pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (H.W.); (L.G.); (Z.L.); (H.W.)
| |
Collapse
|
8
|
Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, Ritter M, Liszka A, Terrett OM, Yadav SR, Vatén A, Nieminen K, Eswaran G, Alonso-Serra J, Müller KH, Iuga D, Miskolczi PC, Kalmbach L, Otero S, Mähönen AP, Bhalerao R, Bulone V, Mansfield SD, Hill S, Burgert I, Beaugrand J, Benitez-Alfonso Y, Dupree R, Dupree P, Helariutta Y. Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. NATURE PLANTS 2023; 9:1530-1546. [PMID: 37666966 PMCID: PMC10505557 DOI: 10.1038/s41477-023-01459-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/14/2023] [Indexed: 09/06/2023]
Abstract
Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.
Collapse
Affiliation(s)
- Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Sam Amsbury
- Centre for Plant Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Nadège Follain
- Normandie Université, UNIROUEN Normandie, INSA Rouen, CNRS, PBS, Rouen, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Chang Su
- Wood Development Group, University of Helsinki, Helsinki, Finland
| | - Fulgencio Alatorre-Cobos
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Conacyt-Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maximilian Ritter
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Aleksandra Liszka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Shri Ram Yadav
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Anne Vatén
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Stomatal Development and Plasticity group, University of Helsinki, Helsinki, Finland
| | - Kaisa Nieminen
- Wood Development Group, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Production systems / Tree Breeding Department, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Gugan Eswaran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Juan Alonso-Serra
- Wood Development Group, University of Helsinki, Helsinki, Finland
- UMR 5667 Reproduction et Développement Des Plantes, ENS de Lyon, France
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, Cambridge, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - Pal Csaba Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Molecular Plant Physiology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sofia Otero
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Science and Technology Office of the Congress of Deputies, Madrid, Spain
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Hill
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, Zürich, Switzerland
- Empa Wood Tec, Cellulose and Wood Materials Laboratory, Dübendorf, Switzerland
| | - Johnny Beaugrand
- Biopolymères Interactions Assemblages (BIA), INRA, Nantes, France
| | - Yoselin Benitez-Alfonso
- The Centre for Plant Science, The Bragg Centre, The Astbury Centre, University of Leeds, Leeds, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Wood Development Group, University of Helsinki, Helsinki, Finland.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Bernacki MJ, Mielecki J, Antczak A, Drożdżek M, Witoń D, Dąbrowska-Bronk J, Gawroński P, Burdiak P, Marchwicka M, Rusaczonek A, Dąbkowska-Susfał K, Strobel WR, Mellerowicz EJ, Zawadzki J, Szechyńska-Hebda M, Karpiński S. Biotechnological Potential of the Stress Response and Plant Cell Death Regulators Proteins in the Biofuel Industry. Cells 2023; 12:2018. [PMID: 37626829 PMCID: PMC10453534 DOI: 10.3390/cells12162018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Production of biofuel from lignocellulosic biomass is relatively low due to the limited knowledge about natural cell wall loosening and cellulolytic processes in plants. Industrial separation of cellulose fiber mass from lignin, its saccharification and alcoholic fermentation is still cost-ineffective and environmentally unfriendly. Assuming that the green transformation is inevitable and that new sources of raw materials for biofuels are needed, we decided to study cell death-a natural process occurring in plants in the context of reducing the recalcitrance of lignocellulose for the production of second-generation bioethanol. "Members of the enzyme families responsible for lysigenous aerenchyma formation were identified during the root hypoxia stress in Arabidopsis thaliana cell death mutants. The cell death regulatory genes, LESION SIMULATING DISEASE 1 (LSD1), PHYTOALEXIN DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) conditionally regulate the cell wall when suppressed in transgenic aspen. During four years of growth in the field, the following effects were observed: lignin content was reduced, the cellulose fiber polymerization degree increased and the growth itself was unaffected. The wood of transgenic trees was more efficient as a substrate for saccharification, alcoholic fermentation and bioethanol production. The presented results may trigger the development of novel biotechnologies in the biofuel industry.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (M.J.B.); (J.M.); (D.W.); (P.G.); (P.B.)
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (M.J.B.); (J.M.); (D.W.); (P.G.); (P.B.)
| | - Andrzej Antczak
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland; (A.A.); (M.D.); (M.M.); (J.Z.)
| | - Michał Drożdżek
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland; (A.A.); (M.D.); (M.M.); (J.Z.)
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (M.J.B.); (J.M.); (D.W.); (P.G.); (P.B.)
| | - Joanna Dąbrowska-Bronk
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (M.J.B.); (J.M.); (D.W.); (P.G.); (P.B.)
| | - Paweł Burdiak
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (M.J.B.); (J.M.); (D.W.); (P.G.); (P.B.)
| | - Monika Marchwicka
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland; (A.A.); (M.D.); (M.M.); (J.Z.)
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | | | - Wacław Roman Strobel
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden;
| | - Janusz Zawadzki
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland; (A.A.); (M.D.); (M.M.); (J.Z.)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (M.J.B.); (J.M.); (D.W.); (P.G.); (P.B.)
| |
Collapse
|
10
|
Donev EN, Derba‐Maceluch M, Yassin Z, Gandla ML, Pramod S, Heinonen E, Kumar V, Scheepers G, Vilaplana F, Johansson U, Hertzberg M, Sundberg B, Winestrand S, Hörnberg A, Alriksson B, Jönsson LJ, Mellerowicz EJ. Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1005-1021. [PMID: 36668687 PMCID: PMC10106850 DOI: 10.1111/pbi.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 05/04/2023]
Abstract
Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.
Collapse
Affiliation(s)
- Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Marta Derba‐Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Zakiya Yassin
- Enhet Produktionssystem och MaterialRISE Research Institutes of SwedenVäxjöSweden
| | | | - Sivan Pramod
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
| | - Emilia Heinonen
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | - Gerhard Scheepers
- Enhet Produktionssystem och MaterialRISE Research Institutes of SwedenVäxjöSweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Ulf Johansson
- Tönnersjöheden Experimental ForestSwedish University of Agricultural SciencesSimlångsdalenSweden
| | | | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | | | | | | | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
11
|
Tao GY, Xie YH, Li WF, Li KP, Sun C, Wang HM, Sun XM. LkARF7 and LkARF19 overexpression promote adventitious root formation in a heterologous poplar model by positively regulating LkBBM1. Commun Biol 2023; 6:372. [PMID: 37020138 PMCID: PMC10076273 DOI: 10.1038/s42003-023-04731-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Cuttage propagation involves adventitious root formation induced by auxin. In our previous study, Larix kaempferi BABY BOOM 1 (LkBBM1), which is known to regulate adventitious root formation, was affected by auxin. However, the relationship between LkBBM1 and auxin remains unclear. Auxin response factors (ARFs) are a class of important transcription factors in the auxin signaling pathway and modulate the expression of early auxin-responsive genes by binding to auxin response elements. In the present study, we identified 14 L. kaempferi ARFs (LkARFs), and found LkARF7 and LkARF19 bound to LkBBM1 promoter and enhanced its transcription using yeast one-hybrid, ChIP-qPCR, and dual-luciferase assays. In addition, the treatment with naphthalene acetic acid promoted the expression of LkARF7 and LkARF19. We also found that overexpression of these two genes in poplar promoted adventitious root formation. Furthermore, LkARF19 interacted with the DEAD-box ATP-dependent RNA helicase 53-like protein to form a heterodimer to regulate adventitious root formation. Altogether, our results reveal an additional regulatory mechanism underlying the control of adventitious root formation by auxin.
Collapse
Affiliation(s)
- Gui-Yun Tao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yun-Hui Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Kui-Peng Li
- Guangxi Forestry Research Institute, Guangxi, 530009, China
| | - Chao Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hong-Ming Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Gansu, 741000, China
| | - Xiao-Mei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
12
|
Ito H, Saito H, Fukui M, Tanaka A, Arakawa K. Poplar leaf abscission through induced chlorophyll breakdown by Mg-dechelatase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111444. [PMID: 36031022 DOI: 10.1016/j.plantsci.2022.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Chlorophyll breakdown is observed during senescence. The first step in chlorophyll breakdown is the removal of central Mg by Mg-dechelatase. This reaction is the rate-limiting step in the chlorophyll breakdown pathway. We evaluated the effect of induced chlorophyll breakdown on abscission through the removal of Mg by Mg-dechelatase. Poplar transformants carrying the dexamethasone-inducible Mg-dechelatase gene were prepared using the Arabidopsis Stay-Green1 cDNA. When leaves were treated with dexamethasone, chlorophyll was degraded, photosynthetic capacity was reduced, and an abscission zone was formed, resulting in leaf abscission. In addition, ethylene, which plays an important role during senescence, was produced in this process. Thus, chlorophyll breakdown induces the phenotype in the same way as commonly observed during leaf senescence. This study suggests a physiological role of chlorophyll breakdown in the leaf abscission of deciduous trees. Furthermore, this study shows that the dexamethasone-inducible gene expression system is an available option for deciduous tree studies.
Collapse
Affiliation(s)
- Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo 060-0819, Japan.
| | - Hideyuki Saito
- Research Faculty of Agriculture, Hokkaido University, N9 W9, Sapporo 060-8589, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo 060-0819, Japan
| | - Keita Arakawa
- Research Faculty of Agriculture, Hokkaido University, N9 W9, Sapporo 060-8589, Japan
| |
Collapse
|
13
|
Qiao L, Zhang T, Yang H, Yang S, Wang J. Overexpression of a SHORT-ROOT transcriptional factor enhances the auxin mediated formation of adventitious roots and lateral roots in poplar trees. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111408. [PMID: 35932828 DOI: 10.1016/j.plantsci.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
SHORT-ROOT (SHR) defines root stem cells and maintains radial patterning, but its involvement in adventitious root (AR) formation has not been reported. In this study, we showed that PtSHR2 was transcriptionally upregulated by excision before the formation of AR and responded dynamically to auxin. PtSHR2 overexpression (SHR2BOE) in hybrid poplars resulted in an increased number of ARs with an initial delay. Despite a lower endogenous content in the stems than in wild-type plants, indole-3-acetic acid (IAA) content at the SHR2BOE basal stem increased rapidly after cutting and reached a higher maximum than in wild-type plants, which was accompanied by a more sustained and stronger induction of AR formation marker genes. In addition, the higher auxin content in SHR2BOE ARs resulted in more and longer lateral roots (LRs). Application of auxin abolished the early delay in the formation of AR and largely other AR phenotypes of SHR2BOE plants, whereas the polar auxin transport inhibitor N-1-naphthylphthalamic acid completely inhibited both AR and LR abnormalities. Since the enhanced rooting ability of SHR2BOE stem cuttings in hydroponics was clearly confirmed, our results suggest a novel role of poplar SHR2 as a positive regulator during the organogenesis of AR and LR by affecting local auxin homeostasis.
Collapse
Affiliation(s)
- Linxiang Qiao
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Tianjiao Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| |
Collapse
|
14
|
Ménard D, Blaschek L, Kriechbaum K, Lee CC, Serk H, Zhu C, Lyubartsev A, Nuoendagula , Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. THE PLANT CELL 2022; 34:koac284. [PMID: 36215679 PMCID: PMC9709985 DOI: 10.1093/plcell/koac284] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/11/2022] [Indexed: 05/12/2023]
Abstract
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.
Collapse
Affiliation(s)
- Delphine Ménard
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Leonard Blaschek
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy (UCEM), Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Chuantao Zhu
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Alexander Lyubartsev
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Zoltán Bacsik
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Aji Mathew
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
15
|
Wang W, Talide L, Viljamaa S, Niittylä T. Aspen growth is not limited by starch reserves. Curr Biol 2022; 32:3619-3627.e4. [PMID: 35820419 DOI: 10.1016/j.cub.2022.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
All photosynthetic organisms balance CO2 assimilation with growth and carbon storage. Stored carbon is used for growth at night and when demand exceeds assimilation. Gaining a mechanistic understanding of carbon partitioning between storage and growth in trees is important for biological studies and for estimating the potential of terrestrial photosynthesis to sequester anthropogenic CO2 emissions.1,2 Starch represents the main carbon storage in plants.3,4 To examine the carbon storage mechanism and role of starch during tree growth, we generated and characterized low-starch hybrid aspen (Populus tremula × tremuloides) trees using CRISPR-Cas9-mediated gene editing of two PHOSPHOGLUCOMUTASE (PGM) genes coding for plastidial PGM isoforms essential for starch biosynthesis. We demonstrate that starch deficiency does not reduce tree growth even in short days, showing that starch is not a critical carbon reserve during diel growth of aspen. The low-starch trees assimilated up to ∼30% less CO2 compared to the wild type under a range of irradiance levels, but this did not reduce growth or wood density. This implies that aspen growth is not limited by carbon assimilation under benign growth conditions. Moreover, the timing of bud set and bud flush in the low-starch trees was not altered, implying that starch reserves are not critical for the seasonal growth-dormancy cycle. The findings are consistent with a passive starch storage mechanism that contrasts with the annual Arabidopsis and indicate that the capacity of the aspen to absorb CO2 is limited by the rate of sink tissue growth.
Collapse
Affiliation(s)
- Wei Wang
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå S-901 83, Sweden
| | - Loic Talide
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå S-901 83, Sweden
| | - Sonja Viljamaa
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå S-901 83, Sweden
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå S-901 83, Sweden.
| |
Collapse
|
16
|
Ranjan A, Perrone I, Alallaq S, Singh R, Rigal A, Brunoni F, Chitarra W, Guinet F, Kohler A, Martin F, Street NR, Bhalerao R, Legué V, Bellini C. Molecular basis of differential adventitious rooting competence in poplar genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4046-4064. [PMID: 35325111 PMCID: PMC9232201 DOI: 10.1093/jxb/erac126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.
Collapse
Affiliation(s)
| | | | | | - Rajesh Singh
- Present address: Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Adeline Rigal
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Federica Brunoni
- Present address: Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, CZ-78371, Olomouc, Czech Republic
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), I-10135 Torino, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), I-31015 Conegliano (TV), Italy
| | - Frederic Guinet
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agricultural University, SE-90183 Umeå, Sweden
| | - Valérie Legué
- Present address: Université Clermont Auvergne, INRAE, UMR 547 PIAF, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
17
|
André D, Marcon A, Lee KC, Goretti D, Zhang B, Delhomme N, Schmid M, Nilsson O. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Curr Biol 2022; 32:2988-2996.e4. [PMID: 35660141 DOI: 10.1016/j.cub.2022.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
In temperate and boreal regions, perennials adapt their annual growth cycle to the change of seasons. These adaptations ensure survival in harsh environmental conditions, allowing growth at different latitudes and altitudes, and are therefore tightly regulated. Populus tree species cease growth and form terminal buds in autumn when photoperiod falls below a certain threshold.1 This is followed by establishment of dormancy and cold hardiness over the winter. At the center of the photoperiodic pathway in Populus is the gene FLOWERING LOCUS T2 (FT2), which is expressed during summer and harbors significant SNPs in its locus associated with timing of bud set.1-4 The paralogous gene FT1, on the other hand, is hyper-induced in chilling buds during winter.3,5 Even though its function is so far unknown, it has been suggested to be involved in the regulation of flowering and the release of winter dormancy.3,5 In this study, we employ CRISPR-Cas9-mediated gene editing to individually study the function of the FT-like genes in Populus trees. We show that while FT2 is required for vegetative growth during spring and summer and regulates the entry into dormancy, expression of FT1 is absolutely required for bud flush in spring. Gene expression profiling suggests that this function of FT1 is linked to the release of winter dormancy rather than to the regulation of bud flush per se. These data show how FT duplication and sub-functionalization have allowed Populus trees to regulate two completely different and major developmental control points during the yearly growth cycle.
Collapse
Affiliation(s)
- Domenique André
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Alice Marcon
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Keh Chien Lee
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 36 Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
18
|
Yi M, Yang H, Yang S, Wang J. Overexpression of SHORT-ROOT2 transcription factor enhances the outgrowth of mature axillary buds in poplar trees. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2469-2486. [PMID: 35107566 DOI: 10.1093/jxb/erac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
SHORT-ROOT (SHR) transcription factors play important roles in asymmetric cell division and radial patterning of Arabidopsis roots. In hybrid poplar (P. tremula × P. alba clone INRA 717-1B4), PtaSHR2 was preferentially expressed in axillary buds (AXBs) and transcriptionally up-regulated during AXB maturation and activation. Overexpression of SHR2 (PtSHR2OE) induced an enhanced outgrowth of AXBs below the bud maturation point, with a simultaneous transition of an active shoot apex into an arrested terminal bud. The larger and more mature AXBs of PtSHR2OE trees revealed altered expression of genes involved in axillary meristem initiation and bud activation, as well as a higher ratio of cytokinin to auxin. To elucidate the underlying mechanism of PtSHR2OE-induced high branching, subsequent molecular and biochemical studies showed that compared with wild-type trees, decapitation induced a quicker bud outburst in PtSHR2OE trees, which could be fully inhibited by exogenous application of auxin or cytokinin biosynthesis inhibitor, but not by N-1-naphthylphthalamic acid. Our results indicated that overexpression of PtSHR2B disturbed the internal hormonal balance in AXBs by interfering with the basipetal transport of auxin, rather than causing auxin biosynthesis deficiency or auxin insensitivity, thereby releasing mature AXBs from apical dominance and promoting their outgrowth.
Collapse
Affiliation(s)
- Minglei Yi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
André D, Zambrano JA, Zhang B, Lee KC, Rühl M, Marcon A, Nilsson O. Populus SVL Acts in Leaves to Modulate the Timing of Growth Cessation and Bud Set. FRONTIERS IN PLANT SCIENCE 2022; 13:823019. [PMID: 35251092 PMCID: PMC8891642 DOI: 10.3389/fpls.2022.823019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/27/2022] [Indexed: 06/11/2023]
Abstract
SHORT VEGETATIVE PHASE (SVP) is an important regulator of FLOWERING LOCUS T (FT) in the thermosensory pathway of Arabidopsis. It is a negative regulator of flowering and represses FT transcription. In poplar trees, FT2 is central for the photoperiodic control of growth cessation, which also requires the decrease of bioactive gibberellins (GAs). In angiosperm trees, genes similar to SVP, sometimes named DORMANCY-ASSOCIATED MADS-BOX genes, control temperature-mediated bud dormancy. Here we show that SVL, an SVP ortholog in aspen trees, besides its role in controlling dormancy through its expression in buds, is also contributing to the regulation of short day induced growth cessation and bud set through its expression in leaves. SVL is upregulated during short days in leaves and binds to the FT2 promoter to repress its transcription. It furthermore decreases the amount of active GAs, whose downregulation is essential for growth cessation, by repressing the transcription of GA20 oxidase. Finally, the SVL protein is more stable in colder temperatures, thus integrating the temperature signal into the response. We conclude that the molecular function of SVL in the photoperiodic pathway has been conserved between Arabidopsis and poplar trees, albeit the physiological process it controls has changed. SVL is thus both involved in regulating the photoperiod response in leaves, modulating the timing of growth cessation and bud set, and in the subsequent temperature regulation of dormancy in the buds.
Collapse
|
20
|
Jurca M, Sjölander J, Ibáñez C, Matrosova A, Johansson M, Kozarewa I, Takata N, Bakó L, Webb AAR, Israelsson-Nordström M, Eriksson ME. ZEITLUPE Promotes ABA-Induced Stomatal Closure in Arabidopsis and Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:829121. [PMID: 35310670 PMCID: PMC8924544 DOI: 10.3389/fpls.2022.829121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 05/22/2023]
Abstract
Plants balance water availability with gas exchange and photosynthesis by controlling stomatal aperture. This control is regulated in part by the circadian clock, but it remains unclear how signalling pathways of daily rhythms are integrated into stress responses. The serine/threonine protein kinase OPEN STOMATA 1 (OST1) contributes to the regulation of stomatal closure via activation of S-type anion channels. OST1 also mediates gene regulation in response to ABA/drought stress. We show that ZEITLUPE (ZTL), a blue light photoreceptor and clock component, also regulates ABA-induced stomatal closure in Arabidopsis thaliana, establishing a link between clock and ABA-signalling pathways. ZTL sustains expression of OST1 and ABA-signalling genes. Stomatal closure in response to ABA is reduced in ztl mutants, which maintain wider stomatal apertures and show higher rates of gas exchange and water loss than wild-type plants. Detached rosette leaf assays revealed a stronger water loss phenotype in ztl-3, ost1-3 double mutants, indicating that ZTL and OST1 contributed synergistically to the control of stomatal aperture. Experimental studies of Populus sp., revealed that ZTL regulated the circadian clock and stomata, indicating ZTL function was similar in these trees and Arabidopsis. PSEUDO-RESPONSE REGULATOR 5 (PRR5), a known target of ZTL, affects ABA-induced responses, including stomatal regulation. Like ZTL, PRR5 interacted physically with OST1 and contributed to the integration of ABA responses with circadian clock signalling. This suggests a novel mechanism whereby the PRR proteins-which are expressed from dawn to dusk-interact with OST1 to mediate ABA-dependent plant responses to reduce water loss in time of stress.
Collapse
Affiliation(s)
- Manuela Jurca
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Johan Sjölander
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Cristian Ibáñez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Departamento de Biología Universidad de La Serena, La Serena, Chile
| | - Anastasia Matrosova
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mikael Johansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
| | - Iwanka Kozarewa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Naoki Takata
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Laszlo Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Maria Israelsson-Nordström
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria E. Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Maria E. Eriksson,
| |
Collapse
|
21
|
Ding J, Zhang B, Li Y, André D, Nilsson O. Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. THE NEW PHYTOLOGIST 2021; 232:2339-2352. [PMID: 33735450 DOI: 10.1111/nph.17350] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 05/27/2023]
Abstract
The seasonally synchronized annual growth cycle that is regulated mainly by photoperiod and temperature cues is a crucial adaptive strategy for perennial plants in boreal and temperate ecosystems. Phytochrome B (phyB), as a light and thermal sensor, has been extensively studied in Arabidopsis. However, the specific mechanisms for how the phytochrome photoreceptors control the phenology in tree species remain poorly understood. We characterized the functions of PHYB genes and their downstream PHYTOCHROME INTERACTING FACTOR (PIF) targets in the regulation of shade avoidance and seasonal growth in hybrid aspen trees. We show that while phyB1 and phyB2, as phyB in other plants, act as suppressors of shoot elongation during vegetative growth, they act as promoters of tree seasonal growth. Furthermore, while the Populus homologs of both PIF4 and PIF8 are involved in the shade avoidance syndrome (SAS), only PIF8 plays a major role as a suppressor of seasonal growth. Our data suggest that the PHYB-PIF8 regulon controls seasonal growth through the regulation of FT and CENL1 expression while a genome-wide transcriptome analysis suggests how, in Populus trees, phyB coordinately regulates SAS responses and seasonal growth cessation.
Collapse
Affiliation(s)
- Jihua Ding
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Yue Li
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Domenique André
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| |
Collapse
|
22
|
Abstract
Using a perennial model plant allows the study of reoccurring seasonal events in a way that is not possible using a fast-growing annual such as A. thaliana (Arabidopsis). In this study, we present a hybrid aspen (Populus tremula × P. tremuloides) as our perennial model plant. These plants can be grown in growth chambers to shorten growth periods and manipulate day length and temperature in ways that would be impossible under natural conditions. In addition, the use of growth chambers allows easy monitoring of height and diameter expansion, accelerating the collection of data from new strategies that allow evaluation of promoters or inhibitors of growth. Here, we describe how to study and quantify responses to seasonal changes (mainly using P. tremula × P. tremuloides) by measuring growth rate and key events under different photoperiodic cycles.
Collapse
|
23
|
Witoń D, Sujkowska-Rybkowska M, Dąbrowska-Bronk J, Czarnocka W, Bernacki M, Szechyńska-Hebda M, Karpiński S. MITOGEN-ACTIVATED PROTEIN KINASE 4 impacts leaf development, temperature, and stomatal movement in hybrid aspen. PLANT PHYSIOLOGY 2021; 186:2190-2204. [PMID: 34010410 PMCID: PMC8331162 DOI: 10.1093/plphys/kiab186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/02/2021] [Indexed: 05/04/2023]
Abstract
Stomatal movement and density influence plant water use efficiency and thus biomass production. Studies in model plants within controlled environments suggest MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) may be crucial for stomatal regulation. We present functional analysis of MPK4 for hybrid aspen (Populus tremula × tremuloides) grown under natural field conditions for several seasons. We provide evidence of the role of MPK4 in the genetic and environmental regulation of stomatal formation, differentiation, signaling, and function; control of the photosynthetic and thermal status of leaves; and growth and acclimation responses. The long-term acclimation manifested as variations in stomatal density and distribution. Short-term acclimation responses were derived from changes in the stomatal aperture. MPK4 localized in the cytoplasm of guard cells (GCs) was a positive regulator of abscisic acid (ABA)-dependent stomatal closure and nitric oxide metabolism in the ABA-dependent pathways, while to a lesser extent, it was involved in ABA-induced hydrogen peroxide accumulation. MPK4 also affected the stomatal aperture through deregulation of microtubule patterns and cell wall structure and composition, including via pectin methyl-esterification, and extensin levels in the GC wall. Deregulation of leaf anatomy (cell compaction) and stomatal movement, together with increased light energy absorption, resulted in altered leaf temperature, photosynthesis, cell death, and biomass accumulation in mpk4 transgenic plants. Divergence between absorbed energy and assimilated energy is a bottleneck, and MPK4 can participate in the control of energy dissipation (thermal effects). Furthermore, MPK4 can participate in balancing the photosynthetic energy distribution via its effective use in growth or redirection to acclimation/defense responses.
Collapse
Affiliation(s)
- Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02776, Poland
| | | | - Joanna Dąbrowska-Bronk
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02776, Poland
| | - Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02776, Poland
| | - Maciej Bernacki
- Institute of Technology and Life Sciences, Raszyn 05090, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Cracow 30239, Poland
- The Plant Breeding and Acclimatization Institute, National Research Institute, Błonie 05870, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02776, Poland
- Author for communication:
| |
Collapse
|
24
|
Seyfferth C, Wessels BA, Vahala J, Kangasjärvi J, Delhomme N, Hvidsten TR, Tuominen H, Lundberg-Felten J. PopulusPtERF85 Balances Xylem Cell Expansion and Secondary Cell Wall Formation in Hybrid Aspen. Cells 2021; 10:cells10081971. [PMID: 34440740 PMCID: PMC8393460 DOI: 10.3390/cells10081971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition.
Collapse
Affiliation(s)
- Carolin Seyfferth
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden; (C.S.); (B.A.W.); (T.R.H.)
| | - Bernard A. Wessels
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden; (C.S.); (B.A.W.); (T.R.H.)
| | - Jorma Vahala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland; (J.V.); (J.K.)
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland; (J.V.); (J.K.)
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90184 Umeå, Sweden; (N.D.); (H.T.)
| | - Torgeir R. Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden; (C.S.); (B.A.W.); (T.R.H.)
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90184 Umeå, Sweden; (N.D.); (H.T.)
| | - Judith Lundberg-Felten
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90184 Umeå, Sweden; (N.D.); (H.T.)
- Correspondence:
| |
Collapse
|
25
|
Liao X, Li Y, Hu Z, Lin Y, Zheng B, Ding J. Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. PLANT, CELL & ENVIRONMENT 2021; 44:1830-1845. [PMID: 33675080 DOI: 10.1111/pce.14040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/06/2023]
Abstract
For perennials in boreal and temperate ecosystems, bud dormancy is crucial for survival in harsh winter. Dormancy is released by prolonged exposure to low temperatures and is followed by reactive growth in the spring. Lysine acetylation (Kac) is one of the major post-translational modifications (PTMs) that are involved in plant response to environmental signals. However, little information is available on the effects of Kac modification on bud dormancy release. Here, we report the dynamics of lysine acetylome in hybrid poplar (Populus tremula × Populus alba) dormant buds. A total of 7,594 acetyl-sites from 3,281 acetyl-proteins were identified, representing a large dataset of lysine acetylome in plants. Of them, 229 proteins were differentially acetylated during bud dormancy release and were mainly involved in the primary metabolic pathways. Site-directed mutagenesis enzymatic assays showed that Kac strongly modified the activities of two key enzymes of primary metabolism, pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH). We thus propose that Kac of enzymes could be an important strategy for reconfiguration of metabolic processes during bud dormancy release. In all, our results reveal the importance of Kac in bud dormancy release and provide a new perspective to understand the molecular mechanisms of seasonal growth of trees.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhu Hu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Ying Lin
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Bo Zheng
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, Miskolczi P, Stojkovič K, Strauss SH, Bhalerao RP, Busov VB. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nat Commun 2021; 12:1123. [PMID: 33602938 PMCID: PMC7893051 DOI: 10.1038/s41467-021-21449-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Bud-break is an economically and environmentally important process in trees and shrubs from boreal and temperate latitudes, but its molecular mechanisms are poorly understood. Here, we show that two previously reported transcription factors, EARLY BUD BREAK 1 (EBB1) and SHORT VEGETATIVE PHASE-Like (SVL) directly interact to control bud-break. EBB1 is a positive regulator of bud-break, whereas SVL is a negative regulator of bud-break. EBB1 directly and negatively regulates SVL expression. We further report the identification and characterization of the EBB3 gene. EBB3 is a temperature-responsive, epigenetically-regulated, positive regulator of bud-break that provides a direct link to activation of the cell cycle during bud-break. EBB3 is an AP2/ERF transcription factor that positively and directly regulates CYCLIND3.1 gene. Our results reveal the architecture of a putative regulatory module that links temperature-mediated control of bud-break with activation of cell cycle.
Collapse
Affiliation(s)
- Abdul Azeez
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Yiru Chen Zhao
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Rajesh Kumar Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yordan S Yordanov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
| | - Madhumita Dash
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Pal Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Katja Stojkovič
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Steve H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Victor B Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
27
|
Gandla ML, Mähler N, Escamez S, Skotare T, Obudulu O, Möller L, Abreu IN, Bygdell J, Hertzberg M, Hvidsten TR, Moritz T, Wingsle G, Trygg J, Tuominen H, Jönsson LJ. Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:43. [PMID: 33593413 PMCID: PMC7885582 DOI: 10.1186/s13068-021-01895-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. RESULTS In this study, we report on transgenic hybrid aspen (Populus tremula × tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20-44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26-50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. CONCLUSIONS The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.
Collapse
Affiliation(s)
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Tomas Skotare
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Ogonna Obudulu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Linus Möller
- SweTree Technologies, PO Box 7981, 907 19, Umeå, Sweden
| | - Ilka N Abreu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Joakim Bygdell
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | | | - Torgeir R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden.
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
28
|
Milhinhos A, Bollhöner B, Blazquez MA, Novák O, Miguel CM, Tuominen H. ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees. FRONTIERS IN PLANT SCIENCE 2020; 11:601858. [PMID: 33304375 PMCID: PMC7701098 DOI: 10.3389/fpls.2020.601858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
In the primary root and young hypocotyl of Arabidopsis, ACAULIS5 promotes translation of SUPPRESSOR OF ACAULIS51 (SAC51) and thereby inhibits cytokinin biosynthesis and vascular cell division. In this study, the relationships between ACAULIS5, SAC51 and cytokinin biosynthesis were investigated during secondary growth of Populus stems. Overexpression of ACAULIS5 from the constitutive 35S promoter in hybrid aspen (Populus tremula × Populus tremuloides) trees suppressed the expression level of ACAULIS5, which resulted in low levels of the physiologically active cytokinin bases as well as their direct riboside precursors in the transgenic lines. Low ACAULIS5 expression and low cytokinin levels of the transgenic trees coincided with low cambial activity of the stem. ACAULIS5 therefore, contrary to its function in young seedlings in Arabidopsis, stimulates cytokinin accumulation and cambial activity during secondary growth of the stem. This function is not derived from maturing secondary xylem tissues as transgenic suppression of ACAULIS5 levels in these tissues did not influence secondary growth. Interestingly, evidence was obtained for increased activity of the anticlinal division of the cambial initials under conditions of low ACAULIS5 expression and low cytokinin accumulation. We propose that ACAULIS5 integrates auxin and cytokinin signaling to promote extensive secondary growth of tree stems.
Collapse
Affiliation(s)
- Ana Milhinhos
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Miguel A. Blazquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia, Valencia, Spain
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany, Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Célia M. Miguel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Yue J, Yang H, Yang S, Wang J. TDIF regulates auxin accumulation and modulates auxin sensitivity to enhance both adventitious root and lateral root formation in poplar trees. TREE PHYSIOLOGY 2020; 40:1534-1547. [PMID: 32598454 DOI: 10.1093/treephys/tpaa077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 05/25/2023]
Abstract
Of six TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)-encoding genes in poplar, PtTDIF1 is predominantly expressed in adventitious roots (ARs), and the other five PtTDIFs are preferentially expressed in lateral roots (LRs). Upon auxin application, expression of all PtTDIFs declined in ARs but transiently increased in LRs. Both exogenous TDIF peptides and overexpression of PtTDIFs in poplar positively regulated the initiation and elongation of LRs, and overexpression of PtTDIFs also increased the number of ARs. As visualized by the auxin-responsive marker DR5:GUS, TDIF had differential impacts on the auxin signaling activity in ARs and LRs, which was corroborated by the free indole-3-acetic acid (IAA) measurements in them. Shoot tips of PtTDIF2- and PtTDIFL2-overexpressing (together as PtTDIFsOE) trees revealed an enhanced IAA biosynthetic capacity, and removal of the aerial tissues dramatically diminished the root phenotypes of micro-propagated PtTDIFsOE trees. Furthermore, PtTDIFsOE poplars displayed an increased sensitivity for exogenous IAA, and N-1-naphthylphthalamic acid (NPA) completely blocked the TDIF-induced AR and LR formation. In PtTDIFsOE roots, several auxin-related LR initiation markers such as GATA23, LBD16 and LBD29 were transcriptionally upregulated, further supporting that TDIF regulates LR organogenesis by strengthening the spatiotemporal auxin cues and that dynamic interplays between hormones govern root branching and developmental plasticity in tree species.
Collapse
Affiliation(s)
- Jing Yue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Bünder A, Sundman O, Mahboubi A, Persson S, Mansfield SD, Rüggeberg M, Niittylä T. CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1858-1868. [PMID: 32526794 DOI: 10.1111/tpj.14873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Cellulose microfibrils synthesized by CELLULOSE SYNTHASE COMPLEXES (CSCs) are the main load-bearing polymers in wood. CELLULOSE SYNTHASE INTERACTING1 (CSI1) connects CSCs with cortical microtubules, which align with cellulose microfibrils. Mechanical properties of wood are dependent on cellulose microfibril alignment and structure in the cell walls, but the molecular mechanism(s) defining these features is unknown. Herein, we investigated the role of CSI1 in hybrid aspen (Populus tremula × Populus tremuloides) by characterizing transgenic lines with significantly reduced CSI1 transcript abundance. Reduction in leaves (50-80%) caused leaf twisting and misshaped pavement cells, while reduction (70-90%) in developing xylem led to impaired mechanical wood properties evident as a decrease in the elastic modulus and rupture. X-ray diffraction measurements indicate that microfibril angle was not impacted by the altered CSI1 abundance in developing wood fibres. Instead, the augmented wood phenotype of the transgenic trees was associated with a reduced cellulose degree of polymerization. These findings establish a function for CSI1 in wood mechanics and in defining leaf cell shape. Furthermore, the results imply that the microfibril angle in wood is defined by CSI1 independent mechanism(s).
Collapse
Affiliation(s)
- Anne Bünder
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden
| | - Ola Sundman
- Department of Chemistry, Umeå University, Umeå, SE 901 87, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE 901 83, Sweden
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Markus Rüggeberg
- Swiss Federal Institute of Technology Zurich (ETH Zurich), Institute for Building Materials, Zurich, 8093, Switzerland
- Cellulose and Wood Materials, Swiss Federal Laboratories for Material Science and Technology (Empa), Dubendorf, 8600, Switzerland
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden
| |
Collapse
|
31
|
Expression of Cell Wall-Modifying Enzymes in Aspen for Improved Lignocellulose Processing. Methods Mol Biol 2020. [PMID: 32617934 DOI: 10.1007/978-1-0716-0621-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Wood is an important source of biomass for materials and chemicals, and a target for genetic engineering of its properties for different applications or for research. Wood properties can be altered by using different enzymes acting on cell wall polymers postsynthetically in cell walls. This approach allows for a precise polymer structure modification thanks to the specificity of enzymes used. Such enzymes can originate from all kinds of organisms, or even be modified in a desired way for novel attributes. Here we present a general strategy for expressing a microbial enzyme in aspen and targeting it to cell wall, using an example of fungal glucuronoyl esterase. We describe methods of vector cloning, plant transformation, transgenic line selection and multiplication, testing for the presence of enzymatic activity in different cell compartments, and finally the method of plant transferring from sterile culture to the greenhouse conditions.
Collapse
|
32
|
Kucukoglu M, Chaabouni S, Zheng B, Mähönen AP, Helariutta Y, Nilsson O. Peptide encoding Populus CLV3/ESR-RELATED 47 (PttCLE47) promotes cambial development and secondary xylem formation in hybrid aspen. THE NEW PHYTOLOGIST 2020; 226:75-85. [PMID: 31749215 PMCID: PMC7065007 DOI: 10.1111/nph.16331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/08/2019] [Indexed: 05/13/2023]
Abstract
The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) peptide ligands in connection with their receptors are important players in cell-to-cell communications in plants. Here, we investigated the function of the Populus CLV3/ESR-RELATED 47 (PttCLE47) gene during secondary growth and wood formation in hybrid aspen (Populus tremula × tremuloides) using an RNA interference (RNAi) approach. Expression of PttCLE47 peaks in the vascular cambium. Silencing of the PttCLE47 gene expression affected lateral expansion of stems and decreased apical height growth and leaf size. In particular, PttCLE47 RNAi trees exhibited a narrower secondary xylem zone with less xylem cells/cell file. The reduced radial growth phenotype also correlated with a reduced number of cambial cell layers. In agreement with these results, expression of several cambial regulator genes was downregulated in the stems of the transgenic trees in comparison with controls. Altogether, these results suggest that the PttCLE47 gene is a major positive regulator of cambial activity in hybrid aspen, mainly promoting the production of secondary xylem. Furthermore, in contrast to previously characterized CLE genes expressed in the wood-forming zone, PttCLE47 appears to be active at its site of expression.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
| | - Salma Chaabouni
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Ari Pekka Mähönen
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
| | - Ykä Helariutta
- Institute of BiotechnologyHelsinki Institute of Life Science (HILIFE)University of Helsinki00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Viikki Plant Science CentreUniversity of Helsinki00014HelsinkiFinland
- Sainsbury LaboratoryUniversity of CambridgeCB2 1LRCambridgeUK
| | - Ove Nilsson
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
33
|
Blaschek L, Champagne A, Dimotakis C, Nuoendagula, Decou R, Hishiyama S, Kratzer S, Kajita S, Pesquet E. Cellular and Genetic Regulation of Coniferaldehyde Incorporation in Lignin of Herbaceous and Woody Plants by Quantitative Wiesner Staining. FRONTIERS IN PLANT SCIENCE 2020; 11:109. [PMID: 32194582 PMCID: PMC7061857 DOI: 10.3389/fpls.2020.00109] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/24/2020] [Indexed: 10/30/2023]
Abstract
Lignin accumulates in the cell walls of specialized cell types to enable plants to stand upright and conduct water and minerals, withstand abiotic stresses, and defend themselves against pathogens. These functions depend on specific lignin concentrations and subunit composition in different cell types and cell wall layers. However, the mechanisms controlling the accumulation of specific lignin subunits, such as coniferaldehyde, during the development of these different cell types are still poorly understood. We herein validated the Wiesner test (phloroglucinol/HCl) for the restrictive quantitative in situ analysis of coniferaldehyde incorporation in lignin. Using this optimized tool, we investigated the genetic control of coniferaldehyde incorporation in the different cell types of genetically-engineered herbaceous and woody plants with modified lignin content and/or composition. Our results demonstrate that the incorporation of coniferaldehyde in lignified cells is controlled by (a) autonomous biosynthetic routes for each cell type, combined with (b) distinct cell-to-cell cooperation between specific cell types, and (c) cell wall layer-specific accumulation capacity. This process tightly regulates coniferaldehyde residue accumulation in specific cell types to adapt their property and/or function to developmental and/or environmental changes.
Collapse
Affiliation(s)
- Leonard Blaschek
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Antoine Champagne
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Charilaos Dimotakis
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Raphaël Decou
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Shojiro Hishiyama
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Susanne Kratzer
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Edouard Pesquet
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
34
|
Derba-Maceluch M, Amini F, Donev EN, Pawar PMA, Michaud L, Johansson U, Albrectsen BR, Mellerowicz EJ. Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion. FRONTIERS IN PLANT SCIENCE 2020; 11:651. [PMID: 32528503 PMCID: PMC7265884 DOI: 10.3389/fpls.2020.00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 05/03/2023]
Abstract
The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of REDUCED WALL ACETYLATION (RWA) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (35S) or a wood-specific promoter (WP). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (WP:GUS) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the 35S promoter, not those with the WP promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the 35S promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Fariba Amini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- Biology Department, Faculty of Science, Arak University, Arak, Iran
| | - Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Prashant Mohan-Anupama Pawar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lisa Michaud
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Ulf Johansson
- Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen, Sweden
| | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- *Correspondence: Ewa J. Mellerowicz,
| |
Collapse
|
35
|
Yue J, Yang H, Yang S, Wang J. TDIF overexpression in poplars retards internodal elongation and enhances leaf venation through interaction with other phytohormones. TREE PHYSIOLOGY 2020; 40:60-72. [PMID: 31860723 DOI: 10.1093/treephys/tpz126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
As a member of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) peptide family, tracheary element differentiation inhibitory factor (TDIF) plays crucial roles in vascular meristem maintenance by promoting cell proliferation and inhibiting xylem cell differentiation. In Populus trichocarpa, six TDIF-encoding genes are all expressed in vascular tissues, and in Arabidopsis PtTDIFpro:GUS lines, the expression driven by PtTDIF promoters were predominantly detected in stem vascular bundles, initiating leaves and leaf veins. Although exogenous application of two poplar TDIF peptides did not evidently affect the shoot growth in vitro, overexpression of PtTDIF genes in hybrid poplar severely retarded the internodal elongation by upregulating the expression of GA2ox and GA20ox genes and thus decreasing the level of endogenous gibberellins (GAs), which phenotypic defect could be rescued by exogenously applied GA3. In addition, TDIF overexpression unexpectedly induced a more complex venation pattern in poplar leaves, which was underpinned by the elevated expression of WOX4 and WOX13 genes. Upon TDIF treatment, the DR5:GUS poplar leaves revealed a higher GUS activity and in TDIF-overexpressing leaves, the transcript abundances of several PIN-FORMED (PIN) genes, especially that of PIN1, were increased, which implied an integration of TDIF and auxin in mediating this process. Collectively, data of this work presented novel activities of TDIF involved in internode elongation and leaf vein formation, thus revealing the divergent functions of TDIF in perennial tree species from those in annual herbaceous Arabidopsis.
Collapse
Affiliation(s)
- Jing Yue
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin, 300072, China
| |
Collapse
|
36
|
Cai H, Yang C, Liu S, Qi H, Wu L, Xu LA, Xu M. MiRNA-target pairs regulate adventitious rooting in Populus: a functional role for miR167a and its target Auxin response factor 8. TREE PHYSIOLOGY 2019; 39:1922-1936. [PMID: 31504994 DOI: 10.1093/treephys/tpz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 05/13/2023]
Abstract
The ability of a plant to form roots from its non-root tissues is ecologically advantageous during rapid adaptation to a changing environment. Although this biological phenomenon has been widely utilized for cuttings in many economically important agronomic and tree species, its genetic and developmental mechanisms have been poorly understood. In this study, we conducted an association analysis of small RNAs, the degradome and the transcriptome of adventitious rooting in poplar softwood cuttings, which revealed that 373 miRNA-target pairs were detected. Of these, 72 significantly differentially expressed targets were screened as likely to modulate adventitious root (AR) development, in conjunction with plant hormone signal transduction. Poplar miR167a and its targets PeARF6s and PeARF8s were subjected to functional verification of their ability to mediate plant growth and hormone signal transduction. Overexpression of miR167a inhibited target transcripts and improved lateral root (LR) development in poplar, while overexpressing PeARF8.1mut increased AR numbers and slightly inhibited LR development. Taken together, these results suggest that miR167a-PeARF8.1 modules play crucial roles in regulating AR and LR development in poplar and improve the adaptation of poplar to more complex environments.
Collapse
Affiliation(s)
- Heng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chunxia Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Sian Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Qi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
37
|
Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, Vahala J, Delhomme N, Kangasjärvi J, Eder M, Felten J, Tuominen H. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. THE NEW PHYTOLOGIST 2019; 224:1585-1599. [PMID: 31125440 DOI: 10.1111/nph.15960] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/19/2019] [Indexed: 05/14/2023]
Abstract
Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.
Collapse
Affiliation(s)
- Bernard Wessels
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| | - Carolin Seyfferth
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| | - Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| | - Thomas Vain
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-90187, Sweden
| | - Jorma Vahala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Judith Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| |
Collapse
|
38
|
Seyfferth C, Wessels BA, Gorzsás A, Love JW, Rüggeberg M, Delhomme N, Vain T, Antos K, Tuominen H, Sundberg B, Felten J. Ethylene Signaling Is Required for Fully Functional Tension Wood in Hybrid Aspen. FRONTIERS IN PLANT SCIENCE 2019; 10:1101. [PMID: 31611886 PMCID: PMC6775489 DOI: 10.3389/fpls.2019.01101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/12/2019] [Indexed: 06/01/2023]
Abstract
Tension wood (TW) in hybrid aspen trees forms on the upper side of displaced stems to generate a strain that leads to uplifting of the stem. TW is characterized by increased cambial growth, reduced vessel frequency and diameter, and the presence of gelatinous, cellulose-rich (G-)fibers with its microfibrils oriented parallel to the fiber cell axis. Knowledge remains limited about the molecular regulators required for the development of this special xylem tissue with its characteristic morphological, anatomical, and chemical features. In this study, we use transgenic, ethylene-insensitive (ETI) hybrid aspen trees together with time-lapse imaging to show that functional ethylene signaling is required for full uplifting of inclined stems. X-ray diffraction and Raman microspectroscopy of TW in ETI trees indicate that, although G-fibers form, the cellulose microfibril angle in the G-fiber S-layer is decreased, and the chemical composition of S- and G-layers is altered than in wild-type TW. The characteristic asymmetric growth and reduction of vessel density is suppressed during TW formation in ETI trees. A genome-wide transcriptome profiling reveals ethylene-dependent genes in TW, related to cell division, cell wall composition, vessel differentiation, microtubule orientation, and hormone crosstalk. Our results demonstrate that ethylene regulates transcriptional responses related to the amount of G-fiber formation and their properties (chemistry and cellulose microfibril angle) during TW formation. The quantitative and qualitative changes in G-fibers are likely to contribute to uplifting of stems that are displaced from their original position.
Collapse
Affiliation(s)
- Carolin Seyfferth
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Bernard A. Wessels
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | | | - Markus Rüggeberg
- Institute for Building Materials, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Laboratory of Wood Materials, Swiss Federal Laboratories of Materials Science and Technology, Dubendorf, Switzerland
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Vain
- DIADE, Univ Montpellier, IRD, Montpellier, France
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Stora Enso AB, Nacka, Sweden
| | - Judith Felten
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
39
|
Aohara T, Furukawa J, Miura K, Tsuda S, Poisson JS, Ben RN, Wilson PW, Satoh S. Presence of a basic secretory protein in xylem sap and shoots of poplar in winter and its physicochemical activities against winter environmental conditions. JOURNAL OF PLANT RESEARCH 2019; 132:655-665. [PMID: 31289959 DOI: 10.1007/s10265-019-01123-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
XSP25, previously shown to be the most abundant hydrophilic protein in xylem sap of Populus nigra in winter, belongs to a secretory protein family in which the arrangement of basic and acidic amino acids is conserved between dicotyledonous and monocotyledonous species. Its gene expression was observed at the same level in roots and shoots under long-day conditions, but highly induced under short-day conditions and at low temperatures in roots, especially in endodermis and xylem parenchyma in the root hair region of Populus trichocarpa, and its protein level was high in dormant buds, but not in roots or branches. Addition of recombinant PtXSP25 protein mitigated the denaturation of lactate dehydrogenase by drying, but showed only a slight effect on that caused by freeze-thaw cycling. Recombinant PtXSP25 protein also showed ice recrystallization inhibition activity to reduce the size of ice crystals, but had no antifreezing activity. We suggest that PtXSP25 protein produced in shoots and/or in roots under short-day conditions and at non-freezing low temperatures followed by translocation via xylem sap to shoot apoplast may protect the integrity of the plasma membrane and cell wall functions from freezing and drying damage in winter environmental conditions.
Collapse
Affiliation(s)
- Tsutomu Aohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, 062-8517, Japan
| | - Jessica S Poisson
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, D'Iorio Hall, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, D'Iorio Hall, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Peter W Wilson
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
40
|
Yu D, Wildhagen H, Tylewicz S, Miskolczi PC, Bhalerao RP, Polle A. Abscisic acid signalling mediates biomass trade-off and allocation in poplar. THE NEW PHYTOLOGIST 2019; 223:1192-1203. [PMID: 31050802 DOI: 10.1111/nph.15878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) is a well known stress hormone regulating drought adaptation of plants. Here, we hypothesised that genetic engineering of genes involved in ABA stress signalling and photoperiodic regulation affected drought resistance by trade-off with biomass production in perennial poplar trees. We grew Populus tremula × tremuloides wild-type (T89) and various transgenic lines (two transformation events of 35S::abi1-1, 35S::RCAR, RCAR:RNAi, 35S::ABI3, 35S::AREB3, 35S::FDL1, FDL1:RNAi, 35S::FDL2 and FDL2:RNAi) outdoors and exposed them to drought in the second growth period. After the winter, the surviving lines showed a huge variation in stomatal conductance, leaf size, whole-plant leaf area, tree height, stem diameter, and biomass. Whole-plant leaf area was a strong predictor for woody biomass production. The 35S::AREB3 lines were compromised in biomass production under well irrigated conditions compared with wild-type poplars but were resilient to drought. ABA signalling regulated FDL1 and FDL2 expression under stress. Poplar lines overexpressing FDL1 or FDL2 were drought-sensitive; they shed leaves and lost root biomass, whereas the FDL RNAi lines showed higher biomass allocation to roots under drought. These results assign a new function in drought acclimation to FDL genes aside from photoperiodic regulation. Our results imply a critical role for ABA-mediated processes in balancing biomass production and climate adaptation.
Collapse
Affiliation(s)
- Dade Yu
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Henning Wildhagen
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Szymon Tylewicz
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Pal C Miskolczi
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Rishikesh P Bhalerao
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| |
Collapse
|
41
|
Bernacki MJ, Czarnocka W, Witoń D, Rusaczonek A, Szechyńska-Hebda M, Ślesak I, Dąbrowska-Bronk J, Karpiński S. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides). JOURNAL OF PLANT PHYSIOLOGY 2018; 226:91-102. [PMID: 29730441 DOI: 10.1016/j.jplph.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 05/23/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) was first described as a protein involved in salicylic acid (SA)-, ethylene-, and reactive oxygen species (ROS)-dependent defense and acclimation responses. It is a molecular regulator of biotic and abiotic stress-induced programmed cell death. Its role is relatively well known in annual plants, such as Arabidopsis thaliana or Nicotiana benthamiana. However, little is known about its functions in woody plants. Therefore, in this study, we aimed to characterize the function of EDS1 in the Populus tremula L. × P. tremuloides hybrid grown for several seasons in the natural environment. We used two transgenic lines, eds1-7 and eds1-12, with decreased EDS1 expression levels in this study. The observed changes in physiological and biochemical parameters corresponded with the EDS1 silencing level. Both transgenic lines produced more lateral shoots in comparison to the wild-type (WT) plants, which resulted in the modification of tree morphology. Photosynthetic parameters, such as quantum yield of photosystem II (ϕPSII), photochemical and non-photochemical quenching (qP and NPQ, respectively), as well as chlorophyll content were found to be increased in both transgenic lines, which resulted in changes in photosynthetic efficiency. Our data also revealed lower foliar concentrations of SA and ROS, the latter resulting most probably from more efficient antioxidant system in both transgenic lines. In addition, our data indicated significantly decreased rate of leaf senescence during several autumn seasons. Transcriptomic analysis revealed deregulation of 2215 and 376 genes in eds1-12 and eds1-7, respectively, and also revealed 207 genes that were commonly deregulated in both transgenic lines. The deregulation was primarily observed in the genes involved in photosynthesis, signaling, hormonal metabolism, and development, which was found to agree with the results of biochemical and physiological tests. In general, our data proved that poplar EDS1 affects tree morphology, photosynthetic efficiency, ROS and SA metabolism, as well as leaf senescence.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland; Plant Breeding and Acclimatization Institute, 05-870 Błonie, Radzików, Poland
| | - Ireneusz Ślesak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland
| | - Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland.
| |
Collapse
|
42
|
Ding J, Böhlenius H, Rühl MG, Chen P, Sane S, Zambrano JA, Zheng B, Eriksson ME, Nilsson O. GIGANTEA-like genes control seasonal growth cessation in Populus. THE NEW PHYTOLOGIST 2018. [PMID: 29532940 DOI: 10.1111/nph.15087] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Survival of trees growing in temperate zones requires cycling between active growth and dormancy. This involves growth cessation in the autumn triggered by a photoperiod shorter than the critical day length. Variations in GIGANTEA (GI)-like genes have been associated with phenology in a range of different tree species, but characterization of the functions of these genes in the process is still lacking. We describe the identification of the Populus orthologs of GI and their critical role in short-day-induced growth cessation. Using ectopic expression and silencing, gene expression analysis, protein interaction and chromatin immunoprecipitation experiments, we show that PttGIs are likely to act in a complex with PttFKF1s (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) and PttCDFs (CYCLING DOF FACTOR) to control the expression of PttFT2, the key gene regulating short-day-induced growth cessation in Populus. In contrast to Arabidopsis, in which the GI-CONSTANS (CO)-FLOWERING LOCUS T (FT) regulon is a crucial day-length sensor for flowering time, our study suggests that, in Populus, PttCO-independent regulation of PttFT2 by PttGI is more important in the photoperiodic control of growth cessation and bud set.
Collapse
Affiliation(s)
- Jihua Ding
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Henrik Böhlenius
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden
| | - Mark Georg Rühl
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Peng Chen
- Biomass and Bioenergy Research Centre, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shashank Sane
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Jose A Zambrano
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Maria E Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
43
|
Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh RK, Immanen J, Mähler N, Hvidsten TR, Eklund DM, Bowman JL, Helariutta Y, Bhalerao RP. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 2018. [PMID: 29519919 DOI: 10.1126/science.aan8576] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In temperate and boreal ecosystems, seasonal cycles of growth and dormancy allow perennial plants to adapt to winter conditions. We show, in hybrid aspen trees, that photoperiodic regulation of dormancy is mechanistically distinct from autumnal growth cessation. Dormancy sets in when symplastic intercellular communication through plasmodesmata is blocked by a process dependent on the phytohormone abscisic acid. The communication blockage prevents growth-promoting signals from accessing the meristem. Thus, precocious growth is disallowed during dormancy. The dormant period, which supports robust survival of the aspen tree in winter, is due to loss of access to growth-promoting signals.
Collapse
Affiliation(s)
- S Tylewicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - A Petterle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - S Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53 Alnarp, Sweden
| | - P Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - A Azeez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.,Plant Molecular Biology Laboratory, Jain R&D Laboratory, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, India
| | - R K Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - J Immanen
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, Post Office Box 65, Helsinki, Finland
| | - N Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - T R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - D M Eklund
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - J L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Y Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge, UK
| | - R P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
44
|
Bollhöner B, Jokipii-Lukkari S, Bygdell J, Stael S, Adriasola M, Muñiz L, Van Breusegem F, Ezcurra I, Wingsle G, Tuominen H. The function of two type II metacaspases in woody tissues of Populus trees. THE NEW PHYTOLOGIST 2018; 217:1551-1565. [PMID: 29243818 DOI: 10.1111/nph.14945] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/07/2017] [Indexed: 05/03/2023]
Abstract
Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populus tremula × tremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.
Collapse
Affiliation(s)
- Benjamin Bollhöner
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Soile Jokipii-Lukkari
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Joakim Bygdell
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Simon Stael
- VIB-Ugent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Mathilda Adriasola
- School of Biotechnology, Royal Institute of Technology (KTH), 10691, Stockholm, Sweden
| | - Luis Muñiz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Frank Van Breusegem
- VIB-Ugent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Inés Ezcurra
- School of Biotechnology, Royal Institute of Technology (KTH), 10691, Stockholm, Sweden
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
45
|
Obudulu O, Mähler N, Skotare T, Bygdell J, Abreu IN, Ahnlund M, Latha Gandla M, Petterle A, Moritz T, Hvidsten TR, Jönsson LJ, Wingsle G, Trygg J, Tuominen H. A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus trees. BMC Genomics 2018; 19:11. [PMID: 29298676 PMCID: PMC5753437 DOI: 10.1186/s12864-017-4411-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/21/2017] [Indexed: 01/03/2023] Open
Abstract
Background Secretory Carrier-Associated Membrane Proteins (SCAMPs) are highly conserved 32–38 kDa proteins that are involved in membrane trafficking. A systems approach was taken to elucidate function of SCAMPs in wood formation of Populus trees. Phenotypic and multi-omics analyses were performed in woody tissues of transgenic Populus trees carrying an RNAi construct for Populus tremula x tremuloides SCAMP3 (PttSCAMP3; Potri.019G104000). Results The woody tissues of the transgenic trees displayed increased amounts of both polysaccharides and lignin oligomers, indicating increased deposition of both the carbohydrate and lignin components of the secondary cell walls. This coincided with a tendency towards increased wood density as well as significantly increased thickness of the suberized cork in the transgenic lines. Multivariate OnPLS (orthogonal projections to latent structures) modeling of five different omics datasets (the transcriptome, proteome, GC-MS metabolome, LC-MS metabolome and pyrolysis-GC/MS metabolome) collected from the secondary xylem tissues of the stem revealed systemic variation in the different variables in the transgenic lines, including changes that correlated with the changes in the secondary cell wall composition. The OnPLS model also identified a rather large number of proteins that were more abundant in the transgenic lines than in the wild type. Several of these were related to secretion and/or endocytosis as well as both primary and secondary cell wall biosynthesis. Conclusions Populus SCAMP proteins were shown to influence accumulation of secondary cell wall components, including polysaccharides and phenolic compounds, in the woody tissues of Populus tree stems. Our multi-omics analyses combined with the OnPLS modelling suggest that this function is mediated by changes in membrane trafficking to fine-tune the abundance of cell wall precursors and/or proteins involved in cell wall biosynthesis and transport. The data provides a multi-level source of information for future studies on the function of the SCAMP proteins in plant stem tissues. Electronic supplementary material The online version of this article (10.1186/s12864-017-4411-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ogonna Obudulu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.,Computational life science cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden.,Present address: Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian, University of Life Sciences, 1432, Ås, Norway
| | - Tomas Skotare
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.,Computational life science cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Joakim Bygdell
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.,Computational life science cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Ilka N Abreu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Maria Ahnlund
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | | | - Anna Petterle
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Torgeir R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian, University of Life Sciences, 1432, Ås, Norway
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.,Computational life science cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
46
|
Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. THE NEW PHYTOLOGIST 2017; 215:642-657. [PMID: 28609015 DOI: 10.1111/nph.14631] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/23/2017] [Indexed: 05/12/2023]
Abstract
Plant secondary growth derives from the meristematic activity of the vascular cambium. In Arabidopsis thaliana, cell divisions in the cambium are regulated by the transcription factor WOX4, a key target of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED 41 (CLE41) signaling pathway. However, function of the WOX4-like genes in plants that are dependent on a much more prolific secondary growth, such as trees, remains unclear. Here, we investigate the role of WOX4 and CLE41 homologs for stem secondary growth in Populus trees. In Populus, PttWOX4 genes are specifically expressed in the cambial region during vegetative growth, but not after growth cessation and during dormancy, possibly involving a regulation by auxin. In PttWOX4a/b RNAi trees, primary growth was not affected whereas the width of the vascular cambium was severely reduced and secondary growth was greatly diminished. Our data show that in Populus trees, PttWOX4 genes control cell division activity in the vascular cambium, and hence growth in stem girth. This activity involves the positive regulation of PttWOX4a/b through PttCLE41-related genes. Finally, expression profiling suggests that the CLE41 signaling pathway is an evolutionarily conserved program for the regulation of vascular cambium activity between angiosperm and gymnosperm tree species.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Jeanette Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Salma Chaabouni
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
47
|
Rende U, Wang W, Gandla ML, Jönsson LJ, Niittylä T. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. THE NEW PHYTOLOGIST 2017; 214:796-807. [PMID: 28032636 DOI: 10.1111/nph.14392] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/18/2016] [Indexed: 05/08/2023]
Abstract
Carbon for cellulose biosynthesis is derived from sucrose. Cellulose is synthesized from uridine 5'-diphosphoglucose (UDP-glucose), but the enzyme(s) responsible for the initial sucrose cleavage and the source of UDP-glucose for cellulose biosynthesis in developing wood have not been defined. We investigated the role of CYTOSOLIC INVERTASEs (CINs) during wood formation in hybrid aspen (Populus tremula × tremuloides) and characterized transgenic lines with reduced CIN activity during secondary cell wall biosynthesis. Suppression of CIN activity by 38-55% led to a 9-13% reduction in crystalline cellulose. The changes in cellulose were reflected in reduced diameter of acid-insoluble cellulose microfibrils and increased glucose release from wood upon enzymatic digestion of cellulose. Reduced CIN activity decreased the amount of the cellulose biosynthesis precursor UDP-glucose in developing wood, pointing to the likely cause of the cellulose phenotype. The findings suggest that CIN activity has an important role in the cellulose biosynthesis of trees, and indicate that cellulose biosynthesis in wood relies on a quantifiable UDP-glucose pool. The results also introduce a concept of altering cellulose microfibril properties by modifying substrate supply to cellulose biosynthesis.
Collapse
Affiliation(s)
- Umut Rende
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83, Umeå, Sweden
| | - Wei Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83, Umeå, Sweden
| | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, SE 901 87, Umeå, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83, Umeå, Sweden
| |
Collapse
|
48
|
Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J, Koskinen P, Zhang J, Elo A, Mähönen AP, Street N, Bhalerao RP, Paulin L, Auvinen P, Sakakibara H, Helariutta Y. Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Curr Biol 2016; 26:1990-1997. [PMID: 27426519 DOI: 10.1016/j.cub.2016.05.053] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 01/12/2023]
Abstract
Despite the crucial roles of phytohormones in plant development, comparison of the exact distribution profiles of different hormones within plant meristems has thus far remained scarce. Vascular cambium, a wide lateral meristem with an extensive developmental zonation, provides an optimal system for hormonal and genetic profiling. By taking advantage of this spatial resolution, we show here that two major phytohormones, cytokinin and auxin, display different yet partially overlapping distribution profiles across the cambium. In contrast to auxin, which has its highest concentration in the actively dividing cambial cells, cytokinins peak in the developing phloem tissue of a Populus trichocarpa stem. Gene expression patterns of cytokinin biosynthetic and signaling genes coincided with this hormonal gradient. To explore the functional significance of cytokinin signaling for cambial development, we engineered transgenic Populus tremula × tremuloides trees with an elevated cytokinin biosynthesis level. Confirming that cytokinins function as major regulators of cambial activity, these trees displayed stimulated cambial cell division activity resulting in dramatically increased (up to 80% in dry weight) production of the lignocellulosic trunk biomass. To connect the increased growth to hormonal status, we analyzed the hormone distribution and genome-wide gene expression profiles in unprecedentedly high resolution across the cambial zone. Interestingly, in addition to showing an elevated cambial cytokinin content and signaling level, the cambial auxin concentration and auxin-responsive gene expression were also increased in the transgenic trees. Our results indicate that cytokinin signaling specifies meristematic activity through a graded distribution that influences the amplitude of the cambial auxin gradient.
Collapse
Affiliation(s)
- Juha Immanen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kaisa Nieminen
- Green Technology, Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, 01301 Vantaa, Finland.
| | | | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Juan Alonso Serra
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Patrik Koskinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Zhang
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Annakaisa Elo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Ari Pekka Mähönen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Nathaniel Street
- Umeå Plant Science Center and Department of Forest Genetics and Plant Physiology, SLU, Umeå 901 87, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Center and Department of Forest Genetics and Plant Physiology, SLU, Umeå 901 87, Sweden; Department of Biology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Ykä Helariutta
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
49
|
Maheshwari P, Kovalchuk I. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera. FRONTIERS IN PLANT SCIENCE 2016; 7:296. [PMID: 27014319 PMCID: PMC4783574 DOI: 10.3389/fpls.2016.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/25/2016] [Indexed: 05/02/2023]
Abstract
The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, LethbridgeAB, Canada
| |
Collapse
|
50
|
Szechyńska-Hebda M, Czarnocka W, Hebda M, Bernacki MJ, Karpiński S. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. PLANT CELL REPORTS 2016; 35:527-39. [PMID: 26754794 DOI: 10.1007/s00299-015-1901-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 05/04/2023]
Abstract
Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition. The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marek Hebda
- Institute of Materials Engineering, Cracow University of Technology, Kraków, Poland
| | - Maciej J Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|