1
|
Bertolini M, Mendive-Tapia L, Ghashghaei O, Reese A, Lochenie C, Schoepf AM, Sintes M, Tokarczyk K, Nare Z, Scott AD, Knight SR, Aithal AR, Sachdeva A, Lavilla R, Vendrell M. Nonperturbative Fluorogenic Labeling of Immunophilins Enables the Wash-free Detection of Immunosuppressants. ACS CENTRAL SCIENCE 2024; 10:969-977. [PMID: 38799658 PMCID: PMC11117681 DOI: 10.1021/acscentsci.3c01590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/29/2024]
Abstract
Immunosuppressants are clinically approved drugs to treat the potential rejection of transplanted organs and require frequent monitoring due to their narrow therapeutic window. Immunophilins are small proteins that bind immunosuppressants with high affinity, yet there are no examples of fluorogenic immunophilins and their potential application as optical biosensors for immunosuppressive drugs in clinical biosamples. In the present work, we designed novel diazonium BODIPY salts for the site-specific labeling of tyrosine residues in peptides via solid-phase synthesis as well as for late-stage functionalization of whole recombinant proteins. After the optimization of a straightforward one-step labeling procedure for immunophilins PPIA and FKBP12, we demonstrated the application of a fluorogenic analogue of FKBP12 for the selective detection of the immunosuppressant drug tacrolimus, including experiments in urine samples from patients with functioning renal transplants. This chemical methodology opens new avenues to rationally design wash-free immunophilin-based biosensors for rapid therapeutic drug monitoring.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Ouldouz Ghashghaei
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Abigail Reese
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Charles Lochenie
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Anna M. Schoepf
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Miquel Sintes
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Karolina Tokarczyk
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Zandile Nare
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Andrew D. Scott
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Stephen R. Knight
- Renal
Transplant Unit, Queen Elizabeth Hospital, 1345 Govan Road, Glasgow G51 4TF, U.K.
| | - Advait R. Aithal
- School of
Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Amit Sachdeva
- School of
Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Rodolfo Lavilla
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
2
|
Saffari TM, Bedar M, Zuidam JM, Shin AY, Baan CC, Hesselink DA, Hundepool CA. Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol 2019; 12:1047-1057. [DOI: 10.1080/17512433.2019.1675507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- T. M. Saffari
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - M. Bedar
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J. M. Zuidam
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. Y. Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - C. C. Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D. A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C. A. Hundepool
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Franko J, Pomfy M, Prosbová T. Apoptosis and Cell Death (Mechanisms, Pharmacology and Promise for the Future). ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Rapidly growing body of evidence on cell death mechanisms and its disorders during last five years has replaced old paradigms and opened new horizons in medicine. Identification of different morphological and signaling aspects, as well as variances in requirement for energy enabled us to construct a theory of three main types of cell death: necrosis, apoptosis, and lysosomal cell death. Mitochondria, certain oncoproteins such as Bcl-2 family, and special catabolic enzymes participating in cellular demise might serve as targets for pharmacological manipulation. Upregulation or downregulation of programmed cell death has been implicated in ischemic, neurodegenerative, and autoimmune disorders, as well as in oncology and chronic inflammation. This minireview brings a short overview of genesis and development of theories on programmed cell death and apoptosis, summarizes basic relevant facts on apoptotic mechanisms and draws a new hypothesis on possible implication in medicine and surgery.
Collapse
|
4
|
Rashki A, Mumtaz F, Jazayeri F, Shadboorestan A, Esmaeili J, Ejtemaei Mehr S, Ghahremani MH, Dehpour AR. Cyclosporin A attenuating morphine tolerance through inhibiting NO/ERK signaling pathway in human glioblastoma cell line: the involvement of calcineurin. EXCLI JOURNAL 2018; 17:1137-1151. [PMID: 30713473 PMCID: PMC6341459 DOI: 10.17179/excli2018-1693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022]
Abstract
Cyclosporin A (CsA) is known to have an immunosuppressive action. However, it is also attracting attention due to its effects on the nervous system, such as inhibiting the development and expression of morphine-induced tolerance and dependence through unknown mechanisms. It has been shown that CsA modulates the nitric oxide (NO) synthesis and extracellular signal-regulated kinases (ERK) activation, which are potentially involved in signaling pathways in morphine-induced tolerance in cellular models. Therefore, the current study was designed to evaluate the modulatory role of CsA on the MOR tolerance, by targeting the downstream signaling pathway of NO and ERK using an in vitro model. For this purpose, T98G cells were pretreated with CsA, calcineurin autoinhibitory peptide (CAIP), and NG-nitro-l-arginine methyl ester (L-NAME) 30 min before 18 h exposure to MOR. Then, we analyzed the intracellular cyclic adenosine monophosphate (cAMP) levels and also the expression of phosphorylated ERK and nitric oxide synthase (nNOS) proteins. Our results showed that CsA (1 nM, 10 nM, and 100 nM) and CAIP (50 µM) have significantly reduced cAMP and nitrite levels as compared to MOR-treated (2.5 µM) T98G cells. This clearly revealed the attenuation of MOR tolerance by CsA. The expression of nNOS and p-ERK proteins were down-regulated when the T98G cells were pretreated with CsA (1 nM, 10 nM, and 100 nM), CAIP (50 µM), and L-NAME (0.1 mM) as compared to MOR. In conclusion, the CsA pretreatment had a modulatory role in MOR-induced tolerance, which was possibly mediated through NO/ERK signaling pathway.
Collapse
Affiliation(s)
- Asma Rashki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Jazayeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamileh Esmaeili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Lapp T, Maier P, Birnbaum F, Schlunck G, Reinhard T. [Immunosuppressives to prevent rejection reactions after allogeneic corneal transplantation]. Ophthalmologe 2015; 111:270-82. [PMID: 24633461 DOI: 10.1007/s00347-013-3016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In order to prevent rejection of an allogeneic corneal transplant after perforating (high risk) keratoplasty, active agents from different classes of pharmacological substances are used, as with solid organ transplantation. In addition to glucocorticoids, antiproliferative agents, small molecule inhibitors and antibodies, those belonging to the group of macrolides with their many derivatives represent an interesting class of substances in this context. As a supplement to cyclosporin A (CSA) the most successful macrolide in transplantation medicine, animal experiments are currently being carried out to test newer macrolide derivatives, such as sanglifehrin A (SFA). This overview describes the classes of drugs and modes of action of currently administered standard medications in the clinical routine and new developments are presented.
Collapse
Affiliation(s)
- T Lapp
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Killianstr. 5, 79106, Freiburg im Breisgau, Deutschland,
| | | | | | | | | |
Collapse
|
6
|
Santini E, Huynh TN, Klann E. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:131-67. [PMID: 24484700 DOI: 10.1016/b978-0-12-420170-5.00005-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation. New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation has enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation.
Collapse
Affiliation(s)
| | - Thu N Huynh
- Center for Neural Science, New York University, New York, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
7
|
Myckatyn TM, Hunter DA, Mackinnon SE. The effects of cold preservation and subimmunosuppressive doses of FK506 on axonal regeneration in murine peripheral nerve isografts. THE CANADIAN JOURNAL OF PLASTIC SURGERY = JOURNAL CANADIEN DE CHIRURGIE PLASTIQUE 2013; 11:15-22. [PMID: 24115844 DOI: 10.1177/229255030301100110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND FK506 is a frequently used immunosuppressant with neuroregenerative effects. The neuroregenerative and immunosuppressive mechanisms of FK506, however, are distinct, suggesting that FK506 may stimulate nerve regeneration at lower doses than are needed to induce immunosuppression. The effects of cold preservation, a technique known to improve axonal regeneration through nerve allografts, are not well studied in nerve isografts and are also reported here. OBJECTIVES To determine the effects of subimmunosuppressive doses of FK506 and cold preservation on nerve regeneration in isografts. METHODS The neuroregenerative properties of immunosuppressive and subimmunosuppressive doses of FK506 were compared in a murine model receiving either fresh or cold preserved nerve isografts. Sixty female BALB/cJ mice were randomized into six groups. Animals in groups I, III and V received fresh nerve isografts. Animals in groups II, IV and VI received cold-preserved nerve isografts. Mice in groups I and II received no medical therapy, while those in groups III and IV received subimmunosuppressive doses of FK506, and those in groups V and VI received immunosuppressive doses as confirmed by mixed lymphocyte reactivity assays. Nerve regeneration was evaluated with histomorphometry and functional recovery was evaluated with walking track analysis. RESULTS Pretreatment with cold preservation did not significantly affect neural regeneration. The potent neuroregenerative effect of immunosuppressive doses of FK506 was confirmed, and the ability of subimmunosuppressive doses of FK506 to stimulate axonal regeneration in murine nerve isografts is reported. CONCLUSIONS Less toxic subimmunosuppressive doses of FK506 retaining some neuroregenerative properties may have a clinical role in treating extensive nerve injuries.
Collapse
Affiliation(s)
- Terence M Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
8
|
Liu B, Liu Y, Yang G, Xu Z, Chen J. Ursolic acid induces neural regeneration after sciatic nerve injury. Neural Regen Res 2013; 8:2510-9. [PMID: 25206561 PMCID: PMC4145935 DOI: 10.3969/j.issn.1673-5374.2013.27.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1-4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4-6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury.
Collapse
Affiliation(s)
- Biao Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guang Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zemin Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
9
|
Molecular Dissection of Cyclosporin A's Neuroprotective Effect Reveals Potential Therapeutics for Ischemic Brain Injury. Brain Sci 2013; 3:1325-56. [PMID: 24961531 PMCID: PMC4061870 DOI: 10.3390/brainsci3031325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022] Open
Abstract
After the onset of brain ischemia, a series of events leads ultimately to the death of neurons. Many molecules can be pharmacologically targeted to protect neurons during these events, which include glutamate release, glutamate receptor activation, excitotoxicity, Ca2+ influx into cells, mitochondrial dysfunction, activation of intracellular enzymes, free radical production, nitric oxide production, and inflammation. There have been a number of attempts to develop neuroprotectants for brain ischemia, but many of these attempts have failed. It was reported that cyclosporin A (CsA) dramatically ameliorates neuronal cell damage during ischemia. Some researchers consider ischemic cell death as a unique process that is distinct from both apoptosis and necrosis, and suggested that mitochondrial dysfunction and Δψ collapse are key steps for ischemic cell death. It was also suggested that CsA has a unique neuroprotective effect that is related to mitochondrial dysfunction. Here, I will exhibit examples of neuroprotectants that are now being developed or in clinical trials, and will discuss previous researches about the mechanism underlying the unique CsA action. I will then introduce the results of our cDNA subtraction experiment with or without CsA administration in the rat brain, along with our hypothesis about the mechanism underlying CsA’s effect on transcriptional regulation.
Collapse
|
10
|
Honda Y, Fujita Y, Maruyama H, Araki Y, Ichihara K, Sato A, Kojima T, Tanaka M, Nozawa Y, Ito M, Honda S. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PLoS One 2011; 6:e23527. [PMID: 21858156 PMCID: PMC3153499 DOI: 10.1371/journal.pone.0023527] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022] Open
Abstract
Background One of the most important challenges in the study of aging is to discover compounds with longevity-promoting activities and to unravel their underlying mechanisms. Royal jelly (RJ) has been reported to possess diverse beneficial properties. Furthermore, protease-treated RJ (pRJ) has additional pharmacological activities. Exactly how RJ and pRJ exert these effects and which of their components are responsible for these effects are largely unknown. The evolutionarily conserved mechanisms that control longevity have been indicated. The purpose of the present study was to determine whether RJ and its related substances exert a lifespan-extending function in the nematode Caenorhabditis elegans and to gain insights into the active agents in RJ and their mechanism of action. Principal Findings We found that both RJ and pRJ extended the lifespan of C. elegans. The lifespan-extending activity of pRJ was enhanced by Octadecyl-silica column chromatography (pRJ-Fraction 5). pRJ-Fr.5 increased the animals' lifespan in part by acting through the FOXO transcription factor DAF-16, the activation of which is known to promote longevity in C. elegans by reducing insulin/IGF-1 signaling (IIS). pRJ-Fr.5 reduced the expression of ins-9, one of the insulin-like peptide genes. Moreover, pRJ-Fr.5 and reduced IIS shared some common features in terms of their effects on gene expression, such as the up-regulation of dod-3 and the down-regulation of dod-19, dao-4 and fkb-4. 10-Hydroxy-2-decenoic acid (10-HDA), which was present at high concentrations in pRJ-Fr.5, increased lifespan independently of DAF-16 activity. Conclusions/Significance These results demonstrate that RJ and its related substances extend lifespan in C. elegans, suggesting that RJ may contain longevity-promoting factors. Further analysis and characterization of the lifespan-extending agents in RJ and pRJ may broaden our understanding of the gene network involved in longevity regulation in diverse species and may lead to the development of nutraceutical interventions in the aging process.
Collapse
Affiliation(s)
- Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashiku, Tokyo, Japan
| | - Yasunori Fujita
- Department of Longevity and Aging Research, Gifu International Institute of Biotechnology, Naka-fudogaoka, Kakamigahara, Gifu, Japan
| | - Hiroe Maruyama
- API Company Limited, Nagaragawa Research Center, Nagarayamasaki, Gifu, Japan
| | - Yoko Araki
- API Company Limited, Nagaragawa Research Center, Nagarayamasaki, Gifu, Japan
| | - Kenji Ichihara
- API Company Limited, Nagaragawa Research Center, Nagarayamasaki, Gifu, Japan
| | - Akira Sato
- Computational Systems Biology Research Group, Advanced Science Institute, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Toshio Kojima
- Computational Systems Biology Research Group, Advanced Science Institute, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashiku, Tokyo, Japan
| | - Yoshinori Nozawa
- Department of Longevity and Aging Research, Gifu International Institute of Biotechnology, Naka-fudogaoka, Kakamigahara, Gifu, Japan
- Department of Food and Health, Tokai Gakuin University, Naka-kirinocho, Kakamigahara, Gifu, Japan
| | - Masafumi Ito
- Department of Longevity and Aging Research, Gifu International Institute of Biotechnology, Naka-fudogaoka, Kakamigahara, Gifu, Japan
| | - Shuji Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashiku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Kawakami M, Yoshimoto T, Nakagata N, Yamamura KI, Siesjo BK. Effects of cyclosporin A administration on gene expression in rat brain. Brain Inj 2011; 25:614-23. [PMID: 21534739 DOI: 10.3109/02699052.2011.571229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PRIMARY OBJECTIVE The immunosuppressant cyclosporin A (CsA) is reported to have a strong anti-ischemic effect. Although this neuroprotective effect is speculated to be related to the blockade of a mitochondrial permeability transition pore (mPTP), the underlying molecular mechanism remains to be elucidated. This study focused on the effect of CsA on transcriptional regulation in brain cells. METHODS CsA and a control substance were injected into rat brains and purified extracted mRNA. Both mRNAs were compared using a cDNA subtraction technique. RESULTS Nine significantly up-regulated genes and seven significantly down-regulated genes were detected following CsA administration. All of the up-regulated genes are neurotrophic or reported to have roles in regeneration of brain tissue. Among the down-regulated genes, three are known to be detrimental to neuronal cells and are also reported to facilitate the pathology of Alzheimer's disease (AD) and four genes are related to oxidative metabolism. CONCLUSIONS Strong immunosuppression would present as a side-effect during CsA use as a neuroprotectant. The results of this study will help to discriminate between the CsA immunosuppressive effect and the neuroprotective effect at the molecular level and may lead to the development of new conceptual and pharmacological tools.
Collapse
Affiliation(s)
- Minoru Kawakami
- Laboratory of Phylogeny, Institute of Molecular Embryology and Genetics, Kumamoto University, Japan.
| | | | | | | | | |
Collapse
|
12
|
Nucleus accumbens core mammalian target of rapamycin signaling pathway is critical for cue-induced reinstatement of cocaine seeking in rats. J Neurosci 2010; 30:12632-41. [PMID: 20861369 DOI: 10.1523/jneurosci.1264-10.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that regulates cell growth and survival by controlling translation in response to nutrients and growth factors, has been demonstrated to be involved in neuronal adaptations that underlie drug addiction and learning and memory. We investigated the potential role of the mTOR signaling pathway in relapse to cocaine seeking by using the cue-induced reinstatement model in self-administering rats. We found that exposure to a cocaine-related cue induced reinstatement to cocaine seeking and increased phosphorylation of p70s6 kinase (p70s6k) and ribosomal protein s6 (rps6), measures of mTOR activity, in the nucleus accumbens (NAc) core but not shell. Furthermore, inhibition of NAc core but not shell p70s6k and rps6 phosphorylation by rapamycin decreased cue-induced reinstatement of cocaine seeking. Finally, stimulation of NAc core p70s6k and rps6 phosphorylation by NMDA enhanced cue-induced reinstatement, an effect reversed by rapamycin pretreatment. Additionally, rapamycin infusion into the NAc core or shell did not alter ongoing cocaine self-administration or cue-induced reinstatement of sucrose seeking. These findings indicate that cue-induced reinstatement of cocaine seeking is mediated by activation of the mTOR signaling pathway in the NAc core.
Collapse
|
13
|
Kumar P, Kalonia H, Kumar A. Possible nitric oxide modulation in protective effect of FK-506 against 3-nitropropionic acid-induced behavioral, oxidative, neurochemical, and mitochondrial alterations in rat brain. Drug Chem Toxicol 2010; 33:377-92. [DOI: 10.3109/01480541003642050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Sun F, Cavalli V. Neuroproteomics approaches to decipher neuronal regeneration and degeneration. Mol Cell Proteomics 2010; 9:963-75. [PMID: 20019051 PMCID: PMC2871427 DOI: 10.1074/mcp.r900003-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/14/2009] [Indexed: 01/02/2023] Open
Abstract
Given the complexity of brain and nerve tissues, systematic approaches are essential to understand normal physiological conditions and functional alterations in neurological diseases. Mass spectrometry-based proteomics is increasingly used in neurosciences to determine both basic and clinical differential protein expression, protein-protein interactions, and post-translational modifications. Proteomics approaches are especially useful to understand the mechanisms of nerve regeneration and degeneration because changes in axons following injury or in disease states often occur without the contribution of transcriptional events in the cell body. Indeed, the current understanding of axonal function in health and disease emphasizes the role of proteolysis, local axonal protein synthesis, and a broad range of post-translational modifications. Deciphering how axons regenerate and degenerate has thus become a postgenomics problem, which depends in part on proteomics approaches. This review focuses on recent proteomics approaches designed to uncover the mechanisms and molecules involved in neuronal regeneration and degeneration. It emerges that the principal degenerative mechanisms converge to oxidative stress, dysfunctions of axonal transport, mitochondria, chaperones, and the ubiquitin-proteasome systems. The mechanisms regulating nerve regeneration also impinge on axonal transport, cytoskeleton, and chaperones in addition to changes in signaling pathways. We also discuss the major challenges to proteomics work in the nervous system given the complex organization of the brain and nerve tissue at the anatomical, cellular, and subcellular levels.
Collapse
Affiliation(s)
- Faneng Sun
- From the Department of Anatomy and Neurobiology, Washington University, St. Louis, Missouri 63110
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
15
|
Zhuang SY, Bridges D, Grigorenko E, McCloud S, Boon A, Hampson RE, Deadwyler SA. Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology 2009; 48:1086-96. [PMID: 15910885 DOI: 10.1016/j.neuropharm.2005.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 12/20/2004] [Accepted: 01/06/2005] [Indexed: 02/05/2023]
Abstract
Exogenously administered cannabinoids are neuroprotective in several different cellular and animal models. In the current study, two cannabinoid CB1 receptor ligands (WIN 55,212-2, CP 55,940) markedly reduced hippocampal cell death, in a time-dependent manner, in cultured neurons subjected to high levels of NMDA (15 microM). WIN 55,212-2 was also shown to inhibit the NMDA-induced increase in intracellular calcium concentration ([Ca2+](i)) indicated by FURA-2 fluorescence imaging in the same cultured neurons. Changes in [Ca2+](i) occurred with similar concentrations (25-100 nM) and in the same time-dependent manner (pre-exposure 1-15 min) as CB1 receptor mediated neuroprotective actions. Both effects were blocked by the CB1 receptor antagonist SR141716A. An underlying mechanism was indicated by the fact that (1) the NMDA-induced increase in [Ca2+](i) was inhibited by ryanodine, implicating a ryanodine receptor (RyR) coupled intracellular calcium channel, and (2) the cannabinoid influence involved a reduction in cAMP cAMP-dependent protein kinase (PKA) dependent phosphorylation of the same RyR levels that regulate channel. Moreover the time course of CB1 receptor mediated inhibition of PKA phosphorylation was directly related to effective pre-exposure intervals for cannabinoid neuroprotection. Control studies ruled out the involvement of inositol-trisphosphate (IP3) pathways, enhanced calcium reuptake and voltage sensitive calcium channels in the neuroprotective process. The results suggest that cannabinoids prevent cell death by initiating a time and dose dependent inhibition of adenylyl cyclase, that outlasts direct action at the CB1 receptor and is capable of reducing [Ca2+](i) via a cAMP/PKA-dependent process during the neurotoxic event.
Collapse
Affiliation(s)
- Shou-Yuan Zhuang
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Pivotal Role of Arachidonic Acid in the Regulation of Neuronal Nitric Oxide Synthase Activity and Inducible Nitric Oxide Synthase Expression in Activated Astrocytes. Methods Enzymol 2008. [DOI: 10.1016/s0076-6879(07)00815-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Palomba L, Amadori A, Cantoni O. Early release of arachidonic acid prevents an otherwise immediate formation of toxic levels of peroxynitrite in astrocytes stimulated with lipopolysaccharide/interferon-γ. J Neurochem 2007; 103:904-13. [PMID: 17666049 DOI: 10.1111/j.1471-4159.2007.04793.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Addition of bacterial lipopolysaccharides (LPS) and interferon-gamma (IFN-gamma) to rat astrocytes in primary culture promotes an early release of arachidonic acid (ARA) associated with an immediate inhibition of neuronal nitric oxide synthase (nNOS). Preventing the release of constitutive nitric oxide (NO) is indeed critical for activation of the nuclear factor kappa B, and for the expression of inducible nitric oxide synthase responsible for the formation of large amounts of NO. LPS/IFN-gamma also promotes an early release of superoxide, via activation of NADPH oxidase, but the generation of peroxynitrite (ONOO-) is prevented by the different timing of superoxide (minutes) and NO (hours) formation. Upstream inhibition of the ARA-dependent nNOS inhibitory signaling, however, caused the parallel release of superoxide and constitutive NO, thereby leading to formation of ONOO- levels triggering loss of ATP and mitochondrial membrane potential followed by the mitochondrial release of cytochrome c, activation of caspase 3 and morphological evidence of apoptosis. Nanomolar levels of exogenous ARA prevented all these events via inhibition of early ONOO- formation. Thus, the ARA-dependent nNOS inhibition observed in astrocytes exposed to pro-inflammatory stimuli, as LPS/IFN-gamma, is critical for both the expression of nuclear factor kappa B-dependent genes and for survival.
Collapse
Affiliation(s)
- Letizia Palomba
- Istituto di Farmacologia e Farmacognosia, Università di Urbino Carlo Bo, Urbino (PU) - Italy
| | | | | |
Collapse
|
18
|
Persichini T, Cantoni O, Suzuki H, Colasanti M. Cross-talk between constitutive and inducible NO synthase: an update. Antioxid Redox Signal 2006; 8:949-54. [PMID: 16771684 DOI: 10.1089/ars.2006.8.949] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is expressed upon exposure of some cell types to bacterial lipopolysaccharides (LPS) and/or a variety of proinflammatory cytokines. The authors present an overview of some of the recent findings further supporting the notion that this response takes place after an early decline in constitutive nitric oxide (NO) levels (i.e., NO released by constitutive NOS, cNOS). This response is indeed critical for allowing activation of the transcription factor NF-kappaB. Thus, generation of NO by cNOS represents a limiting factor for iNOS expression. Some of the physiological and pathological implications of the cross-talk between these two NOS isoforms are discussed. In addition, the results of recent studies are summarized, suggesting possible mechanisms whereby LPS and/or proinflammatory cytokines may cause inhibition of cNOS.
Collapse
|
19
|
Banafshe HR, Ghazi-Khansari M, Dehpour AR. The effect of cyclosporine on the development and expression of cannabinoid tolerance in mice. Pharmacol Biochem Behav 2005; 82:658-63. [PMID: 16360203 DOI: 10.1016/j.pbb.2005.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/01/2005] [Accepted: 11/09/2005] [Indexed: 11/22/2022]
Abstract
Cyclosporine, beside its immunosuppressive action, has several effects on different neuronal functions, such as modulation of neurotransmitter release, the inhibition of nitric oxide synthesis and release, the reduction of cAMP production and inhibition of morphine-induced tolerance. In the present study, the effect of cyclosporine on the expression and development of tolerance to WIN 55,212-2, a cannabinoid receptor agonist, was studied. Intra peritoneal (i.p.) injection of WIN 55,212-2 (2-6 mg/kg) induced time-dependent and dose-dependent analgesia and catalepsy in mice. Administration of cyclosporine (20 mg/kg i.p.), 30 min before WIN 55,212-2 (6 mg/kg i.p.), did not change the analgesic and cataleptic effects of WIN 55,212-2. When WIN 55,212-2 (6 mg/kg i.p.) was injected once a day, animals became completely tolerant to the analgesic and cataleptic effects within five and nine days respectively. Cyclosporine (20 mg/kg i.p.) injected once daily, 30 min before WIN 55,212-2, attenuated the development of tolerance to the analgesic and cataleptic effects of WIN 55,212-2 but did not affect the expression of tolerance. Since cyclosporine given chronically by itself did not alter the analgesia and catalepsy induced by acute administration of WIN 55,212-2, our findings suggest cyclosporine may act with some selectivity on the mechanisms involved in development of cannabinoid tolerance.
Collapse
Affiliation(s)
- Hamid R Banafshe
- Department of Pharmacology, School of Medicine, Tehran University of Medical Science, Iran
| | | | | |
Collapse
|
20
|
Sosa I, Reyes O, Kuffler DP. Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol 2005; 195:7-15. [PMID: 15935348 DOI: 10.1016/j.expneurol.2005.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 04/28/2005] [Indexed: 12/17/2022]
Abstract
No clinical techniques induce restoration of neurological losses following spinal cord trauma. Peripheral nerve damage also leads to permanent neurological deficits, but neurological recovery can be relatively good, especially if the ends of a transected nerve are anastomosed soon after the injury. The time until recovery generally depends on the distance the axons must regenerate to their targets. Neurological recovery following the destruction of a length of a peripheral nerve requires a graft to bridge the gap that is permissive to, and promotes, axon regeneration. But neurological recovery is slow and limited, especially for gaps longer than 1.5 cm, even using autologous peripheral nerve grafts. Without a reliable means of bridging long nerve gaps, such injuries commonly result in amputations. Promoting extensive neurological recovery requires techniques that simultaneously provide protection to injured neurons and increase the numbers of neurons that extend axons, while inducing more rapid and extensive axon regeneration across long nerve gaps. Although conduits filled with various materials enhance axon regeneration across short nerve gaps, pure sensory nerve graft remains the gold standard for use across long nerve gaps, even though they lead to only limited neurological recovery. Consistent results demonstrate that several immunosuppressive agents enhance the number of axons and the rate at which they regenerate. This review examines the roles played by immunosuppressants, especially FK506, with primary focus on its role as a neuroprotectant and neurotrophic agent, and its potential clinical use to promote improved neurological recovery following peripheral nerve and spinal cord injuries.
Collapse
Affiliation(s)
- I Sosa
- Section of Neurosurgery, Medical Sciences Campus, UPR, 201 Boulevard del Valle, San Juan 00901, Puerto Rico
| | | | | |
Collapse
|
21
|
Wu SL, Pan CE, Yu L, Meng KW. Immunosuppression by Combined Use of Cyclosporine and Resveratrol in a Rat Liver Transplantation Model. Transplant Proc 2005; 37:2354-9. [PMID: 15964415 DOI: 10.1016/j.transproceed.2005.03.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Despite continued progress in the development of immunosuppressive agents, allograft rejection remains an important cause of morbidity and mortality after liver transplantation. We examined the effect of intraperitoneal injection of cyclosporine (CsA) and resveratrol (Res) on allograft rejection after liver transplantation in rats. METHODS Male Sprague-Dawley rats were selected as donors and male Wistar rats as recipients for a rejection model. The recipients were divided into three groups after orthotopic liver transplantation (OLTx): in the combination group both Res (100 mg/kg) and CsA (20 mg/kg) were given by intraperitoneal route once a day, whereas in the CsA group or control group CsA (20 mg/kg) or vehicle buffer was given. The survival period, serum chemistry, production of some cytokines, activation of transcription factor NF- kappaB, and histopathological findings were then compared among them. RESULTS The mean survival period after OLTx in the combination group was significantly longer than that in the CsA group or control group (P < .05 and P < .01). On posttransplant day 7, the serum albumin level significantly improved, the serum total bile acid and alanine aminotransferase levels were significantly lower, the serum interleukin-2 and interferon-gamma levels were significantly lower, and the activation of transcription factor NF-kappaB in peripheral blood T lymphocytes was significantly suppressed in the combination group in comparison with those in the CsA group (all P < .05) or control group (all P < .01), and a histological examination revealed apparent difference in the severity of rejection between the combination group and CsA group (P < .05) or control group (P < .01). CONCLUSION The combined use of CsA and Res has a stronger immunosuppressive effect on hepatocytes under allograft rejection in comparison with the sole use of CsA. Res might serve as a novel supplementary immunosuppressive agent for reducing the severity of hepatic allograft rejection in rats.
Collapse
Affiliation(s)
- S L Wu
- Department of Hepatobiliary, No. 1 Hospital of Xi'an Jiaotong University, #1 Jianking Road, Xi'an City, Shaanxi Province 710061, People's Republic of China.
| | | | | | | |
Collapse
|
22
|
Abstract
The TGF-beta superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-beta signaling with focus on its roles in vertebrate development.
Collapse
Affiliation(s)
- Ye Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
23
|
Motiei Langroudi R, Khoshnoodi MA, Abadi NYF, Tahsili Fahadan P, Ghahremani MH, Dehpour AR. Effect of cyclosporin A on morphine-induced place conditioning in mice: involvement of nitric oxide. Eur J Pharmacol 2005; 507:107-15. [PMID: 15659300 DOI: 10.1016/j.ejphar.2004.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 11/27/2022]
Abstract
Cyclosporin A is shown to attenuate antinociceptive effects of morphine, development and expression of morphine-induced tolerance and dependency via nitric oxide (NO) pathway. In the present study, the effect of systemic cyclosporin A on morphine-induced conditioned place preference (CPP) and the probable involvement of nitric oxide were assessed in mice. Our data showed that administration of morphine (1, 2.5, 5, 7.5, 10 mg/kg) significantly increased the time spent in the drug-paired compartment in a dose-dependent manner. The maximum response was obtained with 5 mg/kg of morphine. Cyclosporin A (5, 10 mg/kg) and N(G)-nitro-L-arginine methyl ester (L-NAME; 2.5, 5, 10 mg/kg), a nonselective nitric oxide synthase (NOS) inhibitor, did not induce either conditioned place preference or conditioned place aversion (CPA), while cyclosporin A (20 mg/kg) induced CPA. Both cyclosporin A (10, 20 mg/kg) and L-NAME (5, 10 mg/kg), in combination with morphine (5 mg/kg) during conditioning, significantly suppressed acquisition of morphine-induced place preference. Lower and per se noneffective doses of Cyclosporin A (1, 2.5, 5 mg/kg) and L-NAME (2.5 mg/kg), when coadministered, exerted a significant potentiating effect on the attenuation of morphine-induced place preference. Aminoguanidine (50, 100 mg/kg), the specific inducible nitric oxide synthase (iNOS) inhibitor, whether alone or in combination with cyclosporin A failed to show this inhibitory effect on morphine-induced place preference. In conclusion, decreasing nitric oxide production through inhibiting constitutive nitric oxide synthase may be a mechanism through which cyclosporin A attenuates morphine-induced place preference.
Collapse
Affiliation(s)
- Rouzbeh Motiei Langroudi
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Poursina Ave., Keshavarz Blvd., Kargar Ave., P.O. Box: 13145-784 Tehran, Iran
| | | | | | | | | | | |
Collapse
|
24
|
Tachibana T, Shiiya N, Kunihara T, Wakamatsu Y, Kudo AF, Ooka T, Watanabe S, Yasuda K. Immunophilin ligands FK506 and cyclosporine A improve neurologic and histopathologic outcome after transient spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg 2005; 129:123-8. [PMID: 15632833 DOI: 10.1016/j.jtcvs.2004.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND We comparatively evaluated the protective effect of the immunophilin ligands cyclosporine A (INN: ciclosporin), FK506, and rapamycin on the spinal cord in a rabbit model of transient ischemia. Both cyclosporine A and FK506 inhibit calcineurin, whereas rapamycin does not. METHODS Thirty-six male New Zealand White rabbits were divided into the following 6 groups: group C, 15 minutes of spinal cord ischemia; group FK, FK506 (1 mg/kg) administered 30 minutes before ischemia; group CsA, cyclosporine A (30 mg/kg) administered 30 minutes before ischemia; group CsA-C, chronic administration of cyclosporine A (20 mg/kg) for 9 days before ischemia; group R, rapamycin (1 mg/kg) administered 30 minutes before ischemia; and group R+FK, rapamycin (1 mg/kg) administered 20 minutes before FK506 pretreatment (1 mg/kg). Group CsA-C was added because the drug does not readily cross the blood-brain barrier. Neurologic function was evaluated by Johnson's 5-point scale at 8, 24, and 48 hours after ischemia, and histopathology was assessed 48 hours after ischemia. RESULTS At 24 and 48 hours after ischemia, the Johnson score was better in groups FK (4.0 +/- 1.1), R+FK (3 +/- 1.1), and CsA-C (2.7 +/- 1.2) than in group C (0.8 +/- 1.2). Numbers of morphologically intact anterior horn cells were higher in groups FK (31.3 +/- 9.9), R+FK (23.2 +/- 4.5), and CsA-C (18.3 +/- 6.8) than in group C (6.3 +/- 4.3). CONCLUSIONS FK506 and chronic administration of cyclosporine A, but not rapamycin, protect the spinal cord from transient ischemia. Although these results are compatible with inhibition of calcineurin in the mechanism of neuroprotective action of these drugs, other effects through different pathways cannot be excluded before further study.
Collapse
Affiliation(s)
- Tsuyoshi Tachibana
- Department of Cardiovascular Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem 2004; 11:318-27. [PMID: 15169862 PMCID: PMC419735 DOI: 10.1101/lm.72704] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CPEB-1 is a sequence-specific RNA binding protein that stimulates the polyadenylation-induced translation of mRNAs containing the cytoplasmic polyadenylation element (CPE). Although CPEB-1 was identified originally in Xenopus oocytes, it has also been found at postsynaptic sites of hippocampal neurons where, in response to N-methyl-D-aspartate receptor activation, it is thought to induce the polyadenylation and translation of alphaCaMKII and perhaps other CPE-containing mRNAs. Because some forms of synaptic modification appear to be influenced by local (synaptic) protein synthesis, we examined long-term potentiation (LTP) in CPEB-1 knockout mice. Although the basal synaptic transmission of Schaffer collateral-CA1 neurons was not affected in the knockout mice, we found that there was a modest deficit in LTP evoked by a single train of 100 Hz stimulation, but a greater deficit in LTP evoked by one train of theta-burst stimulation. In contrast, LTP evoked by either four trains of 100 Hz stimulation or five trains of theta-burst stimulation were not or were only modestly affected, respectively. The deficit in LTP evoked by single stimulation in knockout mice appeared several minutes after tetanic stimulation. Long-term depression (LTD) evoked by 1 Hz stimulation was moderately facilitated; however, a stronger and more enduring form of LTD induced by paired-pulse 1 Hz stimulation was unaffected. These data suggest that CPEB-1 contributes in the translational control of mRNAs that is critical only for some selected forms of LTP and LTD.
Collapse
Affiliation(s)
- Juan M Alarcon
- College of Physicians and Surgeons of Columbia University, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Palomba L, Bianchi M, Persichini T, Magnani M, Colasanti M, Cantoni O. Downregulation of nitric oxide formation by cytosolic phospholipase A2-released arachidonic acid. Free Radic Biol Med 2004; 36:319-29. [PMID: 15036351 DOI: 10.1016/j.freeradbiomed.2003.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/23/2003] [Accepted: 10/31/2003] [Indexed: 01/22/2023]
Abstract
Exposure of PC12 cells to A23187 or thapsigargin caused a concentration-dependent release of arachidonic acid (AA) mediated by cytosolic phospholipase A2 (PLA2). Under the same conditions, however, analysis of nitric oxide (NO) formation revealed that activation of NO synthase (NOS) is best described by a bell-shaped curve. Reduced detection of NO observed at increasing A23187 or thapsigargin concentrations was not due to formation of peroxynitrite or to activation of NO-consuming processes, but rather to AA-dependent inhibition of NOS activity. Furthermore, NO formation observed under optimal conditions for NOS activity was suppressed by AA as well as by the PLA2 activator melittin. Finally, the effects of AA were not the consequence of direct enzyme inhibition, because this lipid messenger failed to inhibit formation of NO by purified neuronal NOS, but were mediated by an AA-dependent signaling and not by downstream products of the cyclooxygenase and lipoxygenase pathways. In conclusion, the present study underscores a novel mechanism whereby endogenous, or exogenous, AA promotes inhibition of NOS activity. Because AA is generated in response to various agonists acting on membrane receptors and extensively released in inflammatory conditions, these findings have important physiopathological implications.
Collapse
Affiliation(s)
- Letizia Palomba
- Istituto di Farmacologia e Farmacognosia, Università di Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino (PU), Italy
| | | | | | | | | | | |
Collapse
|
27
|
Poulter MO, Payne KB, Steiner JP. Neuroimmunophilins: A novel drug therapy for the reversal of neurodegenerative disease? Neuroscience 2004; 128:1-6. [PMID: 15450348 DOI: 10.1016/j.neuroscience.2004.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2004] [Indexed: 11/28/2022]
Abstract
Neuroimmunophilin ligands (NILs) are drugs derived from the immunosuppressant FK506 (tacrolimus) that have been shown to have variable efficacy in reversing neuronal degeneration and preventing cell death. In a wide range of animal models mimicking Parkinson's disease, dementia and even surgical nerve damage they induce re-sprouting, are neurotrophic or prevent nerve damage. The neurotrophic mechanism of action of these compounds is not known and may be dependent on the type of damage and genetic variability at the species or cellular level. Some evidence suggests that NILs may act through a family of proteins called FK506 binding proteins, some of which may regulate steroid hormone receptors. Other evidence suggests that NILs may protect neurons by upregulating the antioxidant glutathione and stimulating nerve regrowth by inducing the production of neurotrophic factors. Initial clinical trials have had mixed success. In one, patients with moderately severe Parkinson's disease showed no overall improvement in fine motor skills following 6 months of treatment by the neuroimmunophilin GPI 1485. But these patients did exhibit decreased loss of dopaminergic nerve terminals with a low dose of GPI 1485 and in fact some increase in dopaminergic terminals within 6 months of the higher dose of GPI 1485 drug treatment. As a result, a second phase II clinical trial using a patient population with less severe degeneration has been initiated concurrent with an investigation of GPI 1485 and other neuroprotective therapies funded by the National Institute of Neurological Disorders and Stroke. Another clinical trial ongoing at this time is exploring the use of a neuroimmunophilin ligand to prevent nerve degeneration and erectile dysfunction resulting from prostatectomy. In summary, neuroimmunophilins show promise to reverse some forms of neurodegeneration but exact factors that predict outcome have not been identified.
Collapse
Affiliation(s)
- M O Poulter
- Department of Psychology, Neuroscience Research Institute, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | | | |
Collapse
|
28
|
Brecht S, Schwarze K, Waetzig V, Christner C, Heiland S, Fischer G, Sartor K, Herdegen T. Changes in peptidyl-prolyl cis/trans isomerase activity and FK506 binding protein expression following neuroprotection by FK506 in the ischemic rat brain. Neuroscience 2003; 120:1037-48. [PMID: 12927209 DOI: 10.1016/s0306-4522(03)00404-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FK506 is an immunosuppressant also showing neuroprotection following cerebral ischemia. FK506 binds to intracellular proteins (FKBP) which have a wide range of functions but have in common the peptidyl-prolyl cis/trans isomerase activity. Following transient focal ischemia, we have analyzed the expression of FKBP12, 52 and 65 and the total FKBP enzyme activity. Furthermore, we have investigated the effect of FK506 on signal transduction in neurons and perfusion changes in the infarct area. After 90 min of transient middle cerebral artery occlusion in male rats the expression of FKBP12, 52 and 65 was analyzed by Western blot in FK506-treated and control animals and the peptidyl-prolyl cis/trans isomerase activity was determined. Magnetic resonance imaging was used to measure tissue perfusion, development of vasogenic edema and infarct size. To investigate the neuronal stress signal cascade, activating transcription factor 2 (ATF-2), Fas-ligand (Fas-L) and c-Jun expression and phosphorylation were analyzed by immunohistochemistry. FK506 decreased the cerebral infarct volume by 53% and reduced the cytotoxic edema. The total FKBP enzymatic activity in the infarct area was increased and blocked dose dependently by FK506. FKBP expression was selectively up-regulated by cerebral ischemia. FK506 treatment does not influence the expression patterns. c-Jun phosphorylation in neurons of the peri-infarct area and Fas-L expression was reduced by FK506 treatment whereas ATF-2 expression was preserved. Cerebral ischemic damage to the brain was reduced by FK506. It was shown for the first time that neuroprotection by FK506 also included the suppression of the cerebral peptidyl-prolyl cis/trans isomerase activity of FKBP in vivo whereas the expression levels of FKBP12, 52 and 65 following ischemia changed slightly and FK506 treatment does not suppress the expression patterns. However, changes of FKBP enzymatic activity result in suppression of the stress cell body response in the peri-infarct area as observed by suppression of c-Jun phosphorylation and Fas-L expression.
Collapse
Affiliation(s)
- S Brecht
- Institute of Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Hospitalstrasse 4, 24105, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun F, Li P, Ding Y, Wang L, Bartlam M, Shu C, Shen B, Jiang H, Li S, Rao Z. Design and structure-based study of new potential FKBP12 inhibitors. Biophys J 2003; 85:3194-201. [PMID: 14581219 PMCID: PMC1303595 DOI: 10.1016/s0006-3495(03)74737-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Based on the structure of FKBP12 complexed with FK506 or rapamycin, with computer-aided design, two neurotrophic ligands, (3R)-4-(p-Toluenesulfonyl)-1,4-thiazane-3-carboxylic acid-L-Leucine ethyl ester and (3R)-4-(p-Toluenesulfonyl)-1,4-thiazane-3-carboxylic acid-L-phenylalanine benzyl ester, were designed and synthesized. Fluorescence experiments were used to detect the binding affinity between FKBP12 and these two ligands. Complex structures of FKBP12 with these two ligands were obtained by x-ray crystallography. In comparing FKBP12-rapamycin complex and FKBP12-FK506 complex as well as FKBP12-GPI-1046 solution structure with these new complexes, significant volume and surface area effects and obvious contact changes were detected which are expected to cause their different binding energies-showing these two novel ligands will become more effective neuron regeneration drugs than GPI-1046, which is currently undergoing phase II clinical trail as a neurotrophic drug. Analysis of volume and surface area effects also gives a new clue for structure-based drug design.
Collapse
Affiliation(s)
- Fei Sun
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff MI. FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol Cell Physiol 2003; 286:C538-46. [PMID: 14592808 DOI: 10.1152/ajpcell.00106.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular Ca2+ release through ryanodine receptors (RyRs) plays important roles in smooth muscle excitation-contraction coupling, but the underlying regulatory mechanisms are poorly understood. Here we show that FK506 binding protein of 12.6 kDa (FKBP12.6) associates with and regulates type 2 RyRs (RyR2) in tracheal smooth muscle. FKBP12.6 binds to RyR2 but not other RyR or inositol 1,4,5-trisphosphate receptors, and FKBP12, known to bind to and modulate skeletal RyRs, does not associate with RyR2. When dialyzed into tracheal myocytes, cyclic ADP-ribose (cADPR) alters spontaneous Ca2+ release at lower concentrations and produces macroscopic Ca2+ release at higher concentrations; neurotransmitter-evoked Ca2+ release is also augmented by cADPR. These actions are mediated through FKBP12.6 because they are inhibited by molar excess of recombinant FKBP12.6 and are not observed in myocytes from FKBP12.6-knockout mice. We also report that force development in FKBP12.6-null mice, observed as a decrease in the concentration/tension relationship of isolated trachealis segments, is impaired. Taken together, these findings point to an important role of the FKBP12.6/RyR2 complex in stochastic (spontaneous) and receptor-mediated Ca2+ release in smooth muscle.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tischmeyer W, Schicknick H, Kraus M, Seidenbecher CI, Staak S, Scheich H, Gundelfinger ED. Rapamycin-sensitive signalling in long-term consolidation of auditory cortex-dependent memory. Eur J Neurosci 2003; 18:942-50. [PMID: 12925020 DOI: 10.1046/j.1460-9568.2003.02820.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
New memories initially persist in a labile state and require protein synthesis-dependent processes of consolidation for long-term manifestation. Using differential conditioning to linearly frequency-modulated tones (FMs) we have recently shown that post-training injections of protein synthesis inhibitors into the auditory cortex of Mongolian gerbils interfere with long-term memory for a number of days. Here, we have used rapamycin as a pharmacological tool to elucidate signalling pathways that control the synthesis of proteins required for persistent memory storage. In mammalian cells, inhibition of target of rapamycin (TOR)-mediated pathways was shown to block the translation of distinct classes of mRNAs. Bilateral infusions of rapamycin into the gerbil auditory cortex shortly after FM discrimination training did not impair the maintenance of the newly acquired memory trace for 24 h, but caused profound retention deficits at 48 h after injection. Control experiments showed that the amnesic action is rapamycin-dependent, confined to the context of memory formation, and suppressed by the antagonist FK506. These data indicate that, in the mammalian brain, activation of rapamycin-sensitive signalling pathways contributes to long-term consolidation of a cerebral cortex-dependent form of memory. Moreover, the finding that rapamycin-induced amnesia parallels only late effects of conventional protein synthesis inhibitors on FM discrimination memory implies that at least two different protein synthesis-dependent processes control memory formation. Both are activated during or shortly after learning. Whereas one process is required for the initial maintenance of memory for about one day the second one is involved in the regulation of its long-lasting persistence in conditioning to FMs.
Collapse
Affiliation(s)
- Wolfgang Tischmeyer
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Erin N, Lehman RAW, Boyer PJ, Billingsley ML. In vitro hypoxia and excitotoxicity in human brain induce calcineurin-Bcl-2 interactions. Neuroscience 2003; 117:557-65. [PMID: 12617962 DOI: 10.1016/s0306-4522(02)00934-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although pathogenesis of neuronal ischemia is incompletely understood, evidence indicates apoptotic neuronal death after ischemia. Bcl-2, an anti-apoptotic and neuroprotective protein, interacts with calcineurin in non-neuronal tissues. Activation of calcineurin, which is abundant in the brain, may play a role in apoptosis. Using co-immunoprecipitation experiments in biopsy-derived, fresh human cortical and hippocampal slices, we examined possible interactions between calcineurin and Bcl-2. Calcineuin-Bcl-2 interactions increased after exposure in vitro to excitotoxic agents and conditions of hypoxia/aglycia. This interaction may shuttle calcineurin to substrates such as the inositol-1,4,5-tris-phosphate receptor because under these experimental conditions interactions between calcineurin and inositol-1,4,5-tris-phosphate receptor also increased. A specific calcineurin inhibitor, FK-520, attenuated insult-induced increases in calcineurin-Bcl-2 interactions and augmented caspase-3 like activity. These data suggest that Bcl-2 modulates neuroprotective effects of calcineurin and that calcineurin inhibitors increase ischemic neuronal damage.
Collapse
Affiliation(s)
- N Erin
- Department of Pharmacology, H078, 500 University Drive, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
33
|
Dong E, Caruncho H, Liu WS, Smalheiser NR, Grayson DR, Costa E, Guidotti A. A reelin-integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proc Natl Acad Sci U S A 2003; 100:5479-84. [PMID: 12707415 PMCID: PMC154370 DOI: 10.1073/pnas.1031602100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reelin is synthesized and secreted into extracellular matrix by cortical gamma-aminobutyric acid (GABA)ergic interneurons and binds with high affinity to the extracellular domain of integrin receptors expressed in dendritic shaft and spine postsynaptic densities (DSPSD) of pyramidal neurons. In heterozygous reeler mice, reelin bound to DSPSD, and the expression of Arc (activity-regulated cytoskeletal protein) is lower than in wild-type mice. We studied the effect of reelin on Arc and total protein synthesis in synaptoneurosomes (SNSs) prepared from mouse neocortex. Recombinant full-length mouse reelin displaces the high affinity (K(D) = 60 fM) binding of [(125)I]echistatin (a competitive integrin receptor antagonist) to integrin receptors with a K(i) of 22 pM and with a Hill slope close to 1. Echistatin (50-100 nM) competitively antagonizes and abates reelin binding. The addition of reelin (2-40 pM) to SNSs enhances the incorporation of [(35)S]methionine into Arc and other rapidly translated proteins in a concentration-dependent manner. This incorporation is virtually abolished by 50-100 nM echistatin or by 5-10 nM rapamycin, a blocker of the mammalian target of rapamycin kinase. We conclude that reelin binds with high affinity to integrin receptors expressed in SNSs and thereby activates Arc protein synthesis.
Collapse
Affiliation(s)
- Erbo Dong
- Psychiatric Institute, Department of Psychiatry, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Mehr SE, Samini M, Namiranian K, Homayoun H, Gaskari SA, Dehpour AR. Inhibition by immunophilin ligands of morphine-induced tolerance and dependence in guinea pig ileum. Eur J Pharmacol 2003; 467:205-10. [PMID: 12706476 DOI: 10.1016/s0014-2999(03)01632-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunophilin ligands, cyclosporine A and FK506 (tacrolimus), besides their immunosuppressive action, have several effects on different neural functions, such as modulation of the release of many neurotransmitters, the reduction of nitric oxide (NO) production by the inhibition of dephosphorylation of neuronal nitric oxide synthase (nNOS) and the alteration of the expression of certain genes. Many of these actions apparently occur through the inhibition of calcineurin, a calcium-calmodulin-dependent phosphatase. On the other hand, several studies have shown that NO has a critical role in opioid-induced tolerance and dependence in both in vivo and in vitro models. In the present study, the effect of cyclosporine A and FK506 on the development of tolerance to and dependence on morphine in the guinea pig ileum was assessed. Morphine inhibited electrically stimulated twitch of ileum in a concentration-dependent manner (pD(2)=7.45+/-0.07). Tolerance to this effect was induced by incubation of ileum with 2 x IC(50) or 4 x IC(50) of morphine for 2 h that induced a degree of tolerance of 6.81 and 18.10, respectively. The co-incubation of ileum with morphine along with either cyclosporine A or FK506 reduced the degree of tolerance significantly (P<0.05) and restored the sensitivity of ileum to the morphine inhibitory effect. Dependence was induced by incubation with 4 x IC(50) of morphine for 2 h and was assessed based on naloxone-induced contractions (10(-5) M). Cyclosporine A (10(-9) M) and FK506 (10(-9) M) can attenuate the development of dependence to morphine as shown by the significant decrease in naloxone-induced contractions (P<0.05). These results suggest that immunophilin ligands at very low concentrations (nanomolar) can reduce the induction of acute tolerance to and dependence on morphine in the myenteric plexus of guinea pig ileum.
Collapse
Affiliation(s)
- Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
35
|
Rosenstiel P, Schramm P, Isenmann S, Brecht S, Eickmeier C, Bürger E, Herdegen T, Sievers J, Lucius R. Differential effects of immunophilin-ligands (FK506 and V-10,367) on survival and regeneration of rat retinal ganglion cells in vitro and after optic nerve crush in vivo. J Neurotrauma 2003; 20:297-307. [PMID: 12820684 DOI: 10.1089/089771503321532888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immunophilins belong to the large family of peptidyl-prolyl-cis-trans-isomerases known to be involved in many cellular processes (e.g., protein trafficking and transcriptional regulation). Beside the widespread therapeutic use of ligands of immunophilins as immunosuppressants, it has been shown that some of these compounds such as FK506 and V-10,367 may mediate neuroprotection and improve axonal regeneration following damage to peripheral nerve fibers. Here, we have analyzed the effects of these two compounds on neurite outgrowth of retinal explants in vitro and on axonal regeneration of retinal ganglion cells, a population of central intrinsic neurons, ten days following optic nerve crush in vivo. FK506 enhanced neurite outgrowth/regrowth in vitro in a dose dependent manner up to 135% (control = 100%), while V-10,367 was more effective (up to 168%). In vivo, intravitreal V-10,367 and FK506 significantly reduced the number of dying retinal ganglion cells as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Local application of FK506 into the vitreous body, but not V-10,367, immediately provided after the optic nerve crush induced the elongation of regenerating fibers across the lesion site for around 1.2 mm. Our data provide evidence that the ligands of the FK506-binding proteins FK506 and V-10,367 protect (otherwise dying) retinal ganglion cells from optic nerve crush-induced cell death, promote neurite outgrowth in vitro and that locally applied FK506 enhances the sprouting of axotomized central intrinsic neurons such as retinal ganglion cells in vivo after optic nerve crush.
Collapse
|
36
|
Homayoun H, Khavandgar S, Mehr SE, Namiranian K, Dehpour AR. The effects of FK506 on the development and expression of morphine tolerance and dependence in mice. Behav Pharmacol 2003; 14:121-7. [PMID: 12658072 DOI: 10.1097/00008877-200303000-00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
FK506 is an immunophilin-binding ligand that inhibits calcineurin and decreases nitric oxide (NO) production in the nervous tissues. We examined the effects in mice of systemic treatment with FK506 on the induction and expression of morphine (s.c.) tolerance and dependence and compared them with the effects of the non-specific NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), and specific inducible NO synthase inhibitor, aminoguanidine. FK506 (0.5-10 mg/kg, s.c.) exerted inhibitory effects on both development and expression of tolerance to morphine-induced antinociception. FK506 also significantly decreased the expression of morphine dependence, as assessed by naloxone-precipitated (2 mg/kg, i.p.) withdrawal syndrome, but a similar effect was not found for the development of morphine dependence. A similar pattern of effects was observed with L-NAME (3-20 mg/kg, i.p.), while aminoguanidine (50-100 mg/kg, i.p.) did not alter tolerance or dependence. Examining the possible interaction between their inhibitory effects on tolerance and dependence, we combined the subeffective doses of FK506 (0.5 or 1 mg/kg) with L-NAME (3 mg/kg) or aminoguanidine (100 mg/kg). The combination of FK506 with L-NAME, but not with aminoguanidine, significantly decreased the development and expression of tolerance and expression of dependence. These data show the effectiveness of FK506 on morphine tolerance and dependence and suggest an additive effect between FK506 and the inhibition of constitutive NO synthesis in this regard.
Collapse
Affiliation(s)
- H Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
37
|
Sezen SF, Blackshaw S, Steiner JP, Burnett AL. FK506 binding protein 12 is expressed in rat penile innervation and upregulated after cavernous nerve injury. Int J Impot Res 2002; 14:506-12. [PMID: 12494287 DOI: 10.1038/sj.ijir.3900919] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2002] [Accepted: 06/15/2002] [Indexed: 11/09/2022]
Abstract
To evaluate whether FK506 and other immunophilin ligands may have potential therapeutic efficacy for erectile function preservation after penile nerve injury, we demonstrated localizations of the immunophilin FK506 binding protein 12 (FKBP 12) in intact and injured rat penile nerves and correlated these findings with localizations of neuronal nitric oxide synthase (nNOS), which neuronally forms nitric oxide for mediation of penile erection, in response to systemically administered FK506. Adult male Sprague-Dawley rats were subjected to unilateral right cavernous nerve forceps crush injury and administered FK506 (1 mg/kg i.p.) or saline at the same time and daily up to 7 days. At 1, 3 and 7 days after injury, bilateral cavernous nerves and major pelvic ganglia were collected for nNOS immunohistochemistry, FKBP 12 immunohistochemistry, and FKBP 12 in situ hybridisation. Protein expressions of nNOS and FKBP 12 were observed in major pelvic ganglion, cavernous nerve and nerve terminals within the rat penis as well as mRNA expression of FKBP 12 observed in the rat major pelvic ganglion neuronal cell bodies to a minimal extent at baseline conditions. After cavernous nerve injury, nNOS immunoreactivity was observed to be slightly diminished in ipsilateral penile nerve structures at only one day following injury while both FKBP 12 protein and mRNA expressions were observed to be increased at each interval of study. FK506 treatment did not affect staining of intact or injured nerves. Our demonstration that FKBP 12 is localized to penile innervation in the rat and becomes upregulated following cavernous nerve crush injury, independent of FK506 treatment, suggests that this immunophilin mediates a neurotrophic mechanism. Whether FK506 affords neuroprotection that preserves penile erection through FKBP 12 upregulation is unclear.
Collapse
Affiliation(s)
- S F Sezen
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins Hospital, Baltimore, Maryland 21287-2411, USA
| | | | | | | |
Collapse
|
38
|
Homayoun H, Khavandgar S, Namiranian K, Dehpour AR. The effect of cyclosporin A on morphine tolerance and dependence: involvement of L-arginine/nitric oxide pathway. Eur J Pharmacol 2002; 452:67-75. [PMID: 12323386 DOI: 10.1016/s0014-2999(02)02243-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclosporin A is known to decrease nitric oxide (NO) production in nervous tissues. The effects of systemic cyclosporine A on the induction and expression of morphine tolerance and dependence, acute morphine-induced antinociception, and the probable involvement of the L-arginine/nitric oxide pathway in these effects were assessed in mice. Cyclosporin A (20 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg) and a combination of the two at lower and per se non-effective doses (5 and 3 mg/kg, respectively) showed a similar pattern of action, inhibiting the induction of tolerance to morphine-induced antinociception and increasing the antinociception threshold in the expression phase of morphine tolerance. These agents also inhibited the expression of morphine dependence as assessed by naloxone-precipitated withdrawal signs, while having no effect on the induction of morphine dependence. L-Arginine, at a per se non-effective dose (60 mg/kg), inhibited the effects of Cyclosporin A. Moreover, acute administration of Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) enhanced the antinociception induced by acute administration of morphine (5 mg/kg), while chronic pretreatment with Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) for 2 days (twice daily) did not affect morphine-induced antinociception. The inducible nitric oxide synthase inhibitor, aminoguanidine (100 mg/kg), did not alter morphine antinociception, tolerance or dependence. In conclusion, decreasing NO production through constitutive nitric oxide synthase may be a mechanism through which cyclosporin A differentially modulates morphine tolerance, dependence and antinociception.
Collapse
Affiliation(s)
- Houman Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran
| | | | | | | |
Collapse
|
39
|
Homayoun H, Khavandgar S, Dehpour AR. Anticonvulsant effects of cyclosporin A on pentylenetetrazole-induced seizure and kindling: modulation by nitricoxidergic system. Brain Res 2002; 939:1-10. [PMID: 12020845 DOI: 10.1016/s0006-8993(02)02533-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclosporin A (CsA) is known to decrease nitric oxide (NO) release in the nervous system. The present study was aimed at investigating the effects of acute administration of CsA on pentylenetetrazole (PTZ)-induced seizure threshold and latency and probable modulation of these effects by NO synthesis substrate L-arginine, and NO synthesis inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) or aminoguanidine. Moreover, the effect of CsA per se or concomitant with L-arginine on the development of PTZ-induced kindling was assessed. CsA (0.05, 1, 5, 10 and 20 mg/kg, s.c.) dose-dependently increased PTZ-induced clonic seizure threshold and the latency for onset of myoclonic jerks, clonic seizures and clonic-tonic generalized seizures following PTZ administration. L-NAME (10 and 30 mg/kg, i.p.) but not aminoguanidine (50 and 100 mg/kg, i.p.) potentiated the anticonvulsant effects of CsA (1 and 10 mg/kg). L-arginine (60, 100 and 200 mg/kg, i.p.) inhibited the anticonvulsant effects of CsA (20 mg/kg) in a dose-related manner. The inhibitory effect of L-arginine on CsA-induced alterations of seizure threshold and latency was blocked by L-NAME but not with aminoguanidine. CsA (20 mg/kg) significantly inhibited the development of PTZ kindling and decreased the seizure intensity as tested by a challenge dose of PTZ. Pretreatment with L-arginine (60 mg/kg) reversed the inhibitory effects of CsA on kindling development. It was concluded that CsA exerts some anticonvulsant properties that may be due to its inhibition of nitric oxide synthesis.
Collapse
Affiliation(s)
- Houman Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | |
Collapse
|
40
|
Myckatyn TM, Ellis RA, Grand AG, Sen SK, Lowe JB, Hunter DA, Mackinnon SE. The effects of rapamycin in murine peripheral nerve isografts and allografts. Plast Reconstr Surg 2002; 109:2405-17. [PMID: 12045568 DOI: 10.1097/00006534-200206000-00035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The FKBP-12-binding ligand FK506 has been successfully used to stimulate nerve regeneration and prevent the rejection of peripheral nerve allografts. The immunosuppressant rapamycin, another FKBP-12-binding ligand, stimulates axonal regeneration in vitro, but its influence on nerve regeneration in peripheral nerve isografts or allografts has not been studied. Sixty female inbred BALB/cJ mice were randomized into six tibial nerve transplant groups, including three isograft and three allograft (C57BL/6J) groups. Grafts were left untreated (groups I and II), treated with FK506 (groups III and IV), or treated with rapamycin (groups V and VI). Nerve regeneration was quantified in terms of histomorphometry and functional recovery, and immunosuppression was confirmed with mixed lymphocyte reactivity assays. Animals treated with FK506 and rapamycin were immunosuppressed and demonstrated significantly less immune cell proliferation relative to untreated recipient animals. Although every animal demonstrated some functional recovery during the study, animals receiving an untreated peripheral nerve allograft were slowest to recover. Isografts treated with FK506 but not rapamycin demonstrated significantly increased nerve regeneration. Nerve allografts in animals treated with FK506, and to a lesser extent rapamycin, however, both demonstrated significantly more nerve regeneration and increased nerve fiber widths relative to untreated controls. The authors suggest that rapamycin can facilitate regeneration through peripheral nerve allografts, but it is not a neuroregenerative agent in this in vivo model. Nerve regeneration in FK506-treated peripheral nerve isografts and allografts was superior to that found in rapamycin-treated animals. Rapamycin may have a role in the treatment of peripheral nerve allografts when used in combination with other medications, or in the setting of renal failure that often precludes the use of calcineurin inhibitors such as FK506.
Collapse
Affiliation(s)
- Terence M Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, One Barnes-Jewish Hospital Plaza, East Pavilion, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Homayoun H, Babaie A, Gharib B, Etminani A, Khavandgar S, Mani A, Dehpour AR. The involvement of nitric oxide in the antinociception induced by cyclosporin A in mice. Pharmacol Biochem Behav 2002; 72:267-72. [PMID: 11900796 DOI: 10.1016/s0091-3057(01)00774-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cyclosporin A (CsA) and other immunophilin-binding agents are known to inactivate neuronal nitric oxide synthase (nNOS). Nitric oxide (NO) is involved in the nociception at the spinal level. We evaluated the effect of acute intraperitoneal (i.p.) administration of CsA on the tail-flick response in mice and the involvement of NO and opioid receptors in this effect. CsA (5, 10, 20 and 50 mg/kg i.p.) induced a significant increase in tail-flick response. Nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (LNNA; 10, 40 and 80 mg/kg i.p.) significantly potentiated the CsA-induced (5 mg/kg) increase in tail-flick latency (TFL). While NOS substrate L-arginine (100, 200, 400 mg/kg i.p.) inhibited the CsA-induced (20 mg/kg) antinociception completely and in a dose-dependent manner. Concomitant administration of L-NNA and L-arginine blocked the inhibition exerted by the latter on the CsA-induced antinociception. The opioid receptor antagonist naloxone (4 mg/kg i.p.) did not alter the CsA effect. These results indicate that acute administration of CsA induces an antinociceptive effect that involves the L-arginine-NO pathway but is not mediated by opioid receptors.
Collapse
Affiliation(s)
- Houman Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
42
|
Bennett PC, Schmidt L, Lawen A, Moutsoulas P, Ng KT. Cyclosporin A, FK506 and rapamycin produce multiple, temporally distinct, effects on memory following single-trial, passive avoidance training in the chick. Brain Res 2002; 927:180-94. [PMID: 11821011 DOI: 10.1016/s0006-8993(01)03353-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few studies have used a pharmaco-behavioural methodology to directly investigate roles for the calcium-dependent protein phosphatase calcineurin (CaN) in memory formation, due partly to the absence of specific inhibitory agents. A number of drugs with different inhibitory profiles were used to examine this issue in groups of chicks trained on a single-trial, passive-avoidance task. Bilateral intracranial administration of the immunosuppressants FK506 and cyclosporin A (CyA) led to two temporally distinct effects, distinguished by the concentration of drug required and the effective time of administration relative to training. In addition to inhibiting CaN, CyA and FK506 inhibit distinct classes of peptidyl prolyl-cis/trans-isomerases (PPIases). Other agents known to inhibit these enzymes, including the Map kinase inhibitor Rapamycin, also induced memory deficits in a complex, dose- and time-of-administration-dependent, manner. The data fail to conclusively implicate CaN in memory formation, but are consistent with proposals that a phosphatase cascade may participate in an early stage of information storage. PPIases may be required at a later stage to catalyse the folding of new or translocated proteins, the synthesis of which is required for formation of long-term memory, although other possible explanations for the data remain to be investigated.
Collapse
Affiliation(s)
- Pauleen C Bennett
- Department of Psychology, Clayton Campus, Monash University, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
43
|
Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 2002; 99:467-72. [PMID: 11756682 PMCID: PMC117583 DOI: 10.1073/pnas.012605299] [Citation(s) in RCA: 588] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many forms of long-lasting behavioral and synaptic plasticity require the synthesis of new proteins. For example, long-term potentiation (LTP) that endures for more than an hour requires both transcription and translation. The signal-transduction mechanisms that couple synaptic events to protein translational machinery during long-lasting synaptic plasticity, however, are not well understood. One signaling pathway that is stimulated by growth factors and results in the translation of specific mRNAs includes the rapamycin-sensitive kinase mammalian target of rapamycin (mTOR, also known as FRAP and RAFT-1). Several components of this translational signaling pathway, including mTOR, eukaryotic initiation factor-4E-binding proteins 1 and 2, and eukaryotic initiation factor-4E, are present in the rat hippocampus as shown by Western blot analysis, and these proteins are detected in the cell bodies and dendrites in the hippocampal slices by immunostaining studies. In cultured hippocampal neurons, these proteins are present in dendrites and are often found near the presynaptic protein, synapsin I. At synaptic sites, their distribution completely overlaps with a postsynaptic protein, PSD-95. These observations suggest the postsynaptic localization of these proteins. Disruption of mTOR signaling by rapamycin results in a reduction of late-phase LTP expression induced by high-frequency stimulation; the early phase of LTP is unaffected. Rapamycin also blocks the synaptic potentiation induced by brain-derived neurotrophic factor in hippocampal slices. These results demonstrate an essential role for rapamycin-sensitive signaling in the expression of two forms of synaptic plasticity that require new protein synthesis. The localization of this translational signaling pathway at postsynaptic sites may provide a mechanism that controls local protein synthesis at potentiated synapses.
Collapse
Affiliation(s)
- Shao Jun Tang
- California Institute of Technology, Howard Hughes Medical Institute, Division of Biology 216-76, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
44
|
Clemons PA, Gladstone BG, Seth A, Chao ED, Foley MA, Schreiber SL. Synthesis of calcineurin-resistant derivatives of FK506 and selection of compensatory receptors. CHEMISTRY & BIOLOGY 2002; 9:49-61. [PMID: 11841938 DOI: 10.1016/s1074-5521(02)00085-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used olefin metathesis to synthesize C40 derivatives of FK506 and measured their ability, when complexed to FKBP12, to inhibit calcineurin's phosphatase activity. We identified modular dimerization domains (CABs) containing segments of the calcineurin A and B polypeptides. These CABs respond to FK506 both when overexpressed in mammalian cells and in yeast or mammalian three-hybrid assays. Using chemical genetic selection, we identified compensatory mutant CABs that respond to a calcineurin-resistant FK506 derivative at concentrations well below the response threshold for CABs containing only wild-type calcineurin sequence. These reagents provide a small molecule-protein combination orthogonal to existing dimerizer systems and may be used with existing systems to increase the complexity of induced-proximity experiments. This new use of the "bump-hole" strategy protects target cells from complications arising from the inhibition of endogenous calcineurin.
Collapse
Affiliation(s)
- Paul A Clemons
- Howard Hughes Medical Institute at Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
45
|
Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K. The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and calcineurin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:21-31. [PMID: 11744159 DOI: 10.1016/s0169-328x(01)00286-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunosuppressant FK506 displays substantial neuroprotective and neuroregenerative effects. It is not fully understood to which extent these effects depend on the inhibition of the calcineurin phosphatase (PP2B). The present study has re-addressed this issue using Lie120, a novel highly specific inhibitor of calcineurin, which does not block the enzymatic activity of FKBPs or cyclophilins, respectively. We have determined the effect of FK506 (10-500 nM), V-10,367 (a FK506 derivative which does not block calcineurin; 1-5 microM) and Lie120 (a novel specific inhibitor of calcineurin, 0.1-5 microM) on the cellular survival and the pro-degenerative JNK activity of PC12 and Neuro2A cells following application of 200 microM H(2)O(2). FK506 and V-10,367, but not Lie120, protected both cell lines against H(2)O(2)-mediated death, whereas an increase in JNK1 activity was blocked by FK506 and Lie120, but not by V-10,367. Co-incubation of FK506 and V-10,367 with the mRNA synthesis inhibitor actinomycin D abolished the protective effect of FK506 and V-10,367. This antagonization was effective when actinomycin D was applied 30 min or 1 h, but not 2 or 4 h, after H(2)O(2) suggesting that FKBP-ligands confer their neuroprotection by rapid de novo synthesis of (functionally) anti-apoptotic proteins. The search for the corresponding effector genes revealed that the expression of FKBP25, FKBP38 and FKBP52 (analysis by reverse transcription-polymerase chain reaction (RT-PCR) did not change following H(2)O(2) or FK506, and this was also true for the expression of apoptosis-related genes caspase 3, bax, bcl-2 and bcl-xL (analysis by Multiplex-PCR). Summarizing, neuronal protection by FKBP-ligands is not mediated either by calcineurin or by JNK1 in this experimental set-up, whereas the FK506 mediated inhibition of JNK1 is realized by the inhibition of calcineurin, an effective activator of JNK1 in neurons.
Collapse
Affiliation(s)
- A Klettner
- Institute of Pharmacology, Christian-Albrechts-University, Hospitalstrasse 4, 24105, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Suehiro E, Povlishock JT. Exacerbation of traumatically induced axonal injury by rapid posthypothermic rewarming and attenuation of axonal change by cyclosporin A. J Neurosurg 2001; 94:493-8. [PMID: 11235956 DOI: 10.3171/jns.2001.94.3.0493] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although considerable attention has been focused on the use of posttraumatic hypothermia, little consideration has been given to the issue of posthypothermic rewarming and its potentially damaging consequences. In this communication, the authors examine the issue of rapid posthypothermic rewarming compared with gradual rewarming while exploring the potential utility of cyclosporin A (CsA) administration for attenuating any rapid rewarming-induced axonal change. METHODS Male Sprague-Dawley rats were subjected to impact-acceleration injury and then their body temperature was lowered to 32 degrees C for 1 hour postinjury. After hypothermia, rewarming to normothermic levels was accomplished either within a 20-minute period (rapid rewarming) or over a 90-minute period (slow rewarming). Some animals in the rapid rewarming group received intrathecal infusion of either CsA or its vehicle, whereas the rats in the slow rewarming group received vehicle alone. Both the CsA and its vehicle were administered immediately before initiation of rewarming. Twenty-four hours postinjury the animals' brains were processed for visualization of amyloid precursor protein (APP), a marker of traumatic axonal injury. The APP-positive axonal density in the gradually rewarmed group receiving vehicle was statistically significantly reduced in comparison with the rapidly rewarmed, vehicle-treated group. For the group undergoing rapid rewarming and treatment with CsA, a statistically significant reduction was also found in the density of the APP profiles compared with the rapidly rewarmed, vehicle-treated group. CONCLUSIONS The results of this study show that rapid rewarming exacerbates traumatically induced axonal injury, which can be significantly attenuated by administering CsA.
Collapse
Affiliation(s)
- E Suehiro
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
47
|
Peeling J, Yan HJ, Corbett D, Xue M, Del Bigio MR. Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp Neurol 2001; 167:341-7. [PMID: 11161622 DOI: 10.1006/exnr.2000.7564] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beginning 15 min after induction of intracerebral hemorrhage (ICH) by intrastriatal administration of collagenase, rats were treated intramuscularly with FK-506 (3 mg/kg) or with vehicle. Treatment was repeated daily for 7 days. MR imaging 1, 7, and 28 days post-ICH showed that treatment did not affect hematoma size or its subsequent resolution. Two days post-ICH, neutrophil infiltration around the hematoma was decreased in the FK-506-treated rats, as was the number of TUNEL-positive cells at the edge of the hematoma and in the peripheral region. The decreased inflammatory response was accompanied by functional improvement in the treated rats. The neurological deficit induced by the ICH (beam walking ability, postural reflex, spontaneous circling) was significantly decreased from 3 to 21 days post-ICH by treatment with FK-506. Skilled use of the forelimb ipsilateral to the ICH was improved and sensory neglect of the same limb was decreased 8-9 weeks post-ICH in rats treated with FK-506. However, neuronal loss assessed 9 weeks post-ICH was not different in the treated and untreated rats.
Collapse
Affiliation(s)
- J Peeling
- Department of Chemistry, The University of Manitoba, Winnipeg, Manitoba, R3E 0W3, Canada
| | | | | | | | | |
Collapse
|
48
|
Nahreini P, Hovland AR, Kumar B, Andreatta C, Edwards-Prasad J, Prasad KN. Effects of altered cyclophilin A expression on growth and differentiation of human and mouse neuronal cells. Cell Mol Neurobiol 2001; 21:65-79. [PMID: 11440199 PMCID: PMC11533836 DOI: 10.1023/a:1007173329237] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Cyclophilin A (CyP-A), a soluble cytoplasmic immunophilin, is known for its involvement in T cell differentiation and proliferation. Although CyP-A has a pivotal role in the immune response, it is most highly concentrated in brain, where its functions are largely unknown. 2. We reported previously that a murine neuroblastoma (NB-P2) cell line can partially differentiate into neurons when treated with cyclosporin A (CyS-A), implicating a role for CyP-A in neuronal differentiation (Hovland et al. [1999]. Neurochem. Int. 3:229-235). 3. The role of CyP-A in regulating neuronal growth and differentiation is not well defined. To investigate this, we first tested the utility of retroviral-mediated gene transfer and expression in human embryonic brain (HEB) and NB-P2 cells. Second, we examined the effects of retroviral-mediated overexpression or antisense-mediated reduction of CyP-A in HEB and NB-P2 cells. 4. Our data show that retroviral vectors are efficient for stable gene transfer and expression in both cell lines. Moreover, neither overexpression nor reduction of CyP-A expression in NB-P2 cells altered the growth rate or induced differentiation. More importantly, the up-or down-regulation of CyP-A expression did not affect the magnitude of cAMP-induced NB-P2 differentiation. However, overexpression of CyP-A increased the growth rate of HEB cells. 5. In summary, the utility of retroviral vectors for stable gene expression in human embryonic brain and murine neuroblastoma cells was shown. Furthermore, a novel role for CyP-A in augmenting the proliferation of human embryonic brain cells was demonstrated in vitro.
Collapse
Affiliation(s)
- P Nahreini
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Sakai H, Takeuchi Y, Kawano H, Matsushita H, Yamazoe I, Sugimoto T. FK506 Itself Does Not Demonstrate Neurotoxicity in the Mouse Brain. Acta Histochem Cytochem 2001. [DOI: 10.1267/ahc.34.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hisahiro Sakai
- Department of Pediatrics, Kyoto Prefectural University of Medicine
| | - Yoshihiro Takeuchi
- Department of Pediatrics, Kyoto Prefectural University of Medicine
- Department of Pediatrics, Shiga University of Medical Science
| | - Hisashi Kawano
- Department of Pediatrics, Kyoto Prefectural University of Medicine
| | | | - Ichiro Yamazoe
- Department of Pediatrics, Kyoto Prefectural University of Medicine
| | - Toru Sugimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine
| |
Collapse
|
50
|
Petrulis JR, Hord NG, Perdew GH. Subcellular localization of the aryl hydrocarbon receptor is modulated by the immunophilin homolog hepatitis B virus X-associated protein 2. J Biol Chem 2000; 275:37448-53. [PMID: 10986286 DOI: 10.1074/jbc.m006873200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatitis B virus X-associated protein 2 (XAP2) is an immunophilin homolog and core component of the aryl hydrocarbon receptor (AhR). Immunophilins are components of many steroid receptor complexes, serving a largely unknown function. Transiently expressed AhR.YFP (yellow fluorescent protein) localized to the nuclei of COS-1 and NIH-3T3 cells. Co-expression of AhR.YFP with XAP2 restored cytoplasmic localization, which was reversed by 2,3,7, 8-tetrachlorodibenzo-p-dioxin treatment (TCDD). The effect of XAP2 on AhR localization was specific involving a nuclear localization signal-mediated pathway. Examination of the ratio of AhR to XAP2 in the AhR complex revealed that approximately 25% of transiently expressed AhR was associated with XAP2, in contrast with approximately 100% when the AhR and XAP2 were co-expressed. Strikingly, TCDD did not influence these ratios, suggesting that ligand binding initiates nuclear translocation prior to complex dissociation. Analysis of endogenous AhR in Hepa-1 cells revealed that approximately 40% of the AhR complex was associated with XAP2, predicting observed AhR localization to cytoplasm and nuclei. This study reveals a novel functional role for the immunophilin-like component of a soluble receptor complex and provides new insight into the mechanism of AhR-mediated signal transduction, demonstrating the existence of two structurally distinct and possibly functionally unique forms of the AhR.
Collapse
Affiliation(s)
- J R Petrulis
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|