1
|
Yang H, Dong Y, Bian Y, Huo C, Zhu C, Qin T, Chen S, Peng D, Liu X. The synergistic effect of residues 32T and 550L in the PA protein of H5 subtype avian influenza virus contributes to viral pathogenicity in mice. PLoS Pathog 2023; 19:e1011489. [PMID: 37399196 DOI: 10.1371/journal.ppat.1011489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The avian influenza virus (AIV) PA protein contributes to viral replication and pathogenicity; however, its interaction with innate immunity is not well understood. Here, we report that the H5 subtype AIV PA protein strongly suppresses host antiviral defense by interacting with and degrading a key protein in interferon (IFN) signaling, Janus kinase 1 (JAK1). Specifically, the AIV PA protein catalyzes the K48-linked polyubiquitination and degradation of JAK1 at lysine residue 249. Importantly, the AIV PA protein harboring 32T/550L degrades both avian and mammalian JAK1, while the AIV PA protein with residues 32M/550I degrades avian JAK1 only. Furthermore, the residues 32T/550L in PA protein confer optimum polymerase activity and AIV growth in mammalian cells. Notably, the replication and virulence of the AIV PA T32M/L550I mutant are attenuated in infected mice. Collectively, these data reveal an interference role for H5 subtype AIV PA protein in host innate immunity, which can be targeted for the development of specific and effective anti-influenza therapeutics.
Collapse
Affiliation(s)
- Hui Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yurui Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenzhi Huo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuncheng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Momin AA, Mendes T, Barthe P, Faure C, Hong S, Yu P, Kadaré G, Jaremko M, Girault JA, Jaremko Ł, Arold ST. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element. Commun Biol 2022; 5:800. [PMID: 35945264 PMCID: PMC9363500 DOI: 10.1038/s42003-022-03760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity. Protein tyrosine kinase 2-beta is shown to function as a sensor and effector of cellular calcium influx through self-association.
Collapse
Affiliation(s)
- Afaque A Momin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tiago Mendes
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France
| | - Camille Faure
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piao Yu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gress Kadaré
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France.
| |
Collapse
|
3
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Liu D, Zheng H, Li Y, Zhou P, Jin H, Luo R. Molecular cloning and functional characterization of duck Janus kinase 1. Mol Immunol 2019; 117:29-36. [PMID: 31733446 DOI: 10.1016/j.molimm.2019.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/06/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Janus kinase 1 (JAK1) is a member of JAK family of non-receptor protein tyrosine kinases that plays critical roles in transducing cytokine signals via JAK-signal transducer and activator of transcription (STAT) signaling pathway. The importance of JAK1 in innate immunity has been well-studied in mammals and fish, yet in avian remains largely unknown. Here, we cloned the full-length of the duck JAK1 (duJAK1) gene for the first time. DuJAK1 encoded a protein of 1152 amino acids and possessed high amino acid identity with goose and budgerigar JAK1s. The duJAK1 was expressed in all detected tissues, especially high in the thymus and bursa of Fabricius. Overexpression of duJAK1 significantly activated ISRE promoter activity and induced duck viperin, 2', 5'-OAS, MX, PKR and ZAP expression. Knockdown of duJAK1 by small interfering RNA significantly inhibited duck Tembusu virus (DTMUV)-, duck Enteritis virus (DEV)-, poly (I:C)-, poly (dA:dT)- or Sendai virus (SeV)-induced ISRE promoter activation. Furthermore, duJAK1 exhibited antiviral activity against DTMUV infection. These results will help us understand the function of JAK family proteins in duck antiviral immunity.
Collapse
Affiliation(s)
- Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Huijun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yaqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem 2014; 57:5023-38. [PMID: 24417533 DOI: 10.1021/jm401490p] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play an essential role in the signaling of numerous cytokines that have been implicated in the pathogenesis of inflammatory diseases. As a consequence, the JAKs have received significant attention in recent years from the pharmaceutical and biotechnology industries as therapeutic targets. Here, we provide a review of the JAK pathways, the structure, function, and activation of the JAK enzymes followed by a detailed look at the JAK inhibitors currently in the clinic or approved for these indications. Finally, a perspective is provided on what the past decade of research with JAK inhibitors for inflammatory indications has taught along with thoughts on what the future may hold in terms of addressing the opportunities and challenges that remain.
Collapse
Affiliation(s)
- James D Clark
- Pfizer Immunosciences , 200 CambridgePark, Cambridge, Massachusetts 02140, United States
| | | | | |
Collapse
|
6
|
Gäbler K, Behrmann I, Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2:e25025. [PMID: 24069563 PMCID: PMC3772115 DOI: 10.4161/jkst.25025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the first Janus kinase inhibitor to receive clinical approval. In this review we provide an overview of JAK2V617F signaling and its inhibition by small-molecule kinase inhibitors. In addition, myeloproliferative neoplasms are discussed regarding the role of JAK2V617F and other mutant proteins of possible relevance. We further give an overview about treatment options with special emphasis on possible combination therapies.
Collapse
Affiliation(s)
- Karoline Gäbler
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Claude Haan
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| |
Collapse
|
7
|
Pérez-Rivero G, Cascio G, Soriano SF, Sanz ÁG, de Guinoa JS, Rodríguez-Frade JM, Gomariz RP, Holgado BL, Cabañas C, Carrasco YR, Stein JV, Mellado M. Janus kinases 1 and 2 regulate chemokine-mediated integrin activation and naïve T-cell homing. Eur J Immunol 2013; 43:1745-57. [PMID: 23526587 DOI: 10.1002/eji.201243178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/08/2013] [Accepted: 03/19/2013] [Indexed: 12/21/2022]
Abstract
Janus kinases (JAKs) are central signaling molecules in cytokine receptor cascades. Although they have also been implicated in chemokine receptor signaling, this function continues to be debated. To address this issue, we established a nucleofection model in primary, nonactivated mouse T lymphocytes to silence JAK expression and to evaluate the ability of these cells to home to lymph nodes. Reduced JAK1 and JAK2 expression impaired naïve T-cell migration in response to gradients of the chemokines CXCL12 and CCL21. In vivo homing of JAK1/JAK2-deficient cells to lymph nodes decreased, whereas intranodal localization and motility were unaffected. JAK1 and JAK2 defects altered CXCL12- and CCL21-triggered ezrin/radixin/moesin (ERM) dephosphorylation and F-actin polymerization, as well as activation of lymphocyte function-associated Ag-1 and very late Ag-4 integrins. As a result, the cells did not adhere firmly to integrin substrates in response to these chemokines. The results demonstrate that JAK1/JAK2 participate in chemokine-induced integrin activation and might be considered a target for modulation of immune cell extravasation and therefore, control of inflammatory reactions.
Collapse
Affiliation(s)
- Gema Pérez-Rivero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
9
|
Sayyah J, Gnanasambandan K, Kamarajugudda S, Tsuda S, Caldwell-Busby J, Sayeski PP. Phosphorylation of Y372 is critical for Jak2 tyrosine kinase activation. Cell Signal 2011; 23:1806-15. [PMID: 21726629 PMCID: PMC3156348 DOI: 10.1016/j.cellsig.2011.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 01/09/2023]
Abstract
Jak2 tyrosine kinase plays an important role in cytokine mediated signal transduction. There are 49 tyrosine residues in Jak2 and phosphorylation of some of these are known to play important roles in the regulation of Jak2 kinase activity. Here, using mass spectrometry, we identified tyrosine residues Y372 and Y373 as novel sites of Jak2 phosphorylation. Mutation of Y372 to F (Y372F) significantly inhibited Jak2 phosphorylation, including that of Y1007, whereas the Jak2-Y373F mutant displayed only modest reduction in phosphorylation. Relative to Jak2-WT, the ability of Jak2-Y372F to bind to and phosphorylate STAT1 was decreased, resulting in reduced Jak2-mediated downstream gene transcription. While the Y372F mutation had no effect on receptor-independent, hydrogen peroxide-mediated Jak2 activation, it impaired interferon-gamma (IFNγ) and epidermal growth factor (EGF)-dependent Jak2 activation. Interestingly however, the Y372F mutant exhibited normal receptor binding properties. Finally, co-expression of SH2-Bβ only partially restored the activation of the Jak2-Y372F mutant suggesting that the mechanism whereby phosphorylation of Y372 is important for Jak2 activation is via dimerization. As such, our results indicate that Y372 plays a critical yet differential role in Jak2 activation and function via a mechanism involving Jak2 dimerization and stabilization of the active conformation.
Collapse
Affiliation(s)
- Jacqueline Sayyah
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Kavitha Gnanasambandan
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Sushama Kamarajugudda
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Shigeharu Tsuda
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | - Peter P. Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Cifuentes-Diaz C, Chareyre F, Garcia M, Devaux J, Carnaud M, Levasseur G, Niwa-Kawakita M, Harroch S, Girault JA, Giovannini M, Goutebroze L. Protein 4.1B contributes to the organization of peripheral myelinated axons. PLoS One 2011; 6:e25043. [PMID: 21966409 PMCID: PMC3180372 DOI: 10.1371/journal.pone.0025043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/23/2011] [Indexed: 12/26/2022] Open
Abstract
Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber.
Collapse
Affiliation(s)
- Carmen Cifuentes-Diaz
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Fabrice Chareyre
- Inserm, U674, Institut Universitaire d'Hématologie, Paris, France
| | - Marta Garcia
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jérôme Devaux
- Département de Signalisation Neuronale, CRN2M, UMR 6231, CNRS, Université de la Méditerranée-Université Paul Cézanne, IFR Jean Roche, Marseille, France
| | - Michèle Carnaud
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Grégoire Levasseur
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | | | - Sheila Harroch
- Département de Neuroscience, Institut Pasteur, Paris, France
| | - Jean-Antoine Girault
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail:
| | - Marco Giovannini
- Inserm, U674, Institut Universitaire d'Hématologie, Paris, France
| | - Laurence Goutebroze
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| |
Collapse
|
11
|
Insights into the Function of the Unstructured N-Terminal Domain of Proteins 4.1R and 4.1G in Erythropoiesis. Int J Cell Biol 2011; 2011:943272. [PMID: 21904552 PMCID: PMC3166722 DOI: 10.1155/2011/943272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/20/2011] [Indexed: 01/26/2023] Open
Abstract
Membrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.1N, and 4.1B. Two isoforms of 4.1R (4.1R(135) and 4.1R(80)), as well as 4.1G, are expressed in erythroblasts during terminal differentiation, but only 4.1R(80) is present in mature erythrocytes. One goal in the field is to better understand the complex regulation of cell type and isoform-specific expression of 4.1 proteins. To start answering these questions, we are studying in depth the important functions of 4.1 proteins in the organization and function of the membrane skeleton in erythrocytes. We have previously reported that the binding profiles of 4.1R(80) and 4.1R(135) to membrane proteins and calmodulin are very different despite the similar structure of the membrane-binding domain of 4.1G and 4.1R(135). We have accumulated evidence for those differences being caused by the N-terminal 209 amino acids headpiece region (HP). Interestingly, the HP region is an unstructured domain. Here we present an overview of the differences and similarities between 4.1 isoforms and paralogs. We also discuss the biological significance of unstructured domains.
Collapse
|
12
|
Jak2 Tyrosine Kinase: A Potential Therapeutic Target for AT1 Receptor Mediated Cardiovascular Disease. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034077 DOI: 10.3390/ph3113478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patients with hypertension often manifest a dysregulated renin-angiotensin-aldosterone system (RAAS). Most of the available treatment approaches for hypertension are targeted towards the RAAS including direct renin inhibition, ACE inhibition, angiotensin II type 1 receptor (AT1-R) blockade, and aldosterone receptor antagonism. The Jak2 signaling pathway is intricately coupled to the AT1-R signaling processes involved in hypertension. Here, we review the involvement of Jak2 in the pathogenesis of hypertension, and its potential as a therapeutic target for treatment of AT1-R mediated cardiovascular disease. Jak2 may provide a rational therapeutic approach for patients whose blood pressure is not controlled by standard therapies.
Collapse
|
13
|
Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. PLoS One 2010; 5:e11157. [PMID: 20585391 PMCID: PMC2886835 DOI: 10.1371/journal.pone.0011157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/21/2010] [Indexed: 12/29/2022] Open
Abstract
The JAK2 V617F mutation present in over 95% of Polycythemia Vera patients and in 50% of Essential Thrombocythemia and Primary Myelofibrosis patients renders the kinase constitutively active. In the absence of a three-dimensional structure for the full-length protein, the mechanism of activation of JAK2 V617F has remained elusive. In this study, we used functional mutagenesis to investigate the involvement of the JH2 αC helix in the constitutive activation of JAK2 V617F. We show that residue F595, located in the middle of the αC helix of JH2, is indispensable for the constitutive activity of JAK2 V617F. Mutation of F595 to Ala, Lys, Val or Ile significantly decreases the constitutive activity of JAK2 V617F, but F595W and F595Y are able to restore it, implying an aromaticity requirement at position 595. Substitution of F595 to Ala was also able to decrease the constitutive activity of two other JAK2 mutants, T875N and R683G, as well as JAK2 K539L, albeit to a lower extent. In contrast, the F595 mutants are activated by erythropoietin-bound EpoR. We also explored the relationship between the dimeric conformation of EpoR and several JAK2 mutants. Since residue F595 is crucial to the constitutive activation of JAK2 V617F but not to initiation of JAK2 activation by cytokines, we suggest that small molecules that target the region around this residue might specifically block oncogenic JAK2 and spare JAK2 wild-type.
Collapse
Affiliation(s)
- Alexandra Dusa
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Céline Mouton
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Christian Pecquet
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Murielle Herman
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stefan N. Constantinescu
- Ludwig Institute for Cancer Research Ltd., Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
14
|
Plo I, Vainchenker W. Molecular and genetic bases of myeloproliferative disorders: questions and perspectives. ACTA ACUST UNITED AC 2010; 9 Suppl 3:S329-39. [PMID: 19778861 DOI: 10.3816/clm.2009.s.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery of the JAK2V617F mutation followed by the discovery of JAK2 exon 12 and MPLW515 mutations has completely modified the understanding, diagnosis, and management of the classic myeloproliferative disorders (MPDs), which include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Nonetheless, genetic defects have not yet been identified in about 40% of ET and PMF. There is now strong evidence that these mutations are the oncogenic events that drive these disorders and are responsible for most biologic and clinical abnormalities. In addition, there are convincing data indicating that the number of JAK2V617F copies (homozygosity vs. heterozygosity) is important in explaining how a single mutation can be associated with several disorders. However, it is still uncertain whether these mutations are sufficient to explain the full development, heterogeneity, and progression of MPD, or if other genetic or epigenetic events are also necessary. In this review, we discuss different hypothetical models of MPD pathogenesis supported by recent findings. Further characterization of the molecular events operating in these disorders will be essential in fully understanding their pathogenesis and in developing new therapeutic approaches.
Collapse
Affiliation(s)
- Isabelle Plo
- INSERM U790, Villejuif, France Institut Gustave Roussy, 94805 Villejuif, France
| | | |
Collapse
|
15
|
Menashi EB, Loftus JC. Differential effects of Pyk2 and FAK on the hypertrophic response of cardiac myocytes. Cell Tissue Res 2009; 337:243-55. [PMID: 19484266 DOI: 10.1007/s00441-009-0807-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 04/08/2009] [Indexed: 11/26/2022]
Abstract
The related cytoplasmic non-receptor tyrosine kinases Pyk2 (proline-rich tyrosine kinase 2) and FAK (focal adhesion kinase) have been implicated in phenylephrine-induced G-protein-coupled receptor-mediated signaling mechanisms leading to cardiomyocyte hypertrophy. We report that, in phenylephrine-stimulated neonatal rat ventricular myocytes (NRVM), Pyk2 augments expression of the hypertrophic marker atrial natriuretic factor (ANF) but reduces cytoskeletal organization and cell spreading. In contrast, FAK attenuates ANF production but does not alter cytoskeletal organization and cell spreading. Pyk2 and FAK exhibit differential localization in both unstimulated and phenylephrine-stimulated myocytes. Pyk2 catalytic activity is required for Pyk2 to augment ANF secretion but is not necessary to reduce cell spreading. Pyk2 autophosphorylation is required but not sufficient for Pyk2 to augment ANF secretion. Expression of the Pyk2 FERM domain as an autonomous fragment inhibits phenylephrine-mediated ANF secretion and reduces cell spreading. In addition, expression of the Pyk2 FERM domain inhibits the ability of Pyk2 to augment ANF secretion; this is correlated with reduced Pyk2 autophosphorylation. These data indicate that Pyk2 and FAK have different roles and occupy different positions in signaling pathways leading to the development of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Emmanuel B Menashi
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, 85259, USA
| | | |
Collapse
|
16
|
Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol 2009; 387:219-32. [PMID: 19361440 DOI: 10.1016/j.jmb.2009.01.041] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 12/17/2022]
Abstract
The Janus kinases (JAKs) are a pivotal family of protein tyrosine kinases (PTKs) that play prominent roles in numerous cytokine signaling pathways, with aberrant JAK activity associated with a variety of hematopoietic malignancies, cardiovascular diseases and immune-related disorders. Whereas the structures of the JAK2 and JAK3 PTK domains have been determined, the structure of the JAK1 PTK domain is unknown. Here, we report the high-resolution crystal structures of the "active form" of the JAK1 PTK domain in complex with two JAK inhibitors, a tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one (CMP6) and (3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile (CP-690,550), and compare them with the corresponding JAK2 PTK inhibitor complexes. Both inhibitors bound in a similar manner to JAK1, namely buried deep within a constricted ATP-binding site, thereby providing a basis for the potent inhibition of JAK1. As expected, the mode of inhibitor binding in JAK1 was very similar to that observed in JAK2, highlighting the challenges in developing JAK-specific inhibitors that target the ATP-binding site. Nevertheless, differences surrounding the JAK1 and JAK2 ATP-binding sites were apparent, thereby providing a platform for the rational design of JAK2- and JAK1-specific inhibitors.
Collapse
|
17
|
Kundrapu K, Colenberg L, Duhé RJ. Activation loop tyrosines allow the JAK2(V617F) mutant to attain hyperactivation. Cell Biochem Biophys 2008; 52:103-12. [PMID: 18841497 DOI: 10.1007/s12013-008-9025-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A gain-of-function mutation (V617F) in the pseudokinase domain of JAK2 is frequently present in patients with myeloproliferative disorders such as polycythemia vera, essential thrombocythemia, and primary myelofibrosis. This mutation might serve as an important diagnostic biomarker for these uncommon diseases and may represent a target for novel therapy. It is imperative that a well-defined molecular mechanism be provided to account for the gain of function. This manuscript focuses on whether the V617F mutation is sufficient to cause constitutive activation of the enzyme. The evidence presented suggests that the V617F mutation would not cause constitutive activation because its hyperactivating effect is not observed when the mutation is combined with the YY1007,1008FF mutations. The phosphorylation of these two tyrosines within the activation loop is generally accepted as an essential step in the enzyme's normal transition from a basal state of activity to a fully active catalytic state following cytokine receptor stimulation. These observations are consistent with an interpretation that V617F-induced hyperactivation does not supersede the requirement for receptor-mediated activation, as others have shown by combining the V617F mutation with critical mutations in the enzyme's FERM domain. Thus, JAK2(V617F) should be considered as a hyperactive kinase rather than a constitutively active kinase.
Collapse
Affiliation(s)
- Kanakadurga Kundrapu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
18
|
Wilks AF. The JAK kinases: not just another kinase drug discovery target. Semin Cell Dev Biol 2008; 19:319-28. [PMID: 18721891 DOI: 10.1016/j.semcdb.2008.07.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 11/19/2022]
Abstract
There are four members of the JAK family of protein tyrosine kinases (PTKs) in the human genome. Since their discovery in 1989, great strides have been made in the understanding of their role in normal intracellular signalling. Importantly, their roles in pathologies ranging from cancer to immune deficiencies have placed them front and centre as potential drug targets. The recent discovery of the role of activating mutations in the kinase-like domain (KLD) of JAK2 in the development of polycythemia rubra vera, and the elaboration of KLD mutation as a broader mechanism by which cells might become hyperproliferative has sparked enormous interest in the development of JAK selective drug candidates. I review herein the progress that has been made in the discovery of JAK-targeted inhibitors, and discuss the challenges that face the development of these drugs for use in the clinic.
Collapse
Affiliation(s)
- Andrew F Wilks
- SYN|thesis med chem, PO Box 450, South Yarra, Victoria 3141, Australia.
| |
Collapse
|
19
|
Funakoshi-Tago M, Tago K, Kasahara T, Parganas E, Ihle JN. Negative regulation of Jak2 by its auto-phosphorylation at tyrosine 913 via the Epo signaling pathway. Cell Signal 2008; 20:1995-2001. [PMID: 18682290 DOI: 10.1016/j.cellsig.2008.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 07/10/2008] [Accepted: 07/13/2008] [Indexed: 11/26/2022]
Abstract
Janus kinase 2 (Jak2) has a pivotal role in erythropoietin (Epo) signaling pathway, including erythrocyte differentiation and Stat5 activation. In the course of screening for critical phosphorylation of tyrosine residues in Jak2, we identified tyrosine 913 (Y(913)) as a novel and functional phosphorylation site, which negatively regulates Jak2. Phosphorylation at Y(913) rapidly occurred and was sustained for at least 120 min after Epo stimulation, in contrast to the transient phosphorylation of Y(1007/1008) in the activation loop of Jak2. Interestingly, phosphorylation defective mutation of Y(913) (Y(913)F) results in a significant enhancement of Epo-induced Jak2 activation, whereas phosphorylation mimic mutation of Y(913) (Y(913)E) completely abrogated its activation. Furthermore, Jak2 deficient fetal liver cells expressing Y(913)F mutant generated many mature erythroid BFU-E and CFU-E colonies, while Y(913)E mutant failed to reconstitute Jak2 deficiency. We also demonstrate, in Jak1, phosphorylation of Y(939), a corresponding tyrosine residue with Y(913), negatively regulated Jak1 signaling pathway. Accordingly, our results suggest that this tyrosine phosphorylation in JH1 domain may be involved in common negative regulation mechanism for Jak family.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | |
Collapse
|
20
|
JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol 2008; 19:385-93. [PMID: 18682296 DOI: 10.1016/j.semcdb.2008.07.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/01/2008] [Accepted: 07/10/2008] [Indexed: 01/09/2023]
Abstract
The four mammalian Janus kinase (JAK) family members, JAK1, JAK2, JAK3 and TYK2, are non-receptor protein tyrosine kinases (PTKs) that are crucial for cytokine receptor signaling in blood formation and immune responses. Mutations and translocations in the JAK genes leading to constitutively active JAK proteins are associated with a variety of hematopoietic malignancies, including the myeloproliferative disorders (JAK2), acute lymphoblastic leukemia (JAK2), acute myeloid leukemia (JAK2, JAK1), acute megakaryoblastic leukemia (JAK2, JAK3) and T-cell precursor acute lymphoblastic leukemia (JAK1). In contrast, loss-of-function mutations of JAK3 and TYK2 lead to immunodeficiency. The role of JAKs as therapeutic targets is starting to expand, as more insights into their structure and activation mechanisms become available.
Collapse
|
21
|
Haan S, Margue C, Engrand A, Rolvering C, Schmitz-Van de Leur H, Heinrich PC, Behrmann I, Haan C. Dual role of the Jak1 FERM and kinase domains in cytokine receptor binding and in stimulation-dependent Jak activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:998-1007. [PMID: 18178840 DOI: 10.4049/jimmunol.180.2.998] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Jak1 is a tyrosine kinase that noncovalently forms tight complexes with a variety of cytokine receptors and is critically involved in signal transduction via cytokines. Jaks are predicted to have a 4.1, ezrin, radixin, moesin (FERM) domain at their N terminus. FERM domains are composed of three structurally unrelated subdomains (F1, F2, and F3) which are in close contact to one another and form the clover-shaped FERM domain. We generated a model structure of the Jak1 FERM domain, based on solved FERM structures and the alignments with other FERM domains. To destabilize different subdomains and to uncover their exact function, we mutated specific hydrophobic residues conserved in FERM domains and involved in hydrophobic core interactions. In this study, we show that the structural integrity of the F2 subdomain of the FERM domain of Jak1 is necessary to bind the IFN-gammaRalpha. By mutagenesis of hydrophobic residues in the hydrophobic core between the three FERM subdomains, we find that the structural context of the FERM domain is necessary for the inhibition of Jak1 phosphorylation. Thus, FERM domain mutations can have repercussions on Jak1 function. Interestingly, a mutation in the kinase domain (Jak1-K907E), known to abolish the catalytic activity, also leads to an impaired binding to the IFN-gammaRalpha when this mutant is expressed at endogenous levels in U4C cells. Our data show that the structural integrity of both the FERM domain and of the kinase domain is essential for both receptor binding and catalytic function/autoinhibition.
Collapse
Affiliation(s)
- Serge Haan
- Life Science Research Unit, Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang HM, Lee YL, Chang TW. JAK1 N-terminus binds to conserved Box 1 and Box 2 motifs of cytokine receptor common beta subunit but signal activation requires JAK1 C-terminus. J Cell Biochem 2006; 99:1078-84. [PMID: 16767694 DOI: 10.1002/jcb.20942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human interleukin-3 receptor (hIL-3R) consists of a unique alpha subunit (hIL-3Ralpha) and a common beta subunit (betac). Binding of IL-3 to IL-3R activates Janus kinases JAK1 and JAK2. Our previously study showed that JAK2 and JAK1 were constitutively associated with the hIL-3Ralpha and betac subunits, respectively. In this study, we further demonstrate that JAK2 binds to the intracellular domain of hIL-3Ralpha and JAK1 binds to the Box 1 and Box 2 motifs of betac using GST-hIL-3R fusion proteins in pull-down assays. JAK1 mutational analysis revealed that its JH7-3 domains bound directly to the Box 1 and Box 2 motifs of betac. We further examined the role of JAK1 JH7-3 domains in JAK1 and JAK2-mediated signaling using the CDJAKs fusion proteins, which consisted of a CD16 extracellular domain, a CD7 transmembrane domain, and either JAK1 (CDJAK1), JAK2 (CDJAK2), or JAK1-JH7-3 domains (CDJAK1-JH7-3) as intracellular domains. Anti-CD16 antibody crosslinking of wild type fusion proteins CDJAK1 with CDJAK2 could mimic IL-3 signaling, however, the crosslinking of fusion proteins CDJAK1-JH7-3 with CDJAK2 failed to activate downstream proteins. These results suggest that the JAK1-JH7-3 domains are required for betac interaction and abolish wild type JAK1 and JAK2-mediated signaling.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
23
|
Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 2006; 25:4763-72. [PMID: 17024180 PMCID: PMC1618111 DOI: 10.1038/sj.emboj.7601365] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 08/30/2006] [Indexed: 01/17/2023] Open
Abstract
The tyrosine kinase, Janus kinase-2 (Jak2), plays a pivotal role in signal transduction through a variety of cytokine receptors, including the receptor for erythropoietin (Epo). Although the physiological relevance of Jak2 has been definitively established, less is known about its regulation. In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (band 4.1, Ezrin, radixin and moesin) domain as a phosphorylation site. In these studies, we demonstrate that the phosphorylation of Y(119) in response to Epo downregulates Jak2 kinase activity. Using a phosphorylation mimic mutation (Y(119)E), downregulation is shown to involve dissociation of Jak2 from the receptor complex. Conversely, a Y(119)F mutant is more stably associated with the receptor complex. Thus, in cytokine responses, ligand binding induces activation of receptor associated Jak2, autophosphorylation of Y(119) in the FERM domain and the subsequent dissociation of the activated Jak2 from the receptor and degradation. This regulation occurs with the receptors for Epo, thrombopoietin and growth hormone but not with the receptor for interferon-gamma.
Collapse
Affiliation(s)
| | - Stephane Pelletier
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tadashi Matsuda
- Department of Immunology, Hokkaido University, Sapporo, Japan
| | - Evan Parganas
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James N Ihle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN 38120, USA. Tel.: +1 901 495 3422; Fax: +1 901 525 8025; E-mail:
| |
Collapse
|
24
|
Haan C, Kreis S, Margue C, Behrmann I. Jaks and cytokine receptors--an intimate relationship. Biochem Pharmacol 2006; 72:1538-46. [PMID: 16750817 DOI: 10.1016/j.bcp.2006.04.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/24/2022]
Abstract
Most cytokine receptors lack intrinsic kinase activity and many of them signal via Janus kinases (Jaks). These tyrosine kinases are associated with cytokine receptor subunits, they become activated upon receptor triggering and subsequently activate downstream signalling events, e.g. the phosphorylation of STAT transcription factors. The successful interplay between cytokines, their receptors and the connected Jaks not only determines signalling competence but is also vital for intracellular traffic, stability, and fate of the cognate receptors. Here, we will discuss underlying mechanisms as well as some structural features with a focus on Jak1 and two of the signal transducing receptor subunits of interleukin (IL)-6 type cytokines, gp130 and OSMR. Regions that are critically involved in Jak-binding have been identified for many cytokine receptor subunits. In most cases the membrane-proximal parts comprising the box1 and box2 regions within the receptor are involved in this association while, within Jaks, the N-terminal FERM domain, possibly together with the SH2-like domain, are pivotal for binding to the relevant receptors. The exclusive membrane localisation of Jaks depends on their ability to associate with cytokine receptors. For gp130 and Jak1, it was shown that the cytokine receptor/Jak complex can be regarded as a receptor tyrosine kinase since both molecules have the same diffusion dynamics and are virtually undissociable. Furthermore, Jaks take an active role in the regulation of the surface expression of at least some cytokine receptors, including the OSMR and this may provide a quality control mechanism ensuring that only signalling-competent receptors (i.e. those with an associated Jak) would be enriched at the cell surface.
Collapse
Affiliation(s)
- Claude Haan
- Laboratoire de Biologie et Physiologie Intégrée (LBPI), University of Luxembourg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
25
|
Valentino L, Pierre J. JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 2006; 71:713-21. [PMID: 16426581 DOI: 10.1016/j.bcp.2005.12.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 01/12/2023]
Abstract
Signal transducers and activators of transcription (STATs) comprise a family of several transcription factors that are activated by a variety of cytokines, hormones and growth factors. STATs are activated through tyrosine phosphorylation, mainly by JAK kinases, which lead to their dimerization, nuclear translocation and regulation of target genes expression. Stringent mechanisms of signal attenuation are essential for insuring appropriate, controlled cellular responses. Among them phosphotyrosine phosphatases (SHPs, CD45, PTP1B/TC-PTP), protein inhibitors of activated STATs (PIAS) and suppressors of cytokine signaling (SOCS) inhibit specific and distinct aspects of cytokine signal transduction. SOCS proteins bind through their SH2 domain to phosphotyrosine residues in either cytokine receptors or JAK and thus can suppress cytokine signaling. Many recent findings indicate that SOCS proteins act, in addition, as adaptors that regulate the turnover of certain substrates by interacting with and activating an E3 ubiquitin ligase. Thus, SOCS proteins act as negative regulators of JAK/STAT pathways and may represent tumour suppressor genes. The discovery of oncogenic partner in this signaling pathway, more especially in diverse hematologic malignancies support a prominent role of deregulated pathways in the pathogenesis of diseases. Fusion proteins implicating the JH1 domain of JAK2 (TEL-JAK2, BCR-JAK2), leading to deregulated activity of JAK2, have been described as the result of translocation. Somatic point mutation in JH2 domain of JAK2 (JAK2V617F), leading also to constitutive tyrosine phosphorylation of JAK2 and its downstream effectors was reported in myeloproliferative disorders. Furthermore, silencing of socs-1 and shp-1 expression by gene methylation is observed in some cancer cells.
Collapse
Affiliation(s)
- Lyne Valentino
- Inserm U749, Faculté de Pharmacie, 5, rue JB Clément, 92296 Châtenay-Malabry, France
| | | |
Collapse
|
26
|
Abstract
Metazoan cells secrete small proteins termed cytokines that execute a variety of biological functions essential for the survival of organisms. Binding of cytokines that belong to the hematopoietin- or interferon-family, to their cognate receptors on the surface of target cells, induces receptor aggregation, which in turn sequentially triggers tyrosine-phosphorylation-dependent activation of receptor-associated Janus-family tyrosine kinases (JAKs), receptors, and signal transducers and activators of transcription (STATs). Phosphorylated STATs form dimers that migrate to the nucleus, bind to cognate enhancer elements and activate transcription of target genes. Each cytokine activates a specific set of genes to execute its biological functions with a certain degree of redundancy. Cytokine signals are, in general, transient in nature. Therefore, under normal physiological conditions, initiation and attenuation of cytokine signals are tightly controlled via multiple cellular and molecular mechanisms. Aberrant activation of cytokine signaling pathways is, however, found under a variety of patho-physiological conditions including cancer and immune diseases.
Collapse
Affiliation(s)
- S Jaharul Haque
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
27
|
Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, Walter M, Burns CJ, Treutlein H, Wilks AF, Rossjohn J. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 2005; 107:176-83. [PMID: 16174768 DOI: 10.1182/blood-2005-06-2413] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JAK2, a member of the Janus kinase (JAK) family of protein tyrosine kinases (PTKs), is an important intracellular mediator of cytokine signaling. Mutations of the JAK2 gene are associated with hematologic cancers, and aberrant JAK activity is also associated with a number of immune diseases, including rheumatoid arthritis. Accordingly, the development of JAK2-specific inhibitors has tremendous clinical relevance. Critical to the function of JAK2 is its PTK domain. We report the 2.0 A crystal structure of the active conformation of the JAK2 PTK domain in complex with a high-affinity, pan-JAK inhibitor that appears to bind via an induced fit mechanism. This inhibitor, the tetracyclic pyridone 2-tert-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-1, was buried deep within a constricted ATP-binding site, in which extensive interactions, including residues that are unique to JAK2 and the JAK family, are made with the inhibitor. We present a structural basis of high-affinity JAK-specific inhibition that will undoubtedly provide an invaluable tool for the further design of novel, potent, and specific therapeutics against the JAK family.
Collapse
Affiliation(s)
- Isabelle S Lucet
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Radtke S, Haan S, Jörissen A, Hermanns HM, Diefenbach S, Smyczek T, Schmitz-Vandeleur H, Heinrich PC, Behrmann I, Haan C. The Jak1 SH2 Domain Does Not Fulfill a Classical SH2 Function in Jak/STATSignaling but Plays a Structural Role for Receptor Interaction andUp-regulation of Receptor SurfaceExpression. J Biol Chem 2005; 280:25760-8. [PMID: 15894543 DOI: 10.1074/jbc.m500822200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of a Src homology 2 (SH2) domain sequence similarity in the sequence of Janus kinases (Jaks) has been discussed since the first descriptions of these enzymes. We performed an in depth study to determine the function of the Jak1 SH2 domain. We investigated the functionality of the Jak1 SH2 domain by stably reconstituting Jak1-defective human fibrosarcoma cells U4C with endogenous amounts of Jak1 in which the crucial arginine residue Arg466 within the SH2 domain has been replaced by lysine. This mutant still binds to the receptor subunits gp130 and OSMR. Moreover, the SH2 R466K mutation does not affect the subcellular distribution of Jak1 as assessed by cell fractionation and confocal microscopy of cells expressing endogenous levels of non-tagged or a yellow fluorescent protein (YFP)-tagged Jak1-R466K, respectively. Likewise, the signaling capacity of Jak1 was not affected by this point mutation. However, we found that the SH2 domain is structurally important for cytokine receptor binding and surface expression of the OSMR.
Collapse
Affiliation(s)
- Simone Radtke
- Institut für Biochemie, Uniklinik Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, Zhao ZJ. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280:22788-92. [PMID: 15863514 PMCID: PMC1201515 DOI: 10.1074/jbc.c500138200] [Citation(s) in RCA: 470] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polycythemia vera (PV) is a human clonal hematological disorder. The molecular etiology of the disease has not been identified. PV hematopoietic progenitor cells exhibit hypersensitivity to growth factors and cytokines, suggesting possible abnormalities in protein-tyrosine kinases and phosphatases. By sequencing the entire coding regions of cDNAs of candidate enzymes, we identified a G:C--> T:A point mutation of the JAK2 tyrosine kinase in 20 of 24 PV blood samples but none in 12 normal samples. The mutation has varying degrees of heterozygosity and is apparently acquired. It changes conserved Val(617) to Phe in the pseudokinase domain of JAK2 that is known to have an inhibitory role. The mutant JAK2 has enhanced kinase activity, and when overexpressed together with the erythropoietin receptor in cells, it caused hyperactivation of erythropoietin-induced cell signaling. This gain-of-function mutation of JAK may explain the hypersensitivity of PV progenitor cells to growth factors and cytokines. Our study thus defines a molecular defect of PV.
Collapse
Affiliation(s)
- Runxiang Zhao
- Hematology/Oncology Division, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 2005; 15:435-55. [PMID: 15561601 DOI: 10.1016/j.cytogfr.2004.09.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signal transducers and activators of transcription (Stats) comprise a family of seven transcription factors that are activated by a variety of cytokines, hormones and growth factors. Stats are activated through tyrosine phosphorylation, mainly by Jak kinases, that lead to their dimerization, nuclear translocation and regulation of target gene expression. Stat5 was originally identified as a transcription factor that regulates the beta-casein gene in response to prolactin (PRL), but Stat5 is activated also by several other cytokines and growth factors. The molecular mechanisms that underlie Stat5-mediated transcription involve interactions and cooperation with sequence specific transcription factors and transcriptional coregulators. Our studies identified p100 protein as a coactivator for Stat5, and suggest the existence of a positive regulatory loop in PRL-induced transcription, where PRL stabilizes p100 protein, which in turn can cooperate with Stat5 in transcriptional activation. Suppressors of cytokine signaling (SOCS) proteins are important negative regulators of Stats. A target gene for Stat5, the serine/threonine kinase Pim-1, was found to cooperate with SOCS-1 and SOCS-3 to inhibit Stat5 activity suggesting that Pim-1 together with SOCS-1 and SOCS-3 are components of a negative feedback mechanism that allows Stat5 to regulate its own activation.
Collapse
Affiliation(s)
- Kirsi Paukku
- Department of Virology, Haartman Institute and Biomedicum Helsinki, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland.
| | | |
Collapse
|
31
|
Cohen LA, Guan JL. Residues within the First Subdomain of the FERM-like Domain in Focal Adhesion Kinase Are Important in Its Regulation. J Biol Chem 2005; 280:8197-207. [PMID: 15611137 DOI: 10.1074/jbc.m412021200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously described regulation of focal adhesion kinase (FAK) by its amino-terminal FERM-like domain through an autoinhibitory interaction with its kinase domain (Cooper, L. A., Shen, T. L., and Guan, J. L. (2003) Mol. Cell. Biol. 23, 8030-8041). Here we show that the first two subdomains of the FERM-like domain are independently capable of inhibiting phosphorylation of FAK in trans. We characterized several point mutations within the first subdomain of the FERM-like domain and find that mutation of Lys-38 to alanine results in a FAK mutant that is strongly hyperphosphorylated when expressed in mammalian cells, and promotes increased phosphorylation of the FAK substrate paxillin. A second mutation of Lys-78 to alanine results in a FAK mutant that is underphosphorylated, but can be activated by extracellular matrix stimuli. Like deletion of the amino terminus itself the K38A mutation is phosphorylated in suspension. The Delta375 truncation mutant of FAK is strongly phosphorylated both when Tyr-397 is mutated to phenylalanine, and in the presence of the Src inhibitor, PP2, suggesting that removal of the amino terminus can render FAK Src independent. This is in contrast to the K38A mutant that is not phosphorylated in the Y397F background, and which shows decreased phosphorylation in the presence of the Src inhibitor PP2, suggesting that regulation of FAK by Src is a secondary step in its activation. The K38A mutation weakens the interaction between the amino terminus of FAK and its own kinase domain, and disrupts the ability of the amino terminus to inhibit the phosphorylation of FAK in trans. The K38A mutation of FAK also increases the ability of FAK to promote cell cycle progression and cell migration, suggesting that hyperphosphorylation of this mutant can positively affect FAK function in cells. Together, these data strongly suggest a role for the first FAK subdomain of the FERM domain in its normal regulation and function in the cell.
Collapse
Affiliation(s)
- Lee Ann Cohen
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
32
|
Itoh K, Lisovsky M, Hikasa H, Sokol SY. Reorganization of actin cytoskeleton by FRIED, a Frizzled-8 associated protein tyrosine phosphatase. Dev Dyn 2005; 234:90-101. [PMID: 16086323 DOI: 10.1002/dvdy.20526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Frizzled receptors transduce signals from the extracellular Wnt ligands through multiple signaling pathways that affect cytoskeletal organization and regulate gene expression. Direct intracellular mediators of Frizzled signaling are largely unknown. We identified FRIED (Frizzled interaction and ectoderm defects) by its association with the C-terminal PDZ-binding motif of Xenopus Frizzled 8. FRIED contains an N-terminal KIND domain, a FERM domain, six PDZ domains, and a tyrosine phosphatase domain, being similar in structure to the protein tyrosine phosphatase PTP-BAS/PTP-BL. We report that FRIED proteins with the FERM domain localize to the apical cortex and can inhibit Wnt8-mediated, but not beta-catenin-mediated, secondary axis induction in Xenopus embryos, suggesting a specific interaction with Wnt signaling. A FRIED construct containing the FERM domain induced reorganization of pigment granules and cortical actin in Xenopus ectoderm. Wnt5a suppressed the depigmentation of ectoderm triggered by FRIED, demonstrating that Wnt5a and FRIED functionally interact to regulate the cytoskeletal organization. Our data are consistent with the possibility that FRIED functions by modulating Rac1 activity. We propose that FRIED is an adaptor protein that serves as a molecular link between Wnt signaling and actin cytoskeleton.
Collapse
Affiliation(s)
- Keiji Itoh
- Department of Molecular Cell and Developmental Biology, Mount Sinai Medical School, New York, NY 10029, USA
| | | | | | | |
Collapse
|
33
|
Matsuda T, Feng J, Witthuhn BA, Sekine Y, Ihle JN. Determination of the transphosphorylation sites of Jak2 kinase. Biochem Biophys Res Commun 2004; 325:586-94. [PMID: 15530433 DOI: 10.1016/j.bbrc.2004.10.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Indexed: 11/23/2022]
Abstract
Janus kinases are the key enzymes involved in the initial transmission of signals in response to type I and II cytokines. Activation of the signal begins with the transphosphorylation of Jak kinases. Substrates that give rise to downstream events are recruited to the receptor complex in part by interactions with phosphorylated tyrosines. The identity of many of the phosphotyrosines responsible for recruitment has been elucidated as being receptor-based tyrosines. The ability of Jaks to recruit substrates through their own phosphotyrosines has been demonstrated for tyrosines in the kinase activation loop. Recent studies demonstrate that other tyrosines have implications in regulatory roles of Jak kinase activity. In this study, baculovirus-produced Jak2 was utilized to demonstrate that transphosphorylation of Jak kinases occurs on multiple residues throughout the protein. We demonstrate that among the tyrosines phosphorylated, those in the kinase domain occur as expected, but many other sites are also phosphorylated. The tyrosines conserved in the Jak family are the object of this study, although many of them are phosphorylated, many are not. This result suggests that conservation of tyrosines is perhaps as important in maintaining structure of the Jak family. Additionally, non-Jak family conserved tyrosines are phosphorylated suggesting that the individual Jaks ability to phosphorylated specific tyrosines may influence signals emitting from activated Jaks.
Collapse
Affiliation(s)
- Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
34
|
Behrmann I, Smyczek T, Heinrich PC, Schmitz-Van de Leur H, Komyod W, Giese B, Müller-Newen G, Haan S, Haan C. Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase. J Biol Chem 2004; 279:35486-93. [PMID: 15123646 DOI: 10.1074/jbc.m404202200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Janus kinases are considered to be cytoplasmic kinases that constitutively associate with the cytoplasmic region of cytokine receptors, and the Janus kinases (Jaks) are crucial for cytokine signal transduction. We investigated Jak1 localization using subcellular fractionation techniques and fluorescence microscopy (immunofluorescence and yellow fluorescent protein-tagged Jaks). In the different experimental approaches we found Jak1 (as well as Jak2 and Tyk2) predominantly located at membranes. In contrast to previous reports we did not observe Jak proteins in significant amounts within the nucleus or in the cytoplasm. The cytoplasmic localization observed for the Jak1 mutant L80A/Y81A, which is unable to associate with cytokine receptors, indicates that Jak1 does not have a strong intrinsic membrane binding potential and that only receptor binding is crucial for the membrane recruitment. Finally we show that Jak1 remains a membrane-localized protein after cytokine stimulation. These data strongly support the hypothesis that cytokine receptor.Janus kinase complexes can be regarded as receptor tyrosine kinases.
Collapse
Affiliation(s)
- Iris Behrmann
- Institut für Biochemie, Universitätsklinikum Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cooper LA, Shen TL, Guan JL. Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol Cell Biol 2003; 23:8030-41. [PMID: 14585964 PMCID: PMC262338 DOI: 10.1128/mcb.23.22.8030-8041.2003] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have investigated a role for the amino-terminal FERM-like domain of the focal adhesion kinase (FAK) as a negative regulator of its own activity and phosphorylation state. Deletion of the first 375 amino acids from the amino terminus of FAK increases its catalytic activity in vitro, its phosphorylation when expressed in mammalian cells, and the phosphorylation of a FAK substrate, paxillin. Deletion mutants are phosphorylated in suspension, suggesting that they are no longer regulated by adhesion. The amino terminus of FAK can interact with the kinase domain of FAK in vitro and in vivo, suggesting that it might act as an autoinhibitor of FAK activity. The amino terminus of FAK can act in trans to inhibit FAK phosphorylation when expressed in mammalian cells or to directly inhibit FAK activity in vitro. Expression of the amino terminus of FAK inhibits cell cycle progression in CHO cells, consistent with its inhibition of FAK phosphorylation and function in trans. A glutathione S-transferase fusion protein containing the cytoplasmic tail of the beta1 integrin stimulates FAK activity in vitro, suggesting that FAK could be regulated by molecular interactions with the amino terminus. Based on these and previous data, we propose a working model for activation of FAK in cell adhesion.
Collapse
Affiliation(s)
- Lee Ann Cooper
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
36
|
Giese B, Au-Yeung CK, Herrmann A, Diefenbach S, Haan C, Küster A, Wortmann SB, Roderburg C, Heinrich PC, Behrmann I, Müller-Newen G. Long term association of the cytokine receptor gp130 and the Janus kinase Jak1 revealed by FRAP analysis. J Biol Chem 2003; 278:39205-13. [PMID: 12878601 DOI: 10.1074/jbc.m303347200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction through cytokine receptors is mediated mainly by non-covalently associated Jak tyrosine kinases. By confocal microscopy, the cytokine receptor gp130 and Jak1, fused with either yellow (YFP) or cyan (CFP) fluorescent protein, were found to be colocalized predominantly at intracellular vesicular structures and at the plasma membrane. Quantitative fluorescence recovery after photobleaching (FRAP) analysis at the plasma membrane revealed equal mobilities for gp130-YFP and Jak1-YFP. Thus, Jak1-YFP diffuses like a transmembrane protein indicating that membrane-bound Jak1 does not exchange rapidly with cytosolic Jaks. Applying a novel dual-color FRAP approach we found that immobilization of gp130-CFP by a pair of monoclonal antibodies led to a corresponding immobilization of co-transfected Jak1-YFP. We conclude from these findings that Jak1, once bound to a gp130 molecule, does not exchange between different receptors at the plasma membrane neither via the cytoplasmic compartment nor via a membrane-associated state.
Collapse
Affiliation(s)
- Bernd Giese
- Institut für Biochemie, Universitätsklinikum RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Traka M, Goutebroze L, Denisenko N, Bessa M, Nifli A, Havaki S, Iwakura Y, Fukamauchi F, Watanabe K, Soliven B, Girault JA, Karagogeos D. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol 2003; 162:1161-72. [PMID: 12975355 PMCID: PMC2172849 DOI: 10.1083/jcb.200305078] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Myelination results in a highly segregated distribution of axonal membrane proteins at nodes of Ranvier. Here, we show the role in this process of TAG-1, a glycosyl-phosphatidyl-inositol-anchored cell adhesion molecule. In the absence of TAG-1, axonal Caspr2 did not accumulate at juxtaparanodes, and the normal enrichment of shaker-type K+ channels in these regions was severely disrupted, in the central and peripheral nervous systems. In contrast, the localization of protein 4.1B, an axoplasmic partner of Caspr2, was only moderately altered. TAG-1, which is expressed in both neurons and glia, was able to associate in cis with Caspr2 and in trans with itself. Thus, a tripartite intercellular protein complex, comprised of these two proteins, appears critical for axo-glial contacts at juxtaparanodes. This complex is analogous to that described previously at paranodes, suggesting that similar molecules are crucial for different types of axo-glial interactions.
Collapse
Affiliation(s)
- Maria Traka
- Department of Basic Science, University of Crete Medical School, Heraklion 71110, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Denisenko-Nehrbass N, Oguievetskaia K, Goutebroze L, Galvez T, Yamakawa H, Ohara O, Carnaud M, Girault JA. Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres. Eur J Neurosci 2003; 17:411-6. [PMID: 12542678 DOI: 10.1046/j.1460-9568.2003.02441.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caspr/paranodin, a neuronal transmembrane glycoprotein, is essential for the structure and function of septate-like paranodal axoglial junctions at nodes of Ranvier. A closely related protein, Caspr2, is concentrated in juxtaparanodal regions where it associates indirectly with the shaker-type potassium channels. Although ultrastructural studies indicate that paranodal complexes are linked to the cytoskeleton, the intracellular partners of Caspr/paranodin, as well as those of Caspr2, are poorly characterized. We show that the conserved intracellular juxtamembrane regions (GNP motif) of Caspr/paranodin and Caspr2 bind proteins 4.1R and 4.1B. 4.1B is known to be enriched in paranodal and juxtaparanodal regions. 4.1B immunoreactivity accumulates progressively at paranodes and juxtaparanodes during postnatal development, following the concentration of Caspr/paranodin and Caspr2, respectively, in central and peripheral myelinated axons. These two proteins coimmunoprecipitated with 4.1B in brain homogenates. Our results provide strong evidence for the association of 4.1B with Caspr/paranodin at paranodes and with Caspr2 at juxtaparanodes. We propose that 4.1B anchors these axonal proteins to the actin-based cytoskeleton in these two regions.
Collapse
|
39
|
Denisenko-Nehrbass N, Goutebroze L, Galvez T, Bonnon C, Stankoff B, Ezan P, Giovannini M, Faivre-Sarrailh C, Girault JA. Association of Caspr/paranodin with tumour suppressor schwannomin/merlin and beta1 integrin in the central nervous system. J Neurochem 2003; 84:209-21. [PMID: 12558984 DOI: 10.1046/j.1471-4159.2003.01503.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caspr/paranodin is an essential neuronal component of paranodal axoglial junctions, associated with contactin/F3. Its short intracellular domain contains a conserved motif (GNP motif) capable of binding protein 4.1 domains [FERM domains (four point one, ezrin, radixin, moesin)]. Schwannomin/merlin is a tumour suppressor expressed in many cell types, including in neurons, the function and partners of which are still poorly characterized. We show that the FERM domain of schwannomin binds to the paranodin GNP motif in glutathione S-transferase (GST)-pull down assays and in transfected COS-7 cells. The two proteins co-immunoprecipitated in brain extracts. In addition, paranodin and schwannomin were associated with integrin beta1 in transfected cells and in brain homogenates. The presence of paranodin increased the association between integrin beta1 and schwannomin or its N-terminal domain, suggesting that the interactions between these proteins are interdependent. In jimpy mutant mice, which display a severe dysmyelination with deficient paranodal junctions, the interactions between paranodin, schwannomin and integrin beta1 were profoundly altered. Our results show that schwannomin and integrin beta1 can be associated with paranodin in the central nervous system. Since integrin beta1 and schwannomin do not appear to be enriched in paranodes they may be quantitatively minor partners of paranodin in these regions and/or be associated with paranodin at other locations.
Collapse
|
40
|
Toutant M, Costa A, Studler JM, Kadaré G, Carnaud M, Girault JA. Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 2002; 22:7731-43. [PMID: 12391143 PMCID: PMC134714 DOI: 10.1128/mcb.22.22.7731-7743.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK) is activated following integrin engagement or stimulation of transmembrane receptors. Autophosphorylation of FAK on Tyr-397 is a critical event, allowing binding of Src family kinases and activation of signal transduction pathways. Tissue-specific alternative splicing generates several isoforms of FAK with different autophosphorylation rates. Despite its importance, the mechanisms of FAK autophosphorylation and the basis for differences between isoforms are not known. We addressed these questions using isoforms of FAK expressed in brain. Autophosphorylation of FAK(+), which is identical to that of "standard" FAK, was intermolecular in transfected cells, although it did not involve the formation of stable multimeric complexes. Coumermycin-induced dimerization of gyrase B-FAK(+) chimeras triggered autophosphorylation of Tyr-397. This was independent of cell adhesion but required the C terminus of the protein. In contrast, the elevated autophosphorylation of FAK(+6,7), the major neuronal splice isoform, was not accounted for by transphosphorylation. Specifically designed immune precipitate kinase assays confirmed that autophosphorylation of FAK(+) was intermolecular, whereas autophosphorylation of FAK(+6,7) or FAK(+7) was predominantly intramolecular and insensitive to the inhibitory effects of the N-terminal domain. Our results clarify the mechanisms of FAK activation and show how alternative splicing can dramatically alter the mechanism of autophosphorylation of a protein kinase.
Collapse
|
41
|
Abstract
The architecture and function of the nodes of Ranvier depend on several specialized cell contacts between the axon and myelinating glial cells. These sites contain highly organized multimolecular complexes of ion channels and cell adhesion molecules, closely connected with the cytoskeleton. Recent findings are beginning to reveal how this organization is achieved during the development of myelinated nerves. The role of membrane proteins involved in axoglial interactions and of associated cytoplasmic molecules is being elucidated, while studies of mutant mice have underlined the importance of glial cells and the specific role of axonal proteins in the organization of axonal domains.
Collapse
Affiliation(s)
- Jean-Antoine Girault
- INSERM U 536, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France.
| | | |
Collapse
|
42
|
Burysek L, Syrovets T, Simmet T. The serine protease plasmin triggers expression of MCP-1 and CD40 in human primary monocytes via activation of p38 MAPK and janus kinase (JAK)/STAT signaling pathways. J Biol Chem 2002; 277:33509-17. [PMID: 12093796 DOI: 10.1074/jbc.m201941200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of proinflammatory activation of human monocytes by plasmin is unknown. Here we demonstrate that in human primary monocytes, plasmin stimulates mitogen-activated protein kinase (MAPK) signaling via phosphorylation of MAPK kinase 3/6 (MKK3/6) and p38 MAPK that triggers subsequent DNA binding of transcription factor activator protein-1 (AP-1). The AP-1 complex contained phosphorylated c-Jun and ATF2, and its DNA binding activity was blocked by the p38 MAPK inhibitor SB203580. In addition, plasmin elicits Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, as detected by phosphorylation of JAK1 tyrosine kinase and STAT1 and STAT3 proteins. Plasmin-induced DNA binding of STAT1 and STAT3 was blocked by SB203580 and AG490, inhibitors of p38 MAPK and JAK, respectively, but not by U0126, an inhibitor of MKK1/2. DNA binding of NF-kappaB remained unaffected by any of these inhibitors. The plasmin-induced signaling led to expression of monocyte chemoattractant protein-1 (MCP-1) and CD40, which required activation of both p38 MAPK and JAK/STAT signaling pathways. Additionally, signaling through both p38 MAPK and JAK is involved in the plasmin-mediated monocyte migration, whereas the formylmethionylleucylphenylalanine-induced chemotaxis remained unaffected. Taken together, our data demonstrate a novel function of the serine protease plasmin in a proinflammatory signaling network.
Collapse
Affiliation(s)
- Ladislav Burysek
- Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, D-89081 Ulm, Germany
| | | | | |
Collapse
|
43
|
Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002; 3:586-99. [PMID: 12154370 DOI: 10.1038/nrm882] [Citation(s) in RCA: 1063] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental property of many plasma-membrane proteins is their association with the underlying cytoskeleton to determine cell shape, and to participate in adhesion, motility and other plasma-membrane processes, including endocytosis and exocytosis. The ezrin-radixin-moesin (ERM) proteins are crucial components that provide a regulated linkage between membrane proteins and the cortical cytoskeleton, and also participate in signal-transduction pathways. The closely related tumour suppressor merlin shares many properties with ERM proteins, yet also provides a distinct and essential function.
Collapse
Affiliation(s)
- Anthony Bretscher
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
44
|
Greiser JS, Stross C, Heinrich PC, Behrmann I, Hermanns HM. Orientational constraints of the gp130 intracellular juxtamembrane domain for signaling. J Biol Chem 2002; 277:26959-65. [PMID: 12011064 DOI: 10.1074/jbc.m204113200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The glycoprotein 130 (gp130) is the common signal transducing receptor chain of the interleukin-6 family of cytokines. Here we investigated the requirements for transfer of the information given by ligand binding to the cytoplasmic domain of gp130. It is demonstrated that the box 1/2 region has to be located membrane-proximally in order to bind and activate Janus kinases. To test the possible requirement of an alpha-helical orientation, we inserted 1-4 alanine residues into this juxtamembrane intracellular region. The insertion of one alanine results in a strongly reduced activation of STAT1 and STAT3, whereas insertion of three alanine residues leads to a stronger STAT activation. These results suggest that gp130-mediated activation of STATs is sensitive to rotational changes around the receptor axis perpendicular to the membrane. Surprisingly, insertion of 1, 2, 3, or 4 alanine residues into this juxtamembrane region leads to successive impairment but not abolishment of Janus kinase and receptor phosphorylation, supporting the finding of sensitivity of Janus kinases toward changes in distance of box 1/2 from the plasma membrane. We suggest a new model concerning the gp130 activation mode in which the relative orientation of the cytoplasmic regions seems to be critical for further signal transduction.
Collapse
Affiliation(s)
- Jens S Greiser
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | | | | | | | | |
Collapse
|
45
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 813] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
46
|
Denisenko-Nehrbass N, Faivre-Sarrailh C, Goutebroze L, Girault JA. A molecular view on paranodal junctions of myelinated fibers. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:99-103. [PMID: 11755788 DOI: 10.1016/s0928-4257(01)00085-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The axoglial paranodal junctions, flanking the Ranvier nodes, are specialized adhesion sites between the axolemma and myelinating glial cells. Unraveling the molecular composition of paranodal junctions is crucial for understanding the mechanisms involved in the regulation of myelination, and positioning and segregation of the voltage-gated Na+ and K+ channels, essential for the generation and conduction of action potentials. Paranodin/Caspr was the first neuronal transmembrane glycoprotein identified at the paranodal junctions. Paranodin/Caspr is associated on the axonal membrane with contactin/F3, a glycosylphosphatidylinositol-anchored protein, essential for its correct targeting. The extra and intracellular regions of paranodin encompass multiple domains which can be involved in protein-protein interactions with other axonal proteins and glial proteins. Thus, paranodin plays a central role in the assembly of multiprotein complexes necessary for the formation and maintenance of paranodal junctions.
Collapse
|
47
|
Klarlund JK, Holik J, Chawla A, Park JG, Buxton J, Czech MP. Signaling complexes of the FERM domain-containing protein GRSP1 bound to ARF exchange factor GRP1. J Biol Chem 2001; 276:40065-70. [PMID: 11445584 DOI: 10.1074/jbc.m105260200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP1 is a member of a family of proteins that contain a coiled-coil region, a Sec7 homology domain with guanosine nucleotide exchange activity for the ARF GTP-binding proteins, and a pleckstrin homology domain at the C terminus. The pleckstrin homology domain of GRP1 binds phosphatidylinositol (3,4,5) trisphosphate and mediates the translocation of GRP1 to the plasma membrane upon agonist stimulation of PI 3-kinase activity. Using a (32)P-labeled GRP1 probe to screen a mouse brain cDNA expression library, we isolated a cDNA clone encoding a GRP1-binding partner (GRSP1) that exists as two different splice variants in brain and lung. The GRSP1 protein contains a FERM protein interaction domain as well as two coiled coil domains and may therefore function as a scaffolding protein. Mapping experiments revealed that the interaction of GRP1 and GRSP1 occurs through the coiled coil domains in the two proteins. Immunodepletion experiments indicate that virtually all of the endogenous GRSP1 protein exists as a complex with GRP1 in lung. When co-expressed in Chinese hamster ovary cells expressing the human insulin receptor, both proteins display a diffuse, cytoplasmic localization. Acute translocation and co-localization of GRSP1 and GRP1 to ruffles in the plasma membrane was evident after insulin stimulation. These results identify GRSP1 as a novel member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling.
Collapse
Affiliation(s)
- J K Klarlund
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St., Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
48
|
Haan C, Is'harc H, Hermanns HM, Schmitz-Van De Leur H, Kerr IM, Heinrich PC, Grötzinger J, Behrmann I. Mapping of a region within the N terminus of Jak1 involved in cytokine receptor interaction. J Biol Chem 2001; 276:37451-8. [PMID: 11468294 DOI: 10.1074/jbc.m106135200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Janus kinase 1 (Jak1) is a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors. Here we show that the in vitro translated N-terminal domains of Jak1 are sufficient for binding to a biotinylated peptide comprising the membrane-proximal 73 amino acids of gp130, the signal-transducing receptor chain of interleukin-6-type cytokines. By the fold recognition approach amino acid residues 36-112 of Jak1 were predicted to adopt a beta-grasp fold, and a structural model was built using ubiquitin as a template. Substitution of Tyr(107) to alanine, a residue conserved among Jaks and involved in hydrophobic core interactions of the proposed beta-grasp domain, abrogated binding of full-length Jak1 to gp130 in COS-7 transfectants. By further mutagenesis we identified the loop 4 region of the Jak1 beta-grasp domain as essential for gp130 association and gp130-mediated signal transduction. In Jak1-deficient U4C cells reconstituted with the loop 4 Jak1 mutants L80A/Y81A and Delta(Tyr(81)-Ser(84)), the interferon-gamma, interferon-alpha, and interleukin-6 responses were similarly impaired. Thus, loop 4 of the beta-grasp domain plays a role in the association of Jak1 with both class I and II cytokine receptors. Taken together the structural model and the mutagenesis data provide further insight into the interaction of Janus kinases with cytokine receptors.
Collapse
Affiliation(s)
- C Haan
- Department of Biochemistry, Rheinisch Westfälische Technische Hochschule Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
van de Water B, Houtepen F, Huigsloot M, Tijdens IB. Suppression of chemically induced apoptosis but not necrosis of renal proximal tubular epithelial (LLC-PK1) cells by focal adhesion kinase (FAK). Role of FAK in maintaining focal adhesion organization after acute renal cell injury. J Biol Chem 2001; 276:36183-93. [PMID: 11447217 DOI: 10.1074/jbc.m102091200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decreased phosphorylation of focal adhesion kinase (FAK) is associated with loss of focal adhesions and actin stress fibers and precedes the onset of apoptosis in renal epithelial cells caused by nephrotoxicants (Van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The role of FAK in the control of apoptosis caused by nephrotoxicants was further investigated in LLC-PK1 cells that were stably transfected with either green fluorescent protein (GFP)-FAK or dominant negative acting deletion mutants of FAK, GFP-FAT, and GFP-FRNK. GFP-FAT and GFP-FRNK delayed the formation of focal adhesions and prevented the localization of endogenous (phosphorylated) FAK at these sites. GFP-FAT and GFP-FRNK overexpression potentiated the onset of apoptosis caused by the nephrotoxicant dichlorovinyl-cysteine. This was associated with an increased activation of caspase-3. GFP-FAT also potentiated apoptosis caused by doxorubicin but not cisplatin. The potentiation of apoptosis by GFP-FAT was related to an almost complete dephosphorylation of FAK; this did not occur in cells overexpressing only GFP. This dephosphorylation was associated with a pronounced loss of focal adhesion organization in GFP-FAT cells, in association with loss of tyrosine phosphorylation of paxillin. In conclusion, the data indicate an important role of cell-matrix signaling in the control of chemically induced apoptosis; loss of FAK activity caused by toxic chemicals results in perturbations of focal adhesion organization with a subsequent inactivation of associated (signaling) molecules and loss of survival signaling.
Collapse
Affiliation(s)
- B van de Water
- Division of Toxicology, Leiden Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Hilkens CM, Is'harc H, Lillemeier BF, Strobl B, Bates PA, Behrmann I, Kerr IM. A region encompassing the FERM domain of Jak1 is necessary for binding to the cytokine receptor gp130. FEBS Lett 2001; 505:87-91. [PMID: 11557047 DOI: 10.1016/s0014-5793(01)02783-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The terminal portion of the Janus kinases (Jaks) contains a divergent FERM (Four-point-one, Ezrin, Radixin, Moesin) homology domain comprising 19 conserved hydrophobic regions. To determine the role of this domain in governing recruitment of Jak1, but not Jak3, to the gp130 subunit of the interleukin-6 family of cytokine receptors, the interaction of three Jak1/Jak3 chimeras with gp130 was investigated. Chimeras 1, 2 and 3 (Jak1 FERM regions 1-19, 1-18 and 1-8/Jak3, respectively) were all enzymically active. Chimeras 1 and 2 interacted with the cytoplasmic domain of gp130, although less efficiently than Jak1. Only chimera 2, however, restored gp130 signalling in Jak1-negative cells. The data are consistent with recruitment of Jak1 to gp130 through the Jak1 FERM domain, but also emphasise the likely requirement for precise Jak/receptor orientation to sustain function.
Collapse
|