1
|
Ionescu CA, Aschie M, Matei E, Cozaru GC, Deacu M, Mitroi AF, Baltatescu GI, Nicolau AA, Mazilu L, Tuta LA, Iorga IC, Stanigut A, Enciu M. Characterization of the Tumor Microenvironment and the Biological Processes with a Role in Prostatic Tumorigenesis. Biomedicines 2022; 10:1672. [PMID: 35884977 PMCID: PMC9313300 DOI: 10.3390/biomedicines10071672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Prostate intratumoral heterogeneity, driven by epithelial−mesenchymal plasticity, contributes to the limited treatment response, and it is therefore necessary to use the biomarkers to improve patient prognostic survival. We aimed to characterize the tumor microenvironment (T lymphocyte infiltration, intratumoral CD34, and KI-67 expressions) by immunohistochemistry methods and to study the biological mechanisms (cell cycle, cell proliferation by adhesion glycoproteins, cell apoptosis) involved in the evolution of the prostate tumor process by flow-cytometry techniques. Our results showed that proliferative activity (S-phase) revealed statistically significant lower values of prostate adenocarcinoma (PCa) and benign prostatic hyperplasia (BPH) reported at non-malignant adjacent cell samples (PCa 4.32 ± 4.91; BPH 2.35 ± 1.37 vs. C 10.23 ± 0.43, p < 0.01). Furthermore, 68% of BPH cases and 88% of patients with PCa had aneuploidy. Statistically increased values of cell proliferation (CD34+ CD61+) were observed in prostate adenocarcinoma and hyperplasia cases reported to non-malignant adjacent cell samples (PCa 28.79 ± 10.14; BPH 40.65 ± 11.88 vs. C 16.15 ± 2.58, p < 0.05). The CD42b+ cell population with a role in cell adhesion, and metastasis had a significantly increased value in PCa cases (38.39 ± 11.23) reported to controls (C 26.24 ± 0.62, p < 0.01). The intratumoral expression of CD34 showed a significantly increased pattern of PCa tissue samples reported to controls (PCa 26.12 ± 6.84 vs. C 1.50 ± 0.70, p < 0.01). Flow cytometric analysis of the cell cycle, apoptosis, and adhesion glycoproteins with a critical role in tumoral cell proliferation, T cell infiltrations, Ki-67, and CD 34 expressions by IHC methods are recommended as techniques for the efficient means of measurement for adenocarcinoma and hyperplasia prostate tissue samples and should be explored in the future.
Collapse
Affiliation(s)
- Cristina-Anita Ionescu
- Chemical Carcinogenesis and Molecular Biology Laboratory, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania;
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
| | - Mariana Aschie
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Mariana Deacu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Gabriela Isabela Baltatescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Antonela-Anca Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania; (G.C.C.); (A.F.M.); (G.I.B.); (A.-A.N.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Mazilu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Oncology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Liliana Ana Tuta
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Nephrology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Ionut Ciprian Iorga
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Urology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Alina Stanigut
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Nephrology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Manuela Enciu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (M.A.); (M.D.); (L.M.); (L.A.T.); (I.C.I.); (A.S.); (M.E.)
- Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| |
Collapse
|
2
|
Philip M, Schietinger A. CD8 + T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22:209-223. [PMID: 34253904 PMCID: PMC9792152 DOI: 10.1038/s41577-021-00574-3] [Citation(s) in RCA: 563] [Impact Index Per Article: 187.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cells specific for cancer cells are detected within tumours. However, despite their presence, tumours progress. The clinical success of immune checkpoint blockade and adoptive T cell therapy demonstrates the potential of CD8+ T cells to mediate antitumour responses; however, most patients with cancer fail to achieve long-term responses to immunotherapy. Here we review CD8+ T cell differentiation to dysfunctional states during tumorigenesis. We highlight similarities and differences between T cell dysfunction and other hyporesponsive T cell states and discuss the spatio-temporal factors contributing to T cell state heterogeneity in tumours. An important challenge is predicting which patients will respond to immunotherapeutic interventions and understanding which T cell subsets mediate the clinical response. We explore our current understanding of what determines T cell responsiveness and resistance to immunotherapy and point out the outstanding research questions.
Collapse
Affiliation(s)
- Mary Philip
- Vanderbilt Center for Immunobiology, Vanderbilt-Ingram Cancer Center, Department of Medicine/Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,;
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,;
| |
Collapse
|
3
|
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical Stimulation for Immune Modulation in Cancer Treatments. Front Bioeng Biotechnol 2022; 9:795300. [PMID: 35087799 PMCID: PMC8788921 DOI: 10.3389/fbioe.2021.795300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Sofia Langou
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Pooja Prasad
- Department of Cell and Molecular Biology, University of Connecticut, Mansfield, CT, United States
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
4
|
Abstract
Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell population comprised of immature myeloid cells and myeloid progenitors with very potent immunosuppressive potential. MDSCs are reported to be abundant in the lungs of active tuberculosis (TB) patients. We sought to perform an in-depth study of MDSCs during latent TB infection (LTBI) and active TB (ATB) using the nonhuman primate (NHP) model of pulmonary TB. We found a higher proportion of granulocytic, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the lungs of ATB animals compared to those with LTBI or naive control animals. Active disease in the lung, but not LTBI, was furthermore associated with higher proliferation, expansion, and immunosuppressive capabilities of PMN-MDSCs, as shown by enhanced expression of Ki67, indoleamine 2,3-dioxygenase (IDO1), interleukin-10 (IL-10), matrix metallopeptidase 9 (MMP-9), inducible nitric oxide synthase (iNOS), and programmed death-ligand 1 (PD-L1). These immunosuppressive PMN-MDSCs specifically localized to the lymphocytic cuff at the periphery of the granulomas in animals with ATB. Conversely, these cells were scarcely distributed in interstitial lung tissue and the inner core of granulomas. This spatial regulation suggests an important immunomodulatory role of PMN-MDSCs by restricting T cell access to the TB granuloma core and can potentially explain dysfunctional anti-TB responses in active granuloma. Our results raise the possibility that the presence of MDSCs can serve as a biomarker for ATB, while their disappearance can indicate successful therapy. Furthermore, MDSCs may serve as a potential target cell for adjunctive TB therapy.
Collapse
|
5
|
Guo L, Bi X, Li Y, Wen L, Zhang W, Jiang W, Ma J, Feng L, Zhang K, Shou J. Characteristics, dynamic changes, and prognostic significance of TCR repertoire profiling in patients with renal cell carcinoma. J Pathol 2020; 251:26-37. [PMID: 32073142 PMCID: PMC7317472 DOI: 10.1002/path.5396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022]
Abstract
The co-evolving tumour cells and the systemic immune environment are mutually dysregulated. Tumours affect the immune response in a complex manner. For example, although lymphocytes are mobilized in response to tumours, their function is impaired by tumour progression. This study aimed to explore how the baseline and dynamic renal cell carcinoma (RCC) tumour burdens affect the T-cell repertoire, and whether the baseline T-cell receptor β-chain (TCRB) diversity predicts prognosis. To characterise the TCRB repertoire, the baseline and follow-up peripheral TCRB repertoires of 45 patients with RCC and 2 patients with benign renal disease patients were examined using high-throughput TCRB sequencing. To explain the significance of TCRB diversity, 56 peripheral leukocyte samples from 28 patients before and after surgery were subjected to transcriptome sequencing. To validate the results, an advanced RCC patient's sample was subjected to single-cell RNA sequencing (scRNA, 10x Genomics). Higher TCRB diversity was found to be correlated with a higher lymphocyte-to-neutrophil ratio, especially indicating more naïve T cells. High-baseline TCRB diversity predicted a better prognosis for stage IV patients, and different tumour burdens exerted distinct effects on the immune status. The pre-operative TCRB diversity was significantly higher in benign and stage I (low tumour burden) RCC patients than in stage IV (high tumour burden) patients. After the tumour burden of advanced patients was mostly relieved, we observed that the TCRB diversity was restored, T-cell exhaustion was reduced, and naïve T-cells were mobilized. It was demonstrated that the circulating TCRB repertoire could reflect the immune status and predict prognosis, and to some extent that cytoreductive nephrectomy (CN) reduces the burden of the immune system in advanced patients, which might provide a good opportunity for immunotherapy. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Liping Guo
- State Key Laboratory of Molecular Oncology, Department of Etiology and CarcinogenesisNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Xingang Bi
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Yajian Li
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Li Wen
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Wen Zhang
- Department of ImmunologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Weixing Jiang
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - JianHui Ma
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and CarcinogenesisNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and CarcinogenesisNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| | - Jianzhong Shou
- Department of UrologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPR China
| |
Collapse
|
6
|
Reijmen E, Vannucci L, De Couck M, De Grève J, Gidron Y. Therapeutic potential of the vagus nerve in cancer. Immunol Lett 2018; 202:38-43. [DOI: 10.1016/j.imlet.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
|
7
|
Le Y, Gao H, Bleday R, Zhu Z. The homeobox protein VentX reverts immune suppression in the tumor microenvironment. Nat Commun 2018; 9:2175. [PMID: 29872044 PMCID: PMC5988690 DOI: 10.1038/s41467-018-04567-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Immune suppression in the tumor microenvironment (TME) is a central obstacle to effective immunotherapy. Tumor-associated macrophages (TAMs) are key components of the TME. Although TAMs have been viewed as an ideal target of intervention to steer immunity in cancer treatment, the approach has been hampered by the lack of knowledge of how TAM plasticity is controlled by cell intrinsic factors. VentX is a homeobox protein implicated in proliferation and differentiation of human hematopoietic and immune cells. Using clinical samples obtained from cancer patients, we find that VentX expression is drastically reduced in TAMs. We show here that VentX promotes M1 differentiation of TAMs, and that VentX-regulated TAMs, in turn, revert immune suppression at the TME. Using a NSG mouse model of human colon cancers, we demonstrate that VentX regulates TAM function in tumorigenesis in vivo. Our findings suggest a mechanism underlying immune suppression at TME and potential applications of VentX-regulated TAMs in cancer immunotherapy. Tumour associated macrophages (TAMs) polarize into either pro-tumor or anti-tumor phenotypes. Here the authors show that the homeobox protein VentX is downregulated in clinical samples of colorectal cancer and regulates TAMs plasticity with its forced re-expression converting TAMs into an anti-tumor phenotype.
Collapse
Affiliation(s)
- Yi Le
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Gao
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ronald Bleday
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Nikoofal-Sahlabadi S, Matbou Riahi M, Sadri K, Badiee A, Nikpoor AR, Jaafari MR. Liposomal CpG-ODN: An in vitro and in vivo study on macrophage subtypes responses, biodistribution and subsequent therapeutic efficacy in mice models of cancers. Eur J Pharm Sci 2018; 119:159-170. [PMID: 29660463 DOI: 10.1016/j.ejps.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
CpG oligodeoxynucleotides (CpG-ODN), a common immune stimulator and vaccine adjuvant, was reported to switch Tumor Associated Macrophages (TAMs) from M2 to M1 phenotype inducing anti-tumor responses. Liposomes are of the successfully applied carriers for CpG-ODN. The aim of present study was design and preparation of a liposomal formulation containing phosphodiester CpG-ODN, evaluation of its effect on macrophages responses, and subsequent antitumor responses in mice. Liposomal formulations containing phosphodiester CpG-ODN or non-CpG-ODN were prepared and characterized. MTT reduction assay in four different cell lines, uptake, arginase and iNOS activity evaluation in macrophage cell lines, biodistribution study and therapeutic anti-tumor effects of formulations in mice bearing C26 colon carcinoma or B16F0 melanoma were carried out. The size of liposomes containing CpG-ODN was ~200 nm with the encapsulation efficiency of 33%. The iNOS activity assay showed high nitric oxide (NO) level in M2 phenotype of macrophage cell lines treated by liposomes containing CpG-ODN. In mice which received liposomes containing CpG-ODN as a monotherapy, maximum tumor growth delay with remarkable survival improvement was observed compared to control groups. Biodistribution study showed the accumulation of liposomal formulation in tumor micro-environment. In conclusion, considerable anti-tumor responses observed by liposomes containing CpG-ODN was due to enhanced delivery of CpG-ODN to immune cells and subsequent initiation of anti-tumoral immune responses.
Collapse
Affiliation(s)
- Sara Nikoofal-Sahlabadi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| | - Maryam Matbou Riahi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| | - Kayvan Sadri
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 98451-3546, Iran.
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| | - Amin Reza Nikpoor
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 919677-3117, Iran.
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
9
|
Frey AB. The Inhibitory Signaling Receptor Protocadherin-18 Regulates Tumor-Infiltrating CD8 + T-cell Function. Cancer Immunol Res 2017; 5:920-928. [PMID: 28874354 DOI: 10.1158/2326-6066.cir-17-0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/30/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
Abstract
Cancers are infiltrated with antitumor CD8+ T cells that arise during tumor growth, but are defective in effector phase functions because of the suppressive microenvironment. The reactivation of TILs can result in tumor destruction, showing that lytic dysfunction in CD8+ tumor-infiltrating lymphocytes (TIL) permits tumor growth. Like all memory T cells, TILs express inhibitory signaling receptors (aka checkpoint inhibitor molecules) that downregulate TCR-mediated signal transduction upon TIL interaction with cells expressing cognate ligands, thereby restricting cell activation and preventing the effector phase. Previously, we identified a novel murine CD8+ TIL inhibitory signaling receptor, protocadherin-18, and showed that it interacts with p56lck kinase to abrogate proximal TCR signaling. Here, we show that TILs from mice deleted in protocadherin-18 had enhanced antitumor activity and that coblockade of PD-1 and protocadherin-18 in wild-type mice significantly enhanced TIL effector phase function. These results define an important role for protocadherin-18 in antitumor T-cell activity. Cancer Immunol Res; 5(10); 920-8. ©2017 AACR.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology and Perlmutter Cancer Center, New York University Langone School of Medicine, New York, New York.
| |
Collapse
|
10
|
Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, Kreutz M. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Front Immunol 2017; 8:248. [PMID: 28337200 PMCID: PMC5340776 DOI: 10.3389/fimmu.2017.00248] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy.
Collapse
Affiliation(s)
- Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Gudrun E Koehl
- Department of Surgery, University Hospital Regensburg , Regensburg , Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg , Regensburg , Germany
| | - Katrin Peter
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Peter J Siska
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| |
Collapse
|
11
|
Affiliation(s)
- Keith I Block
- Block Center for Integrative Cancer Care, Evanston, IL 60201, USA.
| | | | | | | |
Collapse
|
12
|
Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK. A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Res 2016; 76:1578-90. [PMID: 26979791 PMCID: PMC4800826 DOI: 10.1158/0008-5472.can-15-2524] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chimeric antigen receptor (CAR)-modified adoptive T-cell therapy has been successfully applied to the treatment of hematologic malignancies, but faces many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced in both naturally occurring and genetically modified tumor-infiltrating lymphocytes (TIL) by inhibitory receptors (IR), namely PD1. We hypothesized that interfering with PD1 signaling would augment CAR T-cell activity against solid tumors. To address this possibility, we introduced a genetically engineered switch receptor construct, comprising the truncated extracellular domain of PD1 and the transmembrane and cytoplasmic signaling domains of CD28, into CAR T cells. We tested the effect of this supplement, "PD1CD28," on human CAR T cells targeting aggressive models of human solid tumors expressing relevant tumor antigens. Treatment of mice bearing large, established solid tumors with PD1CD28 CAR T cells led to significant regression in tumor volume due to enhanced CAR TIL infiltrate, decreased susceptibility to tumor-induced hypofunction, and attenuation of IR expression compared with treatments with CAR T cells alone or PD1 antibodies. Taken together, our findings suggest that the application of PD1CD28 to boost CAR T-cell activity is efficacious against solid tumors via a variety of mechanisms, prompting clinical investigation of this potentially promising treatment modality.
Collapse
Affiliation(s)
- Xiaojun Liu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Raghuveer Ranganathan
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shuguang Jiang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Chongyun Fang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Soyeon Kim
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kheng Newick
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Albert Lo
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Yangbing Zhao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Edmund K. Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Molon B, Calì B, Viola A. T Cells and Cancer: How Metabolism Shapes Immunity. Front Immunol 2016; 7:20. [PMID: 26870036 PMCID: PMC4740780 DOI: 10.3389/fimmu.2016.00020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/15/2016] [Indexed: 12/21/2022] Open
Abstract
Tumor microenvironment is characterized by a consistent reduction in oxygen and blood-borne nutrients that significantly affects the metabolism of distinct cell subsets. Immune cells populating malignant lesions need to activate alternative pathways to overcome tumor-prolonged nutrient deprivation. In particular, the metabolic switch occurring in transforming tissues dramatically impacts on tumor-infiltrating T cell biology. Remarkably, the recruitment and activation of T cell within cancers are instrumental for effective antitumor response. Therefore, T cell metabolic adaptation acts as crucial checkpoint hijacked by tumors to dampen antitumor immunity.
Collapse
Affiliation(s)
- Barbara Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
14
|
Frey AB. Suppression of T cell responses in the tumor microenvironment. Vaccine 2015; 33:7393-7400. [PMID: 26403368 DOI: 10.1016/j.vaccine.2015.08.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/06/2015] [Accepted: 08/05/2015] [Indexed: 12/29/2022]
Abstract
The immune system recognizes protein antigens expressed in transformed cells evidenced by accumulation of antigen-specific T cells in tumor and tumor draining lymph nodes. However, despite demonstrable immune response, cancers grow progressively suggesting that priming of antitumor immunity is insufficiently vigorous or that antitumor immunity is suppressed, or both. Compared to virus infection, antitumor T cells are low abundance that likely contributes to tumor escape and enhancement of priming is a long-sought goal of experimental vaccination therapy. Furthermore, patient treatment with antigen-specific T cells can in some cases overcome deficient priming and cause tumor regression supporting the notion that low numbers of T cells permits tumor outgrowth. However, tumor-induced suppression of antitumor immune response is now recognized as a significant factor contributing to cancer growth and reversal of the inhibitory influences within the tumor microenvironment is a major research objective. Multiple cell types and factors can inhibit T cell functions in tumors and may be grouped in two general classes: T cell intrinsic and T cell extrinsic. T cell intrinsic factors are exemplified by T cell expression of cell surface inhibitory signaling receptors that, after contact with cells expressing a cognate ligand, inactivate proximal T Cell Receptor-mediated signal transduction therein rendering T cells dysfunctional. T cell extrinsic factors are more diverse in nature and are produced by tumors and various non-tumor cells in the tumor microenvironment. These include proteins secreted by tumor or stromal cells, highly reactive soluble oxygen and nitrogen species, cytokines, chemokines, gangliosides, and toxic metabolites. These factors may restrict T cell entrance into the tumor parenchyma, cause inactivation of effector phase T cell functions, or induce T cell apoptosis ultimately causing diminished cancer elimination. Here, we review the contributions of inhibitory factors to tumor T cell dysfunction leading to tumor escape.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, Perlmutter Cancer Center, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
15
|
Kelleher RJ, Balu-Iyer S, Loyall J, Sacca AJ, Shenoy GN, Peng P, Iyer V, Fathallah AM, Berenson CS, Wallace PK, Tario J, Odunsi K, Bankert RB. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine-Dependent Arrest in the T-cell Signaling Cascade. Cancer Immunol Res 2015; 3:1269-78. [PMID: 26112921 DOI: 10.1158/2326-6066.cir-15-0086] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients' antitumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T-cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80 nm. The T-cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS-expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle-induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immunosuppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T-cell function represent a potential therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Raymond J Kelleher
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Sathy Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Jenni Loyall
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Anthony J Sacca
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Gautam N Shenoy
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Peng Peng
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Vandana Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Anas M Fathallah
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Charles S Berenson
- School of Medicine, Infectious Disease Division, University at Buffalo, Buffalo, New York, and Department of Veteran Affairs, Western New York Health Care System, Buffalo, New York
| | - Paul K Wallace
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| | - Joseph Tario
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Richard B Bankert
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York.
| |
Collapse
|
16
|
Roth MD, Harui A. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model. J Immunother Cancer 2015; 3:12. [PMID: 25901284 PMCID: PMC4404579 DOI: 10.1186/s40425-015-0056-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/06/2015] [Indexed: 12/17/2022] Open
Abstract
Background The complex interactions that occur between human tumors, tumor infiltrating lymphocytes (TIL) and the systemic immune system are likely to define critical factors in the host response to cancer. While conventional animal models have identified an array of potential anti-tumor therapies, mouse models often fail to translate into effective human treatments. Our goal is to establish a humanized tumor model as a more effective pre-clinical platform for understanding and manipulating TIL. Methods The immune system in NOD/SCID/IL-2Rγnull (NSG) mice was reconstituted by the co-administration of human peripheral blood lymphocytes (PBL) or subsets (CD4+ or CD8+) and autologous human dendritic cells (DC), and animals simultaneously challenged by implanting human prostate cancer cells (PC3 line). Tumor growth was evaluated over time and the phenotype of recovered splenocytes and TIL characterized by flow cytometry and immunohistochemistry (IHC). Serum levels of circulating cytokines and chemokines were also assessed. Results A tumor-bearing huPBL-NSG model was established in which human leukocytes reconstituted secondary lymphoid organs and promoted the accumulation of TIL. These TIL exhibited a unique phenotype when compared to splenocytes with a predominance of CD8+ T cells that exhibited increased expression of CD69, CD56, and an effector memory phenotype. TIL from huPBL-NSG animals closely matched the features of TIL recovered from primary human prostate cancers. Human cytokines were readily detectible in the serum and exhibited a different profile in animals implanted with PBL alone, tumor alone, and those reconstituted with both. Immune reconstitution slowed but could not eliminate tumor growth and this effect required the presence of CD4+ T cell help. Conclusions Simultaneous implantation of human PBL, DC and tumor results in a huPBL-NSG model that recapitulates the development of human TIL and allows an assessment of tumor and immune system interaction that cannot be carried out in humans. Furthermore, the capacity to manipulate individual features and cell populations provides an opportunity for hypothesis testing and outcome monitoring in a humanized system that may be more relevant than conventional mouse models.
Collapse
Affiliation(s)
- Michael D Roth
- Division of Pulmonary & Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690 USA
| | - Airi Harui
- Division of Pulmonary & Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690 USA
| |
Collapse
|
17
|
Tu E, Chia PZC, Chen W. TGFβ in T cell biology and tumor immunity: Angel or devil? Cytokine Growth Factor Rev 2014; 25:423-35. [PMID: 25156420 DOI: 10.1016/j.cytogfr.2014.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved transforming growth factor β (TGFβ) affects multiple cell types in the immune system by either stimulating or inhibiting their differentiation and function. Studies using transgenic mice with ablation of TGFβ or its receptor have revealed the biological significance of TGFβ signaling in the control of T cells. However, it is now clear that TGFβ is more than an immunosuppressive cytokine. Disruption of TGFβ signaling pathway also leads to impaired generation of certain T cell populations. Therefore, in the normal physiological state, TGFβ actively maintains T cell homeostasis and regulates T cell function. However, in the tumor microenvironment, TGFβ creates an immunosuppressive milieu that inhibits antitumor immunity. Here, we review recent advances in our understanding of the roles of TGFβ in the regulation of T cells and tumor immunity.
Collapse
Affiliation(s)
- Eric Tu
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pei Zhi Cheryl Chia
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wanjun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Puré E, Milone MC, June CH, Riley JL, Wherry EJ, Albelda SM. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 2014; 20:4262-73. [PMID: 24919573 DOI: 10.1158/1078-0432.ccr-13-2627] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Immunotherapy using vaccines or adoptively transferred tumor-infiltrating lymphocytes (TIL) is limited by T-cell functional inactivation within the solid tumor microenvironment. The purpose of this study was to determine whether a similar tumor-induced inhibition occurred with genetically modified cytotoxic T cells expressing chimeric antigen receptors (CAR) targeting tumor-associated antigens. EXPERIMENTAL DESIGN Human T cells expressing CAR targeting mesothelin or fibroblast activation protein and containing CD3ζ and 4-1BB cytoplasmic domains were intravenously injected into immunodeficient mice bearing large, established human mesothelin-expressing flank tumors. CAR TILs were isolated from tumors at various time points and evaluated for effector functions and status of inhibitory pathways. RESULTS CAR T cells were able to traffic into tumors with varying efficiency and proliferate. They were able to slow tumor growth, but did not cause regressions or cures. The CAR TILs underwent rapid loss of functional activity that limited their therapeutic efficacy. This hypofunction was reversible when the T cells were isolated away from the tumor. The cause of the hypofunction seemed to be multifactorial and was associated with upregulation of intrinsic T-cell inhibitory enzymes (diacylglycerol kinase and SHP-1) and the expression of surface inhibitory receptors (PD1, LAG3, TIM3, and 2B4). CONCLUSIONS Advanced-generation human CAR T cells are reversibly inactivated within the solid tumor microenvironment of some tumors by multiple mechanisms. The model described here will be an important tool for testing T cell-based strategies or systemic approaches to overcome this tumor-induced inhibition. Our results suggest that PD1 pathway antagonism may augment human CAR T-cell function.
Collapse
MESH Headings
- Animals
- BALB 3T3 Cells
- Cytotoxicity, Immunologic/immunology
- Endopeptidases
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gelatinases/genetics
- Gelatinases/immunology
- Gelatinases/metabolism
- Humans
- Immunotherapy, Adoptive
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mesothelin
- Mesothelioma/immunology
- Mesothelioma/metabolism
- Mesothelioma/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Serine Endopeptidases/genetics
- Serine Endopeptidases/immunology
- Serine Endopeptidases/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine,
| | - Liang-Chuan Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | | | - Caleph B Wilson
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | | | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - Veena Kapoor
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| | - John Scholler
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - Ellen Puré
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine; and
| | - James L Riley
- Department of Microbiology and Institute for Immunology
| | - E John Wherry
- Department of Microbiology and Institute for Immunology
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine
| |
Collapse
|
19
|
Bruno TC, French JD, Jordan KR, Ramirez O, Sippel TR, Borges VF, Haugen BR, McCarter MD, Waziri A, Slansky JE. Influence of human immune cells on cancer: studies at the University of Colorado. Immunol Res 2013; 55:22-33. [PMID: 22941561 DOI: 10.1007/s12026-012-8346-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There will be over half a million cancer-related deaths in the United States in 2012, with lung cancer being the leader followed by prostate in men and breast in women. There is estimated to be more than one and a half million new cases of cancer in 2012, making the development of effective therapies a high priority. As tumor immunologists, we are interested in the development of immunotherapies because the immune response offers exquisite specificity and the potential to target tumor cells without harming normal cells. In this review, we highlight the current advances in the field of immunotherapy and the current work being completed by laboratories at University of Colorado School of Medicine in multiple malignancies, including breast cancer, lung cancer, melanoma, thyroid cancer, and glioblastoma. This work focuses on augmenting the anti-tumor response of CD8 T cells in the blood, lymph nodes, and tumors of patients, determining biomarkers for patients who are more likely to respond to immunotherapy, and identifying additional anti-tumor and immunosuppressive cells that influence the overall response to tumors. These collaborative efforts will identify mechanisms to improve immune function, which may elucidate therapeutic targets for clinical trials to improve patient health and survival.
Collapse
Affiliation(s)
- Tullia C Bruno
- National Jewish Health, Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mariani F, Sena P, Pedroni M, Benatti P, Manni P, Di Gregorio C, Manenti A, Palumbo C, de Leon MP, Roncucci L. Th inducing POZ-Kruppel Factor (ThPOK) is a key regulator of the immune response since the early steps of colorectal carcinogenesis. PLoS One 2013; 8:e54488. [PMID: 23349906 PMCID: PMC3547940 DOI: 10.1371/journal.pone.0054488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/12/2012] [Indexed: 01/04/2023] Open
Abstract
We purposed to evaluate the role of Th inducing POZ-Kruppel Factor (ThPOK), a transcriptional regulator of T cell fate, in tumour-induced immune system plasticity in colorectal carcinogenesis. The amounts of CD4+, CD8+ and CD56+ and ThPOK+ cells infiltrate in normal colorectal mucosa (NM), in dysplastic aberrant crypt foci (microadenomas, MA), the earliest detectable lesions in colorectal carcinogenesis, and in colorectal carcinomas (CRC), were measured, and the colocalization of ThPOK with the above-mentioned markers of immune cells was evaluated using confocal microscopy. Interestingly, ThPOK showed a prominent increase since MA. A strong colocalization of ThPOK with CD4 both in NM and in MA was observed, weaker in carcinomas. Surprisingly, there was a peak in the colocalization levels of ThPOK with CD8 in MA, which was evident, although to a lesser extent, in carcinomas, too. In conclusion, according to the data of the present study, ThPOK may be considered a central regulator of the earliest events in the immune system during colorectal cancer development, decreasing the immune response against cancer cells.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Sena
- Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Pedroni
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Piero Benatti
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Manni
- Department of Servizi Diagnostici di Laboratorio e Medicina Legale, University of Modena and Reggio Emilia, Modena, Italy
| | - Carmela Di Gregorio
- Department of Servizi Diagnostici di Laboratorio e Medicina Legale, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Manenti
- Department of Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Carla Palumbo
- Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncucci
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Ferris R. PD-1 targeting in cancer immunotherapy. Cancer 2012; 119:E1-3. [PMID: 23042635 DOI: 10.1002/cncr.27832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/12/2012] [Accepted: 08/13/2012] [Indexed: 01/22/2023]
|
22
|
Prinz PU, Mendler AN, Masouris I, Durner L, Oberneder R, Noessner E. High DGK-α and Disabled MAPK Pathways Cause Dysfunction of Human Tumor-Infiltrating CD8+ T Cells That Is Reversible by Pharmacologic Intervention. THE JOURNAL OF IMMUNOLOGY 2012; 188:5990-6000. [DOI: 10.4049/jimmunol.1103028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Liu Y, Vlatkovic L, Sæter T, Servoll E, Waaler G, Nesland JM, Giercksky KE, Axcrona K. Is the clinical malignant phenotype of prostate cancer a result of a highly proliferative immune-evasive B7-H3-expressing cell population? Int J Urol 2012; 19:749-56. [PMID: 22487487 DOI: 10.1111/j.1442-2042.2012.03017.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To assess the expression of the cell surface protein B7-H3 in prostate cancer, and its association to clinically relevant parameters after radical prostatectomy and to the proliferation marker Ki-67. METHODS Radical prostatectomy specimens from a cohort of 130 patients with a median clinical follow up of 8 years were used for the analysis. The expression of B7-H3 and the proliferation marker Ki-67, as well as other standard clinicopathological parameters, were evaluated. RESULTS A high expression of B7-H3 was associated with pathological stage T3a and T3b, high Gleason score, extraprostatic extension, seminal vesicle invasion and high proliferative activity. Univariable analysis showed that a high expression level of B7-H3 was also correlated with biochemical failure and clinical relapse, and with the expression of Ki-67. A high expression level of Ki-67 was associated with clinical progression and a tendency towards higher rates of prostate-specific antigen relapse in multivariate analyses. CONCLUSIONS Our findings show that a high expression level of B7-H3 in prostate cancer correlates with the expression of the proliferation marker Ki-67, biochemical failure and clinical relapse. Thus, expression of the cell surface molecule B7-H3 adds to the malignant phenotype of prostate cancer cells expressing high levels of Ki-67. The impact of B7-H3 function on prostate cancer and its potential role in immunotherapy should be explored further.
Collapse
Affiliation(s)
- Yishan Liu
- Department of Urology, Norwegian Radium Hospital, Oslo University Hospital, endal, Norway
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tokmadžić VS, Tomaš MI, Sotošek S, Laškarin G, Dominović M, Tulić V, Dorđević G, Sustić A, Mrakovčić-Šutić I. Different perforin expression in peripheral blood and prostate tissue in patients with benign prostatic hyperplasia and prostate cancer. Scand J Immunol 2011; 74:368-76. [PMID: 21535078 DOI: 10.1111/j.1365-3083.2011.02569.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perforin (P) is a prototypical cytotoxic molecule involved in cell-mediated immunity against various pathogens, alloantigens and particularly different tumours. The purpose of this study was to determine P expression in different lymphocyte subpopulations isolated from peripheral blood and prostate tissue of patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa) and compare it with the P expression found in the control group. Twenty subjects were recruited in each of the groups. Prostate mononuclear cells of the BPH and PCa tissues were isolated by enzymatic digestion and gradient density centrifugation, whereas peripheral blood mononuclear cells were isolated by gradient density centrifugation alone. Cells and tissue samples were labelled using monoclonal antibodies against P and different surface antigens (CD3, CD4, CD8 and CD56) and analysed by immunofluorescence and flow cytometry. Total P expression in peripheral blood lymphocytes did not differ significantly between BPH/PCa patients and control group, although the BPH and PCa tissue showed lower P expression level. A negative correlation between prostate-specific antigen levels and the overall percentage of P(+), CD3(+) CD56(-) P(+) , and CD3(-) CD56(+) P(+) cells in the prostate tissue was observed only in patients with PCa. Our findings indicate that the low frequency of P(+) lymphocytes, including T, NKT and NK cells, in the prostate tissue of patients with BPH and, particularly, PCa could be the consequence of local tissue microenvironment and one of the mechanisms involved in the pathogenesis of prostate hyperplasia following malignant alteration.
Collapse
Affiliation(s)
- V S Tokmadžić
- Department of Anaesthesiology, Reanimatology and Intensive Care, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Singer K, Gottfried E, Kreutz M, Mackensen A. Suppression of T-cell responses by tumor metabolites. Cancer Immunol Immunother 2011; 60:425-31. [PMID: 21240484 PMCID: PMC11029601 DOI: 10.1007/s00262-010-0967-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 12/28/2010] [Indexed: 12/29/2022]
Abstract
Tumor cells have developed multiple mechanisms to escape T-cell-mediated immune recognition. Recent work has revealed that the altered tumor metabolism depletes essential nutrients or leads to the accumulation of immunosuppressive metabolites in the tumor microenvironment. In this review, we discuss the suppressive activity of some metabolic key players, which are upregulated in human tumor cells, including indolamine-2,3-dioxygenase (IDO), arginase, inducible nitric oxide synthetase (iNOS), and lactate dehydrogenase (LDH)-A, on the adaptive immune system. A better understanding of the impact of metabolic alterations of tumor cells on effector T-cell functions could lead to new therapeutic strategies to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Katrin Singer
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Eva Gottfried
- Department of Hematology and Oncology, University Medical School, Regensburg, Germany
| | - Marina Kreutz
- Department of Hematology and Oncology, University Medical School, Regensburg, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen, Krankenhausstrasse 12, 91054 Erlangen, Germany
| |
Collapse
|
26
|
Vazquez-Cintron EJ, Monu NR, Frey AB. Tumor-induced disruption of proximal TCR-mediated signal transduction in tumor-infiltrating CD8+ lymphocytes inactivates antitumor effector phase. THE JOURNAL OF IMMUNOLOGY 2011; 185:7133-40. [PMID: 21127315 DOI: 10.4049/jimmunol.1001157] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence in cancer tissue of Ag-specific, activated tumor infiltrating CD8(+) T cells proves that tumors express Ags capable of eliciting immune response. Therefore, in general, tumor escape from immune-mediated clearance is not attributable to immunological ignorance. However, tumor-infiltrating lymphocytes are defective in effector phase function, demonstrating tumor-induced immune suppression that likely underlies tumor escape. Since exocytosis of lytic granules is dependent upon TCR-mediated signal transduction, it is a reasonable contention that tumors may induce defective signal transduction in tumor infiltrating T cells. In this review, we consider the biochemical basis for antitumor T cell dysfunction, focusing on the role of inhibitory signaling receptors in restricting TCR-mediated signaling in tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Edwin J Vazquez-Cintron
- Department of Cell Biology, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
27
|
Abstract
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
28
|
Advances in Gene Therapy for Bladder Cancer. Bladder Cancer 2009. [DOI: 10.1007/978-1-59745-417-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Cham CM, Driessens G, O'Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 2008; 38:2438-50. [PMID: 18792400 DOI: 10.1002/eji.200838289] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We recently reported that differentiation of CD8(+) T cells from the naïve to the effector state involves the upregulation of glucose-dependent metabolism. Glucose deprivation or inhibition of glycolysis by 2-deoxy-D-glucose (2-DG) selectively inhibited production of IFN-gamma but not of IL-2. To determine a more global role of glucose metabolism on effector T-cell function, we performed gene array analysis on CD8(+) effector T cells stimulated in the presence or absence of 2-DG. We observed that expression of only 10% of genes induced by TCR/CD28 signaling was inhibited by 2-DG. Among these were genes for key cytokines, cell cycle molecules, and cytotoxic granule proteins. Consistent with these results, production of IFN-gamma and GM-CSF, cell cycle progression, upregulation of cyclin D2 protein, cytolytic activity, and upregulation of granzyme B protein and also conjugate formation were exquisitely glucose-dependent. In contrast to glucose, oxygen was little utilized by CD8(+) effector T cells, and relative oxygen deprivation did not inhibit these CTL functional properties. Our results indicate a particularly critical role for glucose in regulating specific effector functions of CD8(+) T cells and have implications for the maintenance of the effector phase of cellular immune responses in target tissue microenvironments such as a solid tumor.
Collapse
Affiliation(s)
- Candace M Cham
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Over the last century, vaccine studies have demonstrated that the human immune system, with appropriate help, can limit or prevent infection against otherwise lethal pathogens. Encouraged by these results, success in animal models and numerous well-documented reports of immune-mediated melanoma regression in humans, investigators developed melanoma vaccines. However, despite considerable laboratory evidence for vaccine-induced immune responses, clinical responses remain poor. Recent studies have elucidated several mechanisms that hinder or prevent the creation of successful vaccines and suggest novel approaches to overcome these barriers. Unraveling the mechanisms of autoimmunity, dendritic cell activation, regulatory T cells and Toll-like receptors will generate novel vaccines that, when used in conjunction with standard adjuvant therapies, may result in improved clinical outcomes. The objective of this review is to provide an overall summary of recent clinical trials with melanoma vaccines and highlight novel vaccine strategies to evaluate in the near future.
Collapse
Affiliation(s)
- Lee B Riley
- St Luke's Cancer Center, St Luke's Hospital and Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
31
|
Caramalho I, Faroudi M, Padovan E, Müller S, Valitutti S. Visualizing CTL/melanoma cell interactions: multiple hits must be delivered for tumour cell annihilation. J Cell Mol Med 2008; 13:3834-46. [PMID: 19017355 DOI: 10.1111/j.1582-4934.2008.00586.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is well established that cytotoxic T lymphocytes (CTL) can kill target cells offering a very small number of specific peptide/MHC complexes (pMHC). It is also known that lethal hit delivery is a very rapid response that occurs within a few minutes after cell-cell contact. Whether cytotoxicity is efficient and rapid in the context of CTL interaction with target cells derived from solid tumours is still elusive. We addressed this question by visualizing the dynamics of human CTL interaction with melanoma cells and their efficiency in eliciting cytotoxicity. Our results show that in spite of CTL activation to lethal hit delivery, killing of melanoma cells is not efficient. Time-lapse microscopy experiments demonstrate that individual CTL rapidly polarize their lytic machinery towards target cells, yet the apoptotic process in melanoma cells is defective or 'delayed' as compared to conventional targets. These results indicate that although CTL activation to lethal hit delivery can be viewed as a 'digital' phenomenon rapidly triggered by a few ligands, melanoma cell annihilation is an 'analogue' response requiring multiple hits and prolonged contact time.
Collapse
Affiliation(s)
- Iris Caramalho
- INSERM, Centre de Physiopathologie de Toulouse Purpan, Section Dynamique moléculaire des interactions lymphocytaires, Toulouse, France.
| | | | | | | | | |
Collapse
|
32
|
Berardi E, Aulino P, Murfuni I, Toschi A, Padula F, Scicchitano BM, Coletti D, Adamo S. Skeletal muscle is enriched in hematopoietic stem cells and not inflammatory cells in cachectic mice. Neurol Res 2008; 30:160-9. [PMID: 18397608 DOI: 10.1179/174313208x281046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Cachexia, a debilitating syndrome characterized by skeletal muscle wasting, is associated to many chronic diseases and diminishes the quality of life and survival of patients. Tumor-derived factors and proinflammatory cytokines, including TNF-alpha, IL-6 and IL-1 beta, mediate cachexia. In response to elevated cytokine levels, increased proteasome-mediated proteolysis and auto-phagocytosis result in muscle wasting. The histologic features of muscle cachexia are not fully elucidated. Therefore, we analysed alterations of different cell populations in cachectic muscle. METHODS By immunohistochemical and cytological approaches, we characterized changes in the abundance of cellular populations in the musculature of a murine model of cancer cachexia (C26-bearing mice). RESULTS Cachectic muscle displayed a decreased DNA content proportional to muscle mass wastage. A decrease in the number of nuclei occurred in the muscular but not in the stromal compartment. Cachectic muscle showed: mild modulation of myeloperoxidase activity, a neutrophil marker; reduction of macrophages in the endomysium; decrease in CD3(+) lymphocyte number. Conversely, a statistically significant enrichment in Sca-1(+) CD45(+) hematopoietic stem cells (HSCs) occurred in cachectic muscle. DISCUSSION The elevated levels of cytokines which characterize cachexia may represent a trigger for inflammatory cell activation. However, we find that in cachexia, inflammatory cells in muscle are not increased while muscle tissue nuclei decline. Our data suggest that the inflammatory cell-mediated stress is not an etiologic component of muscle wasting in cachexia. The relative increase in HSCs in cachectic skeletal muscle suggests an attempt to maintain muscle homeostasis by recruitment and/or activation of stem cells.
Collapse
Affiliation(s)
- Emanuele Berardi
- Department of Histology and Medical Embryology, Sapienza University of Rome, Interuniversity Institute of Myology, Via Scarpa, 14 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ebelt K, Babaryka G, Figel AM, Pohla H, Buchner A, Stief CG, Eisenmenger W, Kirchner T, Schendel DJ, Noessner E. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma. Prostate 2008; 68:1-10. [PMID: 17948280 DOI: 10.1002/pros.20661] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer is the most common cancer of men in the Western world. Despite the over-expression of tumor-associated antigens, like PSA or PSMA, immune activation is inefficient. The goal of this investigation was to assess in situ characteristics of prostate cancer-infiltrating lymphocytes and to determine their activation status and effector function. METHODS We compared 17 carcinoma containing tissues, four benign prostatic hyperplasia tissues and eight healthy prostate tissues regarding lymphocyte subset composition, locoregional distribution, and functional status using immunohistological staining of cryopreserved tissues. For determination of lymphocyte subsets, serial sections were stained with CD3, CD4, and CD8 antibodies. Activation status and effector function were studied using CD69, interferon-gamma (IFN gamma), perforin, and CD3 zeta chain antibodies. T-cell-receptor repertoire (TCR) analysis was made to determine the complexity of infiltrating lymphocytes. RESULTS CD3+, CD4+, and CD69+ T lymphocytes were prominent in tissues derived from patients with prostate carcinoma. CD8+ lymphocytes were significantly less than CD4+ lymphocytes. IFN gamma and perforin were downregulated on infiltrating lymphocytes compared to cells of healthy prostate tissue. Very few lymphocytes were detected within cancerous lesions whereas surrounding tissues showed extensive lymphocyte cluster formation. The TCR repertoire of infiltrating lymphocytes was broad and similar to that of healthy prostate tissue, giving no evidence for specific lymphocyte recruitment. CONCLUSIONS In the prostate cancer microenvironment, CD4+ T lymphocytes dominated while CD8+ T cells were sparse. The lymphocytes exhibited signs of disturbed effector function. Consequently, the immune response against autologous tumor cells is likely to be inefficient in controlling tumor growth.
Collapse
Affiliation(s)
- Kathleen Ebelt
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Irons RD, Le AT. Dithiocarbamates and viral IL-10 collaborate in the immortalization and evasion of immune response in EBV-infected human B lymphocytes. Chem Biol Interact 2007; 172:81-92. [PMID: 18163983 DOI: 10.1016/j.cbi.2007.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/12/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Epstein-Barr virus (EBV) is implicated in the development of a number of human malignancies including several subtypes of non-Hodgkin lymphoma (NHL) [G. Pallesen, S.J. Hamilton-Dutoit, X. Zhou, The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin's disease: two new developments in the EBV Field, Adv. Cancer Res. 62 (1993) 179-239]. Lymphoproliferative disease and NHL occurring in severely immunosuppressed individuals almost always involve EBV and have been extensively studied and modeled in vitro. EBV has also been causally associated with some cases of NHL occurring in otherwise immunocompetent individuals. However, a direct role for EBV in the pathogenesis of neoplasms developing in the presence of an otherwise competent immune system has not been established. We investigated potential interactions between dithiocarbamates (DTC), an important class of thiono-sulfur compounds, and EBV leading to immortalization of human B lymphocytes and evasion of cell-mediated immune response in culture. Primary lymphocyte cultures employing wild-type and recombinant EBV mutants were used to assess the respective roles of DTC and viral genes in lymphocyte transformation and survival. Pretreatment of EBV-infected human B lymphocytes with DTC directly enhanced transformation in the absence of T cells (5 nM) and independently increased survival of transformed cells in the presence of competent autologous T cells (10 nM). Both DTC-induced transformation and immortalization of EBV-infected B lymphocytes were dependent on the expression of viral IL-10. These results provide a biological basis for studying collaborations between chemical and virus that alter lymphocyte biology, and provide a rationale for further molecular epidemiology studies to better understand the potential influence of these interactions on the development of NHL and perhaps other viral-associated malignancies.
Collapse
Affiliation(s)
- Richard D Irons
- Fudan-Cinpathogen Clinical and Molecular Research Center, Institutes of Biomedical Sciences and Department of Pathology, Fudan University, Shanghai, China.
| | | |
Collapse
|
35
|
Greenfeld K, Avraham R, Benish M, Goldfarb Y, Rosenne E, Shapira Y, Rudich T, Ben-Eliyahu S. Immune suppression while awaiting surgery and following it: dissociations between plasma cytokine levels, their induced production, and NK cell cytotoxicity. Brain Behav Immun 2007; 21:503-13. [PMID: 17293081 DOI: 10.1016/j.bbi.2006.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/29/2006] [Accepted: 12/29/2006] [Indexed: 12/22/2022] Open
Abstract
Surgery may render patients susceptible to life-threatening complications, including infections and later metastases. Suppression of cell mediated immunity (CMI) and perturbations in the cytokine network were implicated in these outcomes. The current study assessed the effects of various surgeries on a wide array of immune indices, and compared patients' pre-operative immune status to that of control subjects. A total of 81 subjects (controls, moderate and major surgeries) provided up to five daily blood samples. Whole blood procedures were conducted within hours of blood withdrawal, assessing NK cell number and cytotoxicity, and plasma cytokine levels and induced production (IFNgamma, IL-6, IL-10, and IL-12). Our findings indicate that surgery reduced NK cell numbers/ml blood, and independently suppressed NK activity per NK cell and per ml blood. Among other perturbations in the cytokine network, pro-CMI cytokine production (IL-12 and IFNgamma) was reduced by surgery. Surprisingly, plasma levels of IFNgamma and IL-6 increased following surgery, while their in vitro induced production showed opposite effects. Patients awaiting surgery exhibited impaired IL-12 induced production and NK activity/ml, and reduced IFNgamma plasma levels. No significant associations were found between NK cytotoxicity and Th1 cytokines, although these indices showed high correlations with other variables. Overall, our findings indicate that patients exhibit impaired immune functions even before operation, which seem to contribute to the evident post-operative immune suppression. In the peri-operative context, induced cytokine production and plasma cytokines levels reflect different processes. Last, we suggest that peri-operative suppression of NK activity is mediated by neuroendocrine responses rather than Th1 cytokines.
Collapse
Affiliation(s)
- Keren Greenfeld
- Neuroimmunology Research Unit, Department of Psychology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Meng Y, Harlin H, O'Keefe JP, Gajewski TF. Induction of cytotoxic granules in human memory CD8+ T cell subsets requires cell cycle progression. THE JOURNAL OF IMMUNOLOGY 2006; 177:1981-7. [PMID: 16849512 DOI: 10.4049/jimmunol.177.3.1981] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Memory CD8(+) T cell responses are thought to be more effective as a result of both a higher frequency of Ag-specific clones and more rapid execution of effector functions such as granule-mediated lysis. Murine models have indicated that memory CD8(+) T cells exhibit constitutive expression of perforin and can lyse targets directly ex vivo. However, the regulated expression of cytotoxic granules in human memory CD8(+) T cell subsets has been underexplored. Using intracellular flow cytometry, we observed that only a minor fraction of CD45RA(-)CD8(+) T cells, or of CD8(+) T cells reactive to EBV-HLA2 tetramer, expressed intracellular granzyme B (GrB). Induction of GrB-containing cytotoxic granules in both CD45RA(+) and CD45RA(-) cells was achieved by stimulation with anti-CD3/anti-CD28 mAb-coated beads, required at least 3 days, occurred after several rounds of cell division, and required cell cycle progression. The strongest GrB induction was seen in the CCR7(+) subpopulations, with poorest proliferation being observed in the CD45RA(-)CCR7(-) effector-memory pool. Our results indicate that, as with naive T cells, induction of cytotoxic granules in human Ag-experienced CD8(+) T cells requires time and cell division, arguing that the main numerical advantage of a memory T cell pool is a larger frequency of CTL precursors. The fact that granule induction can be achieved through TCR and CD28 ligation has implications for restoring lytic effector function in the context of antitumor immunity.
Collapse
Affiliation(s)
- Yuru Meng
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Cancer is the second leading cause of death in the industrialized world. Most cancer patients are treated by a combination of surgery, radiation and/or chemotherapy. Whereas the primary tumor can, in most cases, be efficiently treated by a combination of these standard therapies, preventing the metastatic spread of the disease through disseminated tumor cells is often not effective. The eradication of disseminated tumor cells present in the blood circulation and micro-metastases in distant organs therefore represents another promising approach in cancer immunotherapy. Main strategies of cancer immunotherapy aim at exploiting the therapeutic potential of tumor-specific antibodies and cellular immune effector mechanisms. Whereas passive antibody therapy relies on the repeated application of large quantities of tumor antigen-specific antibodies, active immunotherapy aims at the generation of a tumor-specific immune response combining both humoral and cytotoxic T cell effector mechanisms by the host's immune system following vaccination. In the first part of this review, concurrent developments in active and passive cancer immunotherapy are discussed. In the second part, the various approaches for the production of optimized monoclonal antibodies used for anti-cancer vaccination are summarized.
Collapse
Affiliation(s)
- Manfred Schuster
- Apeiron Biologics Forschungs- und Entwicklungs-GmbH, Brunnerstrasse 59, 1230 Vienna, Austria.
| | | | | |
Collapse
|
38
|
|
39
|
Kusmartsev S, Gabrilovich DI. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. THE JOURNAL OF IMMUNOLOGY 2005; 174:4880-91. [PMID: 15814715 DOI: 10.4049/jimmunol.174.8.4880] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is well established that tumor progression is associated with the accumulation of myeloid suppressive cells, which in mice include Gr-1+ immature myeloid cells and F4/80+ macrophages. The paradox is that with the exception of terminal stages of the disease or chemotherapy treatment, tumor-bearing mice or cancer patients do not display a profound systemic immune suppression. We therefore raised the question as to whether myeloid cell-mediated T cell suppression is controlled at a local level at the site of the tumor. We have demonstrated that after adoptive transfer to tumor-bearing recipients, Gr-1+ (immature myeloid cells) freshly isolated from spleens of tumor-bearing mice become F4/80+ tumor-associated macrophages (TAM). These TAM, but not F4/80+ macrophages or Gr-1+ cells freshly isolated from spleens of tumor-bearing or naive mice were able to inhibit T cell-mediated immune response in vitro via induction of T cell apoptosis. Arginase and NO were both responsible for the apoptotic mechanism, and were seen only in TAM, but not in freshly isolated Gr1+ cells. Using the analysis of STAT activity in combination with STAT knockout mice, we have determined that STAT1, but not STAT3 or STAT6, was responsible for TAM-suppressive activity.
Collapse
Affiliation(s)
- Sergei Kusmartsev
- H. Lee Moffitt Cancer Center, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
40
|
Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, Battistini L, Iafrate M, Prayer-Galetti T, Pagano F, Viola A. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. ACTA ACUST UNITED AC 2005; 201:1257-68. [PMID: 15824085 PMCID: PMC2213151 DOI: 10.1084/jem.20042028] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immunotherapy may provide valid alternative therapy for patients with hormone-refractory metastatic prostate cancer. However, if the tumor environment exerts a suppressive action on antigen-specific tumor-infiltrating lymphocytes (TIL), immunotherapy will achieve little, if any, success. In this study, we analyzed the modulation of TIL responses by the tumor environment using collagen gel matrix–supported organ cultures of human prostate carcinomas. Our results indicate that human prostatic adenocarcinomas are infiltrated by terminally differentiated cytotoxic T lymphocytes that are, however, in an unresponsive status. We demonstrate the presence of high levels of nitrotyrosines in prostatic TIL, suggesting a local production of peroxynitrites. By inhibiting the activity of arginase and nitric oxide synthase, key enzymes of L-arginine metabolism that are highly expressed in malignant but not in normal prostates, reduced tyrosine nitration and restoration of TIL responsiveness to tumor were achieved. The metabolic control exerted by the tumor on TIL function was confirmed in a transgenic mouse prostate model, which exhibits similarities with human prostate cancer. These results identify a novel and dominant mechanism by which cancers induce immunosuppression in situ and suggest novel strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Vincenzo Bronte
- Department of Oncology and Surgical Sciences, University of Padova, 35100 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Koneru M, Schaer D, Monu N, Ayala A, Frey AB. Defective Proximal TCR Signaling Inhibits CD8+ Tumor-Infiltrating Lymphocyte Lytic Function. THE JOURNAL OF IMMUNOLOGY 2005; 174:1830-40. [PMID: 15699109 DOI: 10.4049/jimmunol.174.4.1830] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD8+ tumor-infiltrating lymphocytes (TIL) are severely deficient in cytolysis, a defect that may permit tumor escape from immune-mediated destruction. Because lytic function is dependent upon TCR signaling, we have tested the hypothesis that primary TIL have defective signaling by analysis of the localization and activation status of TIL proteins important in TCR-mediated signaling. Upon conjugate formation with cognate target cells in vitro, TIL do not recruit granzyme B+ granules, the microtubule-organizing center, F-actin, Wiskott-Aldrich syndrome protein, nor proline rich tyrosine kinase-2 to the target cell contact site. In addition, TIL do not flux calcium nor demonstrate proximal tyrosine kinase activity, deficiencies likely to underlie failure to fully activate the lytic machinery. Confocal microscopy and fluorescence resonance energy transfer analyses demonstrate that TIL are triggered by conjugate formation in that the TCR, p56lck, CD3zeta, LFA-1, lipid rafts, ZAP70, and linker for activation of T cells localize at the TIL:tumor cell contact site, and CD43 and CD45 are excluded. However, proximal TCR signaling is blocked upon conjugate formation because the inhibitory motif of p56lck is rapidly phosphorylated (Y505) and COOH-terminal Src kinase is recruited to the contact site, while Src homology 2 domain-containing protein phosphatase 2 is cytoplasmic. Our data support a novel mechanism explaining how tumor-induced inactivation of proximal TCR signaling regulates lytic function of antitumor T cells.
Collapse
MESH Headings
- Actins/deficiency
- Actins/metabolism
- Animals
- CD2 Antigens/metabolism
- CD3 Complex/metabolism
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Calcium/metabolism
- Cell Line, Tumor
- Cell Separation
- Cytoplasmic Granules/immunology
- Cytoplasmic Granules/metabolism
- Cytotoxicity, Immunologic
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes, Tumor-Infiltrating/enzymology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Transport/immunology
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Mythili Koneru
- Department of Cell Biology and Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
42
|
de Lima TM, Lima MMR, Almeida DCG, Mendonça JR, Curi R. Cachexia induced by Walker 256 tumor growth causes rat lymphocyte death. Cancer Immunol Immunother 2005; 54:179-86. [PMID: 15378280 PMCID: PMC11034229 DOI: 10.1007/s00262-004-0570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
Death induction by Walker 256 tumor cachexia in non-tumor-infiltrating lymphocytes was investigated. Lymphocytes from cachectic tumor-bearing rats presented a higher proportion of cells with ruptured membranes, indicating necrotic cell death. The cachexia induced by Walker 256 tumor also increased by 3.6-fold the percentage of cells with fragmented DNA, suggestive of apoptotic cell death. The mitochondria involvement was examined by analysis of mitochondria transmembrane potential using rhodamine 123. Lymphocytes from cachectic tumor-bearing rats presented a more pronounced depolarization of mitochondrial transmembrane potential in comparison with cells from the control group. The expression of important proapoptotic (Bcl-xs, Bax, p53, caspase-3) and antiapoptotic genes (Bcl-2 and Bcl-xL) was also altered by tumor cachexia. These results suggest that the immunosuppression induced by Walker 256 tumor cachexia is at least in part a result of lymphocyte death. Evidence was found for the involvement of mitochondria and important proapoptotic genes in the process of lymphocyte death by Walker 256 tumor cachexia.
Collapse
Affiliation(s)
- Thais Martins de Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária, Av. Professor Lineu Prestes 1524, Butantã, São Paulo, 05508-900 Brazil
| | | | - Débora C. G. Almeida
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária, Av. Professor Lineu Prestes 1524, Butantã, São Paulo, 05508-900 Brazil
| | - José Roberto Mendonça
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária, Av. Professor Lineu Prestes 1524, Butantã, São Paulo, 05508-900 Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária, Av. Professor Lineu Prestes 1524, Butantã, São Paulo, 05508-900 Brazil
| |
Collapse
|
43
|
Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC. Immune-Mediated Inhibition of Metastases after Treatment with Local Radiation and CTLA-4 Blockade in a Mouse Model of Breast Cancer. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.728.11.2] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: Ionizing radiation therapy (RT) is an important component in the management of breast cancer. Although the primary tumor can be successfully treated by surgery and RT, metastatic breast cancer remains a therapeutic challenge. Here we tested the hypothesis that the combination of RT to the primary tumor with CTLA-4 blockade can elicit antitumor immunity inhibiting the metastases.
Experimental Design: The poorly immunogenic metastatic mouse mammary carcinoma 4T1 was used as a model. Mice were injected s.c. with 4T1 cells, and treatment was started 13 days later when the primary tumors measured 5 mm in average diameter. Mice were randomly assigned to four treatment groups receiving: (1) control IgG (IgG), (2) RT + IgG, (3) 9H10 monoclonal antibody against CTLA-4, (4) RT + 9H10. RT was delivered to the primary tumor by one or two fractions of 12 Gy. 9H10 and IgG were given i.p. thrice after RT.
Results: Consistent with the fact that 4T1 is poorly immunogenic, 9H10 alone did not have any effect on primary tumor growth or survival. RT was able to delay the growth of the primary irradiated tumor, but in the absence of 9H10 survival was similar to that of control mice. In contrast, mice treated with RT + 9H10 had a statistically significant survival advantage. The increased survival correlated with inhibition of lung metastases formation and required CD8+ but not CD4+ T cells.
Conclusions: The combination of local RT with CTLA-4 blockade is a promising new immunotherapeutic strategy against poorly immunogenic metastatic cancers.
Collapse
Affiliation(s)
| | | | | | | | - James S. Babb
- 3Radiology, New York University School of Medicine, New York, New York; and
| | - James P. Allison
- 4Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California
| | | |
Collapse
|
44
|
Manske JM, Hanson SE. Substance-P-mediated immunomodulation of tumor growth in a murine model. Neuroimmunomodulation 2005; 12:201-10. [PMID: 15990451 DOI: 10.1159/000085652] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/16/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/OBJECTIVE Substance P (SP) has been reported to have immunoregulatory properties including effects on many of the mediators involved in anti-tumor immunity. In this study, we investigated the effect of SP on tumor development in a murine model of melanoma. In addition, we examined the role of natural killer (NK) and T cells in SP-mediated modulation of tumor growth. MATERIALS AND METHODS Mice were implanted with mini-osmotic pumps that delivered a continuous infusion of either SP or PBS over a 14-day period. Five days following implantation, animals received K1735 melanoma cells and tumor growth was monitored. The role of NK and T cells in SP-mediated protection was examined by antibody depletion studies. To determine if cells from SP-treated animals could delay tumor growth in animals in the absence of exogenous SP infusion, splenocytes from mice treated with SP were adoptively transferred into SCID mice. RESULTS In vivoSP treatment led to a significant delay in tumor growth. When animals were depleted of NK or T cells, this protective effect was lost. Adoptive transfer of cells from SP-treated animals led to a significant protective effect on tumor growth in SCID mice. CONCLUSION Pretreatment of mice with SP provides protection against K1735 tumor growth, and this protection requires both T cells and NK cells. SP-mediated tumor protection can be transferred by the adoptive transfer of cells from SP-treated animals into animals that do not receive exogenous SP. These studies suggest a model in which in vivo SP treatment prior to tumor challenge primes immune mediators to prevent or delay tumor establishment.
Collapse
Affiliation(s)
- Jill M Manske
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA.
| | | |
Collapse
|
45
|
Higdon J, Frei B. Vitamin C, Vitamin E, and b-Carotene in Cancer Chemoprevention. PHYTOPHARMACEUTICALS IN CANCER CHEMOPREVENTION 2004. [DOI: 10.1201/9780203506707.ch21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Ciavarra RP, Holterman DA, Brown RR, Mangiotti P, Yousefieh N, Wright GL, Schellhammer PF, Glass WF, Somers KD. Prostate Tumor Microenvironment Alters Immune Cells and Prevents Long-Term Survival in an Orthotopic Mouse Model Following flt3-Ligand/CD40-Ligand Immunotherapy. J Immunother 2004; 27:13-26. [PMID: 14676630 DOI: 10.1097/00002371-200401000-00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel orthotopic metastatic model of mouse prostate cancer was developed using MHC-negative TRAMP-C1P3 (transgenic adenocarcinoma of mouse prostate) cells derived by serial passage of the parental TRAMP-C1 line in mouse prostate glands. TRAMP-C1P3 cells grew efficiently in mouse prostate glands and reproducibly metastasized to draining lymph nodes. Using this model, we show that Fms-like tyrosine kinase-3 ligand (flt3-L) dramatically inhibited growth of preexisting orthotopic TRAMP-C1P3 tumors and the development of metastatic disease. Mice remained in remission for several months following termination of flt3-L treatment but eventually relapsed and died of progressive disease. flt3-ligand treatment induced a pronounced mixed inflammatory cell infiltrate that consisted of CD8alpha-CD4- dendritic cells (CD11c+), macrophages, granulocytes (Gr-1+) and to a lesser extent T cells (CD4+ and CD8+). Dendritic cells isolated from TRAMP-C1P3 tumors were phenotypically immature (CD11c+ B7.2-I-A-CD40-), and this phenotype was also predominant in peripheral organs of mice treated with flt3-L alone or in combination with the DC maturation factor, CD40-L. Diminished expression of TCR-beta, CD3-epsilon, and CD3-zeta was also observed on intratumoral T cells, although these signaling proteins were reexpressed following in vitro culture with IL-2. The TCR/CD3 complex remained intact on peripheral T cells except in mice treated with flt3-L where CD3-zeta loss was observed. In contrast to alphabeta-T cells, tumor-infiltrating gammadelta-T cells maintained expression of their antigen receptors but not CD3epsilon. Thus, TRAMP-C1P3 tumors quickly establish a microenvironment that profoundly diminishes expression of molecules critical for normal dendritic cell and T cell function, thus limiting the efficacy of flt3-L and CD40-L immunotherapy. Overall, these data suggest that long-term cures of established MHC-negative tumors may not be achieved until therapeutic interventions are engineered to overcome this immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Richard P Ciavarra
- Departments of Microbiology and Molecular Cell Biology, Virginia Prostate Center, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Siemens DR, Ratliff TL. Are Vaccinations for Prostate Cancer Realistic? Prostate Cancer 2003. [DOI: 10.1016/b978-012286981-5/50060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Grizzle WE, Mountz JD, Yang PA, Xu X, Sun S, Van Zant GE, Williams RW, Hsu HC, Zhang HG. BXD recombinant inbred mice represent a novel T cell-mediated immune response tumor model. Int J Cancer 2002; 101:270-9. [PMID: 12209979 DOI: 10.1002/ijc.10606] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To develop a better animal model for studying the effects of the host environment in neoplasia, we injected various genetically well-characterized H-2(d) RI strains of BXD mice with syngeneic breast cancer cells (TS/A) and monitored the growth of tumors over time. There was a marked difference in the growth of the implanted breast cancer cells among the 14 BXD RI strains, with 4 patterns of tumor development being observed: in type I, the implanted tumor cells grew rapidly in the first 2 weeks, necrosis of the tumors was observed and metastases to the intestinal lymph nodes and pancreas was observed, causing death; in type II, the implanted tumor cells grew slowly and attained a size after day 50 that required killing the animal, with tumor necrosis being rare and metastases absent; in type III, the implanted tumor cells grew initially but underwent a slow decline after 4 weeks; and in type IV, the implanted tumor cells failed to develop. Apoptosis of the implanted tumor cells was responsible for the regression of tumor nodules. The T-cell immune response minimized tumor development in types III and IV since T-cell depletion of the BXD RI mice resulted in aggressively growing tumors in these strains.
Collapse
Affiliation(s)
- William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Effective treatments are needed urgently for metastatic disease in bladder, prostate, and renal cell cancer. In the past few years, several new approaches for treating these conditions have been proposed, including gene therapy. A number of different strategies have been developed to accomplish urologic cancer gene therapy. Genetic immunomodulation strategies attempt to activate immune defense mechanisms against tumor cells by transfer of tumor antigens, cytokine genes, or strongly immunogenic cell surface molecules. In this review, we illustrate the recent developments in immune gene therapy.
Collapse
Affiliation(s)
- Ingo Kausch
- Department of Urology, Medical University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|
50
|
Saio M, Radoja S, Marino M, Frey AB. Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5583-93. [PMID: 11698429 DOI: 10.4049/jimmunol.167.10.5583] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the ability of different cells present in murine tumors to induce apoptosis of activated CD8(+) T cells in vitro. Tumor cells do not induce apoptosis of T cells; however, macrophages that infiltrate tumors are potent inducers of apoptosis. Tumor macrophages express cell surface-associated TNF, TNF type I (CD120a) and II (CD120b) receptors, and, upon contact with T cells which induces release of IFN-gamma from T cells, secrete nitric oxide. Killing of T cells in vitro is blocked by Abs to IFN-gamma, TNF, CD120a, or CD120b, or N-methyl-L-arginine. In concert with that finding, tumor macrophages isolated from either TNF type I or type II receptor -/- mice are not proapoptotic and do not produce nitric oxide upon contact with activated T cells. Control macrophages do not express TNF receptors or release nitric oxide. Tumor cells or tumor-derived macrophages do not express FasL, and blocking Abs to either Fas or FasL have no effect on macrophage-mediated T cell killing. These results demonstrate that macrophages which infiltrate tumors are highly proapoptotic and may be responsible for elimination of activated antitumor T cells within the tumor bed.
Collapse
Affiliation(s)
- M Saio
- Department of Cell Biology and Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|