1
|
Feng Y, Yang Y, Yang H, Shan J, Zhang J, Chen Q, Zhang Y, Zhang Y, Li Z, Xue Y, Chen J, Geng C, Jia K, Zhao H, Wang J. Spleen-Heart Cross-Talk Through CD23-Mediated Signal Promotes Cardiac Remodeling. Circ Res 2025. [PMID: 40391441 DOI: 10.1161/circresaha.124.325813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Elevated levels of IgE are implicated in pathological cardiac remodeling. However, the origin of IgE remains unknown. In the current study, we aim to explore the source of IgE and the mechanisms underlying IgE production in the context of pathological cardiac remodeling. METHODS Flow cytometry was used to assess the changes of IgE-producing B cells in different organs/tissues, including the spleen, lymph nodes, bone marrow, peripheral blood, vasculature, and heart, in mice with cardiac remodeling induced by transverse aortic constriction (TAC). The role of IgE low-affinity receptor FcεRII (also named CD23) in IgE-producing B cells during cardiac remodeling was evaluated in mice with loss-of-CD23 or gain-of-CD23. The therapeutic potential of the CD23-neutralizing antibody was evaluated. The factors involved in organ cross-talk, which regulate IgE production, were identified and validated both in vitro and in vivo. RESULTS We found that splenic IgE-producing cells were significantly elevated in the TAC mice. CD23, as a negative regulator of IgE production, was decreased in splenic B cells of TAC mice. Global knockout of CD23 in mice aggravated TAC-induced IgE synthesis and cardiac remodeling in vivo. In contrast, global or B-cell-specific CD23 overexpression in mice reduced IgE synthesis and alleviated TAC-induced cardiac remodeling. Mechanistically, CD23 was cleaved by ADAM10 (A disintegrin and metalloproteinase domain 10) in the spleen. Screening assay with data-independent acquisition mass spectrometry-based proteomics and ELISA identified Ltf (lactotransferrin), released from the heart shortly after TAC stimulation, as a contributor to ADAM10 upregulation through binding to Ltf receptor Ncl (nucleolin). Meanwhile, Ltf administration promoted IgE elevation, accompanied by increased ADAM10 expression and decreased CD23 expression in vitro and in vivo. Furthermore, the plasma Ltf levels were positively correlated with TAC-induced cardiac remodeling, serum IgE, and sCD23 (soluble CD23). Consistently, Ltf levels were elevated in patients with heart failure with reduced ejection fraction and also positively correlated with serum IgE and sCD23. CONCLUSIONS Our findings indicate a critical role of the Ltf-ADAM10-CD23 axis in regulating IgE production through cross-talk between the heart and spleen. The Ltf-ADAM10-CD23 axis may represent new molecular targets for IgE-mediated pathological cardiac remodeling.
Collapse
Affiliation(s)
- Yufan Feng
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Yang Yang
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Hongqin Yang
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Jin Shan
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Jiaxin Zhang
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Qian Chen
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Yingge Zhang
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Yarong Zhang
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Zhiwei Li
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Yunfei Xue
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Junye Chen
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Chi Geng
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
| | - Kegang Jia
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Tianjin, China (K.J.)
| | - Hongmei Zhao
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
- State Key Laboratory of Complex, Severe, and Rare Diseases, Beijing, China (H.Z.)
| | - Jing Wang
- Department of Pathophysiology, Chinese Academy of Medical Sciences, School of Basic Medicine, Institute of Basic Medicine, Peking Union Medical College, Beijing (Y.F., Y.Y., H.Y., J.S., J.Z., Q.C., Yingge Zhang, Yarong Zhang, Z.L., Y.X., J.C., C.G., H.Z., J.W.)
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China (J.W.)
| |
Collapse
|
2
|
Gu Y, Luo H, Zhu J, Ma H, Zhang Y, Xing J, Liu Y, Cai Y, Sun W, Luo P. In vitro and in vivo assessment of diosmetin-loaded lactoferrin-modified liposomes for brain delivery in intracerebral hemorrhage therapy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01826-8. [PMID: 40089650 DOI: 10.1007/s13346-025-01826-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high morbidity, mortality, and disability rates, largely due to neuroinflammation. Diosmetin, a natural flavonoid, has known neuroprotective effects in cerebral ischemia/reperfusion models but has been less studied in ICH. Our previous study developed diosmetin-loaded lactoferrin-modified long-circulating liposomes (Lf-Dios-Lcl), which penetrate the BBB and improve diosmetin bioavailability and brain distribution. In this study, we found that diosmetin reduced the levels of proinflammatory cytokines (IL-1β and TNF-α) and increased the level of the anti-inflammatory cytokine IL-10 in LPS-induced BV2 cells, promoting microglial polarization toward the anti-inflammatory M2 phenotype. In ICH model rats, Lf-Dios-Lcl (1 mg/kg) effectively reduced neuroinflammation, decreased IL-1β and TNF-α levels, increased IL-10 levels, and increased the proportion of CD206-positive microglia in brain tissues. Moreover, Lf-Dios-Lcl significantly downregulated p-p38 expression, suggesting that p38 signaling activation was inhibited. Overall, Lf-Dios-Lcl demonstrated brain-targeting properties and antineuroinflammatory effects by modulating microglial polarization via the p38 pathway.
Collapse
Affiliation(s)
- Yingjiang Gu
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Hanyue Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Jun Zhu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620020, China
| | - Hao Ma
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Yang Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yuzhou Liu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yu Cai
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wenxia Sun
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan Province, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
3
|
Kooshan Z, Srinivasan S, Janjua TI, Popat A, Batra J. Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells. Eur J Pharmacol 2025; 991:177300. [PMID: 39870236 DOI: 10.1016/j.ejphar.2025.177300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells. Of the six PDK1 inhibitors, radicicol and dicumarol significantly inhibited cellular proliferation and exhibited lower metabolic activity in both LNCaP and PC-3 metastatic prostate cancer cells. Radicicol was highly effective at lower concentration. Moreover, radicicol significantly inhibited migration and invasion in PC-3 cells. We then developed a lactoferrin nanoparticle (LF-NP) encapsulated with Radicicol (Ra-LF-NP), using a rotary evaporation method. Spheroid assays confirmed the higher inhibitory potential of Ra-LF-NP with a reduction in spheroid area by 80%, and invasiveness compared to radicicol alone. Lactoferrin receptors are overexpressed on the surface of many cancer cells, including prostate cancer. Conjugating radicicol with lactoferrin nanoparticles, potentially enhanced the specific uptake of the drug by prostate cancer cells while minimizing the off-target effects on healthy cells. This targeted therapy approach could lead to improved treatment outcomes and reduced side effects. Our study demonstrated the potential of radicicol delivery by lactoferrin-conjugated nanoparticle as an efficient drug delivery strategy for prostate cancer treatment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Biegański HM, Dąbrowski KM, Różańska-Walędziak A. Omentin-General Overview of Its Role in Obesity, Metabolic Syndrome and Other Diseases; Problem of Current Research State. Biomedicines 2025; 13:632. [PMID: 40149608 PMCID: PMC11940803 DOI: 10.3390/biomedicines13030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Omentin (omentin-1, intelectin-1, ITLN-1) is an adipokine considered to be a novel substance. Many chronic, inflammatory, or civilization diseases are linked to obesity, in which omentin plays a significant role. Methods: MEDLINE and SCOPUS databases were searched using the keywords "omentin" or "intelectin-1". Then the most recent articles providing new perspectives on the matter and the most important studies, which revealed crucial insight, were selected to summarize the current knowledge on the role of omentin in a literature review. Results and Conclusions: The valid role of this adipokine is evident in the course of metabolic syndrome. In most cases, elevated omentin expression is correlated with the better course of diseases, including: type 2 diabetes mellitus, polycystic ovary syndrome, rheumatoid arthritis, metabolic dysfunction-associated steatotic liver disease, Crohn's disease, ulcerative colitis, atherosclerosis, or ischemic stroke, for some of which it can be a better marker than the currently used ones. However, results of omentin studies are not completely one-sided. It was proven to participate in the development of asthma and atopic dermatitis and to have different concentration dynamics in various types of tumors. All of omentin's effects and properties make it an attractive subject of research, considering still unexplored inflammation mechanisms, in which it may play an important role. Omentin was proven to prevent osteoarthritis, hepatocirrhosis, and atherosclerosis in mouse models. All of the above places omentin among potential therapeutic products, and not only as a biomarker. However, the main problems with the omentin's research state are the lack of standardization, which causes many contradictions and disagreements in this field.
Collapse
Affiliation(s)
- Hubert Mateusz Biegański
- Medical Faculty, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (H.M.B.); (K.M.D.)
| | - Krzysztof Maksymilian Dąbrowski
- Medical Faculty, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (H.M.B.); (K.M.D.)
| | - Anna Różańska-Walędziak
- Departament of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
5
|
Wang S, Zhang N, Jiang B, Lönnerdal B, Chen Y, Wang B. Molecular Characterization and Expression of Lactoferrin Receptor (LfR) in Different Regions of the Brain Responding to Lactoferrin Intervention. Mol Neurobiol 2025; 62:2857-2871. [PMID: 39179683 PMCID: PMC11790811 DOI: 10.1007/s12035-024-04378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Lactoferrin (LF), an iron-binding glycoprotein rich in human milk, promotes neurodevelopment and cognition, but whether it acts through the LF receptor (LfR) and its expression profile in the brain remains unknown. We characterized 972 bp of piglet brain LfR cDNA and found LfR mRNA was expressed all brain regions being highest in the frontal lobe, followed by parietal lobe, brainstem, occipital lobe, cingulate gyrus, subventricular zone, olfactory bulb, hippocampus, amygdala, cerebellum, and thalamus. LfR mRNA and protein in different regions of the brain responded to low (155 mg/kg/day) and high (285 mg/kg/day) LF supplementation of piglets from postnatal days 3 to 38. By postnatal day 39, the low LF diet significantly increased LfR protein expression in the occipital lobe compared to controls, but not the high LF diet. LfR protein in the subventricular zone of the high LF group was 42% and 38% higher than that of the low LF group and controls, respectively. There was a trend for a dose-response relationship between LF intervention and LfR protein expression only in the prefrontal and parietal lobes. LF supplementation significantly improved piglet working memory for a difficult task, which was positively correlated with LfR protein in the prefrontal, parietal, and occipital lobes, but no dose response. Brain LfR responds to dietary LF supplementation, a mechanism by which LF can promote learning and working memory through its receptor. LfR is expressed in the whole brain, and its expression level is anatomic region specific.
Collapse
Affiliation(s)
- Siqi Wang
- School of Medicine, Xiamen University, Xiamen City, 361102, China
| | - Nai Zhang
- School of Medicine, Xiamen University, Xiamen City, 361102, China
| | - Bowen Jiang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, 95616, USA
| | - Yue Chen
- School of Medicine, Xiamen University, Xiamen City, 361102, China
| | - Bing Wang
- School of Medicine, Xiamen University, Xiamen City, 361102, China.
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
6
|
Mu Y, Wei M, Liu Y, Fan H, Yuan J, Cai S, He H, Gou J, Tang X, Yin T, Zhang Y. Lactoferrin-functionalized PEGylation liposomes loaded with norcantharidin acid for targeted therapy of hepatocellular carcinoma. Int J Pharm 2025; 671:125245. [PMID: 39842742 DOI: 10.1016/j.ijpharm.2025.125245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Norcantharidin (NCTD), an antitumor agent with an increased leukocyte function, has been used for the treatment of hepatocellular carcinoma (HCC) in clinical. However, the clinical application of NCTD is limited due to its inadequate hydrophilicity and lipophilicity, short half-life (t1/2), as well as adverse effects such as vascular irritation, cardiotoxicity, and nephrotoxicity. Herein, a lactoferrin (Lf) and DSPE-mPEG2000 functionalized liposomes loaded with norcantharidic acid (NCA), an active metabolite of NCTD, was constructed for the targeted therapy of HCC. In this study, blank PEGylated liposomes were prepared using the film hydration method, and the NCA was loaded by calcium acetate active loading method to increase the encapsulation efficiency (EE). Subsequently, lactoferrin was covalently coupled to DSPE-PEG2000-COOH activated by EDC and NHS. In addition, the in vivo pharmacokinetics and pharmacodynamics were investigated in Sprague-Dawley (SD) rats and H22 tumor-bearing BALB/c mice, respectively. As expected, the encapsulation efficiency measurement showed that the encapsulation efficiency of the NCA liposomes was 89.3±1.25 %, and the coupling efficiency of lactoferrin was more than 65.97 %. Additionally, the variations in both the dynamic size and encapsulation efficiency of norcantharidic acid liposomes in long-term storage stability and serum stability studies did not exceed 10 %. Furthermore, the pharmacokinetics and pharmacodynamics results showed that, the NCA-Lips-Lf were able to significantly improve antitumor activity by enhancing tumor-targeting accumulation and prolonging circulation time in the body compared to the sodium demethylcantharidate for injection (Na2DCA). Notably, the AUC0-48 and the t1/2 of NCA-Lips-Lf increased 4.28-time and 5.17-time in comparison to those of NCA-sol, respectively. The tumor inhibition rate of NCA-Lips-Lf (85.29 %) was significantly higher than that of sodium demethylcantharidate for injection (Na2DCA) (59.13 %), without obvious vascular irritation, cardiotoxicity and nephrotoxicity. In conclusion, NCA-Lips-Lf have the potential to eliminate hepatocellular carcinoma more effectively with fewer side effects than Na2DCA, which further advances the clinical application of norcantharidin-related drugs.
Collapse
Affiliation(s)
- Yinling Mu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Mingli Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yuxin Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Hongxia Fan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jingjing Yuan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shunqiao Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Tian Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110116, China
| |
Collapse
|
7
|
Zhang L, Ma Y, Hettinga K, Zhou P. Suckling Rat Pup Model: Do Caprine Milk Lactoferrin and Immunoglobulins Have Different Digestion and Absorption Properties from That of Human and Bovine Species? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3069-3079. [PMID: 39873219 DOI: 10.1021/acs.jafc.4c10539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This study aimed to investigate the digestion and absorption properties of caprine milk serum proteins in comparison to human and bovine species by using rat pups to mimic preterm infants. The results indicate that caprine lactoferrin (LTF) had a shorter retention time in the intestine and released a greater number of fragments, resembling human milk LTF more closely. In contrast, caprine immunoglobulins (Igs) were similar to bovine Igs and both exhibited a longer retention time in the intestine. For absorption, caprine Igs could be absorbed intact, which was similar to human and bovine Igs, whereas caprine LTF fragments were found in jejunum but not in plasma of rat pups. This is similar to bovine LTF but differed from human LTF as human LTF could be absorbed intact in plasma of rat pups at 20 min. In addition, the absorption rate of peptides and amino acids from caprine milk serum was similar to that of human milk serum, which was higher than that from bovine milk serum. This study aimed to enhance our understanding of the differences in bioavailability of LTF and Igs derived from caprine, human milk, and bovine milk, thereby offering guidance for selecting protein sources for premature infants.
Collapse
Affiliation(s)
- Lina Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kasper Hettinga
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Food Quality & Design Group, Wageningen University, Wageningen 6708WG, The Netherlands
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Capra ME, Aliverti V, Bellani AM, Berzieri M, Montani AG, Pisseri G, Sguerso T, Esposito S, Biasucci G. Breastfeeding and Non-Communicable Diseases: A Narrative Review. Nutrients 2025; 17:511. [PMID: 39940369 PMCID: PMC11819769 DOI: 10.3390/nu17030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
INTRODUCTION Breastfeeding plays a fundamental role in newborns' and infants' health. Breast milk's protective power against malnutrition and its positive effect on neurological and physical development are well established and are reflected in the policy statements of all major pediatric health entities. However, breastfeeding also plays an important role in the prevention of so-called non-communicable diseases, such as obesity, hypertension, dyslipidemia, and autoimmune diseases. METHODS This narrative review aims to analyze the effect of breastfeeding and breast milk on the development of non-communicable diseases, with a special focus on weight excess, dyslipidemia, allergy, and gastrointestinal diseases. This narrative review was carried out through three steps: executing the search, examining abstracts and full texts, and analyzing results. To achieve this, the databases PubMed, EMBASE, Scopus, ScienceDirect, Web of Science, and Google Scholar were explored to collect and select publications from 1990 to 2024 to find pertinent studies in line with this review's development. The search included randomized placebo-controlled trials, controlled clinical trials, double-blind, randomized controlled studies, and systematic reviews. A total of 104 manuscripts were ultimately included in the analysis. RESULTS Breastfeeding is associated with a decreased vulnerability to early viral infections or chronic inflammatory conditions during preschool years, a reduced incidence of weight excess, and likely lower cholesterol concentration, besides having a small protective effect against systolic blood hypertension. CONCLUSIONS Pediatricians must promote breastfeeding, support the mother-infant dyad, and consider breast milk as a real "health voucher" that can last lifelong. However, further studies are needed to better define the extent and duration of breastfeeding's protective power in this context.
Collapse
Affiliation(s)
- Maria Elena Capra
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.E.C.); (G.B.)
| | - Valentina Aliverti
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Arianna Maria Bellani
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Martina Berzieri
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Anna Giuseppina Montani
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gianlorenzo Pisseri
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Tullia Sguerso
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.E.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
9
|
Wang R, Nie W, Yan X, Luo K, Zhang Q, Wang T, Lu E, Chen Y, Luo Y, Zhang Z, Wang H, Zhao J, Sha X. Biomimetic Nanomotors for Deep Ischemia Penetration and Ferroptosis Inhibition in Neuroprotective Therapy of Ischemic Stroke. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409176. [PMID: 39600046 DOI: 10.1002/adma.202409176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Nerve injury represents the primary reason of mortality and disability in ischemic stroke, but effective drug delivery to the region of cerebral ischemia and hypoxia poses a significant challenge in neuroprotective treatment. To address these clinical challenges, a biomimetic nanomotor, Pt@LF is designed, to facilitate deep delivery of neuroprotective agents and inhibit ferroptosis in ischemic stroke. Pt@LF traverses the blood-brain barrier (BBB) and penetrates into deep cerebral ischemic-hypoxic areas due to the active targeting capacity of apo-lactoferrin (Apo-LF) and the self-propelling motion properties of nanomotors. Subsequently, Pt@LF loosens thrombus and alleviates the "no reflow" phenomenon via mechanical thrombolysis. Thanks to the various enzyme-like abilities and multi-target ferroptosis inhibition capability, Pt@LF ameliorates the inflammatory microenvironment and rescues dying neurons. In conclusion, Pt@LF demonstrates efficiently deep penetration and neuroprotective effects in vitro and vivo. And this study provides a promising therapeutic platform for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Weimin Nie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Xin Yan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Kuankuan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Qi Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Tao Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Enhao Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Yiting Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Yu Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - He Wang
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200 433, China
- Department of Radiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200 081, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201 102, China
- Institute of Healthy Yangtze River Delta, Shanghai Jiao Tong University, Shanghai, 200 030, China
| | - Xianyi Sha
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
- Quzhou Fudan Institute, Quzhou, 324 002, China
| |
Collapse
|
10
|
Guo NK, Si LN, Li PQ, Gan GF. Nano Acacetin Mitigates Intestinal Mucosal Injury in Sepsis Rats by Protecting Mitochondrial Function and Regulating TRX1 to Inhibit the NLRP3 Pyroptosis Pathway. Int J Nanomedicine 2024; 19:14125-14141. [PMID: 39759963 PMCID: PMC11699839 DOI: 10.2147/ijn.s497081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Background Acacetin (AC) is a flavonoid compound with antiperoxidant, anti-inflammatory, and antiplasmodial activity. However, the solubility of AC is poor and nano acacetin (Nano AC) was synthesized. The intestinal mucosal barrier is impaired in sepsis rats, and the protective effects and mechanism of AC and Nano AC on the intestinal mucosal barrier are unclear. Methods Cecal ligation and perforation (CLP) was used to induce sepsis in rats, and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells were used to observe the effects of AC and our synthesized Nano AC on the amelioration of intestinal mucosal damage. The molecular docking technique was used to predict the binding energy of AC to thioredoxin reductase 1 (TRX1) signaling pathway proteins. TRX1 inhibitor (PX-12) was employed to elucidate the protective signaling pathway of Nano AC in LPS-stimulated intestinal epithelial cells. Results Our synthesized Nano AC, with an average particle size of 17.18 ± 0.48 nm and an uptake rate of 95% in intestinal epithelial cells. The maximum binding capacity of AC to TRX1 was -6.82 kcal/mol, supporting the hypothesis that TRX1 is a potential target of AC. AC and Nano AC ameliorated the survival rate, intestinal mucosal damage score, pathological morphology, hepatic and renal function, and myocardial troponin levels, decreased serum levels of pyroptosis-related factors, upregulated TRX1, down-regulated NOD-like receptor protein 3 inflammasome (NLRP3), cysteinyl aspartate specific proteinase-11 (Caspase-11), Gasdermin D (GSDMD) in sepsis rats. They improved mitochondrial morphology and mitochondrial reactive oxygen species (ROS) levels, reduced pyroptosis levels, and upregulated TRX1, which adjusted NLRP3/ Caspase-11/ GSDMD signaling pathway in LPS-stimulated intestinal epithelial cells. Moreover, Nano AC was more effective. Conclusion AC and Nano-AC can inhibit the NLRP3/Caspase-11/GSDMD signaling pathway by upregulating TRX1 to ameliorate intestinal mucosal injury in sepsis rats, and the effect of Nano AC is more prominent.
Collapse
Affiliation(s)
- Ning-ke Guo
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Li-ning Si
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
- Affiliated Hospital, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Pei-qing Li
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Gui-fen Gan
- Affiliated Hospital, Qinghai University, Xining, Qinghai, People’s Republic of China
| |
Collapse
|
11
|
Rascón-Cruz Q, Siqueiros-Cendón TS, Siañez-Estrada LI, Villaseñor-Rivera CM, Ángel-Lerma LE, Olivas-Espino JA, León-Flores DB, Espinoza-Sánchez EA, Arévalo-Gallegos S, Iglesias-Figueroa BF. Antioxidant Potential of Lactoferrin and Its Protective Effect on Health: An Overview. Int J Mol Sci 2024; 26:125. [PMID: 39795983 PMCID: PMC11719613 DOI: 10.3390/ijms26010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, has emerged as a promising therapeutic agent due to its potent antioxidant, anti-inflammatory, and iron-regulating properties. Lf plays a pivotal role in iron homeostasis by chelating iron, modulating its cellular uptake, and reducing ROS production, thereby mitigating oxidative stress-related tissue damage. Lf also demonstrates neuroprotective potential in diseases like Parkinson's and Alzheimer's, where it alleviates oxidative damage, regulates iron metabolism, and enhances antioxidant defenses. Furthermore, its ability to enhance endogenous antioxidant mechanisms, such as superoxide dismutase and glutathione peroxidase, underscores its systemic protective effects. Lf's anti-inflammatory and antimicrobial activities also contribute to its broad-spectrum protective role in chronic diseases. This review consolidates evidence of Lf's mechanisms in mitigating oxidative stress and highlights its therapeutic potential as a versatile molecule for preventing and managing chronic conditions linked to oxidative damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (Q.R.-C.); (T.S.S.-C.); (L.I.S.-E.); (C.M.V.-R.); (L.E.Á.-L.); (J.A.O.-E.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
12
|
Gallo V, Antonini G. Controversial role of lactoferrin in cancer: A narrative review. Biomed Pharmacother 2024; 181:117743. [PMID: 39662207 DOI: 10.1016/j.biopha.2024.117743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024] Open
Abstract
Lactoferrin (Lf) is a positively charged iron-binding glycoprotein that has piqued the scientific community's interest due to its pleiotropic behavior, exhibiting a wide range of biological activities, including antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, and anticancer effects. This narrative review explores the current understanding of Lf's role in cancer, focusing on the endogenously expressed human full-length and ΔLf isoforms, and the effects of treatment with exogenous human and bovine Lf. We evaluated and compared the mechanisms by which Lf influences tumorigenesis and cancer progression, focusing on its impact on key processes such as cell growth, apoptosis, angiogenesis, cell migration, and invasiveness. Notably, the mechanisms of action of human and bovine Lf show some divergences, presumably due to slight structural differences that may lead to opposing effects. Insights from this comparison may help identify new Lf variants with enhanced anticancer activity. Indeed, both human and bovine Lf showed substantial anticancer activity, prompting researchers to investigate their potential utility in cancer prevention and progression. However, some studies have indicated that high levels of human Lf expression may be linked to increased carcinogenesis and metastasis, reflecting its intricate and context-dependent role in cancer. Thus, we emphasize the need for a deeper comprehension of Lf biology and its regulation to enhance understanding of Lf's role in cancer and identify more targeted therapeutic strategies, encouraging further research in this area.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Rome 00146, Italy.
| | - Giovanni Antonini
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Rome 00146, Italy; National Institute of Biostructures and Biosystems (INBB), Via dei Carpegna 19, Rome 00165, Italy
| |
Collapse
|
13
|
Rosa L, Cutone A, Ianiro G, Valenti P, Paesano R. Lactoferrin in the treatment of interstitial cystitis: a retrospective pilot study. Biochem Cell Biol 2024; 102:506-514. [PMID: 39088844 DOI: 10.1139/bcb-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Interstitial cystitis (IC), defined as a painful bladder syndrome (PBS), is a chronic condition that manifests itself as a suprapubic pain associated with an enhancing of frequency/urgency of urination, and for which there is no cure. Here, we present a retrospective pilot study on women affected from IC/PBS and treated with bovine lactoferrin (bLf). A total of 31 women, affected (20) or unaffected (11) from hereditary thrombophilia (HT), presented the median of 6 episodes of IC/PBS during the 6 months before the study. Treatment consisted of 17 weeks of orally administered Valpalf® capsules, containing bLf plus sodium bicarbonate and citrate. Out of 31 patients, only 3 women had one episode of IC/PBS during the follow-up period, while no episode was observed in 28 women. In the HT group, a significant decrease in both serum IL-6 and D-dimers was found after Valpalf® treatment. Moreover, in Valpalf®-treated women, cystoscopy revealed a global improvement in the appearance of the bladder, especially in term of inflammation/irritation and presence of Hunner ulcers. Even if our results must be corroborated by randomized double-blinded controlled trials on a larger number of patients, our observations indicate that bLf treatment is efficient in relieving IC/PBS symptoms, without side effects.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
14
|
Jiang R, Du X, Lönnerdal B. Effects of Forming Lactoferrin-Milk Protein Complexes on Lactoferrin Functionality and Intestinal Development in Infancy. Nutrients 2024; 16:4077. [PMID: 39683471 DOI: 10.3390/nu16234077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Lactoferrin (Lf) is an iron-binding glycoprotein with multiple bioactivities, including promotion of cell proliferation and differentiation, immunomodulation, and antimicrobial activity. Lf, a basic glycoprotein, can bind to α-lactalbumin (α-Lac), an acidic whey protein. The current study aimed to evaluate whether Lf forms protein complexes with α-Lac and proteins/peptides from whey protein hydrolysate (WPH) and nonfat bovine milk powder (MP) and whether forming protein complexes influences resistance to gastrointestinal digestion and affects the bioactivities of Lf in human intestinal epithelial cells (HIECs and differentiated Caco-2 cells). METHODS Lf was blended with α-Lac, WPH, or MP. Assays were conducted to evaluate the bioactivities of proteins (Lf, α-Lac, WPH, or MP) and Lf-protein blends on HIECs and Caco-2 cells. RESULTS (1) Lf forms complexes with α-Lac and proteins/peptides from WPH and MP; (2) compared with Lf alone, complexed Lf shows greater resistance to in vitro digestion; (3) forming protein complexes does not affect Lf's binding to the Lf receptor or its uptake by HIECs; and (4) forming protein complexes does not impact Lf's bioactivities, including the promotion of cell proliferation and differentiation, reduction of cell permeability by upregulating tight-junction proteins, immune modulation through the regulation of IL-18, inhibition of enteropathogenic Escherichia coli growth, and modulation of immune responses to EPEC infection. CONCLUSIONS Lf forms complexes with α-Lac and other milk proteins/peptides from WPH and MP in protein blends, and forming complexes does not affect the functionalities of Lf.
Collapse
Affiliation(s)
- Rulan Jiang
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Qian ZM, Li W, Guo Q. Lactoferrin/lactoferrin receptor: Neurodegenerative or neuroprotective in Parkinson's disease? Ageing Res Rev 2024; 101:102474. [PMID: 39197711 DOI: 10.1016/j.arr.2024.102474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Lactoferrin (Lf) is a multifunctional protein in the transferrin family. It is involved in many physiological functions, including the regulation of iron absorption and immune response. It also has antibacterial, antiviral, anti-inflammatory, anticancer and antioxidant capabilities under pathophysiological conditions. The mammalian lactoferrin receptor (LfR) plays a key role in mediating multiple functions of Lf. Studies have shown that Lf/LfR is abnormally expressed in the brain of Parkinson's disease, and the excessive accumulation of iron in the brain caused by the overexpression of Lf and LfR is considered to be one of the initial causes of the degeneration of dopaminergic neurons in Parkinson's disease. On the other hand, a number of recent studies have reported that Lf/LfR has a significant neuroprotective effect on Parkinson's disease. In other words, it seems paradoxical that Lf/LfR has both neurodegenerative and neuroprotective effects in Parkinson's disease. This article focuses on recent advances in the possible mechanisms of the neurodegenerative and neuroprotective effects of Lf/LfR in Parkinson's disease and discusses why Lf/LfR has a seemingly contradictory role in the development of Parkinson's disease. Based on the evidence obtained so far, we believed that Lf/LfR has a neuroprotective effect on Parkinson's disease, while as to whether the overexpressed Lf/LfR is the cause of the development of Parkinson's disease, the current evidence is insufficient and further investigation needed.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qian Guo
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
16
|
Vandenberghe-Dürr S, Gilliet M, Di Domizio J. OLFM4 regulates the antimicrobial and DNA binding activity of neutrophil cationic proteins. Cell Rep 2024; 43:114863. [PMID: 39396234 DOI: 10.1016/j.celrep.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Neutrophil cationic proteins (NCPs) are a group of granule antimicrobial and inflammatory proteins released by activated neutrophils. These proteins primarily function via their positively charged structure, which facilitates interactions with bacterial membranes and the formation of immunogenic DNA complexes, thereby contributing to the initiation of wound repair in injured skin. After analyzing the structural properties of secreted neutrophil granule proteins, we identified OLFM4 as the only negatively charged molecule that interferes with NCP oligomerization. Through this interference, OLFM4 can inhibit neutrophil-mediated bacterial killing and DNA complex-dependent activation of Toll-like receptor 9 (TLR9) in plasmacytoid dendritic cells (pDCs) and neutrophils. While addition of exogenous OLFM4 blocks these processes, OLFM4 inhibition enhances neutrophil-dependent bacterial killing and DNA complex formation, ultimately leading to accelerated closure of skin wounds.
Collapse
Affiliation(s)
- Sophie Vandenberghe-Dürr
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland.
| | - Jeremy Di Domizio
- Department of Dermatology and Venereology, University Hospital of Lausanne UNIL-CHUV, 1011 Lausanne, Switzerland.
| |
Collapse
|
17
|
Manzoni P, Messina A, Germano C, Picone S, Masturzo B, Sainaghi PP, Sola D, Rizzi M. Lactoferrin Supplementation in Preventing and Protecting from SARS-CoV-2 Infection: Is There Any Role in General and Special Populations? An Updated Review of Literature. Int J Mol Sci 2024; 25:10248. [PMID: 39408576 PMCID: PMC11476995 DOI: 10.3390/ijms251910248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
At the beginning of the pandemic, SARS-CoV-2 infection represented a great medical burden worldwide, as targeted and effective therapeutic options were lacking. This resulted in the revival of existing molecules and the increasing popularity of over-the-counter nutritional supplements. Among the latter, lactoferrin has been investigated as an adjuvant in COVID-19 therapy with conflicting results, mainly depending on different study designs. Considering that lactoferrin is one of the main components of human breast milk with anti-microbial and anti-inflammatory activity, it is conceivable that such bioactive molecule could be effective in supporting anti-SARS-CoV-2 infection therapy, especially in infants and pregnant women, two subpopulations that have been poorly evaluated in the existing clinical trials. This narrative review is intended to offer insight into the existing literature on lactoferrin's biological functions and protective effects against COVID-19, with a special focus on pregnant women and their infants.
Collapse
Affiliation(s)
- Paolo Manzoni
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Alessandro Messina
- School of Medicine, University of Turin, 10124 Turin, Italy;
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Germano
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy
| | - Bianca Masturzo
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Daniele Sola
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, S. Giuseppe Hospital, 28824 Piancavallo, Italy
| | - Manuela Rizzi
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Health Sciences (DiSS), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
18
|
Rosa L, Ianiro G, Niro A, Musci G, Paesano R, Cutone A, Valenti P. Valpalf ®: A New Nutraceutical Formulation Containing Bovine Lactoferrin That Exhibits Potentiated Biological Activity. Int J Mol Sci 2024; 25:8559. [PMID: 39201246 PMCID: PMC11354537 DOI: 10.3390/ijms25168559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
As a nutraceutical, bovine lactoferrin (bLf), an iron-binding glycoprotein involved in innate immunity, is gaining elevated attention for its ability to exert pleiotropic functions and to be exceptionally tolerated even at high dosages. Some of bLf's activities, including its anti-inflammatory and antioxidant, are tightly linked to its ability to both chelate iron and enter inside the cell nucleus. Here, we present data about Valpalf®, a new formulation containing bLf, sodium citrate, and sodium bicarbonate at a molar ratio of 10-3. In the present study, Valpalf® exhibits superior iron-binding capacity, resistance to tryptic digestion, and a greater capacity to accumulate into the nucleus over time when compared to the native bLf alone. In agreement, Valpalf® effectively reduces interleukin(IL)-6 levels in lipopolysaccharide-stimulated macrophages and modulates the expression of antioxidant enzymes, such as superoxide dismutase 1 and 2, in phorbol-12-myristate-13-acetate-stimulated monocytes. Of note, this potentiated bioactivity was corroborated in a retrospective study on the treatment of anemia of inflammation in hereditary thrombophilic pregnant and non-pregnant women, demonstrating that Valpalf® improves hematological parameters and reduces serum IL-6 levels to a higher extent than bLf alone.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | | | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (P.V.)
- Microbo s.r.l., 00153 Rome, Italy;
| |
Collapse
|
19
|
Gori A, Brindisi G, Daglia M, del Giudice MM, Dinardo G, Di Minno A, Drago L, Indolfi C, Naso M, Trincianti C, Tondina E, Brunese FP, Ullah H, Varricchio A, Ciprandi G, Zicari AM. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024; 16:1906. [PMID: 38931261 PMCID: PMC11206375 DOI: 10.3390/nu16121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of allergic diseases has dramatically increased among children in recent decades. These conditions significantly impact the quality of life of allergic children and their families. Lactoferrin, a multifunctional glycoprotein found in various biological fluids, is emerging as a promising immunomodulatory agent that can potentially alleviate allergic diseases in children. Lactoferrin's multifaceted properties make it a compelling candidate for managing these conditions. Firstly, lactoferrin exhibits potent anti-inflammatory and antioxidant activities, which can mitigate the chronic inflammation characteristic of allergic diseases. Secondly, its iron-binding capabilities may help regulate the iron balance in allergic children, potentially influencing the severity of their symptoms. Lactoferrin also demonstrates antimicrobial properties, making it beneficial in preventing secondary infections often associated with respiratory allergies. Furthermore, its ability to modulate the immune response and regulate inflammatory pathways suggests its potential as an immune-balancing agent. This review of the current literature emphasises the need for further research to elucidate the precise roles of lactoferrin in allergic diseases. Harnessing the immunomodulatory potential of lactoferrin could provide a novel add-on approach to managing allergic diseases in children, offering hope for improved outcomes and an enhanced quality of life for paediatric patients and their families. As lactoferrin continues to capture the attention of researchers, its properties and diverse applications make it an intriguing subject of study with a rich history and a promising future.
Collapse
Affiliation(s)
- Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Chiara Trincianti
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
| | - Attilio Varricchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| |
Collapse
|
20
|
Li Y, Li J, Dong Y, Wang C, Cai Z. Bovine lactoferrin inhibits inflammatory response and apoptosis in lipopolysaccharide-induced acute lung injury by targeting the PPAR-γ pathway. Mol Biol Rep 2024; 51:492. [PMID: 38578368 DOI: 10.1007/s11033-024-09436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.
Collapse
Affiliation(s)
- Yantao Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Junhu Li
- Emergency Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yan Dong
- Emergency Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Can Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Zhigang Cai
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
- Hebei Key Laboratory of Respiratory Critical Care Medicine, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
- Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
21
|
Wang W, An Q, Huang K, Dai Y, Meng Q, Zhang Y. Unlocking the power of Lactoferrin: Exploring its role in early life and its preventive potential for adult chronic diseases. Food Res Int 2024; 182:114143. [PMID: 38519174 DOI: 10.1016/j.foodres.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Nutrition during the early postnatal period exerts a profound impact on both infant development and later-life health. Breast milk, which contains lactoferrin, a dynamic protein, plays a crucial role in the growth of various biological systems and in preventing numerous chronic diseases. Based on the relationship between early infant development and chronic diseases later in life, this paper presents a review of the effects of lactoferrin in early life on neonates intestinal tract, immune system, nervous system, adipocyte development, and early intestinal microflora establishment, as well as the preventive and potential mechanisms of early postnatal lactoferrin against adult allergy, inflammatory bowel disease, depression, cancer, and obesity. Furthermore, we summarized the application status of lactoferrin in the early postnatal period and suggested directions for future research.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
22
|
Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int J Mol Sci 2024; 25:1842. [PMID: 38339120 PMCID: PMC10855762 DOI: 10.3390/ijms25031842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.
Collapse
Affiliation(s)
- Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Mariana Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
| | - Madalena Grácio
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
23
|
Peña-Juárez MC, Guadarrama-Escobar OR, Serrano-Castañeda P, Méndez-Albores A, Vázquez-Durán A, Vera-Graziano R, Rodríguez-Pérez B, Salgado-Machuca M, Anguiano-Almazán E, Morales-Florido MI, Rodríguez-Cruz IM, Escobar-Chávez JJ. Synergistic Effect of Retinoic Acid and Lactoferrin in the Maintenance of Gut Homeostasis. Biomolecules 2024; 14:78. [PMID: 38254678 PMCID: PMC10813542 DOI: 10.3390/biom14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Omar Rodrigo Guadarrama-Escobar
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Pablo Serrano-Castañeda
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Betsabé Rodríguez-Pérez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Unidad de Investigación Multidisciplinaria (UIM), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Mariana Salgado-Machuca
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Ericka Anguiano-Almazán
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Miriam Isabel Morales-Florido
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
- Laboratorio de Farmacia Molecular y Liberación Controlada, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Isabel Marlene Rodríguez-Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional e Alta Especialidad de Sumpango, Carretera Zumpango-Jilotzingo #400, Barrio de Santiago, 2ª Sección, Zumpango 55600, Mexico;
| | - José Juan Escobar-Chávez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| |
Collapse
|
24
|
Calderipe CB, Soares AC, Dos Santos Giorgis R, Fogaça ACM, Torriani MA, Grave LQ, Schuch LF, Vasconcelos ACU. What is the effect of lactoferrin on oral and jawbone tissue repair? A systematic review. Br J Oral Maxillofac Surg 2024; 62:4-14. [PMID: 38042716 DOI: 10.1016/j.bjoms.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 12/04/2023]
Abstract
Currently, there is growing interest in the potential use of lactoferrin (LTF), a member of the transferrin family, for the improvement of tissue healing. In this sense, a literature search was conducted to integrate data published on the effect of LTF on jawbone repair. PubMed/MEDLINE, Scopus, Embase, Web of Science, LILACS, and Cochrane databases were retrieved according to the PRISMA 2020 statement. Articles in English, Spanish, and Portuguese were recovered, with no year restriction. In vitro, in vivo, and clinical studies were selected. A total of 742 articles were retrieved, 11 of which met the inclusion criteria (5 in vitro and 5 in vivo studies, and one clinical trial). The included data demonstrated wide variations in study design and LTF therapy protocols. Cell proliferation and viability were the primary outcomes evaluated in the in vitro studies, all of which reported a potential effect of LTF on the repair process. Of three in vivo studies, one reported a reduction in the overall healing rate, whereas the other two showed that LTF inhibited bone resorption and increased bone formation. The clinical trial's findings showed that LTF is a potential promoter of wound repair in patients with medication-related osteonecrosis of the jaws. Overall, data from the studies support a potential effect of LTF therapy on the process of jawbone repair.
Collapse
Affiliation(s)
- Camila Barcellos Calderipe
- Department of Oral Diagnosis, Piracicaba School of Dentistry, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Alini Cardoso Soares
- Diagnostic Center of Oral Diseases, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Rafael Dos Santos Giorgis
- Oral Surgery Department, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | | | - Marcos Antonio Torriani
- Oral Surgery Department, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Luisa Quevedo Grave
- Diagnostic Center of Oral Diseases, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Lauren Frenzel Schuch
- Molecular Pathology Area, School of Dentistry, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Ana Carolina Uchoa Vasconcelos
- Diagnostic Center of Oral Diseases, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
25
|
Zhao X, Ting SM, Sun G, Bautista Garrido J, Obertas L, Aronowski J. Clearance of Neutrophils From ICH-Affected Brain by Macrophages Is Beneficial and Is Assisted by Lactoferrin and CD91. Stroke 2024; 55:166-176. [PMID: 38063014 PMCID: PMC10842928 DOI: 10.1161/strokeaha.123.045194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Within hours after intracerebral hemorrhage (ICH) onset, masses of polymorphonuclear neutrophils (PMNs) infiltrate the ICH-affected brain. After degranulation involving controlled release of many toxic antimicrobial molecules, the PMNs undergo rapid apoptosis and then are removed by phagocytic microglia/macrophages (MΦ) through a process called efferocytosis. Effective removal of PMNs may limit secondary brain damage and inflammation; however, the molecular mechanisms governing these cleanup activities are not well understood. We propose that scavenger receptor CD91 on myeloid phagocytes especially in presence of CD91 ligand, LTF (lactoferrin, protein abundant in PMNs), plays an important role in clearance of dead apoptotic PMNs (ANs). METHODS Mice/rats were subjected to an autologous blood injection model of ICH. Primary cultured microglia were used to assess phagocytosis of ANs. Immunohistochemistry was employed to assess CD91 expression and PMN infiltration. CD91 knockout mice selectively in myeloid phagocytes (Mac-CD91-KO) were used to establish the CD91/LTF function in phagocytosis and in reducing ICH-induced injury, as assessed using behavioral tests, hematoma resolution, and oxidative stress. RESULTS Masses of PMNs are found in ICH-affected brain, and they contain LTF. MΦ at the outer border of hematoma are densely packed, expressing CD91 and phagocytosing ANs. Microglia deficient in CD91 demonstrate defective phagocytosis of ANs, and mice deficient in CD91 (Mac-CD91-KO) subjected to ICH injury have increased neurological dysfunction that is associated with impaired hematoma resolution (hemoglobin and iron clearance) and elevated oxidative stress. LTF that normally ameliorates ICH injury in CD91-proficient control mice shows reduced therapeutic effects in Mac-CD91-KO mice. CONCLUSIONS Our study suggests that CD91 plays a beneficial role in improving ANs phagocytosis and ultimately post-ICH outcome and that the beneficial effect of LTF in ICH is in part dependent on presence of CD91 on MΦ.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | - Shun-Ming Ting
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | - Guanghua Sun
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | | | - Lidiya Obertas
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | - Jaroslaw Aronowski
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| |
Collapse
|
26
|
Kopaeva MY, Cherepov AB, Zaraiskaya IY. Lactoferrin Has a Protective Effect on Mouse Brain Cells after Acute Gamma Irradiation of the Head. Bull Exp Biol Med 2023; 176:246-252. [PMID: 38194066 DOI: 10.1007/s10517-024-06004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 01/10/2024]
Abstract
We studied the effect of human lactoferrin on cells of the hippocampal dentate gyrus of 2-2.5-month-old male C57BL/6 mice after acute gamma irradiation of the head in a dose of 8 Gy from a 60Co source. Immediately after irradiation some animals received an intraperitoneal injection of human lactoferrin (4 mg/mouse). The appearance of TUNEL+ cells in the subgranular zone 6 h after irradiation was accompanied by a corresponding decrease in the number of Ki-67- and DCX-immunoreactive cells. Administration of lactoferrin had a protective effect on mouse brain cells, which manifested in a decrease in the number of TUNEL+ cells (by 77% relative to the irradiation alone) and an increase in the number of proliferating cells (from 16 to 61% relative to control animals) and immature neurons (from 14 to 22% relative to control animals) in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
- M Yu Kopaeva
- National Research Centre "Kurchatov Institute", Moscow, Russia.
| | - A B Cherepov
- National Research Centre "Kurchatov Institute", Moscow, Russia
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I Yu Zaraiskaya
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
27
|
Ianiro G, Niro A, Rosa L, Valenti P, Musci G, Cutone A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci 2023; 24:15925. [PMID: 37958908 PMCID: PMC10650157 DOI: 10.3390/ijms242115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| |
Collapse
|
28
|
Cutone A, Musci G, Bonaccorsi di Patti MC. Lactoferrin, the Moonlighting Protein of Innate Immunity. Int J Mol Sci 2023; 24:15888. [PMID: 37958871 PMCID: PMC10650585 DOI: 10.3390/ijms242115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lactoferrin (Lf), a naturally occurring glycoprotein involved in innate immunity, was first discovered in bovine milk [...].
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | | |
Collapse
|
29
|
Lavizzari A, Esposito B, Pesenti N, Shaykhova A, Vizzari G, Ophorst M, Gangi S, Morniroli D, Colnaghi M, Mosca F, Giannì ML. Dose-dependent impact of human milk feeding on tidal breathing flow-volume loop parameters across the first 2 years of life in extremely low-birth-weight infants: a cohort study. Eur J Pediatr 2023; 182:4969-4976. [PMID: 37610435 DOI: 10.1007/s00431-023-05163-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
The purpose of this study is to test the hypothesis that higher consumption of human milk (HM) in preterm infants with birth weight (BW) <1000 g is associated with improved lung function in a dose-dependent manner over the first 2 years of corrected age (CA). This retrospective study at an academic medical center included infants with BW <1000g. They had lung function assessment by the tidal breathing flow-volume loop (TBFVL) follow-up visits at 0-3-, 3-6-, 6-12-, 12-18-, and 18-24-month CA. One hundred eighty infants were included in the study with a mean (SD) gestational age 26.5 (1.90) weeks and BW 772.4 (147.0) g, 50% were female, and 60% developed BPD. 62.8% of infants received HM during the NICU stay. According to a general linear model (including GA, being small for GA (SGA), sex, human milk percentage, sepsis, and BPD), on average, each week of GA resulted in a higher tPTEF/tE of 1.24 (p = 0.039) and being SGA in a lower tPTEF/tE of 5.75 (p = 0.013) at 0-3-month CA. A higher percentage of human milk out of the total enteral intake was associated with better tPTEF/tE z-scores at 0-3 months (p = 0.004) and 18-24 months of CA (p = 0.041). BPD diagnosis was associated with a relevantly worse tPTEF/tE z-score at 6-12 months of CA (p = 0.003). CONCLUSION Preterm infants with higher consumption of HM had significantly less airway obstruction across the first 2 years, suggesting that human milk may contribute in a dose-dependent manner to improve lung function in early childhood in former preterm infants born ELBW. WHAT IS KNOWN • Human milk feeding reduces the risk of prematurity-related morbidities, including necrotizing enterocolitis, sepsis, lower respiratory tract infections, and BPD. Both exclusive and partial human milk feeding appear to be associated with a lower risk of BPD in preterm infants. WHAT IS NEW • This cohort study of 180 preterm infants with birth weight < 1000 g found that exposure to human milk during hospitalization improves airway obstruction markers tPTEF/tE z-score over the first 2 years of corrected age in a dose-dependent manner.
Collapse
Affiliation(s)
- Anna Lavizzari
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122, Milan, Italy.
| | - Benedetta Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Nicola Pesenti
- Revelo Datalabs Srl, Via Spezia 1, 20142, Milan, Italy
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milan-Bicocca, Milan, Italy
| | - Alina Shaykhova
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Vizzari
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122, Milan, Italy
| | - Marijke Ophorst
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122, Milan, Italy
| | - Silvana Gangi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122, Milan, Italy
| | - Daniela Morniroli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mariarosa Colnaghi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maria L Giannì
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Eigenschink M, Wessely I, Dijmarescu M, Förster-Waldl E, Farr A, Kiss H, Berger A, Wisgrill L. Transcriptomic analysis identifies lactoferrin-induced quiescent circuits in neonatal macrophages. Front Immunol 2023; 14:1276173. [PMID: 37868991 PMCID: PMC10590118 DOI: 10.3389/fimmu.2023.1276173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Upon birth, a hitherto naïve immune system is confronted with a plethora of microbial antigens due to intestinal bacterial colonization. To prevent excessive inflammation and disruption of the epithelial barrier, physiological mechanisms must promote immune-anergy within the neonatal gut. As high concentrations of human lactoferrin (hLF), a transferrin glycoprotein shown to modulate macrophage function, are frequently encountered in colostrum, its direct interaction with intestinal macrophages may satisfy this physiological need. Thus, the primary objective of this study was to investigate transcriptional changes induced by human lactoferrin in neonatal monocyte-derived macrophages. Methods Cord blood-derived monocytes were differentiated with M-CSF in presence or absence of 500 µg/mL hLF for 7 days and afterwards stimulated with 1 ng/mL LPS or left untreated. RNA was then isolated and subjected to microarray analysis. Results Differentiation of cord blood-derived monocytes in presence of hLF induced a distinct transcriptional program defined by cell cycle arrest in the G2/M phase, induction of IL-4/IL-13-like signaling, altered extracellular matrix interaction, and enhanced propensity for cell-cell interaction. Moreover, near-complete abrogation of transcriptional changes induced by TLR4 engagement with LPS was observed in hLF-treated samples. Discussion The global transition towards an M2-like homeostatic phenotype and the acquisition of quiescence elegantly demonstrate the ontogenetical relevance of hLF in attenuating pro-inflammatory signaling within the developing neonatal intestine. The marked anergy towards proinflammatory stimuli such as LPS further underlines the glycoprotein's potential therapeutic relevance.
Collapse
Affiliation(s)
- Michael Eigenschink
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Isabelle Wessely
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marco Dijmarescu
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Förster-Waldl
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alex Farr
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Song YH, De R, Lee KT. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview. Adv Colloid Interface Sci 2023; 320:103008. [PMID: 37776736 DOI: 10.1016/j.cis.2023.103008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Blood-brain barrier (BBB) serves as an essential interface between central nervous system (CNS) and its periphery, allowing selective permeation of ions, gaseous molecules, and other nutrients to maintain metabolic functions of brain. Concurrently, it restricts passage of unsolicited materials from bloodstream to CNS which could otherwise lead to neurotoxicity. Nevertheless, in the treatment of neurodegenerative diseases such as Parkinson's, Alzheimer's, diffuse intrinsic pontine glioma, and other brain cancers, drugs must reach CNS. Among various materials developed for this purpose, a few judiciously selected polymeric nanocarriers are reported to be highly prospective to facilitate BBB permeation. However, the challenge of transporting drug-loaded nanomaterials across this barrier remains formidable. Herein a concise analysis of recently employed strategies for designing polymeric nanocarriers to deliver therapeutics across BBB is presented. Impacts of 3Ss, namely, size, shape, and surface charge of polymeric nanocarriers on BBB permeation along with different ligands used for nanoparticle surface modification to achieve targeted delivery have been scrutinized. Finally, we elucidated future research directions in the context of designing smart polymeric nanocarriers for BBB permeation. This work aims to guide researchers engaged in polymeric nanocarrier design, helping them navigate where to begin, what challenges to address, and how to proceed effectively.
Collapse
Affiliation(s)
- Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea; Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| |
Collapse
|
32
|
Chaparro CIP, Simões BT, Borges JP, Castanho MARB, Soares PIP, Neves V. A Promising Approach: Magnetic Nanosystems for Alzheimer's Disease Theranostics. Pharmaceutics 2023; 15:2316. [PMID: 37765284 PMCID: PMC10536416 DOI: 10.3390/pharmaceutics15092316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Among central nervous system (CNS) disorders, Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and a major cause of dementia worldwide. The yet unclear etiology of AD and the high impenetrability of the blood-brain barrier (BBB) limit most therapeutic compounds from reaching the brain. Although many efforts have been made to effectively deliver drugs to the CNS, both invasive and noninvasive strategies employed often come with associated side effects. Nanotechnology-based approaches such as nanoparticles (NPs), which can act as multifunctional platforms in a single system, emerged as a potential solution for current AD theranostics. Among these, magnetic nanoparticles (MNPs) are an appealing strategy since they can act as contrast agents for magnetic resonance imaging (MRI) and as drug delivery systems. The nanocarrier functionalization with specific moieties, such as peptides, proteins, and antibodies, influences the particles' interaction with brain endothelial cell constituents, facilitating transport across the BBB and possibly increasing brain penetration. In this review, we introduce MNP-based systems, combining surface modifications with the particles' physical properties for molecular imaging, as a novel neuro-targeted strategy for AD theranostics. The main goal is to highlight the potential of multifunctional MNPs and their advances as a dual nanotechnological diagnosis and treatment platform for neurodegenerative disorders.
Collapse
Affiliation(s)
- Catarina I. P. Chaparro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Beatriz T. Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - João P. Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - Paula I. P. Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| |
Collapse
|
33
|
Wang G, Han J, Meng X, Kang SS, Liu X, Sun YE, Luo Q, Ye K. Zein-Based Nanoparticles Improve the Therapeutic Efficacy of a TrkB Agonist toward Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3249-3264. [PMID: 37583253 PMCID: PMC10734774 DOI: 10.1021/acschemneuro.3c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF)/TrkB pathway plays a crucial role in neural plasticity and neuronal survival but is often deficient in neurodegenerative diseases like Alzheimer's disease (AD). CF3CN acts as a specific TrkB agonist that displays therapeutic effects in the AD mouse model, but its brain/plasma ratio (B/P ratio) distribution is not satisfactory. To increase its brain exposure, we synthesized several derivatives and employed nanoparticle (NP) formulation to optimize the most potent #2 derivative's in vivo PK profiles. We generated stable #2-loaded zein/lactoferrin composite NPs (#2/zein/LF) using the antisolvent co-precipitation method. In vivo PK studies revealed that nanoencapsulation improved #2's oral bioavailability by approximately 2-fold and significantly enhanced its plasma Cmax and t1/2, but the brain profiles were comparable. Pharmacodynamics showed that #2/zein/LF activates TrkB signaling that phosphorylates asparagine endopeptidase (AEP) T322 and decreases its enzymatic activity, resulting in reduced AEP-cleaved amyloid precursor protein and Tau fragments in the brains of AD mice, correlating with its PK profiles. After 3 months of treatment in 3xTg mice, #2/zein/LF decreased AD pathologies and alleviated cognitive dysfunction. Hence, zein/LF composite nanoencapsulation is a promising drug delivery method for improving the PK profiles of a potential preclinical candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangxing Wang
- School of Medicine, Tongji University, Shanghai 200092, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jianxin Han
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yi Eve Sun
- School of Medicine, Tongji University, Shanghai 200092, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
34
|
Abdelnour SA, Ghazanfar S, Abdel-Hamid M, Abdel-Latif HMR, Zhang Z, Naiel MAE. Therapeutic uses and applications of bovine lactoferrin in aquatic animal medicine: an overview. Vet Res Commun 2023; 47:1015-1029. [PMID: 36658448 PMCID: PMC10485086 DOI: 10.1007/s11259-022-10060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is an important food sector throughout the globe because of its importance in ensuring the availability of nutritious and safe food for human beings. In recent years, this sector has been challenged with several obstacles especially the emergence of infectious disease outbreaks. Various treatment and control aspects, including antibiotics, antiseptics, and other anti-microbial agents, have been used to treat farmed fish and shrimp against diseases. Nonetheless, these medications have been prohibited and banned in many countries because of the development of antimicrobial-resistant bacterial strains, the accumulation of residues in the flesh of farmed fish and shrimp, and their environmental threats to aquatic ecosystems. Therefore, scientists and researchers have concentrated their research on finding natural and safe products to control disease outbreaks. From these natural products, bovine lactoferrin can be utilized as a functional feed supplement. Bovine lactoferrin is a multi-functional glycoprotein applied in various industries, like food preservation, and numerous medications, due to its non-toxic and ecological features. Recent research has proposed multiple advantages and benefits of using bovine lactoferrin in aquaculture. Reports showed its potential ability to enhance growth, reduce mortalities, regulate iron metabolism, decrease disease outbreaks, stimulate the antioxidant defense system, and recuperate the overall health conditions of the treated fish and shrimp. Besides, bovine lactoferrin can be considered as a safe antibiotic alternative and a unique therapeutic agent to decrease the negative impacts of infectious diseases. These features can be attributed to its well-known antibacterial, anti-parasitic, anti-inflammatory, immunostimulatory, and antioxidant capabilities. This literature review will highlight the implications of bovine lactoferrin in aquaculture, particularly highlighting its therapeutic features and ability to promote immunological defensive pathways in fish. The information included in this article would be valuable for further research studies to improve aquaculture's sustainability and the functionality of aquafeeds.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, 45500, Islamabad, Pakistan
| | - Mahmoud Abdel-Hamid
- Dairy Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, 22758, Alexandria, Egypt
| | - Zhaowei Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, 430062, Wuhan, PR China
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt.
| |
Collapse
|
35
|
Garcia PF, Saez Torillo SN, Anzani A, Argüello G, Burgos Paci MA. Characterization of Binding Properties of Cr(Phen) 3 3+ and Ru(Phen) 3 2+ Complexes with Human Lactoferrin. Photochem Photobiol 2023; 99:1225-1232. [PMID: 36504265 DOI: 10.1111/php.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This work presents research about [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ interaction with human lactoferrin (HLf), a key carrier protein of ferric cations. The photochemical and photophysical properties of [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ have been widely studied in the last decades due to their potential use as photosensitizers in photodynamic therapy (PDT). The behavior between the complexes and the protein was studied employing UV-visible absorption, fluorescence emission and circular dichroism spectroscopic techniques. It was found that both complexes bind to HLf with a large binding constant (Kb ): 9.46 × 104 for the chromium complex and 4.16 × 104 for the ruthenium one at 299 K. Thermodynamic parameters were obtained from the Van't Hoff equation. Analyses of entropy (ΔS), enthalpy (ΔH) and free energy changes (ΔG) indicate that these complexes bind to HLf because of entropy-driven processes and electrostatic interactions. According to circular dichroism experiments, no conformational changes have been observed in the secondary and tertiary structure of the protein in the presence of any of the studied complexes. These experimental results suggest that [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ bind to HLf, indicating that this protein could act as a carrier of these complexes in further applications.
Collapse
Affiliation(s)
- Pablo Facundo Garcia
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Santiago N Saez Torillo
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Angel Anzani
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Gerardo Argüello
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Maxi A Burgos Paci
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
36
|
Cui C, Li L, Wu L, Wang X, Zheng Y, Wang F, Wei H, Peng J. Paneth cells in farm animals: current status and future direction. J Anim Sci Biotechnol 2023; 14:118. [PMID: 37582766 PMCID: PMC10426113 DOI: 10.1186/s40104-023-00905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
A healthy intestine plays an important role in the growth and development of farm animals. In small intestine, Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells (ISCs). Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders, little is known about Paneth cells in farm animals. Most farm animals possess Paneth cells in their small intestine, as identified by various staining methods, and Paneth cells of various livestock species exhibit noticeable differences in cell shape, granule number, and intestinal distribution. Paneth cells in farm animals and their antimicrobial peptides (AMPs) are susceptible to multiple factors such as dietary nutrients and intestinal infection. Thus, the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health. This review first summarizes the current status of Paneth cells in pig, cattle, sheep, horse, chicken and rabbit, and points out future directions for the investigation of Paneth cells in the reviewed animals.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 400700, China.
| |
Collapse
|
37
|
Kato S. Lactoferrin inhibits the proliferation of IMR‑32 neuroblastoma cells even under X‑rays. MEDICINE INTERNATIONAL 2023; 3:33. [PMID: 37448769 PMCID: PMC10336960 DOI: 10.3892/mi.2023.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Neuroblastoma is a typical solid tumor common in childhood. The present study investigated the inhibitory effects of lactoferrin on the proliferation of IMR-32 neuroblastoma cells, including under X-ray irradiation. In controlled in vitro assays, it was found that lactoferrin inhibited cell proliferation, accompanied by cell membrane disruption. Furthermore, intracellular reactive oxygen species generation increased in IMR-32 cells treated with lactoferrin, causing membrane lipid peroxidation and the leakage of lactate dehydrogenase. The IC50 values for cell proliferation were ~2.0 nM for doxorubicin, 2.7 mM for dibutyryl-cAMP and 45.9 µM for lactoferrin. X-ray irradiation at 1 Gy decreased cell proliferation to ~30%, which was not restored by lactoferrin. In the Fenton reaction system with iron chloride, lactoferrin increased hydroxyl radical (OH·) formation via H2O2, as confirmed by electron spin resonance spectra. On the whole, the findings of the present study indicate that lactoferrin, found abundantly in milk, may help prevent or treat neuroblastoma in infants with modest efficacy, and does not exert a protective effect against X-rays.
Collapse
Affiliation(s)
- Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
38
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
39
|
Ianiro G, Rosa L, Bonaccorsi di Patti MC, Valenti P, Musci G, Cutone A. Lactoferrin: from the structure to the functional orchestration of iron homeostasis. Biometals 2023; 36:391-416. [PMID: 36214975 DOI: 10.1007/s10534-022-00453-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
Abstract
Iron is by far the most widespread and essential transition metal, possessing crucial biological functions for living systems. Despite chemical advantages, iron biology has forced organisms to face with some issues: ferric iron insolubility and ferrous-driven formation of toxic radicals. For these reasons, acquisition and transport of iron constitutes a formidable challenge for cells and organisms, which need to maintain adequate iron concentrations within a narrow range, allowing biological processes without triggering toxic effects. Higher organisms have evolved extracellular carrier proteins to acquire, transport and manage iron. In recent years, a renewed interest in iron biology has highlighted the role of iron-proteins dysregulation in the onset and/or exacerbation of different pathological conditions. However, to date, no resolutive therapy for iron disorders has been found. In this review, we outline the efficacy of Lactoferrin, a member of the transferrin family mainly secreted by exocrine glands and neutrophils, as a new emerging orchestrator of iron metabolism and homeostasis, able to counteract iron disorders associated to different pathologies, including iron deficiency and anemia of inflammation in blood, Parkinson and Alzheimer diseases in the brain and cystic fibrosis in the lung.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy.
| |
Collapse
|
40
|
Sokolov AV, Isakova-Sivak IN, Mezhenskaya DA, Kostevich VA, Gorbunov NP, Elizarova AY, Matyushenko VA, Berson YM, Grudinina NA, Kolmakov NN, Zabrodskaya YA, Komlev AS, Semak IV, Budevich AI, Rudenko LG, Vasilyev VB. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin. Biometals 2023; 36:437-462. [PMID: 36334191 PMCID: PMC9638208 DOI: 10.1007/s10534-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves dysregulations of iron metabolism, and although the mechanism of this pathology is not yet fully understood, correction of iron metabolism pathways seems a promising pharmacological target. The previously observed effect of inhibiting SARS-CoV-2 infection by ferristatin II, an inducer of transferrin receptor 1 (TfR1) degradation, prompted the study of competition between Spike protein and TfR1 ligands, especially lactoferrin (Lf) and transferrin (Tf). We hypothesized molecular mimicry of Spike protein as cross-reactivity of Spike-specific antibodies with Tf and Lf. Thus, strong positive correlations (R2 > 0.95) were found between the level of Spike-specific IgG antibodies present in serum samples of COVID-19-recovered and Sputnik V-vaccinated individuals and their Tf-binding activity assayed with peroxidase-labeled anti-Tf. In addition, we observed cross-reactivity of Lf-specific murine monoclonal antibody (mAb) towards the SARS-CoV-2 Spike protein. On the other hand, the interaction of mAbs produced to the receptor-binding domain (RBD) of the Spike protein with recombinant RBD protein was disrupted by Tf, Lf, soluble TfR1, anti-TfR1 aptamer, as well as by peptides RGD and GHAIYPRH. Furthermore, direct interaction of RBD protein with Lf, but not Tf, was observed, with affinity of binding estimated by KD to be 23 nM and 16 nM for apo-Lf and holo-Lf, respectively. Treatment of Vero E6 cells with apo-Lf and holo-Lf (1-4 mg/mL) significantly inhibited SARS-CoV-2 replication of both Wuhan and Delta lineages. Protective effects of Lf on different arms of SARS-CoV-2-induced pathogenesis and possible consequences of cross-reactivity of Spike-specific antibodies are discussed.
Collapse
Affiliation(s)
- A V Sokolov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia.
| | - I N Isakova-Sivak
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - D A Mezhenskaya
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Kostevich
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N P Gorbunov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - A Yu Elizarova
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Matyushenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Yu M Berson
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N A Grudinina
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N N Kolmakov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popova Str. 15/17, St. Petersburg, 197376, Russia
- Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064, Saint Petersburg, Russia
| | - A S Komlev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - I V Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | - A I Budevich
- Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Breeding, 11 Frunze Str., 222160, Zhodino, Belarus
| | - L G Rudenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| |
Collapse
|
41
|
Kopaeva MY, Azieva AM, Cherepov AB, Zarayskaya IY. Lactoferrin Modulates Induction of Transcription Factor c-Fos in Neuronal Cultures. Int J Mol Sci 2023; 24:ijms24098373. [PMID: 37176079 PMCID: PMC10179438 DOI: 10.3390/ijms24098373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lactoferrin (Lf) is a multifunctional protein from the transferrin family. Of particular interest is the ability of Lf to affect a wide range of neuronal processes by modulating the expression of genes involved in long-term neuroplasticity. The expression of the immediate early gene c-fos that is rapidly activated in response to external influences, and its product, transcription factor c-Fos, is widely used as a marker of long-term neuronal plasticity. The present study aims to examine the effect of human Lf on the induction of transcription factor c-Fos in the primary mouse neuronal cultures after stimulation and to determine the cellular localization of human Lf and its colocalization with induced c-Fos protein. Primary dissociated cultures of hippocampal cells were obtained from the brains of newborn C57BL/6 mice (P0-P1). On day 7 of culturing, human Lf was added to the medium. After 24 h (day 8 in culture), c-Fos protein was induced in cells by triple application of 50 mM KCl. c-Fos content was analyzed using the immunofluorescent method 2 h after stimulation. Stimulation promoted exogenous Lf translocation into the nuclei of cultured neuronal cells, which correlated with increased induction of transcription factor c-Fos and was accompanied by nuclear colocalization of these proteins. These results attest to the potential of Lf as a modulator of neuronal processes and open up new prospects in studying the mechanisms of the regulatory effects of lactoferrin on cell function.
Collapse
Affiliation(s)
- Marina Yu Kopaeva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Asya M Azieva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Anton B Cherepov
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina Yu Zarayskaya
- Research Institute of Normal Physiology Named after P.K. Anokhin, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
42
|
Ianiro G, D’Ezio V, Carpinelli L, Casella C, Bonaccorsi di Patti MC, Rosa L, Valenti P, Colasanti M, Musci G, Cutone A, Persichini T. Iron Saturation Drives Lactoferrin Effects on Oxidative Stress and Neurotoxicity Induced by HIV-1 Tat. Int J Mol Sci 2023; 24:7947. [PMID: 37175651 PMCID: PMC10178013 DOI: 10.3390/ijms24097947] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The Trans-Activator of Transcription (Tat) of Human Immunodeficiency Virus (HIV-1) is involved in virus replication and infection and can promote oxidative stress in human astroglial cells. In response, host cells activate transcription of antioxidant genes, including a subunit of System Xc- cystine/glutamate antiporter which, in turn, can trigger glutamate-mediated excitotoxicity. Here, we present data on the efficacy of bovine Lactoferrin (bLf), both in its native (Nat-bLf) and iron-saturated (Holo-bLf) forms, in counteracting oxidative stress in U373 human astroglial cells constitutively expressing the viral protein (U373-Tat). Our results show that, dependent on iron saturation, both Nat-bLf and Holo-bLf can boost host antioxidant response by up-regulating System Xc- and the cell iron exporter Ferroportin via the Nuclear factor erythroid 2-related factor (Nrf2) pathway, thus reducing Reactive Oxygen Species (ROS)-mediated lipid peroxidation and DNA damage in astrocytes. In U373-Tat cells, both forms of bLf restore the physiological internalization of Transferrin (Tf) Receptor 1, the molecular gate for Tf-bound iron uptake. The involvement of astrocytic antioxidant response in Tat-mediated neurotoxicity was evaluated in co-cultures of U373-Tat with human neuronal SH-SY5Y cells. The results show that the Holo-bLf exacerbates Tat-induced excitotoxicity on SH-SY5Y, which is directly dependent on System-Xc- upregulation, thus highlighting the mechanistic role of iron in the biological activities of the glycoprotein.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Veronica D’Ezio
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Ludovica Carpinelli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Cecilia Casella
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | | | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Marco Colasanti
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Tiziana Persichini
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| |
Collapse
|
43
|
Giannaccare G, Comis S, Jannuzzi V, Camposampiero D, Ponzin D, Cambria S, Santocono M, Pallozzi Lavorante N, Del Noce C, Scorcia V, Traverso CE, Vagge A. Effect of Liposomal-Lactoferrin-Based Eye Drops on the Conjunctival Microflora of Patients Undergoing Cataract Surgery. Ophthalmol Ther 2023; 12:1315-1326. [PMID: 36826753 PMCID: PMC10011268 DOI: 10.1007/s40123-023-00673-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Postoperative endophthalmitis is typically caused by the patient's conjunctival bacterial flora. Povidone iodine solution (5%) is used perioperatively to obtain periocular and ocular antisepsis. However, an adjunctive prophylaxis procedure could further help control the conjunctival microbial load. Considering the increase in antibiotic resistance, a progressive shift toward alternative methods would be desirable. Somilux® eye drops (Alfa Intes, lactoferrin-based eye drops) are medical devices containing liposomal lactoferrin (LF). This study evaluates the effects on conjunctival microflora of LF-based eye drops used in the preoperative phase in patients scheduled for cataract surgery. METHODS LF-based eye drops or a vehicle solution (water solution) were instilled 4 times a day starting 3 days before cataract surgery. Before the therapy (T0) and at the time of surgery (T1), a conjunctival swab was performed in both eyes and processed to detect microbial growth, microbiological isolation, and species identification. The outcome was the quantification and characterization of the local microbial flora before and after using LF-based or vehicle-based eye drops. Safety of the treatments was also evaluated. RESULTS 88 eyes of 44 patients (mean [± SD] age 75 [± 12.6] years) were enrolled. At baseline, 54 conjunctival swabs showed only saprophytic flora, 27 showed only potential pathogenic flora, and seven showed both of them. LF-based eye drops reduced the proportion of potentially pathogenic bacteria (36% at T0 vs. 9% at T1, p = 0.008) compared with the vehicle (41% at T0 vs. 55% at T1, p = 0.302) without altering the physiological ocular microbial composition. No adverse events have been reported. CONCLUSION Our findings provide a novel contribution to the scientific knowledge on the role of LF in the ophthalmic field, supporting the use of LF-based eye drops as a safe and selective treatment to improve the ocular surface physiological defenses and control the bacterial ocular surface contamination prior to cataract surgery.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Sofia Comis
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Nicola Pallozzi Lavorante
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Chiara Del Noce
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carlo E Traverso
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Aldo Vagge
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| |
Collapse
|
44
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|
45
|
Matino E, Tavella E, Rizzi M, Avanzi GC, Azzolina D, Battaglia A, Becco P, Bellan M, Bertinieri G, Bertoletti M, Casciaro GF, Castello LM, Colageo U, Colangelo D, Comolli D, Costanzo M, Croce A, D’Onghia D, Della Corte F, De Mitri L, Dodaro V, Givone F, Gravina A, Grillenzoni L, Gusmaroli G, Landi R, Lingua A, Manzoni R, Marinoni V, Masturzo B, Minisini R, Morello M, Nelva A, Ortone E, Paolella R, Patti G, Pedrinelli A, Pirisi M, Ravizzi L, Rizzi E, Sola D, Sola M, Tonello N, Tonello S, Topazzo G, Tua A, Valenti P, Vaschetto R, Vassia V, Zecca E, Zublena N, Manzoni P, Sainaghi PP. Effect of Lactoferrin on Clinical Outcomes of Hospitalized Patients with COVID-19: The LAC Randomized Clinical Trial. Nutrients 2023; 15:1285. [PMID: 36904283 PMCID: PMC10005739 DOI: 10.3390/nu15051285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
As lactoferrin is a nutritional supplement with proven antiviral and immunomodulatory abilities, it may be used to improve the clinical course of COVID-19. The clinical efficacy and safety of bovine lactoferrin were evaluated in the LAC randomized double-blind placebo-controlled trial. A total of 218 hospitalized adult patients with moderate-to-severe COVID-19 were randomized to receive 800 mg/die oral bovine lactoferrin (n = 113) or placebo (n = 105), both given in combination with standard COVID-19 therapy. No differences in lactoferrin vs. placebo were observed in the primary outcomes: the proportion of death or intensive care unit admission (risk ratio of 1.06 (95% CI 0.63-1.79)) or proportion of discharge or National Early Warning Score 2 (NEWS2) ≤ 2 within 14 days from enrollment (RR of 0.85 (95% CI 0.70-1.04)). Lactoferrin showed an excellent safety and tolerability profile. Even though bovine lactoferrin is safe and tolerable, our results do not support its use in hospitalized patients with moderate-to-severe COVID-19.
Collapse
Affiliation(s)
- Erica Matino
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Elena Tavella
- Department of Maternal-Infant Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
- Internal Medicine, Department of Medical Sciences, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza, University of Turin School of Medicine, 10126 Turin, Italy
| | - Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Danila Azzolina
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Antonio Battaglia
- Division of Dermatology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Paolo Becco
- Division of Oncology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Giovanni Bertinieri
- Division of Internal Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | | | - Giuseppe Francesco Casciaro
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Division of Internal Medicine, Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Umberto Colageo
- Intensive Care Unit, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Davide Comolli
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Martina Costanzo
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Alessandro Croce
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Davide D’Onghia
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Anesthesia and Intensive Care Medicine, AOU “Maggiore della Carità”, 28100 Novara, Italy
| | - Luigi De Mitri
- Division of Diabetology and Endocrinology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Valentina Dodaro
- Internal Medicine, Department of Medical Sciences, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza, University of Turin School of Medicine, 10126 Turin, Italy
| | - Filippo Givone
- Division of Pneumology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Alessia Gravina
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Luca Grillenzoni
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | | | - Raffaella Landi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Anna Lingua
- Division of Infectious Disease, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Roberto Manzoni
- Division of Dermatology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Vito Marinoni
- Division of Geriatric Care, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Bianca Masturzo
- Division of Obstetrics and Gynecology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Marina Morello
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Anna Nelva
- Division of Diabetology and Endocrinology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Elena Ortone
- Division of Geriatric Care, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Rita Paolella
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Medical Department, Division of Cardiology, AOU “Maggiore della Carità”, 28100 Novara, Italy
| | - Anita Pedrinelli
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Lidia Ravizzi
- Division of Pneumology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Eleonora Rizzi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Daniele Sola
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Mariolina Sola
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Nadir Tonello
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Gigliola Topazzo
- Division of Diabetology and Endocrinology, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Aldo Tua
- Division of Emergency Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, 00185 Rome, Italy
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Anesthesia and Intensive Care Medicine, AOU “Maggiore della Carità”, 28100 Novara, Italy
| | - Veronica Vassia
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Erika Zecca
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
| | - Nicoletta Zublena
- Division of Palliative Care, Ospedale degli Infermi, 13875 Ponderano, Italy
| | - Paolo Manzoni
- Department of Maternal-Infant Medicine, Ospedale degli Infermi, 13875 Ponderano, Italy
- Internal Medicine, Department of Medical Sciences, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza, University of Turin School of Medicine, 10126 Turin, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Internal Medicine and COVID-19 Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- Division of Emergency Medicine and COVID-19 Sub-Intensive Unit, Azienda Ospedaliero-Universitaria (AOU) “Maggiore della Carità”, 28100 Novara, Italy
- CAAD, Center for Autoimmune and Allergic Diseases, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
46
|
Guzmán-Mejía F, Godínez-Victoria M, Molotla-Torres DE, Drago-Serrano ME. Lactoferrin as a Component of Pharmaceutical Preparations: An Experimental Focus. Pharmaceuticals (Basel) 2023; 16:214. [PMID: 37259362 PMCID: PMC9961256 DOI: 10.3390/ph16020214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 10/29/2023] Open
Abstract
Lactoferrin is an 80 kDa monomeric glycoprotein that exhibits multitask activities. Lactoferrin properties are of interest in the pharmaceutical field for the design of products with therapeutic potential, including nanoparticles and liposomes, among many others. In antimicrobial preparations, lactoferrin has been included either as a main bioactive component or as an enhancer of the activity and potency of first-line antibiotics. In some proposals based on nanoparticles, lactoferrin has been included in delivery systems to transport and protect drugs from enzymatic degradation in the intestine, favoring the bioavailability for the treatment of inflammatory bowel disease and colon cancer. Moreover, nanoparticles loaded with lactoferrin have been formulated as delivery systems to transport drugs for neurodegenerative diseases, which cannot cross the blood-brain barrier to enter the central nervous system. This manuscript is focused on pharmaceutical products either containing lactoferrin as the bioactive component or formulated with lactoferrin as the carrier considering its interaction with receptors expressed in tissues as targets of drugs delivered via parenteral or mucosal administration. We hope that this manuscript provides insights about the therapeutic possibilities of pharmaceutical Lf preparations with a sustainable approach that contributes to decreasing the resistance of antimicrobials and enhancing the bioavailability of first-line drugs for intestinal chronic inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabiola Guzmán-Mejía
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico
| | - Daniel Efrain Molotla-Torres
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| | - Maria Elisa Drago-Serrano
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| |
Collapse
|
47
|
Wang L, Zhou BQ, Li YH, Jiang QQ, Cong WH, Chen KJ, Wen XM, Wu ZZ. Lactoferrin modification of berberine nanoliposomes enhances the neuroprotective effects in a mouse model of Alzheimer′s disease. Neural Regen Res 2023; 18:226-232. [PMID: 35799547 PMCID: PMC9241388 DOI: 10.4103/1673-5374.344841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that berberine has neuroprotective effects against Alzheimer’s disease, including antagonizing tau phosphorylation, and inhibiting acetylcholinesterase activity and neural cell apoptosis. However, its low bioavailability and adverse reactions with conventional administration limit its clinical application. In this study, we prepared berberine nanoliposomes using liposomes characterized by low toxicity, high entrapment efficiency, and biodegradability, and modified them with lactoferrin. Lactoferrin-modified berberine nanoliposomes had uniform particle size and high entrapment efficiency. We used the lactoferrin-modified berberine nanoliposomes to treat a mouse model of Alzheimer’s disease established by injection of amyloid-beta 1–42 into the lateral ventricle. Lactoferrin-modified berberine nanoliposomes inhibited acetylcholinesterase activity and apoptosis in the hippocampus, reduced tau over-phosphorylation in the cerebral cortex, and improved mouse behavior. These findings suggest that modification with lactoferrin can enhance the neuroprotective effects of berberine nanoliposomes in Alzheimer’s disease.
Collapse
|
48
|
FU J, YANG L, TAN D, LIU L. Iron transport mechanism of lactoferrin and its application in food processing. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Liu YANG
- Shenyang Agricultural University, China
| | | | - Ling LIU
- Shenyang Agricultural University, China
| |
Collapse
|
49
|
Binding of Equine Seminal Lactoferrin/Superoxide Dismutase (SOD-3) Complex Is Biased towards Dead Spermatozoa. Animals (Basel) 2022; 13:ani13010052. [PMID: 36611662 PMCID: PMC9817809 DOI: 10.3390/ani13010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Sperm-neutrophil binding is an important facet of breeding and significantly impacts fertility. While a specific seminal plasma protein has been found to reduce this binding and improve fertility (CRISP-3), additional molecule(s) appear to promote binding between defective sperm and neutrophils. Recent work has suggested one of these proteins is lactoferrin (LF), an 80 kDa iron-binding protein found throughout the body, but the purity of the protein was not confirmed. It is unknown if LF binds to sperm selectively based on viability, and if receptors for LF are located on equine sperm. To evaluate this, we attempted to purify equine seminal LF from five stallions (n = 5), biotinylate LF, and evaluate potential binding site(s) on spermatozoa. LF was consistently associated with superoxide dismutase (SOD-3), and all attempts to separate the two proteins were unsuccessful. Flow cytometric and microscopic analyses were used to compare LF/SOD-3 binding to viable and nonviable spermatozoa. Additionally, various methods of biotinylation were assessed to optimize this methodology. Biotinylation of seminal plasma protein was an effective and efficient method to study seminal plasma protein properties, and the binding site for LF/SOD-3 was found to be broadly localized to the entire sperm cell surface as well as selective towards nonviable/defective sperm. Although we were not able to determine if the binding to equine spermatozoa was through LF or SOD-3, we can conclude that equine seminal LF is tightly bound to SOD-3 and this protein complex binds selectively to nonviable spermatozoa, possibly to mark them for elimination by neutrophil phagocytosis.
Collapse
|
50
|
Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022; 15:pharmaceutics15010013. [PMID: 36678642 PMCID: PMC9866990 DOI: 10.3390/pharmaceutics15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.
Collapse
Affiliation(s)
- Nicola Paccione
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|