1
|
Mariuzza RA, Singh P, Karade SS, Shahid S, Sharma VK. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol Rev 2025; 329:e13435. [PMID: 39748148 PMCID: PMC11695704 DOI: 10.1111/imr.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily. NK receptors include Ly49s, KIRs, LILRs, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such MICA and ULBP. Other NK receptors recognize tumor-associated antigens (NKp30, NKp44, NKp46), cell-cell adhesion proteins (KLRG1, CD96), or genetically coupled C-type lectin-like ligands (NKp65, NKR-P1). Additionally, cytomegaloviruses have evolved various immunoevasins, such as m157, m12, and UL18, which bind NK receptors and act as decoys to enable virus-infected cells to escape NK cell-mediated lysis. We review the remarkable progress made in the past 25 years in determining structures of representatives of most known NK receptors bound to MHC, MHC-like, and non-MHC ligands. Together, these structures reveal the multiplicity of solutions NK receptors have developed to recognize these molecules, and thereby mediate crucial interactions for regulating NK cytolytic activity by self and viral ligands.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Pragya Singh
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- College of Natural and Mathematical SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Sharanbasappa S. Karade
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Salman Shahid
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vijay Kumar Sharma
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
2
|
Li H, Wang R, Xu P, Yuan C, Huang M, Jiang L. Elucidating the molecular basis of PECAM-1 and Tie2 interaction from binding dynamics and complex formation. Biochem Biophys Res Commun 2024; 735:150484. [PMID: 39094232 DOI: 10.1016/j.bbrc.2024.150484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Endothelial hyperpermeability-induced vascular dysfunction is a prevalent and significant characteristic in critical illnesses such as sepsis and other conditions marked by acute systemic inflammation. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and Tie2 serve as transmembrane receptors within endothelial cells (ECs), playing pivotal roles not only in maintaining EC-EC junctions but also in influencing vasculogenesis, vessel homeostasis, and vascular remodeling. OBJECTIVES At present, the molecular basis of the PECAM-1-Tie2 interaction remains inadequately elucidated. In the study, recombinant soluble PECAM-1 (sPECAM-1) and Tie2 (sTie2) were expressed by Drosophila S2 and HEK293 expression systems, respectively. The interactions between sPECAM-1 and sTie2 were investigated using the Surface Plasmon Resonance (SPR) and size-exclusion chromatography methods. An immunofluorescence assay was used to detect the binding of sPECAM-1 and sTie2 on endothelial cells. RESULTS PECAM-1 was found to bind with sTie2 in a sodium and pH-dependent manner as confirmed by the ELISA, the D5-D6 domains of PECAM-1 might play a crucial role in binding with sTie2. Surface Plasmon Resonance (SPR) results showed that the full length of sPECAM-1 has the strongest binding affinity (KD = 48.4 nM) with sTie2, compared to sPECAM-1-D1-D4 and sPECAM-1-D1-D2. This result is consistent with that in the ELISA. In addition, size-exclusion chromatography demonstrated that sPECAM-1, sTie2, and Ang1 can form a ternary complex. CONCLUSION In this study, we determined that sPECAM-1 binds to sTie2 in a pH and sodium-dependent manner. The full length of sPECAM-1 has the strongest binding affinity, and the D5-D6 domains in sPECAM-1 play a crucial role in the interaction between sPECAM-1 and sTie2.
Collapse
Affiliation(s)
- Hao Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
3
|
Rodriguez-Valbuena H, Salcedo J, De Their O, Flot JF, Tiozzo S, De Tomaso AW. Genetic and functional diversity of allorecognition receptors in the urochordate, Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618699. [PMID: 39463968 PMCID: PMC11507803 DOI: 10.1101/2024.10.16.618699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Allorecognition in Botryllus schlosseri is controlled by a highly polymorphic locus (the fuhc), and functionally similar to missing-self recognition utilized by Natural Killer cells-compatibility is determined by sharing a self-allele, and integration of activating and inhibitory signals determines outcome. We had found these signals were generated by two fuhc-encoded receptors, called fester and uncle fester. Here we show that fester genes are members of an extended family consisting of >37 loci, and co-expressed with an even more diverse gene family-the fester co-receptors (FcoR). The FcoRs are membrane proteins related to fester, but include conserved tyrosine motifs, including ITIMs and hemITAMs. Both genes are encoded in highly polymorphic haplotypes on multiple chromosomes, revealing an unparalleled level of diversity of innate receptors. Our results also suggest that ITAM/ITIM signal integration is a deeply conserved mechanism that has allowed convergent evolution of innate and adaptive cell-based recognition systems.
Collapse
Affiliation(s)
| | - Jorge Salcedo
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Olivier De Their
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Jean Francois Flot
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Stefano Tiozzo
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Mariuzza RA, Shahid S, Karade SS. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. J Biol Chem 2024; 300:107241. [PMID: 38556085 PMCID: PMC11061240 DOI: 10.1016/j.jbc.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Lymphocyte activation gene 3 protein (LAG3) is an immune checkpoint receptor that is highly upregulated on exhausted T cells in the tumor microenvironment. LAG3 transmits inhibitory signals to T cells upon binding to MHC class II and other ligands, rendering T cells dysfunctional. Consequently, LAG3 is a major target for cancer immunotherapy with many anti-LAG3 monoclonal antibodies (mAbs) that block LAG3 inhibitory activity in clinical trials. In this review, we examine the molecular basis for LAG3 function in light of recently determined crystal and cryoEM structures of this inhibitory receptor. We review what is known about LAG3 interactions with MHC class II, its canonical ligand, and the newly discovered ligands FGL1 and the T cell receptor (TCR)-CD3 complex, including current controversies over the relative importance of these ligands. We then address the development and mechanisms of action of anti-LAG3 mAbs in clinical trials for cancer immunotherapy. We discuss new strategies to therapeutically target LAG3 using mAbs that not only block the LAG3-MHC class II interaction, but also LAG3 interactions with FGL1 or TCR-CD3, or that disrupt LAG3 dimerization. Finally, we assess the possibility of developing mAbs that enhance, rather than block, LAG3 inhibitory activity as treatments for autoimmune diseases.
Collapse
Affiliation(s)
- Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.
| | - Salman Shahid
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Sharanbasappa S Karade
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Zack SR, Meyer A, Zanotti B, Volin MV, Deen S, Satoeya N, Sweiss N, Lewis MJ, Pitzalis C, Kitajewski JK, Shahrara S. Notch ligands are biomarkers of anti-TNF response in RA patients. Angiogenesis 2024; 27:273-283. [PMID: 37796367 PMCID: PMC10995106 DOI: 10.1007/s10456-023-09897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Notch and its ligands play a critical role in rheumatoid arthritis (RA) pathogenesis. Hence, studies were conducted to delineate the functional significance of the Notch pathway in RA synovial tissue (ST) cells and the influence of RA therapies on their expression. Morphological studies reveal that JAG1, DLL4, and Notch1 are highly enriched in RA ST lining and sublining CD68+CD14+ MΦs. JAG1 and DLL4 transcription is jointly upregulated in RA MΦs reprogrammed by TLR4/5 ligation and TNF, whereas Syntenin-1 exposure expands JAG1, DLL4, and Notch1 expression levels in these cells. Single-cell RNA-seq data exhibit that JAG1 and Notch3 are overexpressed on all fibroblast-like synoviocyte (FLS) subpopulations, in parallel, JAG2, DLL1, and Notch1 expression levels are modest on RA FLS and are predominately potentiated by TLR4 ligation. Intriguingly, JAG1, DLL1/4, and Notch1/3 are presented on RA endothelial cells, and their expression is mutually reconfigured by TLR4/5 ligation in the endothelium. Synovial JAG1/JAG2/DLL1 or Notch1/3 transcriptomes were unchanged in patients who received disease-modifying anti-rheumatic drugs (DMARDs) or IL-6R Ab therapy regardless of disease activity score. Uniquely, RA MΦs and endothelial cells rewired by IL-6 displayed DLL4 transcriptional upregulation, and IL-6R antibody treatment disrupted RA ST DLL4 transcription in good responders compared to non-responders or moderate responders. Nevertheless, the JAG1/JAG2/DLL1/DLL4 transcriptome was diminished in anti-TNF good responders with myeloid pathotype and was unaltered in the fibroid pathotype except for DLL4. Taken together, our findings suggest that RA myeloid Notch ligands can serve as markers for anti-TNF responsiveness and trans-activate Notch receptors expressed on RA FLS and/or endothelial cells.
Collapse
Affiliation(s)
- Stephanie R Zack
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Sania Deen
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Neha Satoeya
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
- Department of Biomedical Sciences, Humanitas University, and Humanitas Research Hospital, Milan, Italy
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Parija I, Yadav S, Jayaraman N. Con A lectin binding by synthetic bivalent arabinomannan tri- and pentasaccharides reveals connectivity-dependent functional valencies. Carbohydr Res 2024; 536:109050. [PMID: 38335804 DOI: 10.1016/j.carres.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Lectin Con A, with specificity to interact with α-d-mannopyranoside, achieves tight binding affinity with the aid of optimal multivalent ligand valencies, distances and orientations between the ligands. A series of synthetic arabinomannans, possessing arabinan core and mannan at the non-reducing ends, is studied to assess the above constraints involved with lectin binding in this report. Trisaccharides, with (1 → 2)(1 → 3), (1 → 2)(1 → 5) and (1 → 3)(1 → 5) glycosidic bond connectivities, and a pentasaccharide with mannopyranosides at the non-reducing ends are synthesized. The binding affinities of the mannose bivalent ligands are studied with tetrameric Con A lectin by isothermal titration calorimetry (ITC). Among the derivatives, trisaccharide with (1 → 2)(1 → 3) glycosidic bond connectivity and the pentasaccharide undergo lectin interaction, clearly fulfilling the bivalent structural and functional valencies. Remaining oligosaccharides exhibit only a functional monovalency, defying the bivalent structural valency. The trisaccharide fulfilling the structural and functional valencies represent the smallest bivalent ligand, undergoing the lectin interaction in a trans-mode.
Collapse
Affiliation(s)
- Ipsita Parija
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
8
|
Johnson SN, Brucks SD, Apley KD, Farrell MP, Berkland CJ. Multivalent Scaffolds to Promote B cell Tolerance. Mol Pharm 2023; 20:3741-3756. [PMID: 37410969 DOI: 10.1021/acs.molpharmaceut.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.
Collapse
Affiliation(s)
- Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Spencer D Brucks
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA. Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues. Chem Sci 2023; 14:7782-7817. [PMID: 37502317 PMCID: PMC10370606 DOI: 10.1039/d3sc02543h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Peptide and protein selective modification at tyrosine residues has become an exploding field of research as tyrosine constitutes a robust alternative to lysine and cysteine-targeted traditional peptide/protein modification protocols. This review offers a comprehensive summary of the latest advances in tyrosine-selective cleavage, functionalization, and conjugation of peptides and proteins from the past three years. This updated overview complements the extensive body of work on site-selective modification of peptides and proteins, which holds significant relevance across various disciplines, including chemical, biological, medical, and material sciences.
Collapse
Affiliation(s)
- Shengping Zhang
- Center for Translational Medicine, Shenzhen Bay Laboratory New Zealand
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
| | | | - Freda F Li
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| |
Collapse
|
10
|
del Rio ML, Perez-Simon JA, Rodriguez-Barbosa JI. Differential Engraftment of Parental A20 PD-L1 WT and PD-L1 KO Leukemia Cells in Semiallogeneic Recipients in the Context of PD-L1/PD-1 Interaction and NK Cell-Mediated Hybrid Resistance. Front Immunol 2022; 13:887348. [PMID: 35795681 PMCID: PMC9251058 DOI: 10.3389/fimmu.2022.887348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
The contribution of natural killer (NK) cells to tumor rejection in the context of programmed death-ligand 1/programmed death 1 (PD-L1/PD-1) blockade is a matter of intense debate. To elucidate the role of PD-L1 expression on tumor cells and the functional consequences of engaging PD-1 receptor on cytotoxic cells, PD-L1 expression was genetically inactivated and WT or PD-L1-deficient parental tumor cells were adoptively transferred intravenously into F1 recipients. The engraftment of PD-L1-deficient A20 tumor cells in the spleen and liver of F1 recipients was impaired compared with A20 PD-L1 WT tumor counterparts. To elucidate the mechanism responsible for this differential tumor engraftment and determine the relevance of the role of the PD-L1/PD-1 pathway in the interplay of tumor cells/NK cells, a short-term competitive tumor implantation assay in the peritoneal cavity of semiallogeneic F1 recipients was designed. The results presented herein showed that NK cells killed target tumor cells with similar efficiency regardless of PD-L1 expression, whereas PD-L1 expression on A20 tumor cells conferred significant tumor protection against rejection by CD8 T cells confirming the role of the co-inhibitory receptor PD-1 in the modulation of their cytotoxic activity. In summary, PD-L1 expression on A20 leukemia tumor cells modulates CD8 T-cell-mediated responses to tumor-specific antigens but does not contribute to inhibit NK cell-mediated hybrid resistance, which correlates with the inability to detect PD-1 expression on NK cells neither under steady-state conditions nor under inflammatory conditions.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
| | - Jose-Antonio Perez-Simon
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine [Instituto de Biomedicina de Sevilla (IBIS)/Centro Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red Cáncer (CIBERONC)], Seville, Spain
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
| |
Collapse
|
11
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
12
|
Youkharibache P. Topological and Structural Plasticity of the Single Ig Fold and the Double Ig Fold Present in CD19. Biomolecules 2021; 11:biom11091290. [PMID: 34572502 PMCID: PMC8470474 DOI: 10.3390/biom11091290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
The Ig fold has had a remarkable success in vertebrate evolution, with a presence in over 2% of human genes. The Ig fold is not just the elementary structural domain of antibodies and TCRs, it is also at the heart of a staggering 30% of immunologic cell surface receptors, making it a major orchestrator of cell–cell interactions. While BCRs, TCRs, and numerous Ig-based cell surface receptors form homo- or heterodimers on the same cell surface (in cis), many of them interface as ligand-receptors (checkpoints) on interacting cells (in trans) through their Ig domains. New Ig-Ig interfaces are still being discovered between Ig-based cell surface receptors, even in well-known families such as B7. What is largely ignored, however, is that the Ig fold itself is pseudosymmetric, a property that makes the Ig domain a versatile self-associative 3D structure and may, in part, explain its success in evolution, especially through its ability to bind in cis or in trans in the context of cell surface receptor–ligand interactions. In this paper, we review the Ig domains’ tertiary and quaternary pseudosymmetries, with particular attention to the newly identified double Ig fold in the solved CD19 molecular structure to highlight the underlying fundamental folding elements of Ig domains, i.e., Ig protodomains. This pseudosymmetric property of Ig domains gives us a decoding frame of reference to understand the fold, relate all Ig domain forms, single or double, and suggest new protein engineering avenues.
Collapse
|
13
|
Ganesan S, Höglund P. MHC class I molecules co-stimulate NK1.1 signaling and enhance Ca 2+ flux in murine NK cells. Eur J Immunol 2021; 51:2531-2534. [PMID: 34453339 DOI: 10.1002/eji.202048709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/04/2021] [Accepted: 08/05/2021] [Indexed: 11/07/2022]
Abstract
Simultaneous triggering of NK1.1 and MHC class I on NK cells gives a higher Ca2+ flux response compared to triggering the NK1.1 receptor alone. The data suggest a novel costimulatory role for MHC class I molecules on NK cell responses.
Collapse
Affiliation(s)
- Sridharan Ganesan
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
14
|
Yadav S, Naresh K, Jayaraman N. "Surface Density of Ligands Controls In-Plane and Aggregative Modes of Multivalent Glycovesicle-Lectin Recognitions". Chembiochem 2021; 22:3075-3081. [PMID: 34375491 DOI: 10.1002/cbic.202100321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Indexed: 11/09/2022]
Abstract
Glycovesicles are ideal tools to delineate finer mechanisms of the interactions at the biological cell membranes. Multivalency forms the basis which, in turn, should surpass more than one mechanism in order to maintain multiple roles that the ligand-lectin interactions encounter. Ligand densities hold a prime control to attenuate the interactions. In the present study, mannose trisaccharide interacting with a cognate receptor, namely, Con A, is assessed at the vesicle surfaces. A synthetic (1→3)(1→6)-branched mannose trisaccharide is tethered with a diacetylene monomer and glycovesicles of varying sugar densities are prepared. The polydiacetylene vesicles are prepared by maintaining uniform lipid concentrations. The interactions of the glycovesicles with the lectin are probed through dynamic light scattering and UV-Vis spectroscopy techniques. Binding efficacies are assessed by surface plasmon resonance technique. Aggregative and in-plane modes of interactions follow a ligand density-dependant manner at the vesicle surface. Vesicles with sparsely populated ligands engage lectin in an aggregative mode (trans-), leading to a cross-linked complex formation. Whereas glycovesicles imbedded with dense ligands engage lectin interaction in an in-plane mode intramolecularly (cis-). Sub-nanomolar dissociation constants govern the intramolecular interaction occurring within the plane of the vesicle, relatively more efficacious than the aggregative intermolecular interactions.
Collapse
Affiliation(s)
- Shivender Yadav
- Indian Institute of Science, Department of Organic Chemistry, INDIA
| | - Kottari Naresh
- Indian Institute of Science, Department of Organic Chemistry, INDIA
| | - Narayanaswamy Jayaraman
- Indian Institute of Science, Department of Organic Chemistry, Sir C.V. Raman Avenue, 560 012, Bangalore, INDIA
| |
Collapse
|
15
|
Licensing Natural Killers for Antiviral Immunity. Pathogens 2021; 10:pathogens10070908. [PMID: 34358058 PMCID: PMC8308748 DOI: 10.3390/pathogens10070908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) enable discrimination between self- and non-self molecules on the surface of host target cells. In this regard, they have a vital role in self-tolerance through binding and activating intracellular tyrosine phosphatases which can inhibit cellular activation. Yet, self-MHC class I (MHC I)-specific IRs are versatile in that they can also positively impact lymphocyte functionality, as exemplified by their role in natural killer (NK) cell education, often referred to as ’licensing‘. Recent discoveries using defined mouse models of cytomegalovirus (CMV) infection have revealed that select self-MHC I IRs can increase NK cell antiviral defenses as well, whereas other licensing IRs cannot, or instead impede virus-specific NK responses for reasons that remain poorly understood. This review highlights a role for self-MHC I ‘licensing’ IRs in antiviral immunity, especially in the context of CMV infection, their impact on virus-specific NK cells during acute infection, and their potential to affect viral pathogenesis and disease.
Collapse
|
16
|
CADM1 and CADM2 Trigger Neuropathogenic Measles Virus-Mediated Membrane Fusion by Acting in cis. J Virol 2021; 95:e0052821. [PMID: 33910952 DOI: 10.1128/jvi.00528-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, is still an important cause of childhood morbidity and mortality worldwide. MeV usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). The disease is fatal, and no effective therapy is currently available. Although transsynaptic cell-to-cell transmission is thought to account for MeV propagation in the brain, neurons do not express the known receptors for MeV. Recent studies have shown that hyperfusogenic changes in the MeV fusion (F) protein play a key role in MeV propagation in the brain. However, how such mutant viruses spread in neurons remains unexplained. Here, we show that cell adhesion molecule 1 (CADM1; also known as IGSF4A, Necl-2, and SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors that enable MeV to cause membrane fusion in cells lacking the known receptors and to spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the envelope. However, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same cell membrane, causing the fusion protein triggering and membrane fusion. Knockdown of CADM1 and CADM2 inhibits syncytium formation and virus transmission between neurons that are both mediated by hyperfusogenic F proteins. Thus, our results unravel the molecular mechanism (receptor-mimicking cis-acting fusion triggering) by which MeV spreads transsynaptically between neurons, thereby causing SSPE. IMPORTANCE Measles virus (MeV), an enveloped RNA virus, is the causative agent of measles, which is still an important cause of childhood morbidity and mortality worldwide. Persistent MeV infection in the brain causes a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. However, how MeV spreads in neurons, which are mainly affected in SSPE, remains largely unknown. In this study, we demonstrate that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the viral membrane (envelope). Remarkably, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same membrane, triggering the fusion protein and causing membrane fusion, as viral receptors usually do in trans. Careful screening may lead to more examples of such "receptor-mimicking cis-acting fusion triggering" in other viruses.
Collapse
|
17
|
Yadav S, Naresh K, Jayaraman N. Surface Ligand Density Switches Glycovesicles between Monomeric and Multimeric Lectin Recognition. Chembiochem 2020; 22:485-490. [PMID: 32926592 DOI: 10.1002/cbic.202000544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Indexed: 11/07/2022]
Abstract
Carbohydrate-protein interactions define a multitude of cellular recognition events. We present herein synthetic glycovesicles as cell-surface mimics in order to switch the nature of lectin recognition. The covalent glycovesicles, constituted with diacetylene monomers of various ligand densities at their surfaces, are prepared through photo-polymerization. Vesicles with sparsely imbedded ligands engage in a lectin interaction leading to the formation of a dense, crosslinked multimeric complex. On the other hand, vesicles with many ligands, or completely covered with them, switch the lectin interaction to form a fully soluble monomeric complex, without crosslinking. Nanomolar dissociation constants govern these interactions, as assessed by a ligand-displacement assay. The study demonstrates the switching nature - between monomeric and multimeric - of the interaction as a function of ligand density in the vesicles; the results are directly relevant to understanding such a phenomenon occurring at cell surfaces.
Collapse
Affiliation(s)
- Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Kottari Naresh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.,Present address: HP Green R&D Centre, KIADB Industrial Area, Bangalore, 560 067, India
| | | |
Collapse
|
18
|
Donor and host coexpressing KIR ligands promote NK education after allogeneic hematopoietic stem cell transplantation. Blood Adv 2020; 3:4312-4325. [PMID: 31869417 DOI: 10.1182/bloodadvances.2019000242] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
The rate and extent of natural killer (NK)-cell education after hematopoietic cell transplantation correlates with leukemia control. To study the effect of donor and host HLA on NK-cell reconstitution, single killer-cell immunoglobulin-like receptor (KIR)+ NK cells (exhibiting KIR2DL1, KIR2DL2/KIR2DL3, or KIR3DL1 as their sole receptor) were grouped into 4 groups based on the interaction between donor/host HLA and donor inhibitory KIR in 2 cohorts (n = 114 and n = 276, respectively). On days 90 to 180 after transplantation, the absolute number and responsiveness against K562 cells (CD107a or interferon-γ expression) of single-KIR+ NK cells were higher in pairs where donor and host HLA both expressed ligands for donor inhibitory KIRs than in pairs where 1 or both of the donor and recipient HLA lacked at least 1 KIR ligand. NK-cell responsiveness was tuned commensurate with the number of inhibitory receptors from the donor. When both donor and host expressed the 3 major KIR ligands (HLA-C1, HLA-C2, and HLA-Bw4), NK cells expressing 3 inhibitory receptors (KIR2DL1/2DL3/3DL1) reached the maximum responsiveness against K562 cells compared with those NK cells expressing only 1 or 2 inhibitory receptors. When donor and host HLA both expressed all ligands for donor inhibitory KIRs, patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) showed the lowest recurrence rate after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). In conclusion, this study demonstrates that when both donors and hosts present all the KIR ligands for donor KIRs, reconstituted NK cells achieve better functional education and contribute to least relapse among patients. This observation study was registered at www.clinicaltrials.gov as #NCT02978274.
Collapse
|
19
|
Wang SG, Zhang B, Li CG, Zhu JQ, Sun BS, Wang CL. Sorting and gene mutation verification of circulating tumor cells of lung cancer with epidermal growth factor receptor peptide lipid magnetic spheres. Thorac Cancer 2020; 11:2887-2895. [PMID: 32856417 PMCID: PMC7529546 DOI: 10.1111/1759-7714.13625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to identify an efficient, simple, and specific method of detecting mutations in the epidermal growth factor receptor (EGFR) gene in isolated lung cancer circulating tumor cells (CTCs) and to improve the ability to obtain tumor tissue clinically. Methods EGFR peptide lipid magnetic spheres (EG‐P‐LMB) were prepared by reverse evaporation, and characterization and cell capture efficiency assessed. The peripheral blood samples of 30 lung cancer patients were isolated and identified with the EG‐P‐LMB using 20 healthy volunteers as controls. Finally, the isolated CTCs were tested for EGFR gene mutations, and the tissue samples selected for comparison. Results The prepared magnetic spheres had a smaller particle size and higher stability according to the particle size potential test. Their morphology was homogeneous by atomic force observation, and the UV test showed that there were peptides on the surface. The separation efficiency of EG‐P‐LMB was greater than 90% in PBS and greater than 80% in the blood simulation system. Compared with the tissue sample results, the positive rate of EGFR gene mutations was 94%. The CTC test results of 27 patients were consistent with the tissue test results of the corresponding patients, and the consistency with the tissue comparison test results was 90% (27/30). Conclusions EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. Key points Significant findings of the study EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. What this study adds This study added EGFR peptide lipid magnetic spheres to capture CTCs in the blood. Genetic testing was performed and compared with tissues. It solves the problem of clinically difficult tumor tissue sampling.
Collapse
Affiliation(s)
- Sheng-Guang Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Jian-Quan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bing-Sheng Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
20
|
Manandhar SP, Siddiqah IM, Cocca SM, Gharakhanian E. A kinase cascade on the yeast lysosomal vacuole regulates its membrane dynamics: conserved kinase Env7 is phosphorylated by casein kinase Yck3. J Biol Chem 2020; 295:12262-12278. [PMID: 32647006 PMCID: PMC7443493 DOI: 10.1074/jbc.ra119.012346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Membrane fusion/fission is a highly dynamic and conserved process that responds to intra- and extracellular signals. Whereas the molecular machineries involved in membrane fusion/fission have been dissected, regulation of membrane dynamics remains poorly understood. The lysosomal vacuole of budding yeast (Saccharomyces cerevisiae) has served as a seminal model in studies of membrane dynamics. We have previously established that yeast ENV7 encodes an ortholog of STK16-related kinases that localizes to the vacuolar membrane and downregulates vacuolar membrane fusion. Additionally, we have previously reported that Env7 phosphorylation in vivo depends on YCK3, a gene that encodes a vacuolar membrane casein kinase I (CKI) homolog that nonredundantly functions in fusion regulation. Here, we report that Env7 physically interacts with and is directly phosphorylated by Yck3. We also establish that Env7 vacuole fusion/fission regulation and vacuolar localization are mediated through its Yck3-dependent phosphorylation. Through extensive site-directed mutagenesis, we map phosphorylation to the Env7 C terminus and confirm that Ser-331 is a primary and preferred phosphorylation site. Phospho-deficient Env7 mutants were defective in negative regulation of membrane fusion, increasing the number of prominent vacuoles, whereas a phosphomimetic substitution at Ser-331 increased the number of fragmented vacuoles. Bioinformatics approaches confirmed that Env7 Ser-331 is within a motif that is highly conserved in STK16-related kinases and that it also anchors an SXXS CKI phosphorylation motif (328SRFS331). This study represents the first report on the regulatory mechanism of an STK16-related kinase. It also points to regulation of vacuolar membrane dynamics via a novel Yck3-Env7 kinase cascade.
Collapse
Affiliation(s)
- Surya P Manandhar
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Ikha M Siddiqah
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Stephanie M Cocca
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA.
| |
Collapse
|
21
|
Bachsais M, Salti S, Zaoui K, Hassan GS, Aoudjit F, Mourad W. CD154 inhibits death of T cells via a Cis interaction with the α5β1 integrin. PLoS One 2020; 15:e0235753. [PMID: 32745080 PMCID: PMC7398495 DOI: 10.1371/journal.pone.0235753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
CD154 plays a major role in the pathogenesis of several autoimmune and inflammatory diseases. In addition to CD40, soluble CD154 (sCD154) binds to other receptors namely αIIbβ3, αMβ2, α5β1 and αvβ3 integrins. We have previously reported that binding of sCD154 to α5β1 integrin expressed on several human T cell lines is capable of inhibiting Fas-induced cell death. In the current study, we show that such effect of the sCD154/α5β1 interaction is not restricted to the cell death response induced by Fas but could also be exhibited toward other death signals such as TRAIL and TNF- α. We also demonstrate that sCD154 is capable of inhibiting Fas-mediated death of human activated T cells, more importantly of CD4+ than CD8+ T ones. Our data also show that membrane-bound CD154 and α5β1 integrin expressed on the surface of distinct cells failed to influence cell death responses. However, when membrane-bound CD154 and α5β1 are expressed on the surface of same cell, their interaction was capable of down regulating cell death. CD154 was shown to co-localize with the α5β1 integrin on the surface of these cells. These data strongly suggest a cis-type of interaction between CD154 and α5β1 when both are expressed on the same cell surface, rather than a trans-interaction which usually implicates the ligand and its receptor each expressed on the surface of a distinct cell. Taken together, these findings add to the list of roles through which CD154 is contributing to the pathogenesis of autoimmune-inflammatory diseases, i.e. by protecting T cells from death and enhancing their survival.
Collapse
Affiliation(s)
- Meriem Bachsais
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Suzanne Salti
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Kossay Zaoui
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Fawzi Aoudjit
- Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
22
|
Rodriguez-Barbosa JI, Azuma M, Zelinskyy G, Perez-Simon JA, del Rio ML. Critical role of PD-L1 expression on non-tumor cells rather than on tumor cells for effective anti-PD-L1 immunotherapy in a transplantable mouse hematopoietic tumor model. Cancer Immunol Immunother 2020; 69:1001-1014. [DOI: 10.1007/s00262-020-02520-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
|
23
|
Liu Y, Cuendet MA, Goffin L, Šachl R, Cebecauer M, Cariolato L, Guillaume P, Reichenbach P, Irving M, Coukos G, Luescher IF. CD8 Binding of MHC-Peptide Complexes in cis or trans Regulates CD8 + T-cell Responses. J Mol Biol 2019; 431:4941-4958. [PMID: 31704286 DOI: 10.1016/j.jmb.2019.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022]
Abstract
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.
Collapse
Affiliation(s)
- Yang Liu
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Michel A Cuendet
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
| | - Laurence Goffin
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic
| | - Luca Cariolato
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Immanuel F Luescher
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland.
| |
Collapse
|
24
|
Zhao J, Zhong S, Niu X, Jiang J, Zhang R, Li Q. The MHC class I-LILRB1 signalling axis as a promising target in cancer therapy. Scand J Immunol 2019; 90:e12804. [PMID: 31267559 DOI: 10.1111/sji.12804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/31/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors are among the newest, cutting-edge methods for the treatment of cancer. Currently, they primarily influence T cell adaptive immunotherapy targeting the PD-1/PD-L1 and CTLA-4/B7 signalling pathways. These inhibitors fight cancer by reactivating the patient's own adaptive immune system, with good results in many cancers. With the discovery of the "Don't Eat Me" molecule, CD47, antibody-based drugs that target the macrophage-related innate immunosuppressive signalling pathway, CD47-SIRPα, have been developed and have achieved stunning results in the laboratory and the clinic, but there remain unexplained instances of tumour immune escape. While investigating the immunological tolerance of cancer to anti-CD47 antibodies, a second "Don't Eat Me" molecule on tumour cells, beta 2 microglobulin (β2m), a component of MHC class I, was described. Some tumour cells reduce their surface expression of MHC class I to escape T cell recognition. However, other tumour cells highly express β2m complexed with the MHC class I heavy chain to send a "Don't Eat Me" signal by binding to leucocyte immunoglobulin-like receptor family B, member 1 (LILRB1) on macrophages, leading to a loss of immune surveillance. Investigating the mechanisms underlying this immunosuppressive MHC class I-LILRB1 signalling axis in tumour-associated macrophages will be useful in developing therapies to restore macrophage function and control MHC class I signalling in patient tumours. The goal is to promote adaptive immunity while suppressing the innate immune response to tumours. This work will identify new therapeutic targets for the development of pharmaceutical-based tumour immunotherapy.
Collapse
Affiliation(s)
- Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shanshan Zhong
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xing Niu
- Second Clinical College, China Medical University, Shenyang, Liaoning Province, China
| | - Jiwei Jiang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ruochen Zhang
- Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
25
|
Ganesan S, Höglund P. Inhibitory Receptor Crosslinking Quantitatively Dampens Calcium Flux Induced by Activating Receptor Triggering in NK Cells. Front Immunol 2019; 9:3173. [PMID: 30693005 PMCID: PMC6339929 DOI: 10.3389/fimmu.2018.03173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/24/2018] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cell function is regulated by a balance between activating and inhibitory receptors, but the details of this receptor interplay are not extensively understood. We developed a flow cytometry-based assay system in which Ca2+ flux downstream of antibody-mediated activating receptor triggering was studied in the presence or absence of inhibitory receptor co-crosslinking. We show that the inhibitory influence on activating receptor-induced Ca2+ flux is quantitatively regulated, both on murine and human NK cells. Furthermore, both activating and inhibitory receptors operate in an additive way, suggesting that a fine-tuned balance between activating and inhibitory receptors regulate proximal NK cell signaling. We also demonstrate that murine NK cell expression of H2Dd lowered the capacity of Ly49A to deliver inhibitory signals after antibody crosslinking, suggesting that the cis interaction between H2Dd and Ly49A reduce the signaling capacity of Ly49A in this setting. Finally, we show that priming of NK cells by IL-15 rapidly augments Ca2+ flux after activating receptor signaling without attenuating the potential of inhibitory receptors to reduce Ca2+ flux. Our data shed new light on NK cell inhibition and raises new questions for further studies.
Collapse
Affiliation(s)
- Sridharan Ganesan
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
26
|
SLAM family receptors in natural killer cells - Mediators of adhesion, activation and inhibition via cis and trans interactions. Clin Immunol 2018; 204:37-42. [PMID: 30359773 DOI: 10.1016/j.clim.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
SLAM family receptors are important for the fine-tuning of immune reactions. Their expression is restricted to cells of hematopoietic origin and most SLAM family receptors are their own ligand. Here we review how these receptors are involved in regulating the functions of Natural Killer (NK) cells. We discuss that promoting cellular adhesion may be a main function of SLAM family receptors in NK cells. The homophilic interactions of SLAM family receptors can not only occur in trans between different cells, but also in cis on the surface of the same cell. This cis interaction additionally modulates the function of the receptors and subsequently affects the activities of NK cells. Finally, SLAM-family receptors can also mediate inhibitory signals under certain conditions. These inhibitory signals can contribute to the functional maturation of NK cells during NK cell education. Therefore, SLAM family receptors are critically involved in many aspects of NK cell functionality.
Collapse
|
27
|
Chaudhri A, Xiao Y, Klee AN, Wang X, Zhu B, Freeman GJ. PD-L1 Binds to B7-1 Only In Cis on the Same Cell Surface. Cancer Immunol Res 2018; 6:921-929. [PMID: 29871885 DOI: 10.1158/2326-6066.cir-17-0316] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/19/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Programmed death ligand 1 (PD-L1)-mediated immunosuppression regulates peripheral tolerance and is often co-opted by tumors to evade immune attack. PD-L1 binds to PD-1 but also binds to B7-1 (CD80) to regulate T-cell function. The binding interaction of PD-L1 with B7-1 and its functional role need further investigation to understand differences between PD-1 and PD-L1 tumor immunotherapy. We examined the molecular orientation of PD-L1 binding to B7-1 using cell-to-cell binding assays, ELISA, and flow cytometry. As expected, PD-L1-transfected cells bound to PD-1-transfected cells, and B7-1 cells bound to CD28 or CTLA-4-transfected cells; however, PD-L1 cells did not bind to B7-1 cells. By ELISA and flow cytometry with purified proteins, we found PD-L1 and B7-1 had a strong binding interaction only when PD-L1 was flexible. Soluble PD-1 and B7-1 competed for binding to PD-L1. Binding of native PD-L1 and B7-1 in cis on the same cell surface was demonstrated with NanoBiT proximity assays. Thus, PD-L1-B7-1 interaction can occur in cis on the same cell but not in trans between two cells, which suggests a model in which PD-L1 can bend via its 11-amino acid, flexible stalk to bind to B7-1 in cis, in a manner that can competitively block the binding of PD-L1 to PD-1 or of B7-1 to CD28. This binding orientation emphasizes the functional importance of coexpression of PD-L1 and B7-1 on the same cell. We found such coexpression on tumor-infiltrating myeloid cells. Our findings may help better utilize these pathways in cancer immunotherapy. Cancer Immunol Res; 6(8); 921-9. ©2018 AACR.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alyssa N Klee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xiaoxu Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Baogong Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
28
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol 2017; 48:50-65. [PMID: 28960320 DOI: 10.1002/eji.201646762] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Stipan Jonjić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
30
|
Bae SJ, Shin MW, Kim RH, Shin D, Son T, Wee HJ, Kim KW. Ninjurin1 Assembles Into a Homomeric Protein Complex Maintained by N-linked Glycosylation. J Cell Biochem 2017; 118:2219-2230. [PMID: 28067406 DOI: 10.1002/jcb.25872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
Ninjurin1 (Ninj1) is a cell surface protein known as a homophilic adhesion molecule. Previous studies have shown a trans-interaction of Ninj1 between immune cells and endothelial cells; however, little is known about Ninj1 modification and structure in the cis-interaction. We showed that Ninj1 assembles into a homomeric complex via a cis-interaction mediated by the intracellular region and N-glycosylation at Asn60 . We identified cis-interaction between Ninj1 proteins using CFP- and YFP-tagged Ninj1 by Förster resonance energy transfer using a confocal microscope and fluorescence-activated cell sorter. We further observed the Ninj1 homomeric complexes composed of two to six monomeric Ninj1 molecules by a formaldehyde cross-linking assay. Co-immunoprecipitation assays with epitope-tagged truncated Ninj1 suggested that the intracellular region encompassing Leu101 -Ala110 participates in Ninj1 homomer assembly. Ninj1 N-glycosylation was characterized by treatment of tunicamycin and substitution of Asn to Gln or Ala. Fluorescence-activated cell sorting-based Förster resonance energy transfer assays further demonstrated that N-glycosylation is indispensable for the Ninj1 cis-interaction, and a formaldehyde cross-linking assay confirmed that interruption of N-glycosylation by Asn substitution disrupted Ninj1 homomeric complex formation. In silico analysis revealed that Ninj1 is highly conserved in vertebrates and that the conserved sequence contains an N-glycosylation motif and cis-interacting intracellular region, which participate in Ninj1 homomer assembly. Taken together, these data show that Ninj1 assembles into a homomeric protein complex and that N-glycosylation is a prerequisite for Ninj1 homomer assembly. J. Cell. Biochem. 118: 2219-2230, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Min Wook Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ran Hee Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dongyoon Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Taekwon Son
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
| |
Collapse
|
31
|
Hinneburg H, Korać P, Schirmeister F, Gasparov S, Seeberger PH, Zoldoš V, Kolarich D. Unlocking Cancer Glycomes from Histopathological Formalin-fixed and Paraffin-embedded (FFPE) Tissue Microdissections. Mol Cell Proteomics 2017; 16:524-536. [PMID: 28122943 DOI: 10.1074/mcp.m116.062414] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/22/2017] [Indexed: 12/22/2022] Open
Abstract
N- and O-glycans are attractive clinical biomarkers as glycosylation changes in response to diseases. The limited availability of defined clinical specimens impedes glyco-biomarker identification and validation in large patient cohorts. Formalin-fixed paraffin-embedded (FFPE) clinical specimens are the common form of sample preservation in clinical pathology, but qualitative and quantitative N- and O-glycomics of such samples has not been feasible to date. Here, we report a highly sensitive and glycan isomer selective method for simultaneous N- and O-glycomics from histopathological slides. As few as 2000 cells isolated from FFPE tissue sections by laser capture microdissection were sufficient for in-depth histopathology-glycomics using porous graphitized carbon nanoLC ESI-MS/MS. N- and O-glycan profiles were similar between unstained and hematoxylin and eosin stained FFPE samples but differed slightly compared with fresh tissue. This method provides the key to unlock glyco-biomarker information from FFPE histopathological tissues archived in pathology laboratories worldwide.
Collapse
Affiliation(s)
- Hannes Hinneburg
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Petra Korać
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Falko Schirmeister
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Slavko Gasparov
- ‖Institute for Pathology and Cytology, University Hospital Merkur, Zagreb, Croatia.,**Department of Pathology, Medical School Zagreb, University of Zagreb, Zagreb, Croatia
| | - Peter H Seeberger
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany.,§Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Vlatka Zoldoš
- ¶Faculty of Science, Department of Biology, Division of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Daniel Kolarich
- From the ‡Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany;
| |
Collapse
|
32
|
Nikolaienko RM, Hammel M, Dubreuil V, Zalmai R, Hall DR, Mehzabeen N, Karuppan SJ, Harroch S, Stella SL, Bouyain S. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues. J Biol Chem 2016; 291:21335-21349. [PMID: 27539848 DOI: 10.1074/jbc.m116.742163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.
Collapse
Affiliation(s)
- Roman M Nikolaienko
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Michal Hammel
- the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Véronique Dubreuil
- the Départment de Neuroscience, Institut Pasteur de Paris, 25-28 Rue du Dr. Roux, 75624 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France, and
| | - Rana Zalmai
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - David R Hall
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Nurjahan Mehzabeen
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Sebastian J Karuppan
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Sheila Harroch
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France, and
| | - Salvatore L Stella
- the Department of Basic Medical Science, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108
| | - Samuel Bouyain
- From the Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110,
| |
Collapse
|
33
|
Claus M, Wingert S, Watzl C. Modulation of natural killer cell functions by interactions between 2B4 and CD48 in cis and in trans. Open Biol 2016; 6:rsob.160010. [PMID: 27249817 PMCID: PMC4892432 DOI: 10.1098/rsob.160010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/24/2016] [Indexed: 01/23/2023] Open
Abstract
SLAM-related receptors (SRRs) are important modulators of immune cell function. While most SRRs are homophilic, 2B4 (CD244) interacts with CD48, a GPI-anchored protein expressed on many haematopoietic cells. Here we show that natural killer (NK) cell-expressed 2B4 not only binds in trans to CD48 on neighbouring cells but also interacts in cis with CD48 on the same cell. 2B4 uses the same binding site to interact with CD48 in cis and in trans and structural flexibility of 2B4 is necessary for the cis interaction. Furthermore, the cis interaction is sufficient to induce basal phosphorylation of 2B4. However, cis interaction reduces the ability of 2B4 to bind CD48 in trans. As a consequence, stimulation-dependent phosphorylation of 2B4 upon binding to CD48 positive target cells is reduced. Interfering with the cis interaction therefore enhanced the lysis of CD48-expressing tumour cells. These data show that the density of 2B4 and CD48 on both the NK cell and the potential target cell modulates NK cell activity.
Collapse
Affiliation(s)
- Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| | - Sabine Wingert
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo) Dortmund, Germany
| |
Collapse
|
34
|
Chen J, Xie ZR, Wu Y. Elucidating the general principles of cell adhesion with a coarse-grained simulation model. MOLECULAR BIOSYSTEMS 2016; 12:205-18. [DOI: 10.1039/c5mb00612k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained simulation of interplay between cell adhesion and cell signaling.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| | - Yinghao Wu
- Department of Systems and Computational Biology
- Albert Einstein College of Medicine of Yeshiva University
- Bronx
- USA
| |
Collapse
|
35
|
Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials 2015; 82:194-207. [PMID: 26763734 DOI: 10.1016/j.biomaterials.2015.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 01/24/2023]
Abstract
Development of rational vectors for efficient drug and gene delivery is crucial for cancer treatment. In this study, epidermal growth factor receptor (EGFR)-binding peptide amphiphile (PA) were used as the primary bilayer skeleton material to construct ultra-stable self-assembling peptide nanovesicle (SPV). The resulted EGFR-targeted SPV (ESPV) could efficiently encapsulate therapeutic cargos (drugs or small interfering RNAs [siRNAs]) or labelled fluorescent cargo (quantum dots [QDs]) and exhibited excellent affinity for EGFR-positive cancer cells. Moreover, ESPV could deliver more drug or plasmid DNA to tumour sites and promote gene expression (a three-fold ratio of ESPVs vs cationic liposomes). Notably, the individual delivery or co-delivery of doxorubicin (DOX) and the acetylcholinesterase (AChE) gene via the ESPVs resulted in excellent drug/gene delivery both in vitro and in vivo and exerted a significant growth-suppressing effect on a liver cancer xenograft. This nanoscale, targeted cargo-packaging technology may provide a new strategy for the design of highly targeted cancer therapy vectors.
Collapse
|
36
|
Brusilovsky M, Radinsky O, Cohen L, Yossef R, Shemesh A, Braiman A, Mandelboim O, Campbell KS, Porgador A. Regulation of natural cytotoxicity receptors by heparan sulfate proteoglycans in -cis: A lesson from NKp44. Eur J Immunol 2015; 45:1180-91. [PMID: 25546090 DOI: 10.1002/eji.201445177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 11/06/2022]
Abstract
NKp44 (NCR2) is a distinct member of natural cytotoxicity receptors (NCRs) family that can induce cytokine production and cytolytic activity in human NK cells. Heparan sulfate proteoglycans (HSPGs) are differentially expressed in various normal and cancerous tissues. HSPGs were reported to serve as ligands/co-ligands for NKp44 and other NCRs. However, HSPG expression is not restricted to either group and can be found also in NK cells. Our current study reveals that NKp44 function can be modulated through interactions with HSPGs on NK cells themselves in -cis rather than on target cells in -trans. The intimate interaction of NKp44 and the NK cell-associated HSPG syndecan-4 (SDC4) in -cis can directly regulate membrane distribution of NKp44 and constitutively dampens the triggering of the receptor. We further demonstrate, that the disruption of NKp44 and SDC4 interaction releases the receptor to engage with its ligands in -trans and therefore enhances NKp44 activation potential and NK cell functional response.
Collapse
Affiliation(s)
- Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zagrebelsky M, Korte M. Maintaining stable memory engrams: new roles for Nogo-A in the CNS. Neuroscience 2014; 283:17-25. [PMID: 25168730 DOI: 10.1016/j.neuroscience.2014.08.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/15/2022]
Abstract
Nogo-A interaction with its different receptors (Nogo receptor 1 (NgR1), S1P receptor 2 (S1PR2), paired immunoglobulin-like receptor B (PirB)) restricts plasticity and growth-dependent processes leading, via the activation of different signaling pathway to the stabilization of the neuronal networks (either developmentally or during processes of memory consolation in the mature nervous system). Taking away these molecular brakes might allow for the induction of extensive structural and functional rearrangements and might promote compensatory growth processes after an injury of the CNS, in cortical structures as well as in the spinal cord. However, it is important to keep in mind that this could as well be a dangerous endeavor, since it might facilitate unwanted and unnecessary (and probably even maladaptive) neuronal connections.
Collapse
Affiliation(s)
- M Zagrebelsky
- TU Braunschweig, Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany
| | - M Korte
- TU Braunschweig, Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany.
| |
Collapse
|
38
|
Bessoles S, Grandclément C, Alari-Pahissa E, Gehrig J, Jeevan-Raj B, Held W. Adaptations of Natural Killer Cells to Self-MHC Class I. Front Immunol 2014; 5:349. [PMID: 25101089 PMCID: PMC4106420 DOI: 10.3389/fimmu.2014.00349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/08/2014] [Indexed: 11/24/2022] Open
Abstract
Natural Killer (NK) cells use germ line encoded receptors to detect diseased host cells. Despite the invariant recognition structures, NK cells have a significant ability to adapt to their surroundings, such as the presence or absence of MHC class I molecules. It has been assumed that this adaptation occurs during NK cell development, but recent findings show that mature NK cells can also adapt to the presence or absence of MHC class I molecules. Here, we summarize how NK cells adjust to changes in the expression of MHC class I molecules. We propose an extension of existing models, in which MHC class I recognition during NK cell development sequentially instructs and maintains NK cell function. The elucidation of the molecular basis of the two effects may identify ways to improve the fitness of NK cells and to prevent the loss of NK cell function due to persistent alterations in their environment.
Collapse
Affiliation(s)
- Stéphanie Bessoles
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Camille Grandclément
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Elisenda Alari-Pahissa
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Jasmine Gehrig
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Beena Jeevan-Raj
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Werner Held
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
39
|
Formosa-Jordan P, Ibañes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS One 2014; 9:e95744. [PMID: 24781918 PMCID: PMC4004554 DOI: 10.1371/journal.pone.0095744] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/31/2014] [Indexed: 12/05/2022] Open
Abstract
Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signaling sources share the same receptor and provides the tools for their characterization.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Marta Ibañes
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
40
|
Li Y, Mariuzza RA. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front Immunol 2014; 5:123. [PMID: 24723923 PMCID: PMC3972465 DOI: 10.3389/fimmu.2014.00123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are key components of innate immune responses to tumors and viral infections. NK cell function is regulated by NK cell receptors that recognize both cellular and viral ligands, including major histocompatibility complex (MHC), MHC-like, and non-MHC molecules. These receptors include Ly49s, killer immunoglobulin-like receptors, leukocyte immunoglobulin-like receptors, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such as the stress-induced proteins MICA and ULBP. In addition, certain viruses have evolved MHC-like immunoevasins, such as UL18 and m157 from cytomegalovirus, that act as decoy ligands for NK receptors. A growing number of NK receptor–ligand interaction pairs involving non-MHC molecules have also been identified, including NKp30–B7-H6, killer cell lectin-like receptor G1–cadherin, and NKp80–AICL. Here, we describe crystal structures determined to date of NK cell receptors bound to MHC, MHC-related, and non-MHC ligands. Collectively, these structures reveal the diverse solutions that NK receptors have developed to recognize these molecules, thereby enabling the regulation of NK cytolytic activity by both host and viral ligands.
Collapse
Affiliation(s)
- Yili Li
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| |
Collapse
|
41
|
Li NL, Fu L, Uchtenhagen H, Achour A, Burshtyn DN. Cis association of leukocyte Ig-like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18. Eur J Immunol 2013; 43:1042-52. [PMID: 23348966 DOI: 10.1002/eji.201242607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 12/16/2012] [Accepted: 01/21/2013] [Indexed: 01/21/2023]
Abstract
Leukocyte Ig-like receptor (LIR) 1 (CD85j/ILT2/LILRB1) is an inhibitory receptor with broad specificity for MHC class I (MHC-I) and the human CMV MHC-I homologue UL18. LIR-1 can inhibit NK cells through the conventional interaction with MHC-I expressed on a target cell (in trans) but the nature and the effects of LIR-1 interactions with MHC-I in cis are not well understood. Here we show that MHC-I expressed in cis has an impact on the detection of LIR-1 with various antibodies. We found the cis interaction alters recognition by only one of two antibodies known to block functional trans recognition by LIR-1 on NK cells. Specifically, we observed an enhancement of recognition with GHI/75 in the presence of various MHC-I alleles on 721.221 cells. We found that blocking the LIR-1 contact site with anti-MHC-I antibodies decreased detection of LIR-1 with GHI/75. We also observed a decrease in GHI/75 following acid denaturation of MHC-I. Finally, disruption of LIR-1 cis interactions with MHC-I significantly enhanced UL18-Fc binding to NK92 cells and enhanced the relative inhibition of NK92 cells by HLA-G. These results have implications for LIR-1 function in scenarios such as infection when MHC-I levels on effector cells may be increased by IFNs.
Collapse
Affiliation(s)
- Nicholas L Li
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|