1
|
Onishi Y, Miura N, Tanimoto A, Kawaguchi H. Methotrexate Enhances Atherosclerosis Progression via Impairment of Folate Pathway in a Microminipig Model. In Vivo 2025; 39:1262-1274. [PMID: 40295005 PMCID: PMC12041998 DOI: 10.21873/invivo.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND/AIM As the pathophysiology of Microminipigs (μMPs) is similar to that of human, μMPs are useful in atherosclerosis research. To clarify the effect of methotrexate (MTX) on atherosclerosis, we investigated the pathology of MTX-induced atherosclerosis lesion exacerbation in μMPs fed a high-fat and high-cholesterol diet (HFHCD). MATERIALS AND METHODS The μMPs were divided into four groups: HFHCD, HFHCD+MTX, HFHCD+MTX+leucovorin (LV), and HFHCD+MTX+folic acid (FA), and fed for two weeks. Laboratory tests including blood lipid, FA, and homocysteine (Hcy) levels, and pathological evaluation of the atherosclerosis lesion area and thickness were performed. Hepatic and jejunal gene expressions related to lipid and folate metabolism pathways including 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) were monitored using RT-PCR. RESULTS The HFHCD+MTX group showed increased blood Hcy (p<0.01) and decreased FA levels (p<0.05) in accordance with increased hepatic MTR mRNA expression (p<0.1) and exacerbation of atherosclerosis (p=0.051 for lesion area and p=0.045 for lesion thickness) compared to the HFHCD group. Administration of LV or FA attenuated the MTX-induced increase in the Hcy level (p<0.01), atherosclerosis lesion thickness (p<0.1), and MTR mRNA expression (p<0.1 in HFHCD+MTX vs. HFHCD+MTX+LV groups). CONCLUSION MTX exacerbated HFHCD-induced atherosclerosis mediated through reduced blood FA and the subsequent increase of Hcy in μMPs, indicating that the μMP model may advance cardio-oncology research by providing useful experimental approaches. As MTX is administered for rheumatoid arthritis and malignant tumors in humans, atherosclerosis exacerbation should be acknowledged as a possible adverse effect of MTX treatment.
Collapse
Affiliation(s)
- Yuko Onishi
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, Japan
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Kawaguchi
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, Japan;
| |
Collapse
|
2
|
Riachi M, Bryant D, Ellis J, Hughes C, Polubothu S, Del Valle Torres I, Sauvadet A, Knöpfel N, Muwanga-Nanyonjo N, Martin SB, Bruzos A, Kelly G, Calvani E, Palma-Duran SA, Silva Dos Santos M, Chaloner C, Khalil Y, Clayton P, Mills P, Bulstrode N, Dand N, Di WL, Barral P, Simpson MA, Barker J, Lee JC, Macrae J, Kinsler VA. Cholesterol pathway gene variants and reduced keratinocyte cholesterol support a final common druggable pathway in hyperproliferative inflammatory skin diseases. J Invest Dermatol 2025:S0022-202X(25)00414-2. [PMID: 40274221 DOI: 10.1016/j.jid.2025.02.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Hyperproliferative inflammatory skin disease (HISD) is frequently seen in rare monogenic diseases of cholesterol metabolism and responds to topical cholesterol/statin. We hypothesised that aberrant cholesterol metabolism within keratinocytes could be important in HISD more generally, driven by either immunological or lipid pathway genetic variation. Whilst other epidermal lipids have been well characterised in HISDs, cholesterol and its metabolites have not. Using GCxGC 3D mass spectrometry we find here that primary keratinocytes from diverse monogenic HISDs (Inflammatory Linear Verruvous Epidermal Naevus ILVEN n=14, CHILD syndrome n=2), and from plaque psoriasis (n=2), demonstrate significantly reduced mean cholesterol across all patient groups compared to controls. This striking abnormality appears causally implicated, as treatment in vitro with cholesterol and statin rescues the cellular hyperproliferation. Using SNPsea and burden analysis of large international psoriasis cohorts we go on to show that GWAS hits are significantly enriched in proximity to genes encoding lipid metabolic pathways, and that rare variants in lipid metabolic pathway genes are significantly enriched in psoriasis patients. These data identify a final common pathway of aberrant keratinocyte cholesterol metabolism in HISD, which should be drugged topically to avoid first pass metabolism. In parallel we implicate genetic variation in lipid pathway genes in psoriasis susceptibility, potentially explaining the co-morbidity of abnormal serum lipid profile and psoriasis.
Collapse
Affiliation(s)
- Melissa Riachi
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Dale Bryant
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - James Ellis
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Connor Hughes
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Ignacio Del Valle Torres
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Aimie Sauvadet
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Nicole Knöpfel
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Noreen Muwanga-Nanyonjo
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Sara Barberan Martin
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Alicia Bruzos
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics, The Francis Crick Insitute, London, UK
| | - Enrica Calvani
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | | - Charlotte Chaloner
- Department of Medical and Molecular Genetics, King's College London, London, UK; The Peter Gorer Department of Immunology, King's College London, London, UK
| | - Youssef Khalil
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Philippa Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Neil Bulstrode
- Plastic Surgery, Great Ormond St Hospital for Children, London, UK
| | - Nick Dand
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Wei-Li Di
- The Peter Gorer Department of Immunology, King's College London, London, UK
| | - Patricia Barral
- Immune Response to Lipids Laboratory, The Francis Crick Institute, London, UK
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Jonathan Barker
- St John's Institute of Dermatology, Guys and St Thomas' Trust, London UK
| | - James C Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - James Macrae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Veronica A Kinsler
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK.
| |
Collapse
|
3
|
Li J, Peng H, Ru S, Wang B, Su E, Wu D, Wang W. Lower-dose vs high-dose oral bisphenol S action of lipid metabolism in liver of male SD rat via mediating different SREBP isoforms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125186. [PMID: 39454810 DOI: 10.1016/j.envpol.2024.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Bisphenol S (BPS) is commonly used for the industrial production of thermal paper, polycarbonate plastics, epoxy resins and other materials. Studies have reported that BPS can lead to triglyceride (TAG) or/and cholesterol (CHO) accumulation in the liver in zebrafish and mice, but the reasons for the different types of lipids that accumulate in the liver following BPS exposure are unclear. Here, the influences of lower-dose (10 mg/kg body weight/day) and high-dose (50 mg/kg body weight/day) BPS exposure to male SD rats on the accumulation of different lipids in the liver were explored. The results indicated that BPS treatment increased the levels of acetyl-CoA and glycogen in the liver. A lower dose of BPS upregulated the mRNA and protein expression levels of sterol regulatory element-binding protein 1 (srebp1), which is involved in the de novo synthesis of TAG in the liver, thus promoting the synthesis of glycerides (diacetylglyceride and TAG). However, a higher dose of BPS induced CHO accumulation, but inhibited the mRNA expression of genes (i.e., srebp2, hmgcr and hmgcs) involved in the de novo synthesis of CHO in the liver. Excessive accumulation of glycerides and CHO led to destruction of the physiological structure of rat liver, causing disorders in liver function. Our data provide new insight into the different mechanisms by which glyceride and CHO accumulate in the liver after BPS exposure.
Collapse
Affiliation(s)
- Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bo Wang
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Enping Su
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Dehua Wu
- Shandong Construction Project Environmental Assessment Service Center, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Lange Y, Steck TL. How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis. Prog Lipid Res 2024; 96:101304. [PMID: 39491591 DOI: 10.1016/j.plipres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these complexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phospholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hypothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
5
|
Zhu T, Jin M, Luo J, Yang Y, Li X, Peng H, Shen Y, Zhou Q. Mating behaviour and cholesterol nutritional strategies promoted ovarian development of female swimming crab ( Portunus trituberculatus). Br J Nutr 2024; 132:835-850. [PMID: 39391922 DOI: 10.1017/s0007114524001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Female crabs enter a stage of rapid ovarian development after mating, and cholesterol is a substrate for steroid hormone synthesis. Therefore, in this experiment, an 8-week feeding trial was conducted to investigate the effects of mating treatments (mated crab and unmated crab) and three dietary cholesterol levels (0·09 %, 0·79 % and 1·40 %) on ovarian development, cholesterol metabolism and steroid hormones metabolism of adult female swimming crab (Portunus trituberculatus). The results indicated that crabs fed the diet with 0·79 % cholesterol significantly increased gonadosomatic index (GSI) and vitellogenin (VTG) content than other treatments in the same mating status. Moreover, mated crabs had markedly increased GSI and VTG content in the ovary and hepatopancreas than unmated crabs. The histological observation found that exogenous vitellogenic oocytes appeared in the mated crabs, while previtellogenic oocytes and endogenous vitellogenic oocytes were the primary oocytes in unmated crabs. The transmission electron microscopy analysis showed that when fed diet with 0·79 % cholesterol, the unmated crabs contained more rough endoplasmic reticulum and mated crabs had higher yolk content than other treatments. Furthermore, mating treatment and dietary 0·79 % cholesterol level both promoted cholesterol deposition by up-regulation of the mRNA and protein expression levels of class B scavenger receptors 1 (Srb1), while stimulating the secretion of steroid hormones by up-regulation of the mRNA and protein expression of steroidogenic acute regulatory protein (Star). Overall, the present results indicated that mating behaviour plays a leading role in promoting ovarian development, and dietary 0·79 % cholesterol level can further promote ovarian development after mating.
Collapse
Affiliation(s)
- Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| | - Yuhang Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| | - Xiangkai Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo315211, People's Republic of China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo315211, People's Republic of China
| |
Collapse
|
6
|
Rossi F, Trakoolwilaiwan T, Gigli V, Tortolini C, Lenzi A, Isidori AM, Thanh NTK, Antiochia R. Progress in nanoparticle-based electrochemical biosensors for hormone detection. NANOSCALE 2024; 16:18134-18164. [PMID: 39254475 DOI: 10.1039/d4nr02075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hormones are chemical messengers that regulate a wide range of physiological processes including metabolism, development, growth, reproduction and mood. The concentration of hormones that orchestrate the numerous bodily functions is very low (1 nM or less). Efforts have been made to develop highly sensitive tools to detect them. This review represents a critical comparison between different types of nanoparticle-based electrochemical biosensors for the detection of various hormones, namely cortisol, sex hormones (estradiol, progesterone, testosterone), insulin, thyroid-stimulating hormone (TSH) and growth hormone (GH). The electrochemical biosensors investigated for each hormone are first divided on the basis of the biological fluid tested for their detection, and successively on the basis of the electrochemical transducer utilized in the device (voltammetric or impedimetric). Focus is placed on the nanoparticles employed and the successive electrode modification developed in order to improve detection sensitivity and specificity and biosensor stability. Limit of detection (LOD), linear range, reproducibility and possibility of regeneration for continuous reuse are also investigated and compared. The review also addresses the recent trends in the development of wearable biosensors and point-of-care testing for hormone detection in clinical diagnostics useful for endocrinology research, and the future perspectives regarding the integration of nanomaterials, microfluidics, near field communication (NFC) technology and portable devices.
Collapse
Affiliation(s)
- Francesco Rossi
- ICCOM-CNR, Polo Scientifico, Via Madonna del piano 10, Sesto Fiorentino, FI, 50019, Italy
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Tran TT, Lee G, Huh YH, Chung KH, Lee SY, Park KH, Kim JH, Kook MS, Ryu J, Kim OS, Lim HP, Koh JT, Ryu JH. Acceleration of HDL-Mediated Cholesterol Efflux Alleviates Periodontitis. J Dent Res 2024; 103:1109-1118. [PMID: 39311443 DOI: 10.1177/00220345241271075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Periodontitis (PD) is a common inflammatory disease known to be closely associated with metabolic disorders, particularly hyperlipidemia. In the current study, we demonstrated that hypercholesterolemia is a predisposing factor in the development of PD. Logistic regression analysis revealed a strong positive correlation between PD and dyslipidemia. Data from in vivo (PD mouse model subjected to a high cholesterol diet) and in vitro (cholesterol treatment of gingival fibroblasts [GFs]) experiments showed that excess cholesterol influx into GFs potentially contributes to periodontal inflammation and, subsequently, alveolar bone erosion. Additionally, we compared the protective efficacies of cholesterol-lowering drugs with their different modes of action against PD pathogenesis in mice. Among the cholesterol-lowering drugs we tested, fenofibrate exerted the most protective effect against PD pathogenesis due to an increased level of high-density lipoprotein cholesterol, a lipoprotein involved in cholesterol efflux from cells and reverse cholesterol transport. Indeed, cholesterol efflux was suppressed during PD progression by downregulation of the apoA-I binding protein (APOA1BP) expression in inflamed GFs. We also demonstrated that the overexpression of APOA1BP efficiently regulated periodontal inflammation and the subsequent alveolar bone loss by inducing cholesterol efflux. Our collective findings highlight the potential utility of currently available cholesterol-lowering medications for the mitigation of PD pathogenesis. By targeting the acceleration of high-density lipoprotein-mediated cellular cholesterol efflux, a new therapeutic approach for PD may become possible.
Collapse
Affiliation(s)
- T-T Tran
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - G Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Y H Huh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - K-H Chung
- Department of Preventive and Public Health Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - S Y Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - K H Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J-H Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - M-S Kook
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J Ryu
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - O-S Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - H-P Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J-T Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J-H Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Wang J, Wu Q, Wang X, Liu H, Chen M, Xu L, Zhang Z, Li K, Li W, Zhong J. Targeting Macrophage Phenotypes and Metabolism as Novel Therapeutic Approaches in Atherosclerosis and Related Cardiovascular Diseases. Curr Atheroscler Rep 2024; 26:573-588. [PMID: 39133247 PMCID: PMC11392985 DOI: 10.1007/s11883-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF THE REVIEW Macrophage accumulation and activation function as hallmarks of atherosclerosis and have complex and intricate dynamics throughout all components and stages of atherosclerotic plaques. In this review, we focus on the regulatory roles and underlying mechanisms of macrophage phenotypes and metabolism in atherosclerosis. We highlight the diverse range of macrophage phenotypes present in atherosclerosis and their potential roles in progression and regression of atherosclerotic plaque. Furthermore, we discuss the challenges and opportunities in developing therapeutic strategies for preventing and treating atherosclerotic cardiovascular disease. RECENT FINDINGS Dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypealters the immuno-inflammatory response during atherosclerosis progression, leading to plaque initiation, growth, and ultimately rupture. Altered metabolism of macrophage is a key feature for their function and the subsequent progression of atherosclerotic cardiovascular disease. The immunometabolism of macrophage has been implicated to macrophage activation and metabolic rewiring of macrophages within atherosclerotic lesions, thereby shifting altered macrophage immune-effector and tissue-reparative function. Targeting macrophage phenotypes and metabolism are potential therapeutic strategies in the prevention and treatment of atherosclerosis and atherosclerotic cardiovascular diseases. Understanding the precise function and metabolism of specific macrophage subsets and their contributions to the composition and growth of atherosclerotic plaques could reveal novel strategies to delay or halt development of atherosclerotic cardiovascular diseases and their associated pathophysiological consequences. Identifying biological stimuli capable of modulating macrophage phenotypes and metabolism may lead to the development of innovative therapeutic approaches for treating patients with atherosclerosis and coronary artery diseases.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongbin Liu
- Department of Cardiology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mulei Chen
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ze Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Kuibao Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weiming Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jiuchang Zhong
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Park ES, Won J, Ahn SH, Lee AR, Lee D, Moon JY, Choi MH, Kim KH. Gender-specific alteration of steroid metabolism and its impact on viral replication in a mouse model of hepatitis B virus infection. Anim Cells Syst (Seoul) 2024; 28:466-480. [PMID: 39296537 PMCID: PMC11409417 DOI: 10.1080/19768354.2024.2403569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Hepatitis B virus (HBV) is a sex-specific pathogen that is more severe in males than in females. Sex disparities in HBV infection have been attributed to hormonal differences between males and females. However, whether HBV infection affects the metabolic signatures of steroid hormones and how these influences viral replication remains unclear. In this study, we investigated whether HBV infection alters steroid metabolism and its effects on HBV replication. Serum samples from male and female mice obtained after the hydrodynamic injection of replication-competent HBV plasmids were subjected to quantitative steroid profiling. Serum steroid levels in mice were analyzed using an in vitro metabolism assay with the mouse liver S9 fraction. The alteration of steroids by HBV infection was observed only in male mice, particularly with significant changes in androgens, whereas no significant hormonal changes were observed in female mice. Among the altered steroids, dehydroepiandrosterone (DHEA) levels increased the most in male mice after HBV infection. An in vitro metabolism assay revealed that androgen levels were significantly reduced in HBV-infected male mice. Furthermore, the genes involved in DHEA biosynthesis were significantly upregulated in HBV-infected male mice. Interestingly, reduced dihydrotestosterone in male mice significantly inhibits viral replication by suppressing HBV promoter activity, suggesting a viral strategy to overcome the antiviral effects of steroid hormones in males. Our data demonstrated that HBV infection can cause sex-specific changes in steroid metabolism.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | - Juhee Won
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Sung Hyun Ahn
- Department of Pharmacology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Donghyo Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ju-Yeon Moon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
10
|
Ha J, Kwon GE, Son Y, Jang SA, Cho SY, Park SJ, Kim H, Lee J, Lee J, Seo D, Lee M, Lee DY, Choi MH, Kim E. Cholesterol profiling reveals 7β-hydroxycholesterol as a pathologically relevant peripheral biomarker of Alzheimer's disease. Psychiatry Clin Neurosci 2024; 78:473-481. [PMID: 38923201 PMCID: PMC11488599 DOI: 10.1111/pcn.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
AIM Cholesterol homeostasis is associated with Alzheimer's disease (AD). Despite the multitude of cholesterol metabolites, little is known about which metabolites are directly involved in AD pathogenesis and can serve as its potential biomarkers. METHODS To identify "hit" metabolites, steroid profiling was conducted in mice with different age, diet, and genotype and also in humans with normal cognition, mild cognitive impairment, and AD using gas chromatography-mass spectrometry. Then, using one of the "hit" molecules (7β-hydroxycholesterol; OHC), molecular and histopathological experiment and behavioral testing were conducted in normal mice following its intracranial stereotaxic injection to see whether this molecule drives AD pathogenesis and causes cognitive impairment. RESULTS The serum levels of several metabolites, including 7β-OHC, were increased by aging in the 3xTg-AD unlike normal mice. Consistently, the levels of 7β-OHC were increased in the hairs of patients with AD and were correlated with clinical severity. We found that 7β-OHC directly affects AD-related pathophysiology; intrahippocampal injection of 7β-OHC induced astrocyte and microglial cell activation, increased the levels of pro-inflammatory cytokines (TNF-alpha, IL-1β, IL-6), and enhanced amyloidogenic pathway. Mice treated with 7β-OHC also exhibited deficits in memory and frontal/executive functions assessed by object recognition and 5-choice serial reaction time task, respectively. CONCLUSIONS Our results suggest that 7β-OHC could serve as a convenient, peripheral biomarker of AD. As directly involved in AD pathogenesis, 7β-OHC assay may help actualize personalized medicine in a way to identify an at-risk subgroup as a candidate population for statin-based AD treatment.
Collapse
Affiliation(s)
- Junghee Ha
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Go Eun Kwon
- Molecular Recognition Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
| | - Yumi Son
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulRepublic of Korea
| | - Soo Ah Jang
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulRepublic of Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Metabolism‐Dementia Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| | - Jimin Lee
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Juseok Lee
- Department of MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Dongryul Seo
- Department of MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Myeongjee Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulKorea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Man Ho Choi
- Molecular Recognition Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
| | - Eosu Kim
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Graduate School of Medical Science, Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulRepublic of Korea
- Metabolism‐Dementia Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
11
|
Hernández-Martín M, Garcimartín A, Bocanegra A, Redondo-Castillejo R, Quevedo-Torremocha C, Macho-González A, García Fernández RA, Bastida S, Benedí J, Sánchez-Muniz FJ, López-Oliva ME. Silicon as a Functional Meat Ingredient Improves Jejunal and Hepatic Cholesterol Homeostasis in a Late-Stage Type 2 Diabetes Mellitus Rat Model. Foods 2024; 13:1794. [PMID: 38928736 PMCID: PMC11203255 DOI: 10.3390/foods13121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed an RM included in a high-saturated-fat high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection were used as late-stage type 2 diabetes mellitus (T2DM) model. Si-RM was included into the HSFHCD as a functional food. An early-stage TD2M group fed a high-saturated-fat diet (HSFD) was taken as reference. Si-RM inhibited the hepatic and intestinal microsomal triglyceride transfer protein (MTP) reducing the apoB-containing lipoprotein assembly and cholesterol absorption. Upregulation of liver X receptor (LXRα/β) by Si-RM turned in a higher low-density lipoprotein receptor (LDLr) and ATP-binding cassette transporters (ABCG5/8, ABCA1) promoting jejunal cholesterol efflux and transintestinal cholesterol excretion (TICE), and facilitating partially reverse cholesterol transport (RCT). Si-RM decreased the jejunal absorptive area and improved mucosal barrier integrity. Consequently, plasma triglycerides and cholesterol levels decreased, as well as the formation of atherogenic lipoprotein particles. Si-RM mitigated the dyslipidemia associated with late-stage T2DM by Improving cholesterol homeostasis. Silicon could be used as an effective nutritional approach in diabetic dyslipidemia management.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Claudia Quevedo-Torremocha
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Rosa Ana García Fernández
- Animal Medicine and Surgery Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Sara Bastida
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
12
|
Song T, Liang X, Wang H, Xue M, Wang J. Gut microbiota-bile acid crosstalk and metabolic fatty liver in spotted seabass ( Lateolabrax maculatus): The role of a cholesterol, taurine and glycine supplement. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:87-99. [PMID: 38766518 PMCID: PMC11101744 DOI: 10.1016/j.aninu.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024]
Abstract
The prevalent practice of substituting fishmeal with plant protein frequently leads to disturbances in bile acid metabolism, subsequently increasing the incidence of metabolic liver diseases. Bile acid nutrients such as cholesterol, taurine and glycine have been shown to enhance bile acid synthesis and confer beneficial effects on growth. Therefore, this study aimed to investigate the effects of cholesterol-taurine-glycine (Ch-Tau-Gly) supplement on bile acid metabolism and liver health in spotted seabass (Lateolabrax maculatus) fed a plant-based diet. Two isonitrogenous and isolipidic diets were formulated: (1) plant protein-based diet (PP); (2) PP supplemented 0.5% cholesterol, 0.5% taurine and 1.3% glycine (CTG). Each experimental diet was randomly fed to quadruplicate groups of 30 feed-trained spotted seabass in each tank. The results revealed that supplementing plant-based diet with Ch-Tau-Gly supplement led to an increase in carcass ratio (meat yield) in spotted seabass (P < 0.05), indirectly contributing positively to their growth. The dietary supplement effectively suppressed endogenous cholesterol synthesis in the liver, promoted the expression of bile acid synthesis enzyme synthesis, and simultaneously the expression of intestinal fxr and its downstream genes, including hnf4α and shp (P < 0.05). The reduction in Lactobacillus_salivarius and bile salt hydrolase (BSH) were observed in CTG group with concurrently increased conjugated chenodeoxycholic acid (CDCA) bile acids (P < 0.05), suggesting the enhancement of the hydrophilicity of the bile acid pool. In CTG group, fatty liver was alleviated with a corresponding increase in lipid metabolism, characterized by a downregulation of genes associated with lipogenesis and lipid droplet deposition, along with an upregulation of genes related to lipolysis. Our study underscored the ability of Ch-Tau-Gly supplement to influence the gut microbiota, leading to an increase in the levels of conjugated CDCA (P < 0.05) in the bile acid pool of spotted seabass. The interplay between the gut microbiota and bile acids might constitute a crucial pathway in the promotion of liver health. These findings offer a promising solution, suggesting that Ch-Tau-Gly supplement have the potential to promote the growth of aquatic species and livestock fed on plant-based diets while addressing issues related to metabolic fatty liver.
Collapse
Affiliation(s)
- Tingting Song
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Li CZ, Wu LM, Zhu CX, Du HY, Chen GX, Yang F. The impacts of dietary sphingomyelin supplementation on metabolic parameters of healthy adults: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1363077. [PMID: 38463938 PMCID: PMC10922005 DOI: 10.3389/fnut.2024.1363077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Studies have shown that sphingomyelin (SM) and its metabolites play signaling roles in the regulation of human health. Endogenous SM is involved in metabolic syndrome (MetS), while dietary SM supplementation may maintain lipid metabolism and prevent or alleviate MetS. Therefore, we hypothesized that dietary SM supplementation is beneficial for human health. AIMS In order to examine the impacts of dietary SM on metabolic indexes in adults without MetS, we performed a meta-analysis to test our hypothesis. METHODS A comprehensive search was performed to retrieve randomized controlled trials that were conducted between 2003 and 2023 to examine the effects of dietary SM supplementation on metabolic parameters in the Cochrane Library, PubMed, Web of Science, Embase, and ClinicalTrials.gov databases. RevMan 5.4 and Stata 14.0 software were used for meta-analysis, a sensitivity analysis, the risk of bias, and the overall quality of the resulted evidence. RESULTS Eventually, 10 articles were included in this meta-analysis. Dietary SM supplementation did not affect the endline blood SM level. When compared to the control, SM supplementation reduced the blood total cholesterol level [MD: -12.97, 95% CI: (-14.57, -11.38), p < 0.00001], low-density lipoprotein cholesterol level [MD: -6.62, 95% CI: (-10.74, -2.49), p = 0.002], and diastolic blood pressure [MD: -3.31; 95% CI (-4.03, -2.58), p < 0.00001] in adults without MetS. The supplementation also increased high-density lipoprotein level [MD:1.41, 95% CI: (0.94, 1.88), p < 0.00001] and muscle fiber conduction velocity [MD: 95% 1.21 CI (0.53, 1.88), p = 0.0005]. The intake of SM had no effect on the blood phospholipids and lyso-phosphatidylcholine, but slightly decreased phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol concentrations. Dietary SM supplementation reduced insulin level [MD: -0.63; 95% CI (-0.96, -0.31), p = 0.0001] and HOMA-IR [MD: -0.23; 95% CI (-0.31, -0.16), p < 0.00001] without affecting blood levels of glucose and inflammatory cytokines. CONCLUSION Overall, dietary SM supplementation had a protective effect on blood lipid profiles and insulin level, but had limited impacts on other metabolic parameters in adults without MetS. More clinical trials and basic research are required. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier CRD42023438460.
Collapse
Affiliation(s)
- Chen-Zi Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Li-Mei Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Chen-Xi Zhu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huan-Yu Du
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guo-Xun Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
14
|
Kim JE, Park S, Kwak C, Lee Y, Song D, Jung JW, Lee H, Shin E, Pinanga Y, Pyo K, Lee EH, Kim W, Kim S, Jun C, Yun J, Choi S, Rhee H, Liu K, Lee JW. Glucose-mediated mitochondrial reprogramming by cholesterol export at TM4SF5-enriched mitochondria-lysosome contact sites. Cancer Commun (Lond) 2024; 44:47-75. [PMID: 38133457 PMCID: PMC10794009 DOI: 10.1002/cac2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and β-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.
Collapse
Affiliation(s)
- Ji Eon Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - So‐Young Park
- BK21 FOUR Community‐Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National UniversityDaeguRepublic of Korea
| | - Chulhwan Kwak
- Department of ChemistrySeoul National UniversitySeoulRepublic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung‐Ang UniversitySeoulRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST)Gangneung‐siGangwon‐doRepublic of Korea
| | - Jae Woo Jung
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Haesong Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Eun‐Ae Shin
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Yangie Pinanga
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Kyung‐hee Pyo
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Eun Hae Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Wonsik Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Soyeon Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Chang‐Duck Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| | - Jeanho Yun
- Department of BiochemistryCollege of Medicine, Dong‐A UniversityBusanRepublic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hyun‐Woo Rhee
- Department of ChemistrySeoul National UniversitySeoulRepublic of Korea
| | - Kwang‐Hyeon Liu
- BK21 FOUR Community‐Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National UniversityDaeguRepublic of Korea
| | - Jung Weon Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
15
|
Tran TT, Lee G, Huh YH, Chung KH, Lee SY, Park KH, Kwon SH, Kook MS, Chun JS, Koh JT, Ryu JH. Disruption of cholesterol homeostasis triggers periodontal inflammation and alveolar bone loss. Exp Mol Med 2023; 55:2553-2563. [PMID: 38036731 PMCID: PMC10767058 DOI: 10.1038/s12276-023-01122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 12/02/2023] Open
Abstract
Oral diseases exhibit a significant association with metabolic syndrome, including dyslipidemia. However, direct evidence supporting this relationship is lacking, and the involvement of cholesterol metabolism in the pathogenesis of periodontitis (PD) has yet to be determined. In this study, we showed that high cholesterol caused periodontal inflammation in mice. Cholesterol homeostasis in human gingival fibroblasts was disrupted by enhanced uptake through C-X-C motif chemokine ligand 16 (CXCL16), upregulation of cholesterol hydroxylase (CH25H), and the production of 25-hydroxycholesterol (an oxysterol metabolite of CH25H). Retinoid-related orphan receptor α (RORα) mediated the transcriptional upregulation of inflammatory mediators; consequently, PD pathogenesis mechanisms, including alveolar bone loss, were stimulated. Our collective data provided direct evidence that hyperlipidemia is a risk factor for PD and supported that inhibition of the CXCL16-CH25H-RORα axis is a potential treatment mechanism for PD as a systemic disorder manifestation.
Collapse
Affiliation(s)
- Thanh-Tam Tran
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Gyuseok Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yun Hyun Huh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ki-Ho Chung
- Department of Preventive and Public Health Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sun Young Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ka Hyon Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Seung Hee Kwon
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Min-Suk Kook
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jang-Soo Chun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea.
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea.
| |
Collapse
|
16
|
Xu H, Xin Y, Wang J, Liu Z, Cao Y, Li W, Zhou Y, Wang Y, Liu P. The TICE Pathway: Mechanisms and Potential Clinical Applications. Curr Atheroscler Rep 2023; 25:653-662. [PMID: 37736845 DOI: 10.1007/s11883-023-01147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW Transintestinal cholesterol excretion (TICE) is a non-biliary pathway that excretes excess cholesterol from the body through feces. This article focuses on the research progress of the TICE pathway in the last few years, including the discovery process of the TICE pathway, its molecular mechanism, and potential clinical applications. RECENT FINDINGS Cholesterol homeostasis is vital for cardiovascular diseases, stroke, and neurodegenerative diseases. Beyond the cholesterol excretion via hepatobiliary pathway, TICE contributes significantly to reverse cholesterol transport ex vivo and in vivo. Nuclear receptors are ligand-activated transcription factors that regulate cholesterol metabolism. The farnesoid X receptor (FXR) and liver X receptor (LXR) activated, respectively, by oxysterols and bile acids promote intestinal cholesterol secretion through ABCG5/G8. Nutrient regulators and intestinal flora also modulate cholesterol secretion through the TICE pathway. TICE allows direct elimination of plasma cholesterol, which may provide an attractive therapeutic targets. TICE pathway may provide a potential target to stimulate cholesterol elimination and reduce the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Yiyang Xin
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Jiaxin Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Zixin Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Yutong Cao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Weiguo Li
- People's Hospital of Hebi, Henan University, Henan, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China.
| | - Yandong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Peng Liu
- People's Hospital of Hebi, Henan University, Henan, China.
| |
Collapse
|
17
|
Lin TY, Zhang YF, Wang Y, Liu Y, Xu J, Liu YL. Nonalcoholic fatty liver disease aggravates acute pancreatitis through bacterial translocation and cholesterol metabolic dysregulation in the liver and pancreas in mice. Hepatobiliary Pancreat Dis Int 2023; 22:504-511. [PMID: 35909061 DOI: 10.1016/j.hbpd.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/12/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for severe acute pancreatitis (AP). The underlying mechanism remains unclear. We sought to determine how bacterial translocation and cholesterol metabolism in the liver and pancreas affect the severity of AP in NAFLD mice. METHODS C57BL/6N mice were fed on a high-fat diet (HFD) to generate the NAFLD model, and mice in the control group were provided with a normal diet (ND). After being anesthetized with ketamine/xylazine, mice got a retrograde infusion of taurocholic acid sodium into the pancreatic duct to induce AP, and sham operation (SO) was used as control. Serum amylase and Schmidt's pathological score system were used to evaluate AP severity. Bacterial loads, total cholesterol level, and cholesterol metabolic-associated molecules [low-density lipoprotein receptor (LDLR) and ATP-binding cassette transporter A1 (ABCA1)] were analyzed in the liver and pancreas. RESULTS Compared with the ND-AP group, mice in the HFD-AP group had severer pancreatitis, manifested with higher serum amylase levels and higher AP pathologic scores, especially the inflammation and hemorrhage scores. Compared with the HFD-SO group and ND-AP group, bacterial loads in the liver and pancreas were significantly higher in the HFD-AP group. Mice in the HFD-AP group showed a decreased LDLR expression and an increased ABCA1 expression in the pancreas, although there was no significant difference in pancreas total cholesterol between the HFD-AP group and the ND-AP group. CONCLUSIONS NAFLD aggravates AP via increasing bacterial translocation in the liver and pancreas and affecting pancreas cholesterol metabolism in mice.
Collapse
Affiliation(s)
- Tian-Yu Lin
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China; Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Yi-Fan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China; Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China; Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China; Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Jun Xu
- Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Yu-Lan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China; Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
18
|
Morales SV, Mahmood A, Pollard J, Mayne J, Figeys D, Wiseman PW. The LDL receptor is regulated by membrane cholesterol as revealed by fluorescence fluctuation analysis. Biophys J 2023; 122:3783-3797. [PMID: 37559362 PMCID: PMC10541495 DOI: 10.1016/j.bpj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023] Open
Abstract
Membrane cholesterol-rich domains have been shown to be important for regulating a range of membrane protein activities. Low-density lipoprotein receptor (LDLR)-mediated internalization of cholesterol-rich LDL particles is tightly regulated by feedback mechanisms involving intracellular sterol sensors. Since LDLR plays a role in maintaining cellular cholesterol homeostasis, we explore the role that membrane domains may have in regulating LDLR activity. We expressed a fluorescent LDLR-mEGFP construct in HEK293T cells and imaged the unligated receptor or bound to an LDL/DiI fluorescent ligand using total internal reflection fluorescence microscopy. We studied the receptor's spatiotemporal dynamics using fluorescence fluctuation analysis methods. Image cross correlation spectroscopy reveals a lower LDL-to-LDLR binding fraction when membrane cholesterol concentrations are augmented using cholesterol esterase, and a higher binding fraction when the cells are treated with methyl-β-cyclodextrin) to lower membrane cholesterol. This suggests that LDLR's ability to metabolize LDL particles is negatively correlated to membrane cholesterol concentrations. We then tested if a change in activity is accompanied by a change in membrane localization. Image mean-square displacement analysis reveals that unligated LDLR-mEGFP and ligated LDLR-mEGFP/LDL-DiI constructs are transiently confined on the cell membrane, and the size of their confinement domains increases with augmented cholesterol concentrations. Receptor diffusion within the domains and their domain-escape probabilities decrease upon treatment with methyl-β-cyclodextrin, consistent with a change in receptor populations to more confined domains, likely clathrin-coated pits. We propose a feedback model to account for regulation of LDLR within the cell membrane: when membrane cholesterol concentrations are high, LDLR is sequestered in cholesterol-rich domains. These LDLR populations are attenuated in their efficacy to bind and internalize LDL. However, when membrane cholesterol levels drop, LDL has a higher binding affinity to its receptor and the LDLR transits to nascent clathrin-coated domains, where it diffuses at a slower rate while awaiting internalization.
Collapse
Affiliation(s)
- Sebastian V Morales
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Ahmad Mahmood
- Department of Physics, Faculty of Science, McGill University, Montreal, Canada
| | - Jacob Pollard
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Paul W Wiseman
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada; Department of Physics, Faculty of Science, McGill University, Montreal, Canada.
| |
Collapse
|
19
|
Li J, Li X, Zhou S, Wang Y, Ying T, Wang Q, Wu Y, Zhao F. Circular RNA circARPC1B functions as a stabilisation enhancer of Vimentin to prevent high cholesterol-induced articular cartilage degeneration. Clin Transl Med 2023; 13:e1415. [PMID: 37740460 PMCID: PMC10517209 DOI: 10.1002/ctm2.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent and debilitating condition, that is, directly associated with cholesterol metabolism. Nevertheless, the molecular mechanisms of OA remain largely unknown, and the role of cholesterol in this process has not been thoroughly investigated. This study aimed to investigate the role of a novel circular RNA, circARPC1B in the relationship between cholesterol and OA progression. METHODS We measured total cholesterol (TC) levels in the synovial fluid of patients with or without OA to determine the diagnostic role of cholesterol in OA. The effects of cholesterol were explored in human and mouse chondrocytes in vitro. An in vivo OA model was also established in mice fed a high-cholesterol diet (HCD) to explore the role of cholesterol in OA. RNAseq analysis was used to study the influence of cholesterol on circRNAs in chondrocytes. The role of circARPC1B in the OA development was verified through circARPC1B overexpression and knockdown. Additionally, RNA pulldown assays and RNA binding protein immunoprecipitation were used to determine the interaction between circARPC1B and Vimentin. CircARPC1B adeno-associated virus (AAV) was used to determine the role of circARPC1B in cholesterol-induced OA. RESULTS TC levels in synovial fluid of OA patients were found to be elevated and exhibited high sensitivity and specificity as predictors of OA diagnosis. Moreover, elevated cholesterol accelerated OA progression. CircARPC1B was downregulated in chondrocytes treated with cholesterol and played a crucial role in preserving the extracellular matrix (ECM). Mechanistically, circARPC1B is competitively bound to the E3 ligase synoviolin 1 (SYVN1) binding site on Vimentin, inhibiting the proteasomal degradation of Vimentin. Furthermore, circARPC1B AAV infection alleviates Vimentin degradation and OA progression caused by high cholesterol. CONCLUSIONS These findings indicate that the cholesterol-circARPC1B-Vimentin axis plays a crucial role in OA progression, and circARPC1B gene therapy has the opportunity to provide a potential therapeutic approach for OA.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tiantian Ying
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Quan Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of MedicineHangzhouChina
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
20
|
Buda A, Forss-Petter S, Hua R, Jaspers Y, Lassnig M, Waidhofer-Söllner P, Kemp S, Kim P, Weinhofer I, Berger J. ABCD1 Transporter Deficiency Results in Altered Cholesterol Homeostasis. Biomolecules 2023; 13:1333. [PMID: 37759733 PMCID: PMC10526550 DOI: 10.3390/biom13091333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD.
Collapse
Affiliation(s)
- Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Lassnig
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
21
|
Niewiadomski P, Gomułka P, Woźniak M, Szmyt M, Ziomek E, Bober H, Szczepkowski M, Palińska-Żarska K, Krejszeff S, Żarski D. Squalene Supplementation as a Novel to Increase PUFA Content in Fish Tissues. Animals (Basel) 2023; 13:2600. [PMID: 37627390 PMCID: PMC10451946 DOI: 10.3390/ani13162600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Squalene is an antioxidant that plays an essential role in fat metabolism. The study aimed to assess the effect of squalene supplied in feed on the growth performance, health status, and fatty acid profiles of muscle and liver of Siberian sturgeon, rainbow trout, and Eurasian perch. The experimental feeds containing 0%, 0.5%, and 1.0% squalene were prepared for each fish species. Hematological and biochemical indices, liver histology, and fatty acid profiling of muscle and liver were analyzed. Squalene supplementation was safe for fish, and no negative influence on growth status was observed. However, changes in the values of hematological and biochemical indicators were found, including the level of triglycerides in the blood of rainbow trout, and cholesterol in the blood of Eurasian perch. The addition of squalene influences the nucleocytoplasmic index values in all fish offered feed containing 1% squalene. The retention of squalene in the liver and muscle of experimental Siberian sturgeon was observed in both 0.5% and 1.0% squalene levels of feed. The PUFA and docosahexaenoic acid increase was observed in all fish in groups with squalene addition. Dietary squalene increases the content of PUFAs in tissues of the examined species.
Collapse
Affiliation(s)
- Piotr Niewiadomski
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Piotr Gomułka
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Małgorzata Woźniak
- Department of Tourism, Recreation and Ecology, University of Warmia and Mazury, 10-718 Olsztyn, Poland;
| | - Mariusz Szmyt
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Elżbieta Ziomek
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Helena Bober
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Mirosław Szczepkowski
- Department of Sturgeon Fish Breeding in Pieczarki, The Stanislaw Sakowicz Inland Fisheries Institute, 11-610 Pozezdrze, Poland
| | - Katarzyna Palińska-Żarska
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, The Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland
| | - Sławomir Krejszeff
- Department of Aquaculture, The Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland
| | - Daniel Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|
22
|
Frutos MFD, Pardo-Marqués V, Torrecilla-Parra M, Rada P, Pérez-García A, Martín-Martín Y, de la Peña G, Gómez A, Toledano-Zaragoza A, Gómez-Coronado D, Casarejos MJ, Solís JM, Rotllán N, Pastor Ó, Ledesma MD, Valverde ÁM, Busto R, Ramírez CM. "MiR-7 controls cholesterol biosynthesis through posttranscriptional regulation of DHCR24 expression". BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194938. [PMID: 37086967 DOI: 10.1016/j.bbagrm.2023.194938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Dysregulation of cholesterol homeostasis is associated with several pathologies including cardiovascular diseases and neurological disorders such as Alzheimer's disease (AD). MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of cholesterol metabolism. We previously established the role of miR-7 in regulating insulin resistance and amyloidosis, which represents a common pathological feature between type 2 diabetes and AD. We show here an additional metabolic function of miR-7 in cholesterol biosynthesis. We found that miR-7 blocks the last steps of the cholesterol biosynthetic pathway in vitro by targeting relevant genes including DHCR24 and SC5D posttranscriptionally. Intracranial infusion of miR-7 on an adeno-associated viral vector reduced the expression of DHCR24 in the brain of wild-type mice, supporting in vivo miR-7 targeting. We also found that cholesterol regulates endogenous levels of miR-7 in vitro, correlating with transcriptional regulation through SREBP2 binding to its promoter region. In parallel to SREBP2 inhibition, the levels of miR-7 and hnRNPK (the host gene of miR-7) were concomitantly reduced in brain in a mouse model of Niemann Pick type C1 disease and in murine fatty liver, which are both characterized by intracellular cholesterol accumulation. Taken together, the results establish a novel regulatory feedback loop by which miR-7 modulates cholesterol homeostasis at the posttranscriptional level, an effect that could be exploited for therapeutic interventions against prevalent human diseases.
Collapse
Affiliation(s)
| | | | | | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food & Health Sciences, Madrid, Spain
| | | | - Gema de la Peña
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Ana Gómez
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Ana Toledano-Zaragoza
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María José Casarejos
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José M Solís
- Department of Neurobiology-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Noemí Rotllán
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Óscar Pastor
- Department of Clinical Biochemistry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María Dolores Ledesma
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rebeca Busto
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.
| | | |
Collapse
|
23
|
de Oliveira Guilherme H, Perez Ribeiro PA, Prado VGL, Bahiense RN, Gamarano PG, de Oliveira CG, de Almeida Freitas D, Costa LS. Feeding behaviour, locomotion rhythms and blood biochemistry of the neotropical red-tail catfish (Phractocephalus hemioliopterus). JOURNAL OF FISH BIOLOGY 2023; 102:803-815. [PMID: 36648082 DOI: 10.1111/jfb.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The study evaluated the feeding behaviour of Phractocephalus hemioliopterus through the animals' ability to adapt to the self-feeding system, their preferred feeding times and locomotor activity, as well as the blood biochemistry of juveniles fed in a light/dark cycle. The study was carried out through two experiments, the first of which contained two phases. In experiment 1 - phase I, 24 juveniles (35.28 ± 0.62 g) were distributed in eight 48 l tanks. The tanks were equipped with a self-feeding system and the experiment consisted of evaluating whether the animals were able to adapt to the self-feeding system, as well as evaluating the preferred feeding times and locomotor activity of these animals. A feeding challenge to the animals was introduced in phase II, based on the results of phase I. The results of the first phase evidenced a nocturnal feeding preference. Thus, the feeding challenge consisted of measuring whether the animal would feed during the day and how long it would take to adapt. When the animals consumed 100% of the amount of feed provided daily, phase II was ended. In experiment 2, 24 juveniles of P. hemioliopterus (182.00 ± 14.03 g) were distributed in eight 96 l tanks. This experiment consisted of two treatments with four repetitions, one with exclusive feeding during the middle of the light cycle and another with exclusive feeding in the middle of the dark cycle. At the end, blood samples were collected from the animals for blood biochemistry evaluations. In experiment 1 - phase I, the results showed that the fish adapted very well to the self-feeding system and had a strictly nocturnal feeding behaviour and locomotor rhythm. When they were submitted to the feeding challenge in phase II, the feed intake was stabilized from the 17th day onwards, proportionally to the nocturnal consumption observed in the first phase, thus demonstrating feeding plasticity. In experiment 2, the feeding times influenced the animals' biochemical parameters. Animals fed during the night had higher values of cholesterol and triglycerides than animals fed during the day. It is concluded that P. hemioliopterus has fast adaptability to a self-feeding system, with strictly nocturnal feeding and locomotor behaviours. However, it has feeding plasticity, adapting its behaviour according to food availability. Blood biochemical parameters are influenced by the light/dark feeding cycle.
Collapse
Affiliation(s)
- Helder de Oliveira Guilherme
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Adriane Perez Ribeiro
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Verônica Guimarães Landa Prado
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael Nogueira Bahiense
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Gomes Gamarano
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Gomes de Oliveira
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Débora de Almeida Freitas
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro Santos Costa
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
24
|
Hepatic Energy Metabolism under the Local Control of the Thyroid Hormone System. Int J Mol Sci 2023; 24:ijms24054861. [PMID: 36902289 PMCID: PMC10002997 DOI: 10.3390/ijms24054861] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics.
Collapse
|
25
|
Li RX, Chen LY, Limbu SM, Yao B, Qian YF, Zhou WH, Chen LQ, Qiao F, Zhang ML, Du ZY, Luo Y. Atorvastatin remodels lipid distribution between liver and adipose tissues through blocking lipoprotein efflux in fish. Am J Physiol Regul Integr Comp Physiol 2023; 324:R281-R292. [PMID: 36572553 DOI: 10.1152/ajpregu.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.
Collapse
Affiliation(s)
- Rui-Xin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Ling-Yun Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Samwel M Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Bing Yao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yi-Fan Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Wen-Hao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Sazaki I, Sakurai T, Yamahata A, Mogi S, Inoue N, Ishida K, Kikkai A, Takeshita H, Sakurai A, Takahashi Y, Chiba H, Hui SP. Oxidized Low-Density Lipoproteins Trigger Hepatocellular Oxidative Stress with the Formation of Cholesteryl Ester Hydroperoxide-Enriched Lipid Droplets. Int J Mol Sci 2023; 24:ijms24054281. [PMID: 36901709 PMCID: PMC10002183 DOI: 10.3390/ijms24054281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Oxidized low-density lipoproteins (oxLDLs) induce oxidative stress in the liver tissue, leading to hepatic steatosis, inflammation, and fibrosis. Precise information on the role of oxLDL in this process is needed to establish strategies for the prevention and management of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Here, we report the effects of native LDL (nLDL) and oxLDL on lipid metabolism, lipid droplet formation, and gene expression in a human liver-derived C3A cell line. The results showed that nLDL induced lipid droplets enriched with cholesteryl ester (CE) and promoted triglyceride hydrolysis and inhibited oxidative degeneration of CE in association with the altered expression of LIPE, FASN, SCD1, ATGL, and CAT genes. In contrast, oxLDL showed a striking increase in lipid droplets enriched with CE hydroperoxides (CE-OOH) in association with the altered expression of SREBP1, FASN, and DGAT1. Phosphatidylcholine (PC)-OOH/PC was increased in oxLDL-supplemented cells as compared with other groups, suggesting that oxidative stress increased hepatocellular damage. Thus, intracellular lipid droplets enriched with CE-OOH appear to play a crucial role in NAFLD and NASH, triggered by oxLDL. We propose oxLDL as a novel therapeutic target and candidate biomarker for NAFLD and NASH.
Collapse
Affiliation(s)
- Iku Sazaki
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Arisa Yamahata
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sumire Mogi
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Nao Inoue
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Koutaro Ishida
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ami Kikkai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hana Takeshita
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuji Takahashi
- School of Medical Technology, Health Sciences University of Hokkaido, Sapporo 002-8072, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: ; Tel.: +81-11-706-3693
| |
Collapse
|
27
|
Li RX, Chen LY, Limbu SM, Qian YC, Zhou WH, Chen LQ, Luo Y, Qiao F, Zhang ML, Du ZY. High cholesterol intake remodels cholesterol turnover and energy homeostasis in Nile tilapia ( Oreochromis niloticus). MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:56-74. [PMID: 37073330 PMCID: PMC10077235 DOI: 10.1007/s42995-022-00158-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 05/03/2023]
Abstract
The roles of dietary cholesterol in fish physiology are currently contradictory. The issue reflects the limited studies on the metabolic consequences of cholesterol intake in fish. The present study investigated the metabolic responses to high cholesterol intake in Nile tilapia (Oreochromis niloticus), which were fed with four cholesterol-contained diets (0.8, 1.6, 2.4 and 3.2%) and a control diet for eight weeks. All fish-fed cholesterol diets showed increased body weight, but accumulated cholesterol (the peak level was in the 1.6% cholesterol group). Then, we selected 1.6% cholesterol and control diets for further analysis. The high cholesterol diet impaired liver function and reduced mitochondria number in fish. Furthermore, high cholesterol intake triggered protective adaptation via (1) inhibiting endogenous cholesterol synthesis, (2) elevating the expression of genes related to cholesterol esterification and efflux, and (3) promoting chenodeoxycholic acid synthesis and efflux. Accordingly, high cholesterol intake reshaped the fish gut microbiome by increasing the abundance of Lactobacillus spp. and Mycobacterium spp., both of which are involved in cholesterol and/or bile acids catabolism. Moreover, high cholesterol intake inhibited lipid catabolic activities through mitochondrial β-oxidation, and lysosome-mediated lipophagy, and depressed insulin signaling sensitivity. Protein catabolism was elevated as a compulsory response to maintain energy homeostasis. Therefore, although high cholesterol intake promoted growth, it led to metabolic disorders in fish. For the first time, this study provides evidence for the systemic metabolic response to high cholesterol intake in fish. This knowledge contributes to an understanding of the metabolic syndromes caused by high cholesterol intake or deposition in fish. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00158-7.
Collapse
Affiliation(s)
- Rui-Xin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Ling-Yun Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Samwel M. Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Yu-Cheng Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Wen-Hao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
28
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
29
|
Li RX, Qian YF, Zhou WH, Wang JX, Zhang YY, Luo Y, Qiao F, Chen LQ, Zhang ML, Du ZY. The Adaptive Characteristics of Cholesterol and Bile Acid Metabolism in Nile Tilapia Fed a High-Fat Diet. AQUACULTURE NUTRITION 2022; 2022:8016616. [PMID: 36860444 PMCID: PMC9973220 DOI: 10.1155/2022/8016616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Since high-fat diet (HFD) intake elevates liver cholesterol and enhanced cholesterol-bile acid flux alleviates its lipid deposition, we assumed that the promoted cholesterol-bile acid flux is an adaptive metabolism in fish when fed an HFD. The present study investigated the characteristic of cholesterol and fatty acid metabolism in Nile tilapia (Oreochromis niloticus) after feeding an HFD (13% lipid level) for four and eight weeks. Visually healthy Nile tilapia fingerlings (average weight 3.50 ± 0.05 g) were randomly distributed into four treatments (4-week control diet or HFD and 8-week control diet or HFD). The liver lipid deposition and health statue, cholesterol/bile acid, and fatty acid metabolism were analyzed in fish after short-term and long-term HFD intake. The results showed that 4-week HFD feeding did not change serum alanine transaminase (ALT) and aspartate transferase (AST) enzyme activities, along with comparable liver malondialdehyde (MDA) content. But higher serum ALT and AST enzyme activities and liver MDA content were observed in fish fed 8-week HFD. Intriguingly, remarkably accumulated total cholesterol (mainly cholesterol ester, CE) was observed in the liver of fish fed 4-week HFD, along with slightly elevated free fatty acids (FFAs) and comparable TG contents. Further molecular analysis in the liver showed that obvious accumulation of CE and total bile acids (TBAs) in fish fed 4-week HFD was mainly attributed to the enhancement of cholesterol synthesis, esterification, and bile acid synthesis. Furthermore, the increased protein expressions of acyl-CoA oxidase 1/2 (Acox1 and Acox2), which serve as peroxisomal fatty acid β-oxidation (FAO) rate-limiting enzymes and play key roles in the transformation of cholesterol into bile acids, were found in fish after 4-week HFD intake. Notably, 8-week HFD intake remarkably elevated FFA content (about 1.7-fold increase), and unaltered TBAs were found in fish liver, accompanied by suppressed Acox2 protein level and cholesterol/bile acid synthesis. Therefore, the robust cholesterol-bile acid flux serves as an adaptive metabolism in Nile tilapia when fed a short-term HFD and is possibly via stimulating peroxisomal FAO. This finding enlightens our understanding on the adaptive characteristics of cholesterol metabolism in fish fed an HFD and provides a new possible treatment strategy against metabolic disease induced by HFD in aquatic animals.
Collapse
Affiliation(s)
- Rui-Xin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Fan Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wen-Hao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jun-Xian Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan-Yu Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
30
|
Hayakawa S, Tamura A, Nikiforov N, Koike H, Kudo F, Cheng Y, Miyazaki T, Kubekina M, Kirichenko TV, Orekhov AN, Yui N, Manabe I, Oishi Y. Activated cholesterol metabolism is integral for innate macrophage responses by amplifying Myd88 signaling. JCI Insight 2022; 7:138539. [PMID: 36509286 DOI: 10.1172/jci.insight.138539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that cellular metabolism is tightly linked to the regulation of immune cells. Here, we show that activation of cholesterol metabolism, involving cholesterol uptake, synthesis, and autophagy/lipophagy, is integral to innate immune responses in macrophages. In particular, cholesterol accumulation within endosomes and lysosomes is a hallmark of the cellular cholesterol dynamics elicited by Toll-like receptor 4 activation and is required for amplification of myeloid differentiation primary response 88 (Myd88) signaling. Mechanistically, Myd88 binds cholesterol via its CLR recognition/interaction amino acid consensus domain, which promotes the protein's self-oligomerization. Moreover, a novel supramolecular compound, polyrotaxane (PRX), inhibited Myd88‑dependent inflammatory macrophage activation by decreasing endolysosomal cholesterol via promotion of cholesterol trafficking and efflux. PRX activated liver X receptor, which led to upregulation of ATP binding cassette transporter A1, thereby promoting cholesterol efflux. PRX also inhibited atherogenesis in Ldlr-/- mice. In humans, cholesterol levels in circulating monocytes correlated positively with the severity of atherosclerosis. These findings demonstrate that dynamic changes in cholesterol metabolism are mechanistically linked to Myd88‑dependent inflammatory programs in macrophages and support the notion that cellular cholesterol metabolism is integral to innate activation of macrophages and is a potential therapeutic and diagnostic target for inflammatory diseases.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nikita Nikiforov
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Institute of Gene Biology, Centre of Collective Usage, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Fujimi Kudo
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yinglan Cheng
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Marina Kubekina
- Institute of Gene Biology, Centre of Collective Usage, Moscow, Russia
| | - Tatiana V Kirichenko
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Moscow, Russia
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
31
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
32
|
Rotllan N, Zhang X, Canfrán-Duque A, Goedeke L, Griñán R, Ramírez CM, Suárez Y, Fernández-Hernando C. Antagonism of miR-148a attenuates atherosclerosis progression in APOB TGApobec -/-Ldlr +/- mice: A brief report. Biomed Pharmacother 2022; 153:113419. [PMID: 36076541 PMCID: PMC11140622 DOI: 10.1016/j.biopha.2022.113419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE miR-148a-3p (miR-148a) is a hepatic and immune-enriched microRNA (miRNA) that regulates macrophage-related lipoprotein metabolism, cholesterol homeostasis, and inflammation. The contribution of miR-148a-3p to the progression of atherosclerosis is unknown. In this study, we determined whether miR-148a silencing mitigated atherogenesis in APOBTGApobec-/-Ldlr+/- mice. METHODS APOBTGApobec-/-Ldlr+/- mice were fed a typical Western-style diet for 22 weeks and injected with a nontargeting locked nucleic acid (LNA; LNA control) or miR-148a LNA (LNA 148a) for the last 10 weeks. At the end of the treatment, the mice were sacrificed, and circulating lipids, hepatic gene expression, and atherosclerotic lesions were analyzed. RESULTS Examination of atherosclerotic lesions revealed a significant reduction in plaque size, with marked remodeling of the lesions toward a more stable phenotype. Mechanistically, miR-148a levels influenced macrophage cholesterol efflux and the inflammatory response. Suppression of miR-148a in murine primary macrophages decreased mRNA levels of proinflammatory M1-like markers (Nos2, Il6, Cox2, and Tnf) and increased the expression of anti-inflammatory genes (Arg1, Retlna, and Mrc1). CONCLUSIONS Therapeutic silencing of miR148a mitigated the progression of atherosclerosis and promoted plaque stability. The antiatherogenic effect of miR-148a antisense therapy is likely mediated by the anti-inflammatory effects observed in macrophages treated with miR-148 LNA and independent of significant changes in circulating low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C).
Collapse
Affiliation(s)
- Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Raquel Griñán
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Cristina M Ramírez
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Gao Z, Liu S, Tan L, Gao X, Fan W, Ding C, Li M, Tang Z, Shi X, Luo Y, Song S. Testicular toxicity of bisphenol compounds: Homeostasis disruption of cholesterol/testosterone via PPARα activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155628. [PMID: 35504394 DOI: 10.1016/j.scitotenv.2022.155628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The widespread application of bisphenols (BPs) has made them ubiquitous in the environment. Although the side effects of bisphenol A (BPA) substitutes have received increasing attention, studies on their reproductive toxicity remain lacking. In this research, the effects of BPA and its substitutes, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF), on the male reproductive system were evaluated. Results proved that these BPs disturbed germ cell proliferation, induced germ cell apoptosis, and perturbed sperm physiologies and spermatogenesis, which resulted from the disruption of testosterone (T) biosynthesis in Leydig cells (LCs). Importantly, in vitro and in vivo studies indicated that the exhausted cholesterol in LCs accounted for the reduced T production. Furthermore, the knockdown of peroxisome proliferator-activated receptor alpha (PPARα) remarkably ameliorated the downregulation of cholesterogenesis-related genes (i.e., Hmgcs1, Hmgcr, and Srebf2), indicating that PPARα played a critical role in BPs-induced testicular dysfunction. Overall, our studies indicated that BPS, BPF, and BPAF could induce testicular toxic effects similar to that of BPA, which were associated with the PPARα pathway.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen 518000, China
| | - Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen 518000, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
34
|
Esobi I, Olanrewaju O, Echesabal-Chen J, Stamatikos A. Utilizing the LoxP-Stop-LoxP System to Control Transgenic ABC-Transporter Expression In Vitro. Biomolecules 2022; 12:679. [PMID: 35625607 PMCID: PMC9138957 DOI: 10.3390/biom12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
ABCA1 and ABCG1 are two ABC-transporters well-recognized to promote the efflux of cholesterol to apoAI and HDL, respectively. As these two ABC-transporters are critical to cholesterol metabolism, several studies have assessed the impact of ABCA1 and ABCG1 expression on cellular cholesterol homeostasis through ABC-transporter ablation or overexpressing ABCA1/ABCG1. However, for the latter, there are currently no well-established in vitro models to effectively induce long-term ABC-transporter expression in a variety of cultured cells. Therefore, we performed proof-of-principle in vitro studies to determine whether a LoxP-Stop-LoxP (LSL) system would provide Cre-inducible ABC-transporter expression. In our studies, we transfected HEK293 cells and the HEK293-derived cell line 293-Cre cells with ABCA1-LSL and ABCG1-LSL-based plasmids. Our results showed that while the ABCA1/ABCG1 protein expression was absent in the transfected HEK293 cells, the ABCA1 and ABCG1 protein expression was detected in the 293-Cre cells transfected with ABCA1-LSL and ABCG1-LSL, respectively. When we measured cholesterol efflux in transfected 293-Cre cells, we observed an enhanced apoAI-mediated cholesterol efflux in 293-Cre cells overexpressing ABCA1, and an HDL2-mediated cholesterol efflux in 293-Cre cells constitutively expressing ABCG1. We also observed an appreciable increase in HDL3-mediated cholesterol efflux in ABCA1-overexpressing 293-Cre cells, which suggests that ABCA1 is capable of effluxing cholesterol to small HDL particles. Our proof-of-concept experiments demonstrate that the LSL-system can be used to effectively regulate ABC-transporter expression in vitro, which, in turn, allows ABCA1/ABCG1-overexpression to be extensively studied at the cellular level.
Collapse
Affiliation(s)
| | | | | | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (I.E.); (O.O.); (J.E.-C.)
| |
Collapse
|
35
|
MicroRNA-185 modulates CYP7A1 mediated cholesterol-bile acid metabolism through post-transcriptional and post-translational regulation of FoxO1. Atherosclerosis 2022; 348:56-67. [DOI: 10.1016/j.atherosclerosis.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
36
|
Kim KY, Shin KY, Chang KA. Potential Biomarkers for Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23020602. [PMID: 35054785 PMCID: PMC8775398 DOI: 10.3390/ijms23020602] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
Stroke is a primary debilitating disease in adults, occurring in 15 million individuals each year and causing high mortality and disability rates. The latest estimate revealed that stroke is currently the second leading cause of death worldwide. Post-stroke cognitive impairment (PSCI), one of the major complications after stroke, is frequently underdiagnosed. However, stroke has been reported to increase the risk of cognitive impairment by at least five to eight times. In recent decades, peripheral blood molecular biomarkers for stroke have emerged as diagnostic, prognostic, and therapeutic targets. In this study, we aimed to evaluate some blood-derived proteins for stroke, especially related to brain damage and cognitive impairments, by conducting a systematic review and meta-analysis and discussing the possibility of these proteins as biomarkers for PSCI. Articles published before 26 July 2021 were searched in PubMed, Embase, the Web of Science, and the Cochrane Library to identify all relevant studies reporting blood biomarkers in patients with stroke. Among 1820 articles, 40 were finally identified for this study. We meta-analyzed eight peripheral biomarker candidates: homocysteine (Hcy), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), uric acid, and glycated hemoglobin (HbA1c). The Hcy, CRP, TC, and LDL-C levels were significantly higher in patients with PSCI than in the non-PSCI group; however, the HDL-C, TG, uric acid, and HbA1c levels were not different between the two groups. Based on our findings, we suggest the Hcy, CRP, TC, and LDL-C as possible biomarkers in patients with post-stroke cognitive impairment. Thus, certain blood proteins could be suggested as effective biomarkers for PSCI.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.Y.S.); (K.-A.C.)
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Korea
- Neuroscience of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21936, Korea
- Correspondence: (K.Y.S.); (K.-A.C.)
| |
Collapse
|
37
|
Zhang J, Yu H, Zhong H, Wang Q, Tang J, Shen F, Cai H, Liu T, Feng F, Zhao M. Dietary emulsifier glycerol monodecanoate affects gut microbiota contributing to regulating lipid metabolism, insulin sensitivity and inflammation. Food Funct 2022; 13:8804-8817. [DOI: 10.1039/d2fo01689c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycerol monodecanoate (GMD) is a medium-chain monoacylglycerol that possesses emulsifying and antibacterial properties. Common emulsifiers carboxymethylcellulose and polysorbate-80 have been reported to cause intestinal microbiota dysbiosis and metabolic disturbances. While...
Collapse
|
38
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
39
|
Shapira KE, Shapira G, Schmukler E, Pasmanik-Chor M, Shomron N, Pinkas-Kramarski R, Henis YI, Ehrlich M. Autophagy is induced and modulated by cholesterol depletion through transcription of autophagy-related genes and attenuation of flux. Cell Death Discov 2021; 7:320. [PMID: 34716312 PMCID: PMC8556405 DOI: 10.1038/s41420-021-00718-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/18/2023] Open
Abstract
Perturbations to cellular homeostasis, including reduction of the cholesterol level, induce autophagy, a self-digestion process of cellular constituents through an autophagosomal-lysosomal pathway. In accord with its function as a membrane organizer and metabolic sentinel, the cellular response to cholesterol depletion comprises multiple phenomena, including the activation of transcriptional responses, accumulation of reactive oxygen species (ROS), and activation of stress-related signaling pathways. However, the molecular mechanisms by which cholesterol depletion regulates autophagy and the putative involvement of transcriptional responses, ROS and/or stress-related signaling in autophagy regulation in this biological context are not fully understood. Here, we find that cholesterol depletion regulates autophagy at three different levels. First, employing RNA-seq, we show that cholesterol depletion increases the expression of autophagy-related genes independent of ROS or JNK activity. Second, analysis of LC3 lipidation and intracellular localization, and of p62 levels and degradation kinetics, reveals that cholesterol depletion mediates autophagy induction while interfering with autophagic flux. Of note, only the latter depends on ROS accumulation and JNK activity. In view of the common use of cholesterol-reducing drugs as therapeutic agents, our findings have important implications for multiple cellular settings in which autophagy plays a prominent role.
Collapse
Affiliation(s)
- Keren E Shapira
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eran Schmukler
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ronit Pinkas-Kramarski
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoav I Henis
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
40
|
Shan MY, Dai Y, Ren XD, Zheng J, Zhang KB, Chen B, Yan J, Xu ZH. Berberine mitigates nonalcoholic hepatic steatosis by downregulating SIRT1-FoxO1-SREBP2 pathway for cholesterol synthesis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:545-554. [PMID: 34686466 DOI: 10.1016/j.joim.2021.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate effects of berberine (BBR) on cholesterol synthesis in HepG2 cells with free fatty acid (FFA)-induced steatosis and to explore the underlying mechanisms. METHODS A steatosis cell model was induced in HepG2 cell line fed with FFA (0.5 mmol/L, oleic acid:palmitic acid = 2:1), and then treated with three concentrations of BBR; cell viability was assessed with cell counting kit-8 assays. Lipid accumulation in cells was observed through oil red O staining and total cholesterol (TC) content was detected by TC assay. The effects of BBR on cholesterol synthesis mediators were assessed by Western blotting and quantitative polymerase chain reaction. In addition, both silent information regulator 1 (SIRT1) and forkhead box transcription factor O1 (FoxO1) inhibitors were employed for validation. RESULTS FFA-induced steatosis was successfully established in HepG2 cells. Lipid accumulation and TC content in BBR groups were significantly lower (P < 0.05, P < 0.01), associated with significantly higher mRNA and protein levels of SIRT1(P < 0.05, P < 0.01), significantly lower sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy 3-methylglutaryl-CoA reductase levels (P < 0.05, P < 0.01), as well as higher Acetyl-FoxO1 protein level (P < 0.05, P < 0.01) compared to the FFA only group. Both SIRT1 inhibitor SIRT1-IN-1 and FoxO1 inhibitor AS1842856 blocked the BBR-mediated therapeutic effects. Immunofluorescence showed that the increased SIRT1 expression increased FoxO1 deacetylation, and promoted its nuclear translocation. CONCLUSION BBR can mitigate FFA-induced steatosis in HepG2 cells by activating SIRT1-FoxO1-SREBP2 signal pathway. BBR may emerge as a potential drug candidate for treating nonalcoholic hepatic steatosis.
Collapse
Affiliation(s)
- Meng-Ya Shan
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ying Dai
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xiao-Dan Ren
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ke-Bin Zhang
- National Drug Clinical Trail Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Bin Chen
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Jun Yan
- Department 1, Research Institute of Surgery & Daping Hospital, Army Medical Center of Chinese People's Liberation Army, Army Medical University, Chongqing 400042, China
| | - Zi-Hui Xu
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
41
|
Bhattarai A, Likos EM, Weyman CM, Shukla GC. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 2021; 173:108878. [PMID: 34174291 DOI: 10.1016/j.steroids.2021.108878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Cellular disruption of lipid and cholesterol metabolism results in pathological processes linked to metabolic and cardiovascular diseases. Classically, at the transcription stages, the Cholesterol levels are controlled by two cellular pathways. First, the SREBP transcription factor family controls Cholesterol biosynthesis via transcriptional regulation of critical rate-limiting cholesterogenic and lipogenic proteins. Secondly, The LXR/RXR transcription factor family controls cholesterol shuttling via transcriptional regulation of cholesterol transport proteins. In addition, the posttranscriptional control of gene expression of various enzymes and proteins of cholesterol biosynthesis pathways is mediated by small non-coding microRNAs. Regulatory noncoding miRNAs are critical regulators of biological processes, including developmental and metabolic functions. miRNAs function to fine-tune lipid and cholesterol metabolism pathways by controlling the mRNA levels and translation of critical molecules in each pathway. This review discusses the regulatory roles of miRNAs in cholesterol and lipid metabolism via direct and indirect effects on their target genes, including SREBP, LXR, HDL, LDL, and ABCA transporters. We also discuss the therapeutic implications of miRNA functions and their purported role in the potentiation of small molecule therapies.
Collapse
Affiliation(s)
- Asmita Bhattarai
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Eviania M Likos
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Crystal M Weyman
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Girish C Shukla
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| |
Collapse
|
42
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
43
|
Jeong S, Jun JH, Kim JY, Park HJ, Cho YP, Kim GJ. Expression of miRNAs Targeting ATP Binding Cassette Transporter 1 (ABCA1) among Patients with Significant Carotid Artery Stenosis. Biomedicines 2021; 9:biomedicines9080920. [PMID: 34440128 PMCID: PMC8406092 DOI: 10.3390/biomedicines9080920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Carotid artery stenosis is a dynamic process associated with an increased risk of cardiovascular events. However, knowledge of biomarkers useful for identifying and quantifying high-risk carotid plaques associated with the increased incidence of cerebrovascular events is insufficient. Therefore, the objectives of this study were to evaluate the expression of ATP binding cassette transporter 1 (ABCA1) and validate its target microRNA (miRNA) candidates in human carotid stenosis arteries to identify its potential as a biomarker. Methods: In human carotid stenosis arterial tissues and plasma, the expression of ABCA1 and its target miRNAs (miRNA-33a-5p, 33b-5p, and 148a-3p) were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR), immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). Results: The expression of ABCA1 was significantly decreased in the plasma of stenosis patients, but its expression was not different in arterial tissues (p < 0.05). However, significantly more target miRNAs were secreted by stenosis patients than normal patients (p < 0.05). Interestingly, lipotoxicity induced by the oleic and palmitic acid (OAPA) or lipopolysaccharide (LPS) treatment of human umbilical vein endothelial cells (HUVECs) dramatically enhanced the gene expression of adipogenic and inflammatory factors, whereas ABCA1 expression was significantly decreased. Conclusions: Therefore, miRNA-33a-5p, 33b-5p, and 148a-3p represent possible biomarkers of carotid artery stenosis by directly targeting ABCA1.
Collapse
Affiliation(s)
- Seonjeong Jeong
- Asan Medical Center, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
| | - Hee Jung Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
| | - Yong-Pil Cho
- Asan Medical Center, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (Y.-P.C.); (G.J.K.); Tel.: +82-2-3010-5039 (Y.-P.C.); +82-32-881-7145 (G.J.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
- Correspondence: (Y.-P.C.); (G.J.K.); Tel.: +82-2-3010-5039 (Y.-P.C.); +82-32-881-7145 (G.J.K.)
| |
Collapse
|
44
|
van Solingen C, Oldebeken SR, Salerno AG, Wanschel ACBA, Moore KJ. High-Throughput Screening Identifies MicroRNAs Regulating Human PCSK9 and Hepatic Low-Density Lipoprotein Receptor Expression. Front Cardiovasc Med 2021; 8:667298. [PMID: 34322524 PMCID: PMC8310920 DOI: 10.3389/fcvm.2021.667298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Investigations into the regulatory mechanisms controlling cholesterol homeostasis have proven fruitful in identifying low-density lipoprotein (LDL)-lowering therapies to reduce the risk of atherosclerotic cardiovascular disease. A major advance was the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a secreted protein that binds the LDL receptor (LDLR) on the cell surface and internalizes it for degradation, thereby blunting its ability to take up circulating LDL. The discovery that loss-of-function mutations in PCSK9 lead to lower plasma levels of LDL cholesterol and protection from cardiovascular disease led to the therapeutic development of PCSK9 inhibitors at an unprecedented pace. However, there remain many gaps in our understanding of PCSK9 regulation and biology, including its posttranscriptional control by microRNAs. Using a high-throughput region(3′-UTR) of human microRNA library screen, we identified microRNAs targeting the 3′ untranslated region of human PCSK9. The top 35 hits were confirmed by large-format PCSK9 3′-UTR luciferase assays, and 10 microRNAs were then selected for further validation in hepatic cells, including effects on PCSK9 secretion and LDLR cell surface expression. These studies identified seven novel microRNAs that reduce PCSK9 expression, including miR-221-5p, miR-342-5p, miR-363-5p, miR-609, miR-765, and miR-3165. Interestingly, several of these microRNAs were also found to target other genes involved in LDLR regulation and potently upregulate LDLR cell surface expression in hepatic cells. Together, these data enhance our understanding of post-transcriptional regulators of PCSK9 and their potential for therapeutic manipulation of hepatic LDLR expression.
Collapse
Affiliation(s)
- Coen van Solingen
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Scott R Oldebeken
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Alessandro G Salerno
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Amarylis C B A Wanschel
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States
| | - Kathryn J Moore
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Cardiovascular Research Center, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
45
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
46
|
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T, Ragazzi E, Cocetta V. Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Front Oncol 2021; 11:682911. [PMID: 34109128 PMCID: PMC8181394 DOI: 10.3389/fonc.2021.682911] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | | | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tommaso Prayer-Galetti
- Department of Surgery, Oncology and Gastroenterology - Urology, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Lee E, Lee MS, Chang E, Kim CT, Choi AJ, Kim IH, Kim Y. High hydrostatic pressure extract of mulberry leaves ameliorates hypercholesterolemia via modulating hepatic microRNA-33 expression and AMPK activity in high cholesterol diet fed rats. Food Nutr Res 2021; 65:7587. [PMID: 33994909 PMCID: PMC8098647 DOI: 10.29219/fnr.v65.7587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background Mulberry leaf (Morus alba L.) contains multiple bioactive ingredients and has been used in the treatment of obesity, diabetes, inflammation, and atherosclerosis. High hydrostatic pressure (HHP) processing has been developed for the extraction of bioactive compounds from plants. However, the hypocholesterolemic effect of the HHP extract from mulberry leaves and its underlying mechanism have never been investigated. Objective The specific aim of the present study was to investigate the hypocholesterolemic property of a novel extract obtained from mulberry leaves under HHP in rats. Design Sprague–Dawley rats were divided into four groups and fed either a normal diet (NOR), a high cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), an HC diet containing 0.5% mulberry leaf extract (ML), or a 1% mulberry leaf extract (MH) for 4 weeks. Results High hydrostatic pressure extract of mulberry leaves significantly reduced the HC-increased serum levels of triglyceride (TG), cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), and hepatic contents of TG and TC. The HHP extraction from mulberry leaves also increased the HC-decreased fecal TC and bile acid levels without changing body weight, food intake, liver weight, and serum activities of alanine transaminase (ALT) and aspartate transaminase (AST) (P < 0.05). The mulberry leaf extract significantly enhanced the expression of hepatic genes such as cholesterol 7 alpha-hydroxylase (CYP7A1), liver X receptor alpha (LXRα), and ATP-binding cassette transporters, ABCG5/ABCG8, involved in hepatic bile acid synthesis and cholesterol efflux (P < 0.05). In addition, the HHP extraction of mulberry leaves significantly suppressed hepatic microRNA(miR)-33 expression and increased adenosine monophosphate-activated protein kinase (AMPK) activity. Conclusion These results suggest that the HHP extract of mulberry leaves lowers serum cholesterol levels by partially increasing hepatic bile acid synthesis and fecal cholesterol excretion through the modulation of miR-33 expression and AMPK activation in the liver.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
| | - Eugene Chang
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung-si, Gangwon-do, South Korea
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Ae-Jin Choi
- Functional Food & Nutrition Division, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA), Wanju, jeolabuk-do, South Korea
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, South Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
48
|
Physicochemical Properties and Effects of Honeys on Key Biomarkers of Oxidative Stress and Cholesterol Homeostasis in HepG2 Cells. Nutrients 2021; 13:nu13010151. [PMID: 33466262 PMCID: PMC7824776 DOI: 10.3390/nu13010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Manuka honey and newly developed honeys (arjuna, guggul, jiaogulan and olive) were examined for their physicochemical, biochemical properties and effects on oxidative stress and cholesterol homeostasis in fatty acid-induced HepG2 cells. The honeys exhibited standard moisture content (<20%), electrical conductivity (<0.8 mS/cm), acidic pH, and monosaccharides (>60%), except olive honey (<60% total monosaccharides). They all expressed non-Newtonian behavior and 05 typical regions of the FTIR spectra as those of natural ones. Guggul and arjuna, manuka honeys showed the highest phenolic contents, correlating with their significant antioxidant activities. Arjuna, guggul and manuka honeys demonstrated the agreement of total cholesterol reduction and the transcriptional levels of AMPK, SREBP2, HCMGR, LDLR, LXRα. Jiaogulan honey showed the least antioxidant content and activity, but it was the most cytotoxic. Both jiaogulan and olive honeys modulated the tested gene in the pattern that should lead to a lower TC content, but this reduction did not occur after 24 h. All 2% concentrations of tested honeys elicited a clearer effect on NQO1 gene expression. In conclusion, the new honeys complied with international norms for natural honeys and we provide partial evidence for the protective effects of manuka, arjuna and guggul honeys amongst the tested ones on key biomarkers of oxidative stress and cholesterol homeostasis, pending further studies to better understand their modes of action.
Collapse
|
49
|
Busuioc RM, Covic A, Kanbay M, Banach M, Burlacu A, Mircescu G. Protein convertase subtilisin/kexin type 9 biology in nephrotic syndrome: implications for use as therapy. Nephrol Dial Transplant 2020; 35:1663-1674. [PMID: 31157893 DOI: 10.1093/ndt/gfz108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 01/12/2023] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) levels almost constantly increased in patients with nephrotic syndrome (NS). Protein convertase subtilisin/kexin type 9 (PCSK9) [accelerates LDL-receptor (LDL-R) degradation] is overexpressed by liver cells in NS. Their levels, correlated inversely to LDL-R expression and directly to LDL-C, seem to play a central role in hypercholesterolaemia in NS. Hypersynthesis resulting from sterol regulatory element-binding protein dysfunction, hyperactivity induced by c-inhibitor of apoptosis protein expressed in response to stimulation by tumour necrosis factor-α produced by damaged podocytes and hypo-clearance are the main possible mechanisms. Increased LDL-C may damage all kidney cell populations (podocytes, mesangial and tubular cells) in a similar manner. Intracellular cholesterol accumulation produces oxidative stress, foam cell formation and apoptosis, all favoured by local inflammation. The cumulative effect of cellular lesions is worsened proteinuria and kidney function loss. Accordingly, NS patients should be considered high risk and treated by lowering LDL-C. However, there is still not enough evidence determining whether lipid-lowering agents are helpful in managing dyslipidaemia in NS. Based on good efficacy and safety proved in the general population, therapeutic modulation of PCSK9 via antibody therapy might be a reasonable solution. This article explores the established and forthcoming evidence implicating PCSK9 in LDL-C dysregulation in NS.
Collapse
Affiliation(s)
| | - Adrian Covic
- "Gr. T. Popa," University of Medicine and Pharmacy, Iasi, Romania.,Nephrology Clinic, Dialysis and Renal Transplant Center - 'C.I. Parhon' University Hospital Iasi, Romania
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Alexandru Burlacu
- "Gr. T. Popa," University of Medicine and Pharmacy, Iasi, Romania.,Head of Department of Interventional Cardiology - Cardiovascular Diseases Institute Iasi, Romania
| | - Gabriel Mircescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
50
|
Feldt M, Menard J, Rosendahl AH, Lettiero B, Bendahl PO, Belting M, Borgquist S. The effect of statin treatment on intratumoral cholesterol levels and LDL receptor expression: a window-of-opportunity breast cancer trial. Cancer Metab 2020; 8:25. [PMID: 33292612 PMCID: PMC7682108 DOI: 10.1186/s40170-020-00231-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Background Deregulated lipid metabolism is common in cancer cells and the mevalonate pathway, which synthesizes cholesterol, is central in lipid metabolism. This study aimed to assess statin-induced changes of the intratumoral levels of cholesterol and the expression of the low-density lipoprotein receptor (LDLR) to enhance our understanding of the role of the mevalonate pathway in cancer cholesterol metabolism. Methods This study is based on a phase II clinical trial designed as a window-of-opportunity trial including 50 breast cancer patients treated with 80 mg of atorvastatin/day for 2 weeks, between the time of diagnosis and breast surgery. Lipids were extracted from frozen tumor tissue sampled pre- and post-atorvastatin treatment. Intratumoral cholesterol levels were measured using a fluorometric quantitation assay. LDLR expression was evaluated by immunohistochemistry on formalin-fixed paraffin-embedded tumor tissue. Paired blood samples pre- and post-atorvastatin were analyzed for circulating low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1, and apolipoprotein B. In vitro experiments on MCF-7 breast cancer cells treated with atorvastatin were performed for comparison on the cellular level. Results In the trial, 42 patients completed all study parts. From the paired tumor tissue samples, assessment of the cholesterol levels was achievable for 14 tumors, and for the LDLR expression in 24 tumors. Following atorvastatin treatment, the expression of LDLR was significantly increased (P = 0.004), while the intratumoral levels of total cholesterol remained stable. A positive association between intratumoral cholesterol levels and tumor proliferation measured by Ki-67 expression was found. In agreement with the clinical findings, results from in vitro experiments showed no significant changes of the intracellular cholesterol levels after atorvastatin treatment while increased expression of the LDLR was found, although not reaching statistical significance. Conclusions This study shows an upregulation of LDLR and preserved intratumoral cholesterol levels in breast cancer patients treated with statins. Together with previous findings on the anti-proliferative effect of statins in breast cancer, the present data suggest a potential role for LDLR in the statin-induced regulation of breast cancer cell proliferation. Trial registration The study has been registered at ClinicalTrials.gov (i.e., ID number: NCT00816244, NIH), December 30, 2008. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-020-00231-8.
Collapse
Affiliation(s)
- Maria Feldt
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden. .,Department of Oncology, Skåne University Hospital, Lund, Sweden.
| | - Julien Menard
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Barbara Lettiero
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Pär-Ola Bendahl
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Oncology, Skåne University Hospital, Lund, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|