1
|
Gu JN, Liu F, Song YS, Ding HF, Feng XY, Ma XL, Huang YQ, Zhang Y. Design, synthesis and antitumor evaluation of a novel nectin-4 targeting bicyclic toxin conjugate. Bioorg Med Chem Lett 2025; 127:130306. [PMID: 40505992 DOI: 10.1016/j.bmcl.2025.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/21/2025] [Accepted: 06/09/2025] [Indexed: 06/18/2025]
Abstract
A Nectin-4 targeting bicyclic toxin conjugate (BTC) BGC1614 was designed, synthesized and evaluated as an antitumor agent. Fluorescence-activated cell sorting (FACS) assay results indicated that BGC1614 exhibited selective and strong binding to Nectin-4-expressing cells in comparison with the clinical drug BT8009. Surface plasmon resonance (SPR) test showed that the equilibrium dissociation constants (KD) for BT8009 and BGC1614 were 3.219 ± 0.412 × 10-7 M and 3.859 ± 0.287 × 10-7 M, respectively, indicating that BGC1614 exhibited similar target engagement capability with Nectin-4 compared to BT8009. In vivo antiproliferative activity assay results showed that BGC1614 (0.12 μM/kg) exhibited better antiproliferative activity than BT8009 (0.12 μM/kg, inhibition rate (IR) 87.6 %) in PC-3 (human prostate cancer cell) model with IR of 96.3 %, while BGC1614 (0.36 μM/kg) displayed similar inhibition with BT8009 (0.36 μM/kg, IR 72.7 %) in N87 (human gastric cancer cell) model with IR of 70.1 %, demonstrating that BGC1614 exhibited better antitumor effect in the same molar concentration in PC-3 model. In addition, BGC1614 was well-tolerated in efficacious doses in the nude model assays, while the pharmacokinetic (PK) parameters of BGC1614 were comparable to that of BT8009.
Collapse
Affiliation(s)
- Jia-Ning Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University Jiangsu 215123, China; Bright Gene Bio-Medical Technology Co., Ltd., Suzhou 215123, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University Jiangsu 215123, China
| | - Yun-Song Song
- Bright Gene Bio-Medical Technology Co., Ltd., Suzhou 215123, China
| | - Hai-Feng Ding
- Bright Gene Bio-Medical Technology Co., Ltd., Suzhou 215123, China
| | - Xiang-Yang Feng
- Bright Gene Bio-Medical Technology Co., Ltd., Suzhou 215123, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541149, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yang-Qing Huang
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University Jiangsu 215123, China; Bright Gene Bio-Medical Technology Co., Ltd., Suzhou 215123, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541149, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541149, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Kordi R, Andrews TJ, Hicar MD. Infections, genetics, and Alzheimer's disease: Exploring the pathogenic factors for innovative therapies. Virology 2025; 607:110523. [PMID: 40174330 DOI: 10.1016/j.virol.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that creates a significant global health challenge and profoundly affects patients and their families. Recent research has highlighted the critical role of microorganisms, particularly viral infections, in the pathogenesis of AD. The involvement of viral infections in AD pathogenesis is predominantly attributed to their ability to induce neuroinflammation and amyloid beta (Aβ) deposition in the brain. The extant research exploring the relationship between viruses and AD has focused largely on Herpesviridae family. Traces of Herpesviruses, such as Herpes Simplex Virus-1 and Epstein Barr Virus, have been found in the brains of patients with AD. These viruses are thought to contribute to the disease progression by triggering chronic inflammatory responses in the brain. They can remain dormant in the brain, and become reactivated due to stress, a secondary viral infection, or immune-senescence in older adults. This review focuses on the association between Herpesviridae and bacterial infections with AD. We explore the genetic factors that might regulate viral illness and discuss clinical trials investigating antiviral and anti-inflammatory agents as possible therapeutic strategies to mitigate cognitive decline in patients with AD. In summary, understanding the interplay between infections, genetic factors, and AD pathogenesis may pave the way for novel therapeutic approaches, facilitating better management and possibly even prevent this debilitating disease.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Ted J Andrews
- Department of Pediatrics, Division of Developmental Pediatrics and Rehabilitation, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Chandran EBA, Atiq S, Simon N, Girardi D, Ley L, Cordes L, Patel R, Wang TF, Kydd AR, Redd B, Boudjadi S, Stukes I, Banday R, Smith E, Akbulut D, Niglio S, Gurram S, Steinberg S, Apolo AB. E-VIRTUE: a study of enfortumab vedotin with or without pembrolizumab in rare genitourinary tumors-design and rationale. Future Oncol 2025; 21:1625-1630. [PMID: 40421891 PMCID: PMC12140442 DOI: 10.1080/14796694.2025.2497719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
CLINICAL TRIAL REGISTRATION NCT06041503 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Elias B. A. Chandran
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Saad Atiq
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Simon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Girardi
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruchi Patel
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tzu-Fang Wang
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andre R. Kydd
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette Redd
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Salah Boudjadi
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ian Stukes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Smith
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dilara Akbulut
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Scot Niglio
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Sandeep Gurram
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth Steinberg
- Office of Collaborative Biostatistics, Office of the Clinical Director, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea B. Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Mizusaki S, Yoneshima Y, Iwama E, Nakashima T, Ibusuki R, Shibahara D, Otsubo K, Tanaka K, Okamoto I. NECTIN4 regulates the cell surface expression of CD155 in non-small cell lung cancer cells and induces tumor resistance to PD-1 inhibitors. Cancer Immunol Immunother 2025; 74:211. [PMID: 40392373 PMCID: PMC12092325 DOI: 10.1007/s00262-025-04079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/03/2025] [Indexed: 05/22/2025]
Abstract
The development of immune checkpoint inhibitors has changed treatment strategies for some patients with non-small cell lung cancer (NSCLC). However, resistance remains a major problem, requiring the elucidation of resistance mechanisms, which might aid the development of novel therapeutic strategies. The upregulation of CD155, a primary ligand of the immune checkpoint receptor TIGIT, has been implicated in a mechanism of resistance to PD-1/PD-L1 inhibitors, and it is therefore important to characterize the mechanisms underlying the regulation of CD155 expression in tumor cells. The aim of this study was to identify a Nectin that might regulate CD155 expression in NSCLC and affect anti-tumor immune activity. In this study, we demonstrated that NECTIN4 regulated the cell surface expression and stabilization of CD155 by interacting and co-localizing with CD155 on the cell surface. In a syngeneic mouse model, NECTIN4-overexpressing cells exhibited increased cell surface CD155 and resistance to anti-PD-1 antibodies. Of note, combination therapy with anti-PD-1 and anti-TIGIT antibodies significantly suppressed tumor growth. These findings provide new insights into the mechanisms of resistance to anti-PD-1 antibodies and suggest that NECTIN4 could serve as a valuable marker in therapeutic strategies targeting TIGIT.
Collapse
Affiliation(s)
- Shun Mizusaki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tadayuki Nakashima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ritsu Ibusuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Shibahara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Otsubo
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Galas K, Gleitsmann M, Rey J, Solbach C, Witzel I, Karn T, Schmatloch S, Schem C, Schneeweis A, Sinn B, Fehm T, Denkert C, Fasching P, Litmeyer AS, Marmé F, Jank P, Müller V, Seiler S, Stickeler E, Ortmann O, van Mackelenbergh M, Nekljudova V, Holtschmidt J, Loibl S. Effects of pregnancy on breast cancer immunology: immune biomarker and TIL quantification. NPJ Breast Cancer 2025; 11:43. [PMID: 40368889 PMCID: PMC12078667 DOI: 10.1038/s41523-025-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Breast cancer diagnosed during pregnancy (PrBC) is a rare occurrence but may become more prevalent as women nowadays tend to postpone childbearing until later in life. Further understanding of how pregnancy affects the tumor microenvironment (TME) is essential. We constructed Tissue Microarrays (TMA) of tumor specimens from 126 pregnant breast cancer (BC) patients and examined standard BC markers such as ER, PR, Ki67, HER2, tumor infiltrating lymphocytes (TILs), and immunomarkers HLA class I, HLA-G, PD-L1, TIGIT and Nectin-4. Subsequently, we compared our findings with those from a matched non-pregnant cohort of young BC patients. Pregnant BC patients were younger, had significantly higher proliferation rates and a higher expression of Nectin-4. Higher pregnancy related estrogen levels may boost proliferation und Nectin-4 overexpression, promoting BC progression. No further evidence supporting impaired maternal anti-tumor response in BC was observed in this study.
Collapse
Affiliation(s)
| | - Moritz Gleitsmann
- Institut für Pathologie, Philipps Universität Marburg und Universitätsklinikum Marburg (UKGM), Marburg, Germany
| | - Julia Rey
- GBG c/o GBG Forschungs GmbH, Neu-Isenburg, Germany
| | - Christine Solbach
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Comprehensive Cancer Center Zürich, Universitätsspital Zürich, Zürich, Switzerland
| | - Thomas Karn
- Goethe University Hospital, Frankfurt, Germany
| | | | | | - Andreas Schneeweis
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Bruno Sinn
- Institut für Pathologie, Berlin, Germany
| | - Tanja Fehm
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum, Düsseldorf, Germany
| | - Carsten Denkert
- Institut für Pathologie, Philipps Universität Marburg und Universitätsklinikum Marburg (UKGM), Marburg, Germany
| | | | - Anne-Sophie Litmeyer
- Institut für Pathologie, Philipps Universität Marburg und Universitätsklinikum Marburg (UKGM), Marburg, Germany
| | - Frederik Marmé
- Medical Faculty Mannheim, Heidelberg University, University Hospital Mannheim, Mannheim, Germany
| | - Paul Jank
- Institut für Pathologie, Philipps Universität Marburg und Universitätsklinikum Marburg (UKGM), Marburg, Germany
| | - Volkmar Müller
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center, Regensburg, Germany
| | | | | | | | | |
Collapse
|
6
|
Huang W, Li L, Liang Y, Yang Q, Mixdorf JC, Engle JW, Fan Y, Kang L, Cai W. ImmunoPET Imaging of Nectin4 Expression in Gastric and Bladder Cancer Using [ 64Cu]Cu-NOTA-Padcev. Mol Pharm 2025. [PMID: 40338113 DOI: 10.1021/acs.molpharmaceut.5c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Nectin4 is a tumor-associated antigen that is highly expressed in various solid tumors and is associated with tumor progression and poor prognosis. We performed an ImmunoPET imaging study to assess Nectin4 expression in gastric and bladder cancer models utilizing [64Cu]Cu-NOTA-Padcev. ImmunoPET imaging confirmed significant tumor uptake at 48 h in NCI-N87 (13.83 ± 1.80% ID/g) and HT-1376 (22.97 ± 2.67% ID/g) models, which was significantly higher than in HGC-27 (5.93 ± 0.15% ID/g, P = 0.0163) and UM-UC-3 (5.40 ± 0.69% ID/g, P = 0.0051) models. Co-injection of [64Cu]Cu-NOTA-Padcev with 2 mg of unlabeled Padcev significantly decreased tumor uptake in NCI-N87 (5.53 ± 0.59% ID/g, P = 0.0097) and HT-1376 (4.97 ± 0.68% ID/g, P = 0.0049), indicating receptor-specific binding. Fluorescence imaging consistently showed significantly greater tumor accumulation in the IRDye 800CW-Padcev group than in the blocking group for both the NCI-N87 model (64.05 ± 8.97 × 107 vs 10.12 ± 1.83 × 107 at 168 h for the NCI-N87 model, P = 0.0072) and the HT-1376 model (99.48 ± 13.61 × 107 vs 10.12 ± 1.83 × 107 at 168 h for the HT-1376 model, P = 0.0068). [64Cu]Cu-NOTA-Padcev ImmunoPET imaging demonstrated specific, rapid, and prolonged accumulation in Nectin4-high tumors in both gastric and bladder cancer models.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Liming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan Province, China
| | - Yutong Liang
- Michigan State University College of Osteopathic Medicine, East Lansing, Michigan 48824, United States
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jason C Mixdorf
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Institute of Urology, Peking University, Beijing 100034, China
- Drug Clinical Trial Institution, Peking University First Hospital, Beijing 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
Hooks O, Nagpal Y, Childers JT, Childers LT, Ahmad S. Theranostic implications of Nectin-4 oncoprotein in gynecologic cancers: A review. Pathol Res Pract 2025; 269:155913. [PMID: 40101551 DOI: 10.1016/j.prp.2025.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Gynecologic cancers, in order of prevalence, include uterine, ovarian, cervical, vaginal, and vulvar cancers. In 2024, there will be more than 116,000 new cases of gynecologic cancers and 33,800 disease-related deaths. Therefore, a concerted effort has been made to better understand the underlying pathophysiological processes and identify novel theranostic approaches. PURPOSE Comprehensively examine the current peer-reviewed literature surrounding Nectin-4 and its implication in the identification and treatment of gynecologic cancers. METHODS PubMed and Google search with relevant keywords for articles published in the last 15 years. RESULTS Nectin-4 as a cell adhesion molecule (CAM) promotes cell growth through intra-tumoral angiogenesis, strengthens cell-cell bonds, and creates a tight spheroid structure, which is more chemotherapy resistant. In high-grade serous ovarian cancer (HGSOC), Nectin-4 is strongly associated with the presence of peritoneal metastases and worse prognoses. When compared to CA-125, a common tumor marker for ovarian cancer, Nectin-4 showed higher specificity and sensitivity for predictive value of tumorigenesis. Regarding cervical cancer, inhibition of Nectin-4 by nanoformulated Quinacrine inhibits both cancer stem cell proliferation and DNA damage. Nectin-4 as a tumor marker can discriminate endometrial cancer from healthy adjacent tissue with a specificity of 95.4 % and sensitivity of 82.81 %. Lastly, there is scarce evidence of Nectin-4 and fallopian tube, vaginal, or vulvar cancer but given ovarian cancer cells may originate from the fallopian tube, there is plausibility of using Nectin-4 to detect fallopian and/or ovarian cancer earlier. CONCLUSION Overall, Nectin-4 as a promoter of cancer cell growth and metastasis supports the emphasis in current peer-reviewed literature as an effective theranostic biomarker.
Collapse
Affiliation(s)
- Olivia Hooks
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yash Nagpal
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Justin T Childers
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL 32804, USA.
| |
Collapse
|
8
|
Wang R, Hu B, Pan Z, Mo C, Zhao X, Liu G, Hou P, Cui Q, Xu Z, Wang W, Yu Z, Zhao L, He M, Wang Y, Fu C, Wei M, Yu L. Antibody-Drug Conjugates (ADCs): current and future biopharmaceuticals. J Hematol Oncol 2025; 18:51. [PMID: 40307936 PMCID: PMC12044742 DOI: 10.1186/s13045-025-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of biopharmaceuticals comprising monoclonal antibodies covalently conjugated to cytotoxic agents via engineered chemical linkers. This combination enables targeted delivery of cytotoxic agents to tumor site through recognizing target antigens by antibody while minimizing off-target effects on healthy tissues. Clinically, ADCs overcome the limitations of traditional chemotherapy, which lacks target specificity, and enhance the therapeutic efficacy of monoclonal antibodies, providing higher efficacy and fewer toxicity anti-tumor biopharmaceuticals. ADCs have ushered in a new era of targeted cancer therapy, with 15 drugs currently approved for clinical use. Additionally, ADCs are being investigated as potential therapeutic candidates for autoimmune diseases, persistent bacterial infections, and other challenging indications. Despite their therapeutic benefits, the development and application of ADCs face significant challenges, including antibody immunogenicity, linker instability, and inadequate control over the release of cytotoxic agent. How can ADCs be designed to be safer and more efficient? What is the future development direction of ADCs? This review provides a comprehensive overview of ADCs, summarizing the structural and functional characteristics of the three core components, antibody, linker, and payload. Furthermore, we systematically assess the advancements and challenges associated with the 15 approved ADCs in cancer therapy, while also exploring the future directions and ongoing challenges. We hope that this work will provide valuable insights into the design and optimization of next-generation ADCs for wider clinical applications.
Collapse
Grants
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ziyu Pan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chongxia Mo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Guojia Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ping Hou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qi Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhao Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenjia Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110000, China.
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
9
|
Singh S, Julia E, Kalita P, Mason C, Ming Q, Lee-Sam A, Gordon S, Buitrago ME, Leung DW, Hwu P, Luca VC. Structure-guided engineering of CD112 receptor variants for optimized immunotherapy. Mol Ther 2025:S1525-0016(25)00311-9. [PMID: 40285356 DOI: 10.1016/j.ymthe.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
The immune checkpoint protein, CD112 receptor (CD112R, also known as PVRIG), suppresses T and natural killer (NK) cell activation upon binding to tumor-expressed CD112 (Nectin-2) ligands. Here, we determine the structure of the CD112-CD112R complex and use it to guide the engineering of multiple CD112-targeting immunotherapy candidates. The 2.2 Å-resolution crystal structure reveals an antiparallel, lock-and-key binding mode in which CD112R disrupts CD112 homodimerization. Structural analysis informed directed evolution campaigns focused on remodeling the CD112-CD112R interface, resulting in the isolation of CD112R mutants with greatly increased expression and CD112-binding affinity. The highest-affinity variant, CD112RIVE, potently inhibits CD112-CD112R interactions when utilized as a soluble CD112 trap. Furthermore, incorporating CD112R variants into chimeric antigen receptors (CARs) and T cell engagers (TCEs) leads to more robust T cell activation and killing of CD112+ triple-negative breast cancer (TNBC) cells compared with wild-type CD112R. This strategy demonstrates how structural insights can be leveraged to efficiently generate panels of "affinity-tuned" biologics for immunotherapy.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA
| | - Estefania Julia
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Parismita Kalita
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charlotte Mason
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Qianqian Ming
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ansar Lee-Sam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA
| | - Sumai Gordon
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Maria Emilia Buitrago
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daisy W Leung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vincent C Luca
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Jang A, Brown JR. Strategies to overcome resistance to enfortumab vedotin and pembrolizumab for patients with urothelial carcinoma: harnessing present knowledge for future advances. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002307. [PMID: 40225697 PMCID: PMC11986644 DOI: 10.37349/etat.2025.1002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
The combination of enfortumab vedotin and pembrolizumab (EVP) has been recently approved for patients with locally advanced and metastatic urothelial carcinoma. This combination showed a higher objective response rate and superior progression-free survival and overall survival over traditional platinum-based chemotherapy in the frontline setting in the pivotal EV-302 trial. Despite the success, a subset of patients has primary refractory disease, and another subset will develop secondary resistance over time. Resistance to enfortumab vedotin may include the downregulation of nectin-4 expression to minimize antibody binding, upregulation of efflux pumps against the toxin, or direct resistance by the tubulin against the toxin. Resistance to pembrolizumab includes several methods to downregulate the immune system. Additionally, the type of histology of the urothelial carcinoma likely plays an important role in resisting EVP. This review summarizes these possible mechanisms of primary and secondary resistance, potential biomarkers predictive of response and resistance, and methods to overcome the resistance to EVP.
Collapse
Affiliation(s)
- Albert Jang
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Jason R. Brown
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Santoni M, Rizzo A, Massari F. Unlocking the mechanisms underlying the activity of pembrolizumab plus enfortumab vedotin in patients with urothelial carcinoma. Expert Opin Investig Drugs 2025; 34:259-265. [PMID: 40012129 DOI: 10.1080/13543784.2025.2473695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Urothelial carcinoma (UC) is frequently associated with a poor prognosis in patients with advanced disease. A strong biological rationale supports the investigation of combining antibody-drug conjugates (ADCs) with immunotherapy to overcome the occurrence of resistance and improve patient outcomes. AREAS COVERED In this review, we illustrate the mechanisms of action of pembrolizumab and enfortumab vedotin (EV) and the immune and biological rationales underlying their synergy in mUC patients. EXPERT OPINION The results of the combination of EV and pembrolizumab represent a ray of light in the therapeutic scenario of mUC patients. A deeper understanding of the mechanisms underlying the synergistic effects of these agents will be crucial to reduce drug-resistance and further improve the outcome of mUC patients.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, Macerata, Italy
| | - Alessandro Rizzo
- Struttura S.S.D.C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| | - Francesco Massari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy, Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Kang S, Kim SB. Toxicities and management strategies of emerging antibody-drug conjugates in breast cancer. Ther Adv Med Oncol 2025; 17:17588359251324889. [PMID: 40151551 PMCID: PMC11946287 DOI: 10.1177/17588359251324889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Antibody-drug conjugates (ADCs) offer a promising therapeutic approach for various cancers, enhancing the therapeutic window while mitigating systemic adverse effects on healthy tissues. ADCs have achieved remarkable clinical success, particularly in treating breast cancer, becoming a standard therapy across all subtypes, including hormone receptor-positive, human epidermal growth factor receptor 2-positive, and triple-negative breast cancer. Although designed to selectively target antigens via monoclonal antibodies, ADCs can exhibit toxicity in normal tissues, often due to off-target effects of their cytotoxic payloads. Understanding and managing these toxicities according to established guidelines are crucial for enhancing ADC clinical efficacy, minimizing adverse events, and ultimately improving patient outcomes. This review comprehensively examines the toxicities of ADCs employed in breast cancer treatment and explores their management strategies. Furthermore, we investigate novel ADCs beyond trastuzumab deruxtecan and sacituzumab govitecan, evaluating their potential efficacy and corresponding safety profiles.
Collapse
Affiliation(s)
- Sora Kang
- Division of Hemato-Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
13
|
Yadav SS, Srinivasan K, Sharma SS, Datusalia AK. Decoding the Nectin Interactome: Implications for Brain Development, Plasticity, and Neurological Disorders. ACS Chem Neurosci 2025; 16:1000-1020. [PMID: 40025835 DOI: 10.1021/acschemneuro.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
The nectin family of cell adhesion molecules (CAMs) comprising nectins and nectin-like molecules has emerged as a key regulator of various pivotal neural processes, including neuronal development, migration, synapse formation, and plasticity. Nectins engage in homophilic and heterophilic interactions to mediate cell-cell adhesion, contributing to the establishment and maintenance of neural circuits. Their extracellular domains facilitate trans-synaptic interactions, while intracellular domains participate in signaling cascades influencing cytoskeletal dynamics and synaptic function. The exhibition of distinct localization patterns in neurons, astrocytes, and the blood-brain barrier underscores their diverse roles in the brain. The dysregulation of nectins has been implicated in several neurological disorders, such as neurodevelopmental disorders, depression, schizophrenia, and Alzheimer's disease. This review examines the structural and functional characteristics of nectins and their distribution and molecular mechanisms governing neural connectivity and cognition. It further discusses experimental studies unraveling nectin-mediated pathophysiology and potential therapeutic interventions targeting nectin-related pathways. Collectively, this comprehensive analysis highlights the significance of nectins in brain development, function, and disorders, paving the way for future research directions and clinical implications.
Collapse
Affiliation(s)
- Shreyash Santosh Yadav
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Molecular NeuroTherapeutics Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh 226002, India
| |
Collapse
|
14
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2025; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
16
|
Das A, Giri S, Dey P. Cell-cell junctional proteins in cancer. Adv Clin Chem 2024; 125:93-142. [PMID: 39988409 DOI: 10.1016/bs.acc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.
Collapse
Affiliation(s)
- Aparajita Das
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Sarbani Giri
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| | - Pubali Dey
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
17
|
Wei C, Huang X, Xu T, Fang Y, Wang F, He Q, Zhang P, Yu Q, Zhang Y, Zheng B, Gao Y, Chen Y, Zhuge Q, Zhao A, Gao J, Jiang J. NECTIN-4-redirected T cell Antigen Coupler T cells bearing CD28 show superior antitumor responses against solid tumors. Front Immunol 2024; 15:1456443. [PMID: 39735536 PMCID: PMC11681620 DOI: 10.3389/fimmu.2024.1456443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction T cell Antigen Coupler (TAC) T cells harness all signaling subunits of endogenous T cell receptor (TCR) to trigger T-cell activation and tumor cell lysis, with minimal release of cytokines. Some of the major obstacles to cellular immunotherapy in solid tumors include inefficient cell infiltration into tumors, lack of prolonged cellular persistence, and therapy-associated toxicity. Methods To boost the cytotoxic potential of TAC-T cells against solid tumors, we generated a novel NECTIN-4-targeted TAC-T variant, NECTIN-4 TAC28-T, which integrated the co-stimulatory CD28 cytoplasmic region, and compared the anti-tumor activities between NECTIN-4 TAC-T cells and NECTIN-4 TAC28-T cells in vitro and vivo. Results We demonstrated NECTIN-4 TAC28-Tcells could be effectively activated by NECTIN-4 protein-coated magnetic beads (NECTIN-4-beads), and further revealed that the incorporated CD28 co-stimulatory domain enhanced their activation and proliferation capabilities. Notably, NECTIN-4 TAC28-T cells exhibited better anti-tumor effects both in vitro and in vivo than the original NECTIN-4 TAC-T cells. Discussion Our data highlighted that NECTIN-4 TAC28-T cells may represent a promising, safe and effective cell therapy for NECTIN-4-overexpressing solid tumors.
Collapse
Affiliation(s)
- Cheng Wei
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianlong Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yinan Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fabao Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaolin He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyuan Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianjin Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binjiao Zheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Qixin Biotech, Wenzhou, China
| | - Jinhong Jiang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
18
|
Liu C, Gao J, Cheng Y, Zhang S, Fu C. Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: a cancer-catch-cancer strategy in cancer therapy. Regen Biomater 2024; 12:rbae135. [PMID: 39811105 PMCID: PMC11729729 DOI: 10.1093/rb/rbae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Low tumor enrichment remains a serious and urgent problem for drug delivery in cancer therapy. Accurate targeting of tumor sites is still a critical aim in cancer therapy. Though there have been a variety of delivery strategies to improve the tumor targeting and enrichment, biological barriers still cause most delivered guests to fail or be excreted before they work. Recently, cell membrane-based systems have attracted a huge amount of attention due to their advantages such as easy access, good biocompatibility and immune escape, which contribute to their biomimetic structures and specific surface proteins. Furthermore, cancer cell membrane-based delivery systems are referred to as homologous-targeting function in which they exhibit significantly high adhesion and internalization to homologous-type tumor sites or cells even though the exact mechanism is not entirely revealed. Here, we summarize the sources and characterizations of cancer cell membrane systems, including reconstructed single or hybrid membrane-based nano-/microcarriers, as well as engineered cancer cells. Additionally, advanced applications of these cancer cell membrane systems in cancer therapy are categorized and summarized according to the components of membranes. The potential factors related to homologous targeting of cancer cell membrane-based systems are also discussed. By discussing the applications, challenges and opportunities, we expect the cancer cell membrane-based homologous-targeting systems to have a far-reaching development in preclinic or clinics.
Collapse
Affiliation(s)
- Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jingjie Gao
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yuying Cheng
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shanshan Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Caiyun Fu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
19
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
20
|
Marroquin-Muciño M, Benito-Lopez JJ, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Chavez-Dominguez R, Meza-Toledo SE, Meneses-Flores M, Camarena A, Lopez-Gonzalez JS. SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma. Int J Mol Sci 2024; 25:12141. [PMID: 39596207 PMCID: PMC11595078 DOI: 10.3390/ijms252212141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
CD155, also known as the poliovirus receptor (PVR), is a crucial molecule in the development and progression of cancer, as its overexpression favors immune evasion and resistance to immunotherapy. However, little is known about the mechanisms that regulate its overexpression. Proinflammatory factors produced by various cellular components of the tumor microenvironment (TME) have been associated with CD155 expression. We analyzed the effect of interleukin (IL)-6 on CD155 expression in lung adenocarcinoma. We found a positive relationship between mRNA and protein levels. This correlation was also observed in bioinformatics analysis and in biopsies and serum from patients with lung adenocarcinoma. Interestingly, lung adenocarcinoma cell lines expressing suppressor of cytokine signaling 1 (SOCS1) did not show increased CD155 levels upon IL-6 stimulation, and SOCS1 silencing reverted this effect. IL-6 and SOCS1 are critical regulators of CD155 expression in lung adenocarcinoma. Further basic and clinical studies are needed to define the role of these molecules during tumor development and to improve their clinical impact as biomarkers and targets for predicting the efficacy of immunotherapies. This study deepens the understanding of the intricate regulation of the immune checkpoints mediated by soluble factors and allows us to devise new ways to combine conventional treatments with the most innovative anticancer options.
Collapse
Affiliation(s)
- Mario Marroquin-Muciño
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Jesus J. Benito-Lopez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Mario Perez-Medina
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Dolores Aguilar-Cazares
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Miriam Galicia-Velasco
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Sergio E. Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Manuel Meneses-Flores
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Departamento de Patologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico
| | - Angel Camarena
- Laboratorio de Inmunobiologia y Genetica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico;
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| |
Collapse
|
21
|
Mengyuan H, Aixue L, Yongwei G, Qingqing C, Huanhuan C, Xiaoyan L, Jiyong L. Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication. J Nanobiotechnology 2024; 22:604. [PMID: 39370518 PMCID: PMC11456251 DOI: 10.1186/s12951-024-02835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells. This paper delves into the communication mechanisms between various cell-derived biomimetic nanocarriers, tumor cells, and the tumor microenvironment, as well as their applications in drug delivery. In addition, the additional communication capabilities conferred on the modified biomimetic nanocarriers, such as targeting and environmental responsiveness, are outlined. Finally, we propose future development directions for biomimetic nanocarriers, hoping to inspire researchers in their design efforts and ultimately achieve clinical translation.
Collapse
Affiliation(s)
- He Mengyuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Li Aixue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Gu Yongwei
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Chai Qingqing
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Cai Huanhuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Liu Xiaoyan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Liu Jiyong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Zhang Z, Xing J, Tang X, Sheng X, Chi H, Zhan W. Nectin1 is a pivotal host factor involved in attachment and entry of red-spotted grouper nervous necrosis virus in the early stages of the viral life cycle. J Virol 2024; 98:e0090124. [PMID: 39194240 PMCID: PMC11406929 DOI: 10.1128/jvi.00901-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Nervous necrosis virus (NNV) is a highly neurotropic virus that poses a persistent threat to the survival of multiple fish species. However, its inimitable neuropathogenesis remains largely elusive. To rummage potential partners germane to the nervous system, we investigated the interaction between red-spotted grouper NNV (RGNNV) and grouper brain by immunoprecipitation coupled with mass spectrometry and discerned Nectin1 as a novel host factor subtly involved in viral early invasion events. Nectin1 was abundant in neural tissues and implicated in the inception of tunnel nanotubes triggered by RGNNV. Its overexpression not only dramatically potentiated the replication dynamics of RGNNV in susceptible cells, but also empowered non-sensitive cells to expeditiously capture free virions within 2 min. This potency was impervious to low temperatures but was dose-dependently suppressed by soluble protein or specific antibody of Nectin1 ectodomain, indicating Nectin1 as an attachment receptor for RGNNV. Mechanistically, efficient hijacking of virions by Nectin1 strictly depended on intricate linkages to different modules of viral capsid protein, especially the direct binding between the IgC1 loop and P-domain. More strikingly, despite abortive proliferation in Nectin1-reconstructed CHSE-214 cells, a non-sensitive cell, RGNNV could gain access to the intracellular compartment by capitalizing on Nectin1, thereby inducing canonical cytoplasmic vacuolation. Altogether, our findings delineate a candidate entrance for RGNNV infiltration into the nervous system, which may shed unprecedented insights into the exploration and elucidation of RGNNV pathogenesis.IMPORTANCENervous necrosis virus (NNV) is one of the most virulent pathogens in the aquaculture industry, which inflicts catastrophic damage to ecology, environment, and economy annually around the world. Nevertheless, its idiosyncratic invasion and latency mechanisms pose enormous hardships to epidemic prevention and control. In this study, deploying grouper brain as a natural screening library, a single-transmembrane glycoprotein, Nectin1, was first identified as an emergent functional receptor for red-spotted grouper NNV (RGNNV) that widely allocated in nervous tissues and directly interacted with viral capsid protein through distinct Ig-like loops to bridge virus-host crosstalk, apprehend free virions, and concomitantly propel viral entry. Our findings illuminate the critical role of Nectin1 in RGNNV attachment and entry and provide a potential target for future clinical intervention strategies in the therapeutic race against RGNNV.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
23
|
Dash S, Biswas J, Goswami S, Mukherjee S, Ganguli N, Duraivelan K, Mondal S, Mukhopadhyay R, Samanta D. Molecular Crosstalk Between Adherens Junction Proteins, E-cadherin and Nectin-4. J Mol Biol 2024; 436:168709. [PMID: 39009071 DOI: 10.1016/j.jmb.2024.168709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cell-cell junctions formed by the association of cell adhesion molecules facilitate physiological events necessary for growth and development of multicellular organisms. Among them, cadherins and nectins organize and assemble to form adherens junction, which thereby mechanically couples interacting cells. A detailed understanding of the crosstalk involving these cell adhesion molecules is fundamental to the study of the various developmental processes. Although, cadherins and nectins can recruit each other in the adherens junction through an interplay of cytoplasmic adaptor molecules, here, we report a direct interaction between N-terminal extracellular domains of E-cadherin and nectin-4 as demonstrated by surface plasmon resonance (SPR) and Atomic Force Microscopy (AFM)-based single molecule force spectroscopy (SMFS). Kinetic studies using SPR demonstrate the binding between the ectodomains of E-cadherin and nectin-4 with a KD of 3.7 ± 0.7 µM and KD of 5.4 ± 0.2 µM (reciprocal experiment). AFM-based SMFS experiments also support interaction between the ectodomains of E-cadherin and nectin-4 with the koff value of 31.48 ± 1.53 s-1 and the lifetime of the complex of 0.036 ± 0.0026 s. We thus propose a cell adhesion mechanism mediated by E-cadherin and nectin-4, which can have functional significance in early embryogenesis as evident from the expression pattern of both the proteins during early development.
Collapse
Affiliation(s)
- Sagarika Dash
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Jayita Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saumyadeep Goswami
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sarbartha Mukherjee
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Namrata Ganguli
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Kheerthana Duraivelan
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sourav Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rupa Mukhopadhyay
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Dibyendu Samanta
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
24
|
Kuttikrishnan S, Prabhu KS, Habeeba U, Mariyam Z, Fernandes Q, Maqbool M, Khan OM, Bhat AA, Uddin S. Nectin-4: A promising prognostic marker and therapeutic target in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:223-255. [PMID: 39939077 DOI: 10.1016/bs.ircmb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Nectin cell adhesion protein 4 (Nectin-4), a calcium-independent immunoglobulin-like protein, has garnered significant attention in oncology due to its pronounced overexpression in malignant tumors and absence in healthy adult tissues. Elevated levels of Nectin-4 have been implicated in the pathogenesis of various cancers, including lung, breast, and urothelial carcinomas. Notably, Nectin-4 has emerged as a promising serological marker for these malignancies, facilitating early diagnosis and monitoring of disease progression. The clinical relevance of Nectin-4 is underscored by the Food and Drug Administration's approval of enfortumab vedotin (EV), the first antibody-drug conjugate targeting this protein, for the treatment of urothelial carcinoma. Ongoing clinical trials are expanding the therapeutic applications of EV, highlighting the critical role of Nectin-4 in targeted cancer therapy. Furthermore, novel therapeutic agents targeting Nectin-4 are under investigation, offering potential new avenues for cancer treatment. Despite these advancements, the precise molecular mechanisms by which Nectin-4 influences carcinogenesis and tumor progression remain inadequately understood. Challenges such as therapy-related adverse effects and the development of drug resistance further complicate the clinical management of Nectin-4-associated cancers. This review investigates the molecular functions of Nectin-4, emphasizing its diagnostic and prognostic value in cancer. We also explore the landscape of novel drug discoveries targeting Nectin-4 and provide an overview of current clinical trials aimed at utilizing this marker for therapeutic interventions. By elucidating the multifaceted role of Nectin-4 in malignancies, this article aims to advance our understanding and improve the clinical outcomes for patients with Nectin-4 overexpressing tumors.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ummu Habeeba
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Zahwa Mariyam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mohsin Maqbool
- Department Cancer Biology and Pharmacology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Omar M Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Research Center, Qatar University, Doha, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
25
|
Barragan-Galvez JC, Hernandez-Flores A, Lopez-Ortega O, Rodriguez-Alvarez AA, Maravillas-Montero JL, Ortiz-Navarrete V. The constant domain of CRTAM is essential for high-affinity interaction with Nectin-like 2. Biochem Biophys Rep 2024; 39:101813. [PMID: 39263316 PMCID: PMC11388666 DOI: 10.1016/j.bbrep.2024.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
CRTAM (Class-I MHC restricted T cell-associated molecule) is a member of the Nectin-like family, composed of two extracellular domains, one constant domain (IgC) and another variable domain (IgV), expressed in activated CD8 T cells, epithelial cells, natural killer (NK) cells, and in a subpopulation of CD4 T cells. CRTAM recognizes the ligand Nectin-like 2 (Necl2) through the IgV domain. However, the role of the IgC domain during this ligand recognition has yet to be understood. In this study, we show the purification of soluble-folded Ig domains of CRTAM, and we demonstrate that the IgC domain forms a homodimer in solution via hydrophobic interactions. By surface plasmon resonance (SPR) analysis, we also demonstrate that CRTAM binds to Necl2 with an affinity of 2.16 nM. In conclusion, CRTAM's IgC is essential for a high-affinity interaction with Necl-2.
Collapse
Affiliation(s)
- Juan Carlos Barragan-Galvez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, 36200, Mexico
| | | | - Orestes Lopez-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015, Paris, France
| | | | - Jose Luis Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
26
|
Khosravanian MJ, Mirzaei Y, Mer AH, Keyhani-Khankahdani M, Abdinia FS, Misamogooe F, Amirkhani Z, Bagheri N, Meyfour A, Jahandideh S, Barpour N, Nikmanesh Y, Shahsavarani H, Abdollahpour-Alitappeh M. Nectin-4-directed antibody-drug conjugates (ADCs): Spotlight on preclinical and clinical evidence. Life Sci 2024; 352:122910. [PMID: 39002610 DOI: 10.1016/j.lfs.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Nectin-4 (Nectin cell adhesion molecule 4), a type I transmembrane cell adhesion protein, was demonstrated to be overexpressed in a variety of tumors, making it an attractive antigen for targeted therapies such as antibody-drug conjugates (ADCs). Of great note, the US Food and Drug Administration (FDA)-approval of the first Nectin-4-directed ADC, enfortumab vedotin (EV), in urothelial cancer (UC) not only introduced Nectin-4 as a clinically validated and reliable target antigen but also confirmed the evolving role of Nectin-4-directed ADCs as novel and promising cancer therapeutics. In addition to EV, there have been or are currently being seven and eleven Nectin-4-directed ADCs, respectively, in various stages of clinical trials and preclinical development, offering a promising future for the treatment of Nectin-4-positive cancer patients. This study reviewed clinical- and preclinical-stage Nectin-4-directed ADCs.
Collapse
Affiliation(s)
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | | | | | - Fatemeh Misamogooe
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Zahra Amirkhani
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813733450, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Jahandideh
- Department of Research and Development, Orchidgene co, Tehran 1387837584, Iran
| | - Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963113, Iran
| | | |
Collapse
|
27
|
Chu Z, Wang W, Zheng W, Fu W, Wang Y, Wang H, Qian H. Biomaterials with cancer cell-specific cytotoxicity: challenges and perspectives. Chem Soc Rev 2024; 53:8847-8877. [PMID: 39092634 DOI: 10.1039/d4cs00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, etc. In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei 230011, P. R. China
| |
Collapse
|
28
|
Murakami K, Ganguly S. The Nectin family ligands, PVRL2 and PVR, in cancer immunology and immunotherapy. Front Immunol 2024; 15:1441730. [PMID: 39156900 PMCID: PMC11327090 DOI: 10.3389/fimmu.2024.1441730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
In recent years, immunotherapy has emerged as a crucial component of cancer treatment. However, its efficacy remains limited across various cancer types, highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus receptor (PVR) are members of the Nectin and Nectin-like Molecules family, known for their role as cell-cell adhesion molecules. With the development of immunotherapy, their involvement in tumor immune mechanisms as immune checkpoint factors has garnered significant attention. PVRL2 and PVR are predominantly expressed on tumor cells and antigen-presenting cells, binding to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells, thereby suppressing antitumor immunity. Notably, gynecological cancers such as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and PVR, with similar trends observed in various other solid and hematologic tumors. Targeting these immune checkpoint pathways offers a promising therapeutic avenue, potentially in combination with existing treatments. However, the immunomodulatory mechanism involving these bindings, known as the DNAM-1 axis, is complex, underscoring the importance of understanding it for developing novel therapies. This article comprehensively reviews the immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating their implications for various cancer types.
Collapse
Affiliation(s)
| | - Sudipto Ganguly
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Zameer U, Shaikh W. A new era for bladder cancer: Enfortumab vedotin and pembrolizumab milestone approval. TUMORI JOURNAL 2024; 110:295-296. [PMID: 38142292 DOI: 10.1177/03008916231221508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023]
Abstract
Cisplatin-based combos have become first-line treatment regimens in standard of care because of their high overall survival improvement. Despite being the first-line therapy, due to its side effects, roughly half of all patients suffering from Metastatic urothelial cancer are ineligible for it. To address this issue, scientists have been developing highly specific antibody-drug conjugates to address this issue. For locally advanced or metastatic bladder cancer, a combination of Padcev (enfortumab vedotin-ejfv) with pembrolizumab (Keytruda) has been authorized by the FDA as a first-line treatment and has shown promising outcomes in patients with metastatic urothelial carcinoma who are ineligible for cisplatin-based combinations.
Collapse
Affiliation(s)
- Ushna Zameer
- Karachi Medical and Dental College, Karachi City, Sindh
| | - Wajiha Shaikh
- Karachi Medical and Dental College, Karachi City, Sindh
| |
Collapse
|
30
|
Tang Q, Li H, Zhao XT, Li ZY, Ma CX, Zhou SQ, Chen DD. Opportunities and Challenges in the Development of Antibody-Drug Conjugate for Triple-Negative Breast Cancer: The Diverse Choices and Changing Needs. World J Oncol 2024; 15:527-542. [PMID: 38993251 PMCID: PMC11236369 DOI: 10.14740/wjon1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.
Collapse
Affiliation(s)
- Qi Tang
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Hui Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Xin Tong Zhao
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Ze Ying Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Chun Xiao Ma
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Shao Qiang Zhou
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - De Dian Chen
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| |
Collapse
|
31
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
32
|
Rahangdale R, Ghormode P, Tender T, Balireddy S, Birangal S, Kishore R, Mohammad FS, Pasupuleti M, Chandrashekar H R. Anti-HSV activity of nectin-1-derived peptides targeting HSV gD: an in-silico and in-vitro approach. J Biomol Struct Dyn 2024:1-14. [PMID: 38720617 DOI: 10.1080/07391102.2024.2349525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/24/2024] [Indexed: 05/22/2024]
Abstract
Herpes simplex virus (HSV) infections affect a wide range of the global population. The emergence of resistance to the existing anti-HSV therapy highlights the necessity for an innovative strategy. The interaction of HSV gD with its main host receptor nectin-1 is a potential target for new antiviral drugs. The aim of this study was to develop a peptide derived from nectin-1 targeting HSV gD using the in-silico method and evaluate them for anti-HSV activity. Residues 59-133 of the Nectin-1 V-domain constitute the interaction interface with HSV gD. Bioinformatic tools viz., PEP-FOLD3, ClusPro 2.0, HawkDock and Desmond were used to model the peptide and confirm its binding specificity with HSV gD protein. The peptides with potential interactions were custom synthesized and anti-HSV activity was evaluated in vitro against HSV-1 and HSV-2 by CPE inhibition assay. Five peptide sequences were identified as exhibiting good interaction with HSV-gD proteins. Among them, peptide N1 (residues 76-90) offered maximum protection against HSV-1 (66.57%) and HSV-2 (71.12%) infections. Modification of the identified peptide through peptidomimetic approaches may further enhance the activity and stability of the identified peptide.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Parnavi Ghormode
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raj Kishore
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Fayaz Shaik Mohammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial Research, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
33
|
Martinez AL, Shannon MJ, Sloan T, Mace EM. CD56/NCAM mediates cell migration of human NK cells by promoting integrin-mediated adhesion turnover. Mol Biol Cell 2024; 35:ar64. [PMID: 38507235 PMCID: PMC11151098 DOI: 10.1091/mbc.e23-12-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Natural killer (NK) cells patrol tissue to mediate lysis of virally infected and tumorigenic cells. Human NK cells are typically identified by their expression of neural cell adhesion molecule (NCAM, CD56), yet despite its ubiquitous expression on NK cells, CD56 remains a poorly understood protein on immune cells. CD56 has been previously demonstrated to play roles in NK cell cytotoxic function and cell migration. Specifically, CD56-deficient NK cells have impaired cell migration on stromal cells and CD56 is localized to the uropod of NK cells migrating on stroma. Here, we show that CD56 is required for NK cell migration on ICAM-1 and is required for the establishment of persistent cell polarity and unidirectional actin flow. The intracellular domain of CD56 (NCAM-140) is required for its function and the loss of CD56 leads to enlarged actin foci and sequestration of phosphorylated Pyk2 accompanied by increased size and frequency of activated LFA-1 clusters. Together, these data identify a role for CD56 in regulating human NK cell migration through modulation of actin dynamics and integrin turnover.
Collapse
Affiliation(s)
- Amera L. Martinez
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| | - Michael J. Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| | | | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| |
Collapse
|
34
|
Kite J, Hill M, Preston N, Rubina A, Kollnberger S, Wang ECY, Elliott G. Downregulation of endogenous nectin1 in human keratinocytes by herpes simplex virus 1 glycoprotein D excludes superinfection but does not affect NK cell function. J Gen Virol 2024; 105:001969. [PMID: 38471041 PMCID: PMC10950026 DOI: 10.1099/jgv.0.001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.
Collapse
Affiliation(s)
- Joanne Kite
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Monica Hill
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Natasha Preston
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Simon Kollnberger
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Eddie Chung Yern Wang
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
35
|
Tanaka Y, Ito T, Murata M, Tanegashima K, Kaku-Ito Y, Nakahara T. NECTIN4-targeted antibody-drug conjugate is a potential therapeutic option for extramammary Paget disease. Exp Dermatol 2024; 33:e15049. [PMID: 38509717 DOI: 10.1111/exd.15049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024]
Abstract
Extramammary Paget disease (EMPD) is a rare skin cancer mainly found in areas rich in apocrine sweat glands. Since the effective treatments for advanced and/or metastasized EMPD are limited, there is an urgent need to develop novel therapeutic approaches. Nectin cell adhesion molecule 4 (NECTIN4) is highly expressed in cancers and considered to be a promising therapeutic target. NECTIN4 is also expressed in EMPD, but its role and the efficacy of NECTIN4-targeted therapy in EMPD remain unclear. This study investigated the potential of NECTIN4 as a novel therapeutic target for EMPD. NECTIN4 expression was immunohistochemically analysed in EMPD patients' primary (118 samples) and metastatic (21 samples) lesions. Using an EMPD cell line, KS-EMPD-1, the effects of NECTIN4 inhibition on cell proliferation and migration were investigated. NECTIN4 was expressed in primary and metastatic EMPD lesions, and the H-score of NECTIN4 staining was significantly higher in metastatic lesions than in primary ones. Knockdown of NECTIN4 significantly inhibited cell proliferation and affected cell migration. The cytotoxic effects of NECTIN4-targeted antibody-drug conjugate (ADC) were further evaluated, revealing a significant decrease in EMPD cell viability. In conclusion, NECTIN4 is a potential therapeutic target and NECTIN4-targeted ADC is promising as a therapeutic option for EMPD.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Cai Q, Sun N, Zhang Y, Wang J, Pan C, Chen Y, Li L, Li X, Liu W, Aliyari SR, Yang H, Cheng G. Interferon-stimulated gene PVRL4 broadly suppresses viral entry by inhibiting viral-cellular membrane fusion. Cell Biosci 2024; 14:23. [PMID: 38368366 PMCID: PMC10873969 DOI: 10.1186/s13578-024-01202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Viral infection elicits the type I interferon (IFN-I) response in host cells and subsequently inhibits viral infection through inducing hundreds of IFN-stimulated genes (ISGs) that counteract many steps in the virus life cycle. However, most of ISGs have unclear functions and mechanisms in viral infection. Thus, more work is required to elucidate the role and mechanisms of individual ISGs against different types of viruses. RESULTS Herein, we demonstrate that poliovirus receptor-like protein4 (PVRL4) is an ISG strongly induced by IFN-I stimulation and various viral infections. Overexpression of PVRL4 protein broadly restricts growth of enveloped RNA and DNA viruses, including vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whereas deletion of PVRL4 in host cells increases viral infections. Mechanistically, it suppresses viral entry by blocking viral-cellular membrane fusion through inhibiting endosomal acidification. The vivo studies demonstrate that Pvrl4-deficient mice were more susceptible to the infection of VSV and IAV. CONCLUSION Overall, our studies not only identify PVRL4 as an intrinsic broad-spectrum antiviral ISG, but also provide a candidate host-directed target for antiviral therapy against various viruses including SARS-CoV-2 and its variants in the future.
Collapse
Affiliation(s)
- Qiaomei Cai
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Nina Sun
- Department of Microbiology and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yurui Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Jingfeng Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Chaohu Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Yu Chen
- Clinical Microbiology and Immunology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Xiaorong Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Saba R Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
37
|
Ren Y, Liu T, Li S, Ma X, Xia L, Wang P, Guo Q, Yao Y, Hou X, Sheng X, Zhu H, Yang Z. An iodine‑labelled Antibody-drug conjugate PET probe for noninvasive monitoring of Nectin-4 expression in urothelial carcinoma. Int J Pharm 2024; 651:123756. [PMID: 38160990 DOI: 10.1016/j.ijpharm.2023.123756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND PURPOSE Some kinds of antibody-drug conjugate (ADC) with high affinity to Nectin-4 have demonstrated breakthrough progress in the third-line setting for bladder cancer. However, many patients are still difficult to benefit from treatment based on the heterogeneity of tumour. As the most advanced auxiliary treatment technology, treatment visualization can most intuitively predict the effectiveness of drug treatment, and timely detect the occurrence of drug resistance. Among them, nuclear medicine molecular probes play an important role in this field. METHODS 124/125I-EV was prepared by labelling Enfortumad Vedetin (EV), an ADC drugs widely used in clinic targeted Nectin-4, with Na124/125I using N-bromine succinimide as oxidant. The radiochemical purity was analyzed via radio-TLC and bioactivity was measured by enzyme-linked immunosorbent assay. Cell uptake assay and small-animal PET imaging were performed to verified the specificity and targeting. KEY RESULTS 124/125I-EV was prepared with high labeling yield and radiochemical purity. ELISA assays demonstrated that 124I-EV maintained the same high bioactivity as EV with significantly higher uptake in SW780 cells (Nectin-4 positive, 4.05 ± 0.32 %IA/5 × 105 cells at 8 h) than that in T24 cells (Nectin-4 negative, 1.34 ± 0.18 %IA/5 × 105 cells, p < 0.001). In PET imaging, 124I-EV had a significantly higher accumulation in SW780 tumour than that in T24 tumour and the uptake in SW780 tumour could be specifically blocked when co-injected with cold EV. The signal-to-noise ratio at the tumour site gradually increased with time, and peaked at 72 h. CONCLUSION AND IMPLICATIONS 124I-EV was successfully prepared with high specificity and binding affinity of Nectin-4. This radioactive probe completely simulates the internal circulation of ADC drugs and tumour uptake and retention, which will greatly improve the clinical application of ADC therapy.
Collapse
Affiliation(s)
- Ya'nan Ren
- Guizhou University School of Medicine, Guiyang 550025, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaokun Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Pei Wang
- Guizhou University School of Medicine, Guiyang 550025, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Guo
- Guizhou University School of Medicine, Guiyang 550025, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xi'nan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Hua Zhu
- Guizhou University School of Medicine, Guiyang 550025, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Zhi Yang
- Guizhou University School of Medicine, Guiyang 550025, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
38
|
Mukherjee S, Goswami S, Dash S, Samanta D. Structural basis of molecular recognition among classical cadherins mediating cell adhesion. Biochem Soc Trans 2023; 51:2103-2115. [PMID: 37970977 DOI: 10.1042/bst20230356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Cadherins are type-I membrane glycoproteins that primarily participate in calcium-dependent cell adhesion and homotypic cell sorting in various stages of embryonic development. Besides their crucial role in cellular and physiological processes, increasing studies highlight their involvement in pathophysiological functions ranging from cancer progression and metastasis to being entry receptors for pathogens. Cadherins mediate these cellular processes through homophilic, as well as heterophilic interactions (within and outside the superfamily) by their membrane distal ectodomains. This review provides an in-depth structural perspective of molecular recognition among type-I and type-II classical cadherins. Furthermore, this review offers structural insights into different dimeric assemblies like the 'strand-swap dimer' and 'X-dimer' as well as mechanisms relating these dimer forms like 'two-step adhesion' and 'encounter complex'. Alongside providing structural details, this review connects structural studies to bond mechanics merging crystallographic and single-molecule force spectroscopic findings. Finally, the review discusses the recent discoveries on dimeric intermediates that uncover prospects of further research beyond two-step adhesion.
Collapse
Affiliation(s)
- Sarbartha Mukherjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
39
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
40
|
Atemnkeng F, Aguilar F, Gupta S, Chugh S, Klein M. Diabetic Ketoacidosis and Acute Kidney Injury Associated With Enfortumab Vedotin for Urothelial Carcinoma: A Case Report. Kidney Med 2023; 5:100737. [PMID: 38028029 PMCID: PMC10651765 DOI: 10.1016/j.xkme.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Enfortumab vedotin is a novel breakthrough therapy that received accelerated US Food and Drug Administration approval in 2019 for the treatment of metastatic urothelial carcinoma in patients who have failed other lines of treatment. The characteristics of its adverse effects are not well understood. Diabetic ketoacidosis has been reported in 2 postmarketing reports presented as abstracts at the 2020 American Thoracic Society Conference and the 2021 American Society of Nephrology Conference. Both cases progressed rapidly and expired in <3 days. We present a similar case of a man in his late 50s with no history of diabetes who was diagnosed with urothelial carcinoma 2 years prior. Despite several lines of treatment, including platinum-based chemotherapy and immune checkpoint inhibitors, he developed metastasis and was started on enfortumab vedotin. After his second dose of enfortumab vedotin, he was admitted to the intensive care unit for diabetic ketoacidosis with an initial A1C level of 7.7%. He was intubated for airway protection, started on pressors, and developed oliguric acute kidney injury requiring continuous venovenous hemodialysis. Despite aggressive treatment, the patient died on hospital day 2. The lethality of this aggressive diabetic ketoacidosis despite therapy suggests some other effect of enfortumab vedotin on glucose metabolism in addition to insulin resistance and the need for prior diabetes screening.
Collapse
Affiliation(s)
- Francis Atemnkeng
- Department of Internal Medicine/Nephrology, Westchester Medical Center, Valhalla, NY
| | - Fatima Aguilar
- Department of Internal Medicine/Nephrology, Westchester Medical Center, Valhalla, NY
| | - Sanjeev Gupta
- Department of Internal Medicine/Nephrology, Westchester Medical Center, Valhalla, NY
| | - Savneek Chugh
- Department of Internal Medicine/Nephrology, Westchester Medical Center, Valhalla, NY
| | - Michael Klein
- Department of Internal Medicine/Nephrology, Westchester Medical Center, Valhalla, NY
| |
Collapse
|
41
|
Álvarez S, Mullen AM, Álvarez C, Hamill RM, O'Neill E, Gagaoua M. Impact of sampling location and aging on the Longissimus thoracis et lumborum muscle proteome of dry-aged beef. Meat Sci 2023; 205:109315. [PMID: 37625354 DOI: 10.1016/j.meatsci.2023.109315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
This study aimed to explore the differences in the proteome and molecular pathways between two sampling locations (external, internal) of bovine Longissimus thoracis et lumborum (LTL) muscles at 0, 21, and 28 days of dry-aging (i.e. 3, 24, and 31 days post-mortem). It further assessed the impact of post-mortem aging on the meat proteome changes and the biological processes at interplay. Proteins related to defence response to bacterium and regulation of viral entry into host cell were identified to be more abundant on the external location before dry-aging, which may be associated to the oxidative conditions and microbial activity to which post-mortem muscle is exposed during dressing, chilling, and/or quartering of the carcasses. This highlights the relevance of sampling from interior tissues when searching for meat quality biomarkers. As dry-aging progressed, the meat proteome and related biological processes changed differently between sampling locations; proteins related to cell-cell adhesion and ATP metabolic processes pathways were revealed in the external location at 21 and 28 days, respectively. On the other hand, the impact of aging on the proteome of the interior meat samples, evidenced that muscle contraction and structure together with energy metabolism were the major pathways driving dry-aging. Additionally, aging impacted other pathways in the interior tissues, such as regulation of calcium import, neutrophil activation, and regeneration. Overall, the differences in the proteome allowed discriminating the three dry-aging times, regardless of the sampling location. Several proteins were proposed for validation as robust biomarkers to monitor the aging process (tenderization) of dry-aged beef: TTN, GRM4, EEF1A1, LDB3, CILP2, TNNT3, GAPDH, SERPINI1, and OMD.
Collapse
Affiliation(s)
- Sara Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland; School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | - Anne Maria Mullen
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Carlos Álvarez
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Ruth M Hamill
- Dept. of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin D15 DY05, Ireland
| | - Eileen O'Neill
- School of Food and Nutritional Sciences, University College, Cork, Western Road, Cork T12 YN60, Ireland
| | | |
Collapse
|
42
|
Ganguli N, Kumari P, Dash S, Samanta D. Molecular and structural basis of TIGIT: Nectin-4 interaction, a recently discovered pathway crucial for cancer immunotherapy. Biochem Biophys Res Commun 2023; 677:31-37. [PMID: 37542773 DOI: 10.1016/j.bbrc.2023.07.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
TIGIT (T cell immunoglobulin and ITIM domain) is an inhibitory receptor expressed on T and NK cells that interact with cell surface glycoprotein belonging to the nectin and nectin-like family of cell adhesion molecules, particularly nectin-2 and nectin-like 5 (PVR). Nectin-4 has been recently identified as a novel ligand for TIGIT and the interaction among them inhibits NK cell cytotoxicity. In this study, biophysical experiments were conducted to decipher the mechanism of this novel interaction, followed by structure-guided mutagenesis studies to map the nectin-4 binding interface on TIGIT. Using surface plasmon resonance, we deduced that TIGIT recognizes the membrane distal ectodomain of nectin-4 and the interaction is weaker than the well-characterized TIGIT: nectin-2 interaction. Deciphering the molecular basis of this newly identified interaction between TIGIT and nectin-4 will provide us important insight into the manipulation of this inhibitory signaling pathway, especially targeting cancer cells overexpressing nectin-4 that evade the immune surveillance of the body.
Collapse
Affiliation(s)
- Namrata Ganguli
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Puja Kumari
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
43
|
Quan Y, Ping H, Wang M, Zhang X. RNA-Sequencing Analysis Indicates That N-Cadherin Promotes Prostate Cancer Progression by the Epigenetic Modification of Key Genes. DNA Cell Biol 2023; 42:563-577. [PMID: 37540080 DOI: 10.1089/dna.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
N-cadherin (cadherin-2 [CDH2]) is widely known as the promoter of prostate cancer (PCa) invasion and castration resistance. However, the biological mechanism of N-cadherin in PCa progression is unclear. In this study, we overexpressed N-cadherin in LNCaP cells and downregulated N-cadherin in PC3 cells by lentiviral transduction. Then, differentially expressed genes (DEGs) and dysregulated biological functions were investigated through RNA sequencing (RNA-seq) analyses. We found 13 long noncoding RNA (lncRNA) transcripts, 72 messenger RNA (mRNA) transcripts, and 3 integrated genes were dysregulated by N-cadherin. In the disease enrichment, bone cancer, and neurodegenerative and nervous system diseases were associated with N-cadherin in the circular RNA (circRNA; PC3 versus [vs.,/] LNCaP [PC3/LNCaP] comparison) and DEG analysis (LNCaP_oe_CDH2 vs. LNCaP_oe_NC [LNCaP_oe_CDH2/NC] comparison). Epigenetic reprogramming, such as nucleic acid binding, and chromatin and histone modifications, was enriched in Gene Ontology (GO) analysis (DEGs in LNCaP_oe_CDH2/NC and PC3_sh_NC/CDH2, and host genes of circRNA in PC3/LNCaP). Transcriptional misregulation in cancer, post-translational protein modification, gene expression, and generic transcription pathways were dysregulated in the pathway enrichment analysis (host genes of circRNA in PC3/LNCaP, and DEGs in LNCaP_oe_CDH2/NC and PC3_sh_NC/CDH2). Verifying DEGs through TCGA-PRAD dataset revealed six oncogenes (ARHGEF1, GRAMD1A, GTF2H4, MAPK8IP3, POLD1, and PTBP1) that were commonly upregulated by N-cadherin and in advanced PCa stages. In summary, we identified several oncogenes and biological functions associated with N-cadherin expression in PCa cells. N-cadherin may trigger epigenetic reprogramming in PCa cells to promote tumor progression.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Klekowski J, Zielińska D, Hofman A, Zajdel N, Gajdzis P, Chabowski M. Clinical Significance of Nectins in HCC and Other Solid Malignant Tumors: Implications for Prognosis and New Treatment Opportunities-A Systematic Review. Cancers (Basel) 2023; 15:3983. [PMID: 37568798 PMCID: PMC10416819 DOI: 10.3390/cancers15153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The nectin family comprises four proteins, nectin-1 to -4, which act as cell adhesion molecules. Nectins have various regulatory functions in the immune system and can be upregulated or decreased in different tumors. The literature research was conducted manually by the authors using the PubMed database by searching articles published before 2023 with the combination of several nectin-related keywords. A total of 43 studies were included in the main section of the review. Nectins-1-3 have different expressions in tumors. Both the loss of expression and overexpression could be negative prognostic factors. Nectin-4 is the best characterized and the most consistently overexpressed in various tumors, which generally correlates with a worse prognosis. New treatments based on targeting nectin-4 are currently being developed. Enfortumab vedotin is a potent antibody-drug conjugate approved for use in therapy against urothelial carcinoma. Few reports focus on hepatocellular carcinoma, which leaves room for further studies comparing the utility of nectins with commonly used markers.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Dorota Zielińska
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Adriana Hofman
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Natalia Zajdel
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Paweł Gajdzis
- Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Pathomorphology, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| |
Collapse
|
45
|
Hermans D, Rodriguez-Mogeda C, Kemps H, Bronckaers A, de Vries HE, Broux B. Nectins and Nectin-like molecules drive vascular development and barrier function. Angiogenesis 2023; 26:349-362. [PMID: 36867287 DOI: 10.1007/s10456-023-09871-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.
Collapse
Affiliation(s)
- Doryssa Hermans
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Carla Rodriguez-Mogeda
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Hannelore Kemps
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- KU Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Helga E de Vries
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bieke Broux
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium.
| |
Collapse
|
46
|
García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M, Pérez-Campo FM. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: Impact on disease progression. World J Stem Cells 2023; 15:421-437. [PMID: 37342223 PMCID: PMC10277973 DOI: 10.4252/wjsc.v15.i5.421] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow (BM). The interaction between MM cells and the BM microenvironment, and specifically BM mesenchymal stem cells (BM-MSCs), has a key role in the pathophysiology of this disease. Multiple data support the idea that BM-MSCs not only enhance the proliferation and survival of MM cells but are also involved in the resistance of MM cells to certain drugs, aiding the progression of this hematological tumor. The relation of MM cells with the resident BM-MSCs is a two-way interaction. MM modulate the behavior of BM-MSCs altering their expression profile, proliferation rate, osteogenic potential, and expression of senescence markers. In turn, modified BM-MSCs can produce a set of cytokines that would modulate the BM microenvironment to favor disease progression. The interaction between MM cells and BM-MSCs can be mediated by the secretion of a variety of soluble factors and extracellular vesicles carrying microRNAs, long non-coding RNAs or other molecules. However, the communication between these two types of cells could also involve a direct physical interaction through adhesion molecules or tunneling nanotubes. Thus, understanding the way this communication works and developing strategies to interfere in the process, would preclude the expansion of the MM cells and might offer alternative treatments for this incurable disease.
Collapse
Affiliation(s)
- Daniel García-Sánchez
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Alberto González-González
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Ana Alfonso-Fernández
- Servicio de Traumatología y Cirugía Ortopédica, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, Santander 39008, Cantabria, Spain
| | - Mónica Del Dujo-Gutiérrez
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain.
| |
Collapse
|
47
|
Liu X, Ding XF, Wen B, Ma TF, Qin-Wang, Li ZJ, Zhang YS, Gao JZ, Chen ZZ. Genome-wide identification and skin expression of immunoglobulin superfamily in discus fish (Symphysodon aequifasciatus) reveal common genes associated with vertebrate lactation. Gene 2023; 862:147260. [PMID: 36775217 DOI: 10.1016/j.gene.2023.147260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Discus Symphysodon spp. employs an unusual parental care behavior where fry feed on parental skin mucus after hatching. Studies on discus immunoglobulin superfamily (IgSF) especially during parental care are scarce. Here, a total of 518 IgSF members were identified based on discus genome and clustered into 12 groups, unevenly distributing on 30 linkage groups. A total of 92 pairs of tandem duplication and 40 pairs of segmental duplication that underwent purifying selection were identified. IgSF genes expressed differentially in discus skin during different care stages and between male and female parents. Specifically, the transcription of btn1a1, similar with mammalian lactation, increased after spawning, reached a peak when fry started biting on parents' skin mucus, and then decreased. The expression of btn2a1 and other immune members, e.g., nect4, fcl5 and cd22, were up-regulated when fry stopped biting on mucus. These results suggest the expression differentiation of IgSF genes in skin of discus fish during parental care.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Fei Ding
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Teng-Fei Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qin-Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zhong-Jun Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shen Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
48
|
Fenton SE, VanderWeele DJ. Antibody-drug conjugates and predictive biomarkers in advanced urothelial carcinoma. Front Oncol 2023; 12:1069356. [PMID: 36686762 PMCID: PMC9846350 DOI: 10.3389/fonc.2022.1069356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The use of antibody-drug conjugates (ADCs) is expanding in several malignancies, including urothelial carcinoma where two of these medications have been approved for use and several others remain under study. ADCs act by binding to specific cell surface proteins, delivering anticancer agents directly to the target cells. Preclinical studies suggest that loss of these surface proteins alters sensitivity to therapy and expression of target proteins vary significantly based on the tumor subtype, prior therapies and other characteristics. However, use of biomarkers to predict treatment response have not been regularly included in clinical trials and clinician practice. In this review we summarize what is known about potential predictive biomarkers for ADCs in UC and discuss potential areas where use of biomarkers may improve patient care.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David J. VanderWeele
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
49
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
50
|
Kobecki J, Gajdzis P, Mazur G, Chabowski M. Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics (Basel) 2022; 12:3076. [PMID: 36553083 PMCID: PMC9777592 DOI: 10.3390/diagnostics12123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In 2020, colorectal cancer was the third most common type of cancer worldwide with a clearly visible increase in the number of cases each year. With relatively high mortality rates and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need to investigate its specific mechanism of carcinogenesis and progression in order to develop new strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules that take part in a plethora of essential processes in healthy tissues as well as mediating substantial actions for tumor initiation and evolution. Our understanding of their role and a viable application of this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current data on the role nectins and Nectin-like molecules play in colorectal cancer.
Collapse
Affiliation(s)
- Jakub Kobecki
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Paweł Gajdzis
- Department of Pathomorphology, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Department of Clinical Pathology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|