1
|
Takikawa M, Nakano A, Krishnaraj J, Tabata Y, Watanabe Y, Okabe A, Sakaguchi Y, Fujiki R, Mochizuki A, Tajima T, Sada A, Matsushita S, Wakabayashi Y, Araki K, Kaneda A, Ishikawa F, Sadaie M, Ohki R. Extrinsic induction of apoptosis and tumor suppression via the p53-Reprimo-Hippo-YAP/TAZ-p73 pathway. Proc Natl Acad Sci U S A 2025; 122:e2413126122. [PMID: 39913207 PMCID: PMC11831151 DOI: 10.1073/pnas.2413126122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 02/19/2025] Open
Abstract
Tumor progression is suppressed by inherent cellular mechanisms such as apoptosis. The p53 tumor suppressor gene is the most commonly mutated gene in human cancer and plays a pivotal role in tumor suppression. RPRM is a target gene of p53 known to be involved in tumor suppression, but its molecular function has remained elusive. Here, we report that Reprimo (the protein product of RPRM) is secreted and extrinsically induces apoptosis in recipient cells. We identified FAT1, FAT4, CELSR1, CELSR2, and CELSR3, members of the protocadherin family, as receptors for Reprimo. Subsequent analyses revealed that Reprimo acts upstream of the Hippo-YAP/TAZ-p73 axis and induces apoptosis by transactivating various proapoptotic genes. In vivo analyses further support the tumor-suppressive effects of secreted Reprimo. These findings identify the p53-Reprimo-Hippo-YAP/TAZ-p73 axis as an extrinsic apoptosis pathway that plays a crucial role in tumor suppression. Our finding of the innate tumor eliminator Reprimo and the downstream pathway offers a promising avenue for the pharmacological treatment of cancer.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba278-8510, Japan
| | - Airi Nakano
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
- Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki852-8523, Japan
| | - Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuko Tabata
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto606-8502, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
- Health and Disease Omics Center, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Yukiko Sakaguchi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Ami Mochizuki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Tomoko Tajima
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Akane Sada
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Shu Matsushita
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuichi Wakabayashi
- Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chuo-ku, Chiba260-8717, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Chuo-ku, Kumamoto860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo, Kumamoto860-8556, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
- Health and Disease Omics Center, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Mahito Sadaie
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba278-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| |
Collapse
|
2
|
Wen F, Han Y, Zhang H, Zhao Z, Wang W, Chen F, Qin W, Ju J, An L, Meng Y, Yang J, Tang Y, Zhao Y, Zhang H, Li F, Bai W, Xu Y, Zhou Z, Jiao S. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat Commun 2024; 15:10543. [PMID: 39627192 PMCID: PMC11615309 DOI: 10.1038/s41467-024-54850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are known to mediate cell communications and shape tumor microenvironment. Compared to the well-studied small EVs, the function of large microvesicles (MVs) during tumorigenesis is poorly understood. Here we show the proteome of MVs in Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC), and identify olfactomedin 4 (OLFM4) is induced by EBV infection and secreted via MVs to promote tumor progression through Hippo signaling. Specifically, OLFM4 is a target gene of the cGAS-STING pathway, and EBV infection activates cGAS-STING pathway and increases OLFM4 expression. Moreover, MV-carried OLFM4 binds with the extracellular cadherin domain of FAT1, thereby impairing its intracellular interaction with MST1 and leading to YAP activation in recipient cells. Together, our study not only reveals a regulatory mechanism though which viral infection is coupled via MVs with intercellular control of the Hippo signaling, but also highlights the OLFM4-Hippo axis as a therapeutic target for EBV-associated cancers.
Collapse
Affiliation(s)
- Fuping Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhangting Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Fan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weimin Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yang Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yun Zhao
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huanhu Zhang
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Feng Li
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Wenqi Bai
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China.
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Wang TL, Miao XJ, Shuai YR, Sun HP, Wang X, Yang M, Zhang N. FAT1 inhibits the proliferation of DLBCL cells via increasing the m 6A modification of YAP1 mRNA. Sci Rep 2024; 14:11836. [PMID: 38782965 PMCID: PMC11116375 DOI: 10.1038/s41598-024-62793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Emerging evidence shows that FAT atypical cadherin 1 (FAT1) mutations occur in lymphoma and are associated with poorer overall survival. Considering that diffuse large B cell lymphoma (DLBCL) is the category of lymphoma with the highest incidence rate, this study aims to explore the role of FAT1 in DLBCL. The findings demonstrate that FAT1 inhibits the proliferation of DLBCL cell lines by downregulating the expression of YAP1 rather than by altering its cellular localization. Mechanistic analysis via meRIP-qPCR/luciferase reporter assays showed that FAT1 increases the m6A modification of YAP1 mRNA 3'UTR and the subsequent binding of heterogeneous nuclear ribonucleoprotein D (HNRNPD) to the m6A modified YAP1 mRNA, thus decreasing the stability of YAP1 mRNA. Furthermore, FAT1 increases YAP1 mRNA 3'UTR m6A modification by decreasing the activity of the TGFβ-Smad2/3 pathway and the subsequent expression of ALKBH5, which is regulated at the transcriptional level by Smad2/3. Collectively, these results reveal that FAT1 inhibits the proliferation of DLBCL cells by increasing the m6A modification of the YAP1 mRNA 3'UTR via the TGFβ-Smad2/3-ALKBH5 pathway. The findings of this study therefore indicate that FAT1 exerts anti-tumor effects in DLBCL and may represent a novel target in the treatment of this form of lymphoma.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- YAP-Signaling Proteins/metabolism
- YAP-Signaling Proteins/genetics
- Cell Proliferation
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Cell Line, Tumor
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Gene Expression Regulation, Neoplastic
- 3' Untranslated Regions
- Cadherins/metabolism
- Cadherins/genetics
- Adenosine/metabolism
- Adenosine/analogs & derivatives
- Signal Transduction
Collapse
Affiliation(s)
- Tian-Long Wang
- Department of Medical, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiao-Juan Miao
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, 610083, China
| | - Yan-Rong Shuai
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, 610083, China
| | - Hao-Ping Sun
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, 610083, China
| | - Xiao Wang
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, 610083, China.
| | - Min Yang
- Department of Traditional Chinese Medicine, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Nan Zhang
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, 610083, China.
| |
Collapse
|
5
|
Zou DF, Li XY, Lu XG, Wang HL, Song W, Zhang MW, Liu XR, Li BM, Liao JX, Zhong JM, Meng H, Li B. Association of FAT1 with focal epilepsy and correlation between seizure relapse and gene expression stage. Seizure 2024; 116:37-44. [PMID: 36941137 DOI: 10.1016/j.seizure.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
PURPOSE The FAT1 gene encodes FAT atypical cadherin 1, which is essential for foetal development, including brain development. This study aimed to investigate the relationship between FAT1 variants and epilepsy. METHODS Trio-based whole-exome sequencing was performed on a cohort of 313 patients with epilepsy. Additional cases with FAT1 variants were collected from the China Epilepsy Gene V.1.0 Matching Platform. RESULTS Four pairs of compound heterozygous missense FAT1 variants were identified in four unrelated patients with partial (focal) epilepsy and/or febrile seizures, but without intellectual disability/developmental abnormalities. These variants presented no/very low frequencies in the gnomAD database, and the aggregate frequencies in this cohort were significantly higher than those in controls. Two additional compound heterozygous missense variants were identified in two unrelated cases using the gene-matching platform. All patients experienced infrequent (yearly/monthly) complex partial seizures or secondary generalised tonic-clonic seizures. They responded well toantiseizure medication, but seizures relapsed in three cases when antiseizure medication were decreased or withdrawn after being seizure-free for three to six years, which correlated with the expression stage of FAT1. Genotype-phenotype analysis showed that epilepsy-associated FAT1 variants were missense, whereas non-epilepsy-associated variants were mainly truncated. The relationship between FAT1 and epilepsy was evaluated to be "Strong" by the Clinical Validity Framework of ClinGen. CONCLUSIONS FAT1 is a potential causative gene of partial epilepsy and febrile seizures. Gene expression stage was suggested to be one of the considerations in determining the duration ofantiseizure medication. Genotype-phenotype correlation helps to explain the mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Dong-Fang Zou
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Xiao-Yan Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Huai-Li Wang
- Department of Pediatric Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Song
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Meng-Wen Zhang
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Xiao-Rong Liu
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Bing-Mei Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Jian-Xiang Liao
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Jian-Min Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou, China..
| | - Bin Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China.
| |
Collapse
|
6
|
Rapp J, Hospach A, Liang P, Schwämmle M, Renz L, Agostini H, Schlunck G, Bucher F. Oncostatin M Reduces Pathological Neovascularization in the Retina Through Müller Cell Activation. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 38190125 PMCID: PMC10777876 DOI: 10.1167/iovs.65.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Continuous vision loss due to vasoproliferative eye disease still represents an unsolved issue despite anti-vascular endothelial growth factor (VEGF) therapy. The impact of signal transducer and activator of transcription 3 (STAT3) signaling on retinal angiogenesis and its potential use as a therapeutic target remain controversial. In vitro, oncostatin M (OSM), as a strong STAT3 activator, possesses robust proangiogenic activity. This study investigated to what extent the proangiogenic effects of OSM translate to the in vivo setting of vasoproliferative eye disease. Methods The in vitro effect of OSM on endothelial cells was investigated in the spheroid sprouting assay and through RNA sequencing. The mouse model for oxygen-induced retinopathy (OIR) was used to evaluate the impact of OSM in vivo. Signaling patterns were measured by western blot and retinal cryosections. Primary Müller cell cultures were used to evaluate the effect of OSM on the Müller cell secretome. Murine retinal vascular endothelial cells were isolated from OIR retinas using fluorescence-activated cell sorting (FACS) and were used for RNA sequencing. Results Although OSM induced pro-angiogenic responses in vitro, in the OIR model intravitreal injection of OSM reduced retinal neovascularization by 65.2% and vaso-obliteration by 45.5% in Müller cells. Injecting OSM into the vitreous activated the STAT3 signaling pathway in multiple retinal cell types, including Müller cells. In vitro, OSM treatment increased CXCL10 secretion. RNA sequencing of sorted vascular endothelial cells at OIR P17 following OSM treatment indicated downregulation of angiogenesis- and mitosis-associated genes. Conclusions In vivo, OSM reveals a beneficial angiomodulatory effect by activating Müller cells and changing their secretome. The data highlight contradictions between cytokine-induced effects in vitro and in vivo depending on the cell types mediating the effect.
Collapse
Affiliation(s)
- Julian Rapp
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alban Hospach
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paula Liang
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lisa Renz
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Zhang N, Shen MY, Meng QL, Sun HP, Fan FY, Yi H, Yang YJ. FAT1 inhibits AML autophagy and proliferation via downregulating ATG4B expression. Biochim Biophys Acta Gen Subj 2024; 1868:130519. [PMID: 37952564 DOI: 10.1016/j.bbagen.2023.130519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Emerging studies have shown that FAT atypical cadherin 1 (FAT1) and autophagy separately inhibits and promotes acute myeloid leukemia (AML) proliferation. However, it is unknown whether FAT1 were associated with autophagy in regulating AML proliferation. METHODS AML cell lines, 6-week-old male nude mice and AML patient samples were used in this study. qPCR/Western blot and cell viability/3H-TdR incorporation assays were separately used to detect mRNA/protein levels and cell activity/proliferation. Luciferase reporter assay was used to examine gene promoter activity. Co-IP analysis was used to detect the binding of proteins. RESULTS In this study, we for the first time demonstrated that FAT1 inhibited AML proliferation by decreasing AML autophagy level. Moreover, FAT1 weakened AML autophagy level via decreasing autophagy related 4B (ATG4B) expression. Mechanistically, we found that FAT1 reduced the phosphorylated and intranuclear SMAD family member 2/3 (smad2/3) protein levels, thus decreasing the activity of ATG4B gene promoter. Furthermore, we found that FAT1 competitively bound to TGF-βR II which decreased the binding of TGF-βR II to TGF-βR I and the subsequent phosphorylation of TGF-βR I, thus reducing the phosphorylation and intranuclear smad2/3. The experiments in nude mice showed that knockdown of FAT1 promoted AML autophagy and proliferation in vivo. CONCLUSIONS Collectively, these results revealed that FAT1 downregulates ATG4B expression via inhibiting TGFβ-smad2/3 signaling activity, thus decreasing the autophagy level and proliferation activity of AML cells. GENERAL SIGNIFICANCE Our study suggested that the "FAT1-TGFβ-smad2/3-ATG4B-autophagy" pathway may be a novel target for developing new targeted drugs to AML treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Meng-Yu Shen
- Department of Medical Laboratory Center, People's Liberation Army The General Hospital of Central Theater Command, Wuhan 430012, China
| | - Qing-Li Meng
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hao-Ping Sun
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Fang-Yi Fan
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hai Yi
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yong-Jian Yang
- Department of Cardiology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
8
|
Chess MM, Douglas W, Saunders J, Ettensohn CA. Genome-wide identification and spatiotemporal expression analysis of cadherin superfamily members in echinoderms. EvoDevo 2023; 14:15. [PMID: 38124068 PMCID: PMC10734073 DOI: 10.1186/s13227-023-00219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cadherins are calcium-dependent transmembrane cell-cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6-7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration. Because they are basal deuterostomes, echinoderms provide important insights into bilaterian evolution, but their only well-characterized cadherin is G-cadherin, a classical cadherin that is expressed by many embryonic epithelia. We aimed to better characterize echinoderm cadherins by conducting phylogenetic analyses and examining the spatiotemporal expression patterns of cadherin-encoding genes during Strongylocentrotus purpuratus development. RESULTS Our phylogenetic analyses conducted on two echinoid, three asteroid, and one crinoid species identified ten echinoderm cadherins, including one deuterostome-specific ortholog, cadherin-23, and an echinoderm-specific atypical cadherin that possibly arose in an echinoid-asteroid ancestor. Catenin-binding domains in dachsous-2 orthologs were found to be a deuterostome-specific innovation that was selectively lost in mouse, while those in Fat4 orthologs appeared to be Ambulacraria-specific and were selectively lost in non-crinoid echinoderms. The identified suite of echinoderm cadherins lacks vertebrate-specific innovations but contains two proteins that are present in protostomes and absent from mouse. The spatiotemporal expression patterns of four embryonically expressed cadherins (fat atypical cadherins 1 and 4, dachsous-2, and protocadherin-9) were dynamic and mirrored the expression pattern of Frizzled 5/8, a non-canonical Wnt PCP pathway receptor protein essential for archenteron morphogenesis. CONCLUSIONS The echinoderm cadherin toolkit is more similar to that of an ancient bilaterian predating protostomes and deuterostomes than it is to the suite of cadherins found in extant vertebrates. However, it also appears that deuterostomes underwent several cadherin-related innovations. Based on their similar spatiotemporal expression patterns and orthologous relationships to PCP-related and tumor-suppressing proteins, we hypothesize that sea urchin cadherins may play a role in regulating the shape and growth of embryonic epithelia and organs. Future experiments will examine cadherin expression in non-echinoid echinoderms and explore the functions of cadherins during echinoderm development.
Collapse
Affiliation(s)
- Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - William Douglas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Josiah Saunders
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Li R, Shao J, Jin YJ, Kawase H, Ong YT, Troidl K, Quan Q, Wang L, Bonnavion R, Wietelmann A, Helmbacher F, Potente M, Graumann J, Wettschureck N, Offermanns S. Endothelial FAT1 inhibits angiogenesis by controlling YAP/TAZ protein degradation via E3 ligase MIB2. Nat Commun 2023; 14:1980. [PMID: 37031213 PMCID: PMC10082778 DOI: 10.1038/s41467-023-37671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
Activation of endothelial YAP/TAZ signaling is crucial for physiological and pathological angiogenesis. The mechanisms of endothelial YAP/TAZ regulation are, however, incompletely understood. Here we report that the protocadherin FAT1 acts as a critical upstream regulator of endothelial YAP/TAZ which limits the activity of these transcriptional cofactors during developmental and tumor angiogenesis by promoting their degradation. We show that loss of endothelial FAT1 results in increased endothelial cell proliferation in vitro and in various angiogenesis models in vivo. This effect is due to perturbed YAP/TAZ protein degradation, leading to increased YAP/TAZ protein levels and expression of canonical YAP/TAZ target genes. We identify the E3 ubiquitin ligase Mind Bomb-2 (MIB2) as a FAT1-interacting protein mediating FAT1-induced YAP/TAZ ubiquitination and degradation. Loss of MIB2 expression in endothelial cells in vitro and in vivo recapitulates the effects of FAT1 depletion and causes decreased YAP/TAZ degradation and increased YAP/TAZ signaling. Our data identify a pivotal mechanism of YAP/TAZ regulation involving FAT1 and its associated E3 ligase MIB2, which is essential for YAP/TAZ-dependent angiogenesis.
Collapse
Affiliation(s)
- Rui Li
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jingchen Shao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Young-June Jin
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Haruya Kawase
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Yu Ting Ong
- Max Planck Institute for Heart and Lung Research, Angiogenesis & Metabolism Laboratory, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Kerstin Troidl
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Qi Quan
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Lei Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Remy Bonnavion
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Max Planck Institute for Heart and Lung Research, Small Animal Imaging Service Group, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Francoise Helmbacher
- Aix Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, 13288, Marseille, France
| | - Michael Potente
- Max Planck Institute for Heart and Lung Research, Angiogenesis & Metabolism Laboratory, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry Service Group, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043, Marburg, Germany
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Cardiopulmonary Institute, Bad Nauheim, Germany
- German Center for Cardiovascular Research, Partner Site Frankfurt, Bad Nauheim, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.
- Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cardiopulmonary Institute, Bad Nauheim, Germany.
- German Center for Cardiovascular Research, Partner Site Frankfurt, Bad Nauheim, Germany.
| |
Collapse
|
11
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
12
|
Sun Y, Jin D, Zhang Z, Jin D, Xue J, Duan L, Zhang Y, Kang X, Lian F. The critical role of the Hippo signaling pathway in kidney diseases. Front Pharmacol 2022; 13:988175. [PMID: 36483738 PMCID: PMC9723352 DOI: 10.3389/fphar.2022.988175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/03/2022] [Indexed: 09/14/2023] Open
Abstract
The Hippo signaling pathway is involved in cell growth, proliferation, and apoptosis, and it plays a key role in regulating organ size, tissue regeneration, and tumor development. The Hippo signaling pathway also participates in the occurrence and development of various human diseases. Recently, many studies have shown that the Hippo pathway is closely related to renal diseases, including renal cancer, cystic kidney disease, diabetic nephropathy, and renal fibrosis, and it promotes the transformation of acute kidney disease to chronic kidney disease (CKD). The present paper summarizes and analyzes the research status of the Hippo signaling pathway in different kidney diseases, and it also summarizes the expression of Hippo signaling pathway components in pathological tissues of kidney diseases. In addition, the present paper discusses the positive therapeutic significance of traditional Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating kidney diseases. This article introduces new targets and ideas for drug development, clinical diagnosis, and treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - JiaoJiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - LiYun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - YuQing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoMin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - FengMei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
13
|
Li G, Liang W, Ding P, Zhao Z. Sutural fibroblasts exhibit the function of vascular endothelial cells upon mechanical strain. Arch Biochem Biophys 2021; 712:109046. [PMID: 34599905 DOI: 10.1016/j.abb.2021.109046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023]
Abstract
Midfacial hypoplasia is a type of facial dysplasia. The technique of trans-sutural distraction osteogenesis promotes midface growth so as to ameliorate this symptom. In the process of distraction osteogenesis, the fiber matrix in the suture acts as a mechanical sensor. Compared with osteogenesis, the formation of collagen fibers by fibroblasts is significant in the early stage of sutural distraction. However the transformation of fibroblasts during sutural bone formation induced by tensile force is poorly characterized. Here, we used single-cell RNA sequencing to define the cell classification of the zygomatic maxillary suture and the changes of cell clusters in the suture before and after seven-day distraction. We identified twenty-nine cell subsets spanning monocyte/macrophages, neutrophils, red blood cells, B cells and fibroblasts. Compared with the control group, Monocle analysis revealed the emergence of a unique fibroblast subset (Cdh5+, Col4a1+, Fat1-, and Acta2-) (cluster 27) that expressed vascular endothelial cell genes within the distracted zygomatic maxillary suture. We constructed the differentiation trajectories of the fibroblast population (cluster 23, 27) in the suture before and after distraction. In addition, we clarified that a subset of fibroblasts (cluster 27) lost expression of Fat1, an upregulator of the Hippo pathway, and upregulated Cyr61, a downstream gene of the Hippo pathway, during the distraction process. Further enrichment analysis suggests that cells of the new subset (cluster 27) are undergoing conversion of their identity into a vascular endothelial cell-like state in response to mechanical stimulation, associated with upregulation of angiogenesis genes along the single-cell trajectory. Further immunofluorescence staining confirmed this phenomenon. A combined general transcriptome RNA sequencing data analysis demonstrated that the fibroblasts expressed a number of extracellular matrix-related genes under mechanical strain. These data together provide a new view of the role of fibroblasts in tension-induced sutural angiogenesis via interaction with the Hippo pathway.
Collapse
Affiliation(s)
- Guan Li
- Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Peking University Third Hospital, Beijing, China
| | | | - Zhenmin Zhao
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
14
|
He Z, Li R, Jiang H. Mutations and Copy Number Abnormalities of Hippo Pathway Components in Human Cancers. Front Cell Dev Biol 2021; 9:661718. [PMID: 34150758 PMCID: PMC8209335 DOI: 10.3389/fcell.2021.661718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway is highly conserved from Drosophila to mammals. As a key regulator of cell proliferation, the Hippo pathway controls tissue homeostasis and has a major impact on tumorigenesis. The originally defined core components of the Hippo pathway in mammals include STK3/4, LATS1/2, YAP1/TAZ, TEAD, VGLL4, and NF2. However, for most of these genes, mutations and copy number variations are relatively uncommon in human cancer. Several other recently identified upstream and downstream regulators of Hippo signaling, including FAT1, SHANK2, Gq/11, and SWI/SNF complex, are more commonly dysregulated in human cancer at the genomic level. This review will discuss major genomic events in human cancer that enable cancer cells to escape the tumor-suppressive effects of Hippo signaling.
Collapse
Affiliation(s)
- Zhengjin He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruihan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hai Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Peng Z, Gong Y, Liang X. Role of FAT1 in health and disease. Oncol Lett 2021; 21:398. [PMID: 33777221 PMCID: PMC7988705 DOI: 10.3892/ol.2021.12659] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes a protocadherin, is one of the most frequently mutated genes in human cancer. Over the past 20 years, the role of FAT1 in tissue growth and in the development of diseases has been extensively studied. There is definitive evidence that FAT1 serves a substantial role in the maintenance of organs and development, and its expression appears to be tissue-specific. FAT1 activates a variety of signaling pathways through protein-protein interactions, including the Wnt/β-catenin, Hippo and MAPK/ERK signaling pathways, which affect cell proliferation, migration and invasion. Abnormal FAT1 expression may lead to the development of tumors and may affect prognosis. Therefore, FAT1 may have potential in tumor therapy. The structural and functional changes mediated by FAT1, its tissue distribution and changes in FAT1 expression in human diseases are described in the present review, which provides further insight for understanding the role of FAT1 in development and disease.
Collapse
Affiliation(s)
- Zizhen Peng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
16
|
Fabretti F, Tschernoster N, Erger F, Hedergott A, Buescher AK, Dafinger C, Reusch B, Köntges VK, Kohl S, Bartram MP, Weber LT, Thiele H, Altmueller J, Schermer B, Beck BB, Habbig S. Expanding the Spectrum of FAT1 Nephropathies by Novel Mutations That Affect Hippo Signaling. Kidney Int Rep 2021; 6:1368-1378. [PMID: 34013115 PMCID: PMC8116753 DOI: 10.1016/j.ekir.2021.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Disease-causing mutations in the protocadherin FAT1 have been recently described both in patients with a glomerulotubular nephropathy and in patients with a syndromic nephropathy. Methods We identified 4 patients with FAT1-associated disease, performed clinical and genetic characterization, and compared our findings to the previously published patients. Patient-derived primary urinary epithelial cells were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblotting to identify possible alterations in Hippo signaling. Results Here we expand the spectrum of FAT1-associated disease with the identification of novel FAT1 mutations in 4 patients from 3 families (homozygous truncating variants in 3, compound heterozygous missense variants in 1 patient). All patients show an ophthalmologic phenotype together with heterogeneous renal phenotypes ranging from normal renal function to early-onset end-stage kidney failure. Molecular analysis of primary urine-derived urinary renal epithelial cells revealed alterations in the Hippo signaling cascade with a decreased phosphorylation of both the core kinase MST and the downstream effector YAP. Consistently, we found a transcriptional upregulation of bona fide YAP target genes. Conclusion A comprehensive review of the here identified patients and those previously published indicates a highly diverse phenotype in patients with missense mutations but a more uniform and better recognizable phenotype in the patients with truncating mutations. Altered Hippo signaling and de-repressed YAP activity might be novel contributing factors to the pathomechanism in FAT1-associated renal disease.
Collapse
Affiliation(s)
- Francesca Fabretti
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Florian Erger
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Andrea Hedergott
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anja K Buescher
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bjoern Reusch
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Vincent K Köntges
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Kohl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmueller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
17
|
Meng P, Zhang YF, Zhang W, Chen X, Xu T, Hu S, Liang X, Feng M, Yang X, Ho M. Identification of the atypical cadherin FAT1 as a novel glypican-3 interacting protein in liver cancer cells. Sci Rep 2021; 11:40. [PMID: 33420124 PMCID: PMC7794441 DOI: 10.1038/s41598-020-79524-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glypican-3 (GPC3) is a cell surface heparan sulfate proteoglycan that is being evaluated as an emerging therapeutic target in hepatocellular carcinoma (HCC). GPC3 has been shown to interact with several extracellular signaling molecules, including Wnt, HGF, and Hedgehog. Here, we reported a cell surface transmembrane protein (FAT1) as a new GPC3 interacting protein. The GPC3 binding region on FAT1 was initially mapped to the C-terminal region (Q14517, residues 3662-4181), which covered a putative receptor tyrosine phosphatase (RTP)-like domain, a Laminin G-like domain, and five EGF-like domains. Fine mapping by ELISA and flow cytometry showed that the last four EGF-like domains (residues 4013-4181) contained a specific GPC3 binding site, whereas the RTP domain (residues 3662-3788) and the downstream Laminin G-2nd EGF-like region (residues 3829-4050) had non-specific GPC3 binding. In support of their interaction, GPC3 and FAT1 behaved concomitantly or at a similar pattern, e.g. having elevated expression in HCC cells, being up-regulated under hypoxia conditions, and being able to regulate the expression of EMT-related genes Snail, Vimentin, and E-Cadherin and promoting HCC cell migration. Taken together, our study provides the initial evidence for the novel mechanism of GPC3 and FAT1 in promoting HCC cell migration.
Collapse
Affiliation(s)
- Panpan Meng
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wangli Zhang
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Tong Xu
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Sheng Hu
- Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Xinjun Liang
- Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China.
| | - Xiaoqing Yang
- Hospital of Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
19
|
Sun R, Wang Z, Claus Henn B, Su L, Lu Q, Lin X, Wright RO, Bellinger DC, Kile M, Mazumdar M, Tellez-Rojo MM, Schnaas L, Christiani DC. Identification of novel loci associated with infant cognitive ability. Mol Psychiatry 2020; 25:3010-3019. [PMID: 30120420 PMCID: PMC6378130 DOI: 10.1038/s41380-018-0205-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/02/2022]
Abstract
It is believed that genetic factors play a large role in the development of many cognitive and neurological processes; however, epidemiological evidence for the genetic basis of childhood neurodevelopment is very limited. Identification of the genetic polymorphisms associated with early-stage neurodevelopment will help elucidate biological mechanisms involved in neuro-behavior and provide a better understanding of the developing brain. To search for such variants, we performed a genome-wide association study (GWAS) for infant mental and motor ability at two years of age with mothers and children recruited from cohorts in Bangladesh and Mexico. Infant ability was assessed using mental and motor composite scores calculated with country-specific versions of the Bayley Scales of Infant Development. A missense variant (rs1055153) located in the gene WWTR1 reached genome-wide significance in association with mental composite score (meta-analysis effect size of minor allele βmeta = -6.04; 95% CI: -8.13 to -3.94; P = 1.56×10-8). Infants carrying the minor allele reported substantially lower cognitive scores in both cohorts, and this variant is predicted to be in the top 0.3% of most deleterious substitutions in the human genome. Fine mapping and region-based association testing provided additional suggestive evidence that both WWTR1 and a second gene, LRP1B, were associated with infant cognitive ability. Comparisons with recently conducted GWAS in intelligence and educational attainment indicate that our phenotypes do not possess a high genetic correlation with either adolescent or adult cognitive traits, suggesting that infant neurological assessments should be treated as an independent outcome of interest. Additional functional studies and replication efforts in other cohorts may help uncover new biological pathways and genetic architectures that are crucial to the developing brain.
Collapse
Affiliation(s)
- Ryan Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Robert O Wright
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - David C Bellinger
- Department of Psychiatry, Harvard Medical School and Boston Children's Hospital, Boston, MA, 02115, USA
| | - Molly Kile
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Martha Maria Tellez-Rojo
- Center of Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - Lourdes Schnaas
- Center of Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Kronenberg NM, Tilston-Lunel A, Thompson FE, Chen D, Yu W, Dholakia K, Gather MC, Gunn-Moore FJ. Willin/FRMD6 Influences Mechanical Phenotype and Neuronal Differentiation in Mammalian Cells by Regulating ERK1/2 Activity. Front Cell Neurosci 2020; 14:552213. [PMID: 33088261 PMCID: PMC7498650 DOI: 10.3389/fncel.2020.552213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
Willin/FRMD6 is part of a family of proteins with a 4.1 ezrin-radixin-moesin (FERM) domain. It has been identified as an upstream activator of the Hippo pathway and, when aberrant in its expression, is associated with human diseases and disorders. Even though Willin/FRMD6 was originally discovered in the rat sciatic nerve, most studies have focused on its functional roles in cells outside of the nervous system, where Willin/FRMD6 is involved in the formation of apical junctional cell-cell complexes and in regulating cell migration. Here, we investigate the biochemical and biophysical role of Willin/FRMD6 in neuronal cells, employing the commonly used SH-SY5Y neuronal model cell system and combining biochemical measurements with Elastic Resonator Interference Stress Micropscopy (ERISM). We present the first direct evidence that Willin/FRMD6 expression influences both the cell mechanical phenotype and neuronal differentiation. By investigating cells with increased and decreased Willin/FRMD6 expression levels, we show that Willin/FRMD6 not only affects proliferation and migration capacity of cells but also leads to changes in cell morphology and an enhanced formation of neurite-like membrane extensions. These changes were accompanied by alterations of biophysical parameters such as cell force, the organization of actin stress fibers and the formation of focal adhesions. At the biochemical level, changes in Willin/FRMD6 expression inversely affected the activity of the extracellular signal-regulated kinases (ERK) pathway and downstream transcriptional factor NeuroD1, which seems to prime SH-SY5Y cells for retinoic acid (RA)-induced neuronal differentiation.
Collapse
Affiliation(s)
- Nils M Kronenberg
- Centre of Biophotonics and SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom.,Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Andrew Tilston-Lunel
- Centre of Biophotonics, School of Biology, University of St Andrews, St Andrews, United Kingdom.,Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Frances E Thompson
- Centre of Biophotonics and SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Doris Chen
- Centre of Biophotonics, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Wanjia Yu
- Centre of Biophotonics, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Kishan Dholakia
- Centre of Biophotonics and SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom.,Department of Physics, College of Science, Yonsei University, Seoul, South Korea
| | - Malte C Gather
- Centre of Biophotonics and SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom.,Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Frank J Gunn-Moore
- Centre of Biophotonics, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
21
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
22
|
Fat/Dachsous family cadherins in cell and tissue organisation. Curr Opin Cell Biol 2020; 62:96-103. [DOI: 10.1016/j.ceb.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
23
|
Abstract
Tendons connect muscles to bones to transfer the forces necessary for movement. Cell-cell junction proteins, cadherins and connexins, may play a role in tendon development and injury. In this review, we begin by highlighting current understanding of how cell-cell junctions may regulate embryonic tendon development and differentiation. We then examine cell-cell junctions in postnatal tendon, before summarizing the role of cadherins and connexins in adult tendons. More information exists regarding the role of cell-cell junctions in the formation and homeostasis of other musculoskeletal tissues, namely cartilage and bone. Therefore, to inform future tendon studies, we include a brief survey of cadherins and connexins in chondrogenesis and osteogenesis, and summarize how cell-cell junctions are involved in some musculoskeletal tissue pathologies. An enhanced understanding of how cell-cell junctions participate in tendon development, maintenance, and disease will benefit future regenerative strategies.
Collapse
Affiliation(s)
| | - Jett B Murray
- Biological Engineering, University of Idaho, Moscow, ID
| | | |
Collapse
|
24
|
Mann JE, Kulkarni A, Birkeland AC, Kafelghazal J, Eisenberg J, Jewell BM, Ludwig ML, Spector ME, Jiang H, Carey TE, Brenner JC. The molecular landscape of the University of Michigan laryngeal squamous cell carcinoma cell line panel. Head Neck 2019; 41:3114-3124. [PMID: 31090975 DOI: 10.1002/hed.25803] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinomas (LSCCs) have a high risk of recurrence and poor prognosis. Patient-derived cancer cell lines remain important preclinical models for advancement of new therapeutic strategies, and comprehensive characterization of these models is vital in the precision medicine era. METHODS We performed exome and transcriptome sequencing as well as copy number analysis of a panel of LSCC-derived cell lines that were established at the University of Michigan and are used in laboratories worldwide. RESULTS We observed a complex array of alterations consistent with those reported in The Cancer Genome Atlas head and neck squamous cell carcinoma project, including aberrations in PIK3CA, EGFR, CDKN2A, TP53, and NOTCH family and FAT1 genes. A detailed analysis of FAT family genes and associated pathways showed disruptions to these genes in most cell lines. CONCLUSIONS The molecular profiles we have generated indicate that as a whole, this panel recapitulates the molecular diversity observed in patients and will serve as useful guides in selecting cell lines for preclinical modeling.
Collapse
Affiliation(s)
- Jacqueline E Mann
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Aditi Kulkarni
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Judy Kafelghazal
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Julia Eisenberg
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Brittany M Jewell
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Megan L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hui Jiang
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thomas E Carey
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - J Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
25
|
Ahmed AF, de Bock CE, Sontag E, Hondermarck H, Lincz LF, Thorne RF. FAT1 cadherin controls neuritogenesis during NTera2 cell differentiation. Biochem Biophys Res Commun 2019; 514:625-631. [PMID: 31076104 DOI: 10.1016/j.bbrc.2019.04.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 02/09/2023]
Abstract
Fat1 cadherin is broadly expressed throughout the nervous system and has been implicated in neuronal differentiation. Here we examined the functional contribution of FAT1 during neuronal differentiation of the Ntera2 cell line model. FAT1 expression was increased during the retinoic acid (RA)-induced differentiation of NTera2 cells. Depletion of FAT1 with siRNA decreased the number of neurites produced after RA treatment. Moreover, FAT1 silencing also led to decreased Ser127-phosphorylation of YAP along with transcriptional increases in the Hippo target genes CTGF and ANKRD1, suggesting FAT1 alters Hippo signalling during differentiation. In the context of the Ntera2 model, FAT1 is required for efficient neuritogenesis, acting as a regulator of neurite formation during the early stages of differentiation.
Collapse
Affiliation(s)
- Abdulrzag F Ahmed
- Department of Pharmacology, Faculty of Pharmacy, Elmergib University, Alkhoms, Libya; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Randwick, NSW 2031, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia
| | - Lisa F Lincz
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton, New South Wales, 2305, Australia; Hunter Haematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW, 2298, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, 450053, Zhengzhou, China; School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia.
| |
Collapse
|
26
|
Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz Paula AF, Morris L, Selenica P, Eichenberger E, Shen R, Schultz N, Rosen N, Scaltriti M, Brogi E, Baselga J, Reis-Filho JS, Chandarlapaty S. Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell 2018; 34:893-905.e8. [PMID: 30537512 PMCID: PMC6294301 DOI: 10.1016/j.ccell.2018.11.006] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/04/2018] [Accepted: 11/10/2018] [Indexed: 12/16/2022]
Abstract
Cyclin dependent kinase 4/6 (CDK4/6) inhibitors (CDK4/6i) are effective in breast cancer; however, drug resistance is frequently encountered and poorly understood. We conducted a genomic analysis of 348 estrogen receptor-positive (ER+) breast cancers treated with CDK4/6i and identified loss-of-function mutations affecting FAT1 and RB1 linked to drug resistance. FAT1 loss led to marked elevations in CDK6, the suppression of which restored sensitivity to CDK4/6i. The induction of CDK6 was mediated by the Hippo pathway with accumulation of YAP and TAZ transcription factors on the CDK6 promoter. Genomic alterations in other Hippo pathway components were also found to promote CDK4/6i resistance. These findings uncover a tumor suppressor function of Hippo signaling in ER+ breast cancer and establish FAT1 loss as a mechanism of resistance to CDK4/6i.
Collapse
Affiliation(s)
- Zhiqiang Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSKCC, New York, NY 10065, USA; Weill-Cornell Medical College, New York, NY 10065, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Christina Ping
- Breast Medicine Service, Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Wilson Hsieh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Francisco Sanchez-Vega
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - David N Brown
- Department of Pathology, MSKCC, New York, NY 10065, USA
| | | | - Luc Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Pier Selenica
- Weill-Cornell Medical College, New York, NY 10065, USA
| | | | - Ronglai Shen
- Department of Epidemiology and Biostatistics, MSKCC, New York, NY 10065, USA
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Neal Rosen
- Breast Medicine Service, Department of Medicine, MSKCC, New York, NY 10065, USA; Weill-Cornell Medical College, New York, NY 10065, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Department of Pathology, MSKCC, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology, MSKCC, New York, NY 10065, USA
| | - Jose Baselga
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSKCC, New York, NY 10065, USA
| | | | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSKCC, New York, NY 10065, USA; Weill-Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
27
|
de Bock CE, Down M, Baidya K, Sweron B, Boyd AW, Fiers M, Burns GF, Molloy TJ, Lock RB, Soulier J, Taghon T, Van Vlierberghe P, Cools J, Holst J, Thorne RF. T-cell acute lymphoblastic leukemias express a unique truncated FAT1 isoform that cooperates with NOTCH1 in leukemia development. Haematologica 2018; 104:e204-e207. [PMID: 30514801 DOI: 10.3324/haematol.2018.198424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Charles E de Bock
- KU Leuven, Center for Human Genetics, Belgium .,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Michelle Down
- Leukaemia Foundation Laboratory, QIMR-Berghofer Medical Research Institute, Brisbane, Australia
| | - Kinsha Baidya
- School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Bram Sweron
- KU Leuven, Center for Human Genetics, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Andrew W Boyd
- Leukaemia Foundation Laboratory, QIMR-Berghofer Medical Research Institute, Brisbane, Australia
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Belgium
| | - Gordon F Burns
- Cancer Research Unit, The University of Newcastle, Callaghan, NSW, Australia
| | - Timothy J Molloy
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Jean Soulier
- U944 INSERM and Hematology laboratory, St-Louis Hospital, APHP, Hematology University Institute, University Paris-Diderot, France
| | - Tom Taghon
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Pieter Van Vlierberghe
- Center for Medical Genetics, Ghent University Hospital, Belgium Cancer Research Institute Ghent (CRIG), Belgium
| | - Jan Cools
- KU Leuven, Center for Human Genetics, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China .,School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| |
Collapse
|
28
|
Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat Commun 2018; 9:2372. [PMID: 29985391 PMCID: PMC6037762 DOI: 10.1038/s41467-018-04590-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of the Hippo signaling pathway and the consequent YAP1 activation is a frequent event in human malignancies, yet the underlying molecular mechanisms are still poorly understood. A pancancer analysis of core Hippo kinases and their candidate regulating molecules revealed few alterations in the canonical Hippo pathway, but very frequent genetic alterations in the FAT family of atypical cadherins. By focusing on head and neck squamous cell carcinoma (HNSCC), which displays frequent FAT1 alterations (29.8%), we provide evidence that FAT1 functional loss results in YAP1 activation. Mechanistically, we found that FAT1 assembles a multimeric Hippo signaling complex (signalome), resulting in activation of core Hippo kinases by TAOKs and consequent YAP1 inactivation. We also show that unrestrained YAP1 acts as an oncogenic driver in HNSCC, and that targeting YAP1 may represent an attractive precision therapeutic option for cancers harboring genomic alterations in the FAT1 tumor suppressor genes. Dysregulation of the Hippo signaling is a frequent event in human malignancies, but the molecular mechanisms remain unclear. Here the authors show that in head and neck squamous carcinoma, FAT1 interacts with the Hippo signaling complex, resulting in the activation of core Hippo kinases and YAP1 inactivation.
Collapse
|
29
|
Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017; 140:2860-2878. [PMID: 29053796 DOI: 10.1093/brain/awx251] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/05/2017] [Indexed: 12/17/2022] Open
Abstract
The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Duarri
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Michiel R Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juha M Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo J L M Smeets
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerben van der Vries
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Giovana B Bampi
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewout Brunt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly Ippel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berry Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique Vlak
- Department of Neurology, Medical Center Haaglanden and Bronovo-Nebo, Den Hague, The Netherlands
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Israel
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Jeong MG, Song H, Shin JH, Jeong H, Kim HK, Hwang ES. Transcriptional coactivator with PDZ-binding motif is required to sustain testicular function on aging. Aging Cell 2017; 16:1035-1042. [PMID: 28613007 PMCID: PMC5595677 DOI: 10.1111/acel.12631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Transcriptional coactivator with PDZ‐binding motif (TAZ) directly interacts with transcription factors and regulates their transcriptional activity. Extensive functional studies have shown that TAZ plays critical regulatory roles in stem cell proliferation, differentiation, and survival and also modulates the development of organs such as the lung, kidney, heart, and bone. Despite the importance of TAZ in stem cell maintenance, TAZ function has not yet been evaluated in spermatogenic stem cells of the male reproductive system. Here, we investigated the expression and functions of TAZ in mouse testis. TAZ was expressed in spermatogenic stem cells; however, its deficiency caused significant structural abnormalities, including atrophied tubules, widened interstitial space, and abnormal Leydig cell expansion, thereby resulting in lowered sperm counts and impaired fertility. Furthermore, TAZ deficiency increased the level of apoptosis and senescence in spermatogenic cells and Leydig cells upon aging. The expression of senescence‐associated β‐galactosidase (SA‐βgal), secretory phenotypes, and cyclin‐dependent kinase inhibitors (p16, p19, and p21) significantly increased in the absence of TAZ. TAZ downregulation in testicular cells further increased SA‐βgal and p21 expression induced by oxidative stress, whereas TAZ overexpression decreased p21 induction and prevented senescence. Mechanistic studies showed that TAZ suppressed DNA‐binding activity of p53 through a direct interaction and thus attenuated p53‐induced p21 gene transcription. Our results suggested that TAZ may suppress apoptosis and premature senescence in spermatogenic cells by inhibiting the p53‐p21 signaling pathway, thus playing important roles in the maintenance and control of reproductive function.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hyuna Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Ji Hyun Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hana Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
31
|
Chen S, Wang H, Huang YF, Li ML, Cheng JH, Hu P, Lu CH, Zhang Y, Liu N, Tzeng CM, Zhang ZM. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer. Mol Cancer 2017; 16:128. [PMID: 28724435 PMCID: PMC5518133 DOI: 10.1186/s12943-017-0693-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/10/2017] [Indexed: 01/27/2023] Open
Abstract
The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Han Wang
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Yu-Fan Huang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Ming-Li Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Jiang-Hong Cheng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Peng Hu
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China.,INNOVA Cell Theranostics/Clinics and TRANSLA Health Group, Yangzhou, Jiangsu, People's Republic of China
| | - Chuan-Hui Lu
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Ya Zhang
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Na Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China. .,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China. .,INNOVA Cell Theranostics/Clinics and TRANSLA Health Group, Yangzhou, Jiangsu, People's Republic of China.
| | - Zhi-Ming Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China. .,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.
| |
Collapse
|
32
|
Zhang P, Luo X, Guo Z, Xiong A, Dong H, Zhang Q, Liu C, Zhu J, Wang H, Yu N, Zhang J, Hong Y, Yang L, Huang J. Neuritin Inhibits Notch Signaling through Interacted with Neuralized to Promote the Neurite Growth. Front Mol Neurosci 2017. [PMID: 28642682 PMCID: PMC5462965 DOI: 10.3389/fnmol.2017.00179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuritin plays a key role in neural development and regeneration by promoting neurite outgrowth and synapse maturation. However, the mechanism of neuritin in modulating neurite growth has not been elucidated. Here, using yeast two-hybrid we screened and discovered the interaction of neuritin and neuralized (NEURL1), which is an important regulator that can activate Notch signaling through promoting endocytosis of Notch ligand. And then we identified the interaction of neuritin and neuralized by co-immunoprecipitation (IP) assays, and clarified that neuritin and NEURL1 were co-localized on the cell membrane of SH-SY5Y cells. Moreover, neuritin significantly suppressed Notch ligand Jagged1 (JAG1) endocytosis promoted by NEURL1, and then inhibited the activation of Notch receptor Notch intracellular domain (NICD) and decreased the expression of downstream gene hairy and enhancer of split-1 (HES1). Importantly, the effect of neuritin on inhibiting Notch signaling was rescued by NEURL1, which indicated that neuritin is an upstream and negative regulator of NEURL1 to inhibit Notch signaling through interaction with NEURL1. Notably, recombinant neuritin restored the retraction of neurites caused by activation of Notch, and neurite growth stimulated by neuritin was partially blocked by NEURL1. These findings establish neuritin as an upstream and negative regulator of NEURL1 that inhibits Notch signaling to promote neurite growth. This mechanism connects neuritin with Notch signaling, and provides a valuable foundation for further investigation of neuritin's role in neurodevelopment and neural plasticity.
Collapse
Affiliation(s)
- Pan Zhang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Xing Luo
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Zheng Guo
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Anying Xiong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Hongchang Dong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Qiao Zhang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Chunyan Liu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Haiyan Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Na Yu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Jinli Zhang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| | - Yu Hong
- School of Medicine, Hangzhou Normal UniversityHangzhou, China
| | - Lei Yang
- School of Medicine, Hangzhou Normal UniversityHangzhou, China
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, Shihezi University School of MedicineShihezi, China
| |
Collapse
|
33
|
de Bock CE, Hughes MR, Snyder K, Alley S, Sadeqzadeh E, Dun MD, McNagny KM, Molloy TJ, Hondermarck H, Thorne RF. Protein interaction screening identifies SH3RF1 as a new regulator of FAT1 protein levels. FEBS Lett 2017; 591:667-678. [PMID: 28129444 DOI: 10.1002/1873-3468.12569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 01/14/2023]
Abstract
Mutations and ectopic FAT1 cadherin expression are implicated in a broad spectrum of diseases ranging from developmental disorders to cancer. The regulation of FAT1 and its downstream signalling pathways remain incompletely understood. We hypothesized that identification of additional proteins interacting with the FAT1 cytoplasmic tail would further delineate its regulation and function. A yeast two-hybrid library screen carried out against the juxtamembrane region of the cytoplasmic tail of FAT1 identified the E3 ubiquitin-protein ligase SH3RF1 as the most frequently recovered protein-binding partner. Ablating SH3RF1 using siRNA increased cellular FAT1 protein levels and stabilized expression at the cell surface, while overexpression of SH3RF1 reduced FAT1 levels. We conclude that SH3RF1 acts as a negative post-translational regulator of FAT1 levels.
Collapse
Affiliation(s)
- Charles E de Bock
- VIB Center for the Biology of Disease, Leuven, Belgium.,Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Kimberly Snyder
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Steven Alley
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Elham Sadeqzadeh
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Matt D Dun
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Timothy J Molloy
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Hubert Hondermarck
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Rick F Thorne
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
34
|
Pfleger CM. The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease. Curr Top Dev Biol 2017; 123:181-228. [PMID: 28236967 DOI: 10.1016/bs.ctdb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hippo Pathway is a master regulatory network that regulates proliferation, cell growth, stemness, differentiation, and cell death. Coordination of these processes by the Hippo Pathway throughout development and in mature organisms in response to diverse external and internal cues plays a role in morphogenesis, in controlling organ size, and in maintaining organ homeostasis. Given the importance of these processes, the Hippo Pathway also plays an important role in organismal health and has been implicated in a variety of diseases including eye disease, cardiovascular disease, neurodegeneration, and cancer. This review will focus on Drosophila reports that identified the core components of the Hippo Pathway revealing specific downstream biological outputs of this complicated network. A brief description of mammalian reports will complement review of the Drosophila studies. This review will also survey upstream regulation of the core components with a focus on feedback mechanisms.
Collapse
Affiliation(s)
- Cathie M Pfleger
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
35
|
Panaccione A, Zhang Y, Mi Y, Mitani Y, Yan G, Prasad ML, McDonald WH, El-Naggar AK, Yarbrough WG, Ivanov SV. Chromosomal abnormalities and molecular landscape of metastasizing mucinous salivary adenocarcinoma. Oral Oncol 2017; 66:38-45. [PMID: 28249646 DOI: 10.1016/j.oraloncology.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mucinous adenocarcinoma of the salivary gland (MAC) is a lethal cancer with unknown molecular etiology and a high propensity to lymph node metastasis. Mostly due to its orphan status, MAC remains one of the least explored cancers that lacks cell lines and mouse models that could help translational and pre-clinical studies. Surgery with or without radiation remains the only treatment modality but poor overall survival (10-year, 44%) underscores the urgent need for mechanism-based therapies. METHODS We developed the first patient-derived xenograft (PDX) model for pre-clinical MAC studies and a cell line that produces aggressively growing tumors after subcutaneous injection into nude mice. We performed cytogenetic, exome, and proteomic profiling of MAC to identify driving mutations, therapeutic targets, and pathways involved in aggressive cancers based on TCGA database mining and GEO analysis. RESULTS We identified in MAC KRAS (G13D) and TP53 (R213X) mutations that have been previously reported as drivers in a variety of highly aggressive cancers. Somatic mutations were also found in KDM6A, KMT2D, and other genes frequently mutated in colorectal and other cancers: FAT1, NBEA, RELN, RLP1B, and ZFHX3. Proteomic analysis of MAC implied epigenetic up-regulation of a genetic program involved in proliferation and cancer stem cell maintenance. CONCLUSION Genomic and proteomic analyses provided the first insight into potential molecular drivers of MAC metastases pointing at common mechanisms of CSC propagation in aggressive cancers. The in vitro/in vivo models that we created should aid in the development and validation of new treatment strategies against MAC.
Collapse
Affiliation(s)
- Alex Panaccione
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yi Zhang
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yanfang Mi
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Guo Yan
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Manju L Prasad
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wendell G Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA; H&N Disease Center, Smilow Cancer Hospital, New Haven, CT, USA; Molecular Virology Program, Yale Cancer Center, New Haven, CT, USA
| | - Sergey V Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA.
| |
Collapse
|
36
|
Braun GS, Kuszka A, Dau C, Kriz W, Moeller MJ. Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2. Biochem Biophys Res Commun 2016; 472:88-94. [PMID: 26903299 DOI: 10.1016/j.bbrc.2016.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Mammalian Fat1 is a giant atypical cadherin/tumor suppressor involved in the regulation of cellular orientation, migration, and growth. Fat1 is implicated in the development of the brain, eye, and kidney. Altered expression or mutations of FAT1 are also associated with cancer and facioscapulohumeral muscular dystrophy (FSHD). Yet, the mechanistic functions of this pathway remain incompletely understood. Here, we report the identification of Sorbin-homology (SoHo) proteins as novel interaction partners of Fat1 by virtue of a yeast-two-hybrid screen. SoHo proteins play diverse roles as adaptor proteins in cell signaling, cell adhesion and sarcomere architecture, including altered expression in cancer and FSHD. Specifically, we found SoHo proteins CAP/ponsin-1 and -2 (Sorbs1) and ArgBP2 (Sorbs2) to interact with the cytoplasmic domain of Fat1. We mapped the interaction to a prolin-rich classic type II PXXP motif within Fat1 and to the three Src-homology (SH3) domains within SoHo proteins using mutant expression in yeast, pulldown assays, and cell culture. Functionally, endogenous ponsin-2 expression of NRK-52E cells at cellular leading edges was lost upon knockdown of Fat1. In summary, our data point to an interaction of Fat1 with SoHo proteins that is able to recruit SoHo proteins to sites of Fat1 expression.
Collapse
Affiliation(s)
- Gerald S Braun
- Division of Nephrology and Immunology, RWTH Aachen University, Germany.
| | | | - Cécile Dau
- Kaiser-Franz-Josef-Spital mit Gottfried von Preyer'schem Kinderspital, Vienna, Austria
| | - Wilhelm Kriz
- Institute for Neuroanatomy, Medical Faculty Mannheim of the University of Heidelberg, Germany
| | - Marcus J Moeller
- Division of Nephrology and Immunology, RWTH Aachen University, Germany
| |
Collapse
|