1
|
Cho J, Lu J, Kim D, Park Y. Determination of health status during aging using bending and pumping rates at various survival rates in Caenorhabditis elegans. Sci Rep 2025; 15:9057. [PMID: 40090929 PMCID: PMC11911424 DOI: 10.1038/s41598-025-93876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Alongside recognizing the importance of extending lifespan, an emerging focus has appeared on improving health in longevity, defined as healthspan. Aging is a process for all animal species; however, due to the time limitation in aging studies, Caenorhabditis elegans is an established model used for studying aging. In the current study, we evaluated various markers of muscle functions and determined that bending or pharyngeal pumping rate can represent worms' healthiness. A new concept named 'dynamic-scaled value' was developed, rescaling health markers to the corresponding markers in the control group at the same survival rate. Using these dynamic-scaled values of bending or pumping rates, we determined the health status of various treatments, including whether health improvement over aging depended on lifespan extension. Co-treatment of cranberry juice with Lactobacillus plantarum significantly improved health status during the mid-late life stage, while cranberry juice alone did not improve compared to the control. The dynamic-scaled value can be used as a complementary indicator to the quality-adjusted values to determine the health status. In addition, the dynamic-scaled values would allow us to compare results from others based on adjustments using their respective controls and relatively simple measurements to obtain the results.
Collapse
Affiliation(s)
- Junhyo Cho
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts Amherst, 01003, Amherst, MA, US
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, 01003, Amherst, MA, US.
| |
Collapse
|
2
|
Kadam O, Dalai S, Chauhan B, Guru RR, Mitra S, Raytekar N, Kumar R. Nanobiotechnology Unveils the Power of Probiotics: A Comprehensive Review on the Synergistic Role of Probiotics and Advanced Nanotechnology in Enhancing Geriatric Health. Cureus 2025; 17:e80478. [PMID: 40225478 PMCID: PMC11990693 DOI: 10.7759/cureus.80478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The geriatric population, comprising ages 65 and above, encounters distinct health obstacles because of physiological changes and heightened vulnerability to diseases. New technologies are being investigated to tackle the intricate health requirements of this population. Recent advancements in probiotics and nanotechnology offer promising strategies to enhance geriatric health by improving nutrient absorption, modulating gut microbiota, and delivering targeted therapeutic agents. Probiotics play a crucial role in maintaining gut homeostasis, reducing inflammation, and supporting metabolic functions. However, challenges such as limited viability and efficacy in harsh gastrointestinal conditions hinder their therapeutic potential. Advanced nanotechnology can overcome these constraints by enhancing the efficacy of probiotics through nano-encapsulation, controlled delivery, and improvement of bioavailability. This review explores the synergistic potential of probiotics and advanced nanotechnology in addressing age-related health concerns. It highlights key developments in probiotic formulations, nano-based delivery systems, and their combined impact on gut health, immunity, and neuroprotection. The convergence of probiotics and nanotechnology represents a novel and transformative approach to promoting healthy aging, paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Onkar Kadam
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Swayamprava Dalai
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Bhawna Chauhan
- School of Biotech Engineering and Food Technology, Chandigarh University, Chandigarh, IND
| | - Rashmi Ranjan Guru
- Hospital Administration, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
- Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Subhodip Mitra
- Hospital Administration, All India Institute of Medical Sciences, Kalyani, Kolkata, IND
| | - Namita Raytekar
- Medical Technology, Symbiosis Institute of Health Sciences, Pune, IND
| | - Rahul Kumar
- Hospital Administration, Symbiosis University Hospital & Research Centre, Pune, IND
| |
Collapse
|
3
|
Liu ZL, Wang YF, Zhu D, Quintela-Baluja M, Graham DW, Zhu YG, Qiao M. Increased Transmission of Antibiotic Resistance Occurs in a Soil Food Chain under Pesticide Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21989-22001. [PMID: 39647168 DOI: 10.1021/acs.est.4c07822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The rising spread of antibiotic resistance is a global concern, but the pathways of dissemination within soil ecosystems remain poorly understood. Here, we quantified the occurrence of antibiotic resistance genes (ARGs) in gut microbiomes of soil collembolans (Folsomia candida) under pesticide stress (zinc thiazole, ZT) and analyzed the trophic transfer of ARGs to the microbiomes of predatory mites (Hypoaspis aculeifer), natural predators of collembolans. High throughput quantitative PCR was used to quantify ARGs, whereas gut microbiomes of collembolans and mites were characterized using 16S rRNA gene amplicon sequencing, and potential pathogens were identified. Our results revealed that ZT exposure significantly elevated the abundance of ARGs (e.g., AAC(6')-Ir) in soil collembolan microbiomes. With the increase of ARGs in prey collembolan microbiomes, an increase of ARGs in predatory mite microbiomes was observed through trophic transfer. Mobile genetic elements (MGEs) significantly contribute to the transmission of ARGs within this food chain. Additionally, co-occurrence analysis indicated a strong association between gut resistomes and pathogens, such as Brevundimonas diminuta, in the collembolans and predatory mites. Overall, our study provides evidence for the dissemination of ARGs through the collembolan-predatory mite food chain following pesticide exposure, which is important for understanding the broader dynamics of antibiotic resistance spreading in soil ecosystems.
Collapse
Affiliation(s)
- Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | | | - David W Graham
- Department of Biosciences, Durham University, Durham DH1 3LE, U.K
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 PMCID: PMC11874070 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
5
|
Putri TZAD, Wahyudin E, Pratama MR, Fatiah D, Hardiyanti W, Chaeratunnisa R, Latada NP, Fatmawati F, Mudjahid M, Nainu F. Undernutrition-induced stunting-like phenotype in Drosophila melanogaster. NARRA J 2024; 4:e999. [PMID: 39816060 PMCID: PMC11731816 DOI: 10.52225/narra.v4i3.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Stunting resulting from undernutrition is a significant global health challenge, particularly in developing countries, yet its underlying mechanisms and consequences remain inadequately understood. This study utilizes Drosophila melanogaster as an in vivo model to investigate the molecular basis of stunting. Due to the conserved nature of signaling pathways between Drosophila and vertebrates, this organism serves as an effective model for studying growth disorders. The aim of this study was to establish a Drosophila model exhibiting a stunting-like phenotype and to elucidate the molecular mechanisms underlying this condition. The stunting phenotype was induced through dietary manipulation, involving a standard nutrient-rich diet (100%) and treatment diets with reduced concentrations of sucrose, glucose, yeast, and cornmeal at 50%, 25%, and 12.5%. Phenotypic assessments included measurements of larval body size, fecundity, survival rates, and locomotor activity, alongside molecular analyses of gene expression related to metabolism, cell proliferation, and survival, using RT-qPCR. Results demonstrated that undernutrition profoundly affected D. melanogaster, causing growth retardation, reduced larval body size, diminished fecundity, and lower survival rates, though locomotor function remained unaffected. Molecular analysis revealed a significant decrease in the expression of the totA gene and notable increases in the expression of dilp5, srl, and indy genes, with no significant changes observed in the expression of the pepck gene. These findings indicate that undernutrition induces a stunting-like phenotype, likely driven by alterations in the expression of genes associated with metabolism, cell proliferation, and survival. Overall, this study establishes D. melanogaster as a valuable in vivo model for studying stunting-like phenotypes resulting from nutritional deficiencies and provides insights into the molecular pathways involved in growth impairment.
Collapse
Affiliation(s)
- Tenri ZAD. Putri
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Muhammad R. Pratama
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Dewita Fatiah
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Widya Hardiyanti
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | | | - Nadila P. Latada
- Unhas Fly Research Group, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | | | - Mukarram Mudjahid
- Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
- Unhas Fly Research Group, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
6
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
7
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
8
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
9
|
Nigg JC, Castelló-Sanjuán M, Blanc H, Frangeul L, Mongelli V, Godron X, Bardin AJ, Saleh MC. Viral infection disrupts intestinal homeostasis via Sting-dependent NF-κB signaling in Drosophila. Curr Biol 2024; 34:2785-2800.e7. [PMID: 38823381 DOI: 10.1016/j.cub.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Host-microbe interactions influence intestinal stem cell (ISC) activity to modulate epithelial turnover and composition. Here, we investigated the functional impacts of viral infection on intestinal homeostasis and the mechanisms by which viral infection alters ISC activity. We report that Drosophila A virus (DAV) infection disrupts intestinal homeostasis in Drosophila by inducing sustained ISC proliferation, resulting in intestinal dysplasia, loss of gut barrier function, and reduced lifespan. We found that additional viruses common in laboratory-reared Drosophila also promote ISC proliferation. The mechanism of DAV-induced ISC proliferation involves progenitor-autonomous epidermal growth factor receptor (EGFR) signaling, c-Jun N-terminal kinase (JNK) activity in enterocytes, and requires Sting-dependent nuclear factor κB (NF-κB) (Relish) activity. We further demonstrate that activating Sting-Relish signaling is sufficient to induce ISC proliferation, promote intestinal dysplasia, and reduce lifespan in the absence of infection. Our results reveal that viral infection can significantly disrupt intestinal physiology, highlight a novel role for Sting-Relish signaling, and support a role for viral infection in aging.
Collapse
Affiliation(s)
- Jared C Nigg
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Mauro Castelló-Sanjuán
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Vanesa Mongelli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Xavier Godron
- DNA Script SAS, 67 Avenue de Fontainebleau, 94270 Le Kremlin-Bicêtre, France
| | - Allison J Bardin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| |
Collapse
|
10
|
Rodwell M, Chtarbanova S. STING-NF-κB signaling: Viral infection drives gut aging effects. Curr Biol 2024; 34:R618-R620. [PMID: 38981424 DOI: 10.1016/j.cub.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Viral infection causes an increase in age-related intestinal pathologies. New research finds that oral viral infection leads to intestinal stem-cell proliferation and a decrease in lifespan in Drosophila melanogaster that depends on Sting-NF-κB signaling.
Collapse
Affiliation(s)
- Michael Rodwell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL 35487, USA; Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
11
|
Khan I, Bu R, Ali Z, Iqbal MS, Shi H, Ding L, Hong M. Metagenomics Analysis Reveals the Composition and Functional Differences of Fecal Microbiota in Wild, Farm, and Released Chinese Three-Keeled Pond Turtles ( Mauremys reevesii). Animals (Basel) 2024; 14:1750. [PMID: 38929370 PMCID: PMC11201187 DOI: 10.3390/ani14121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota's composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species.
Collapse
Affiliation(s)
- Ijaz Khan
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Rongping Bu
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| | - Zeeshan Ali
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Muhammad Shahid Iqbal
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Haitao Shi
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Li Ding
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| | - Meiling Hong
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan Key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (I.K.); (R.B.)
| |
Collapse
|
12
|
Peng N, Wang J, Zhu H, Liu Z, Ren J, Li W, Wang Y. Protective effect of carbon dots as antioxidants on intestinal inflammation by regulating oxidative stress and gut microbiota in nematodes and mouse models. Int Immunopharmacol 2024; 131:111871. [PMID: 38492339 DOI: 10.1016/j.intimp.2024.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic colitis disease with increasing incidence and prevalence year by year. The single efficacy and significant side effects of traditional IBD treatment drugs have promoted the flourishing development of new drugs. Inspired by many health benefits of carbon dots (CDs) based nanomedicine in biomedical applications, a metal-free carbon dots (CP-CDs) was synthesized from citric acid and polyethylene polyamine to treat colitis. Oxidative stress tests at the cellular and nematode levels demonstrated CP-CDs have good antioxidant effects, while the toxicity of CP-CDs to cells and nematodes is low. CP-CDs were further applied to dextran sodium sulfate (DSS)-induced colitis in mice models, and it was found that CP-CDs can reduce the disease activity index (DAI) score of colon tissue and restore the intestinal barrier. Further, the anti-colitis mechanisms of CP-CDs were explored, one of which is to regulate intestinal oxidative stress in inflammatory mice, further reducing the expression of inflammatory cytokines, and thus alleviating colitis. Notably, 16S rRNA sequence analysis showed that the abundance of beneficial bacteria (Ligilactobacillus and Enterorhabdus) in the intestinal tract increased, while that of harmful bacteria (unclassified_Clostridia_UCG_014) decreased after CP-CDs treatment, indicating that CP-CDs rebalancing the gut microbiota destroyed by DSS is another important mechanism. In short, these non-toxic carbon dots not only have the potential for multi-factor combined relief of colitis but also offer an alternative therapy medicine for patients suffering from IBD.
Collapse
Affiliation(s)
- Nannan Peng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| | - Haimei Zhu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ziyue Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jiayi Ren
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Wenjing Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
13
|
Forsyth CB, Shaikh M, Engen PA, Preuss F, Naqib A, Palmen BA, Green SJ, Zhang L, Bogin ZR, Lawrence K, Sharma D, Swanson GR, Bishehsari F, Voigt RM, Keshavarzian A. Evidence that the loss of colonic anti-microbial peptides may promote dysbiotic Gram-negative inflammaging-associated bacteria in aging mice. FRONTIERS IN AGING 2024; 5:1352299. [PMID: 38501032 PMCID: PMC10945560 DOI: 10.3389/fragi.2024.1352299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Introduction: Aging studies in humans and mice have played a key role in understanding the intestinal microbiome and an increased abundance of "inflammaging" Gram-negative (Gn) bacteria. The mechanisms underlying this inflammatory profile in the aging microbiome are unknown. We tested the hypothesis that an aging-related decrease in colonic crypt epithelial cell anti-microbial peptide (AMP) gene expression could promote colonic microbiome inflammatory Gn dysbiosis and inflammaging. Methods: As a model of aging, C57BL/6J mice fecal (colonic) microbiota (16S) and isolated colonic crypt epithelial cell gene expression (RNA-seq) were assessed at 2 months (mth) (human: 18 years old; yo), 15 mth (human: 50 yo), and 25 mth (human: 84 yo). Informatics examined aging-related microbial compositions, differential colonic crypt epithelial cell gene expressions, and correlations between colonic bacteria and colonic crypt epithelial cell gene expressions. Results: Fecal microbiota exhibited significantly increased relative abundances of pro-inflammatory Gn bacteria with aging. Colonic crypt epithelial cell gene expression analysis showed significant age-related downregulation of key AMP genes that repress the growth of Gn bacteria. The aging-related decrease in AMP gene expressions is significantly correlated with an increased abundance in Gn bacteria (dysbiosis), loss of colonic barrier gene expression, and senescence- and inflammation-related gene expression. Conclusion: This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Breanna A. Palmen
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Stefan J. Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Zlata R. Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Kristi Lawrence
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Garth R. Swanson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Faraz Bishehsari
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
14
|
Lee JH. Host-Microbe Interactions Regulate Intestinal Stem Cells and Tissue Turnover in Drosophila. Int J Stem Cells 2024; 17:51-58. [PMID: 38123486 PMCID: PMC10899887 DOI: 10.15283/ijsc23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, Korea
- The Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Dornan AJ, Halberg KV, Beuter LK, Davies SA, Dow JAT. Compromised junctional integrity phenocopies age-dependent renal dysfunction in Drosophila Snakeskin mutants. J Cell Sci 2023; 136:jcs261118. [PMID: 37694602 PMCID: PMC10565245 DOI: 10.1242/jcs.261118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of 'tight' septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood. Here, we demonstrate that the Drosophila renal (Malpighian) tubules undergo an age-dependent decline in secretory capacity, which correlates with mislocalisation of SJ proteins and progressive degeneration in cellular morphology and tissue homeostasis. Acute loss of the SJ protein Snakeskin in adult tubules induced progressive changes in cellular and tissue architecture, including altered expression and localisation of junctional proteins with concomitant loss of cell polarity and barrier integrity, demonstrating that compromised junctional integrity is sufficient to replicate these ageing-related phenotypes. Taken together, our work demonstrates a crucial link between epithelial barrier integrity, tubule transport competence, renal homeostasis and organismal viability, as well as providing novel insights into the mechanisms underpinning ageing and renal disease.
Collapse
Affiliation(s)
- Anthony J. Dornan
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kenneth V. Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Liesa-Kristin Beuter
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Animal Ecology and Systematics, Justus-Liebig-University Giessen, Giessen D-35392, Germany
| | - Shireen-Anne Davies
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A. T. Dow
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Thorstensen MJ, Weinrauch AM, Bugg WS, Jeffries KM, Anderson WG. Tissue-specific transcriptomes reveal potential mechanisms of microbiome heterogeneity in an ancient fish. Database (Oxford) 2023; 2023:baad055. [PMID: 37590163 PMCID: PMC10434735 DOI: 10.1093/database/baad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
The lake sturgeon (Acipenser fulvescens) is an ancient, octoploid fish faced with conservation challenges across its range in North America, but a lack of genomic resources has hindered molecular research in the species. To support such research, we created a transcriptomic database from 13 tissues: brain, esophagus, gill, head kidney, heart, white muscle, liver, glandular stomach, muscular stomach, anterior intestine, pyloric cecum, spiral valve and rectum. The transcriptomes for each tissue were sequenced and assembled individually from a mean of 98.3 million (±38.9 million SD) reads each. In addition, an overall transcriptome was assembled and annotated with all data used for each tissue-specific transcriptome. All assembled transcriptomes and their annotations were made publicly available as a scientific resource. The non-gut transcriptomes provide important resources for many research avenues. However, we focused our analysis on messenger ribonucleic acid (mRNA) observations in the gut because the gut represents a compartmentalized organ system with compartmentalized functions, and seven of the sequenced tissues were from each of these portions. These gut-specific analyses were used to probe evidence of microbiome regulation by studying heterogeneity in microbial genes and genera identified from mRNA annotations. Gene set enrichment analyses were used to reveal the presence of photoperiod and circadian-related transcripts in the pyloric cecum, which may support periodicity in lake sturgeon digestion. Similar analyses were used to identify different types of innate immune regulation across the gut, while analyses of unique transcripts annotated to microbes revealed heterogeneous genera and genes among different gut tissues. The present results provide a scientific resource and information about the mechanisms of compartmentalized function across gut tissues in a phylogenetically ancient vertebrate. Database URL: https://figshare.com/projects/Lake_Sturgeon_Transcriptomes/133143.
Collapse
Affiliation(s)
- Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - William S Bugg
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
18
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
19
|
Salazar AM, Aparicio R, Clark RI, Rera M, Walker DW. Intestinal barrier dysfunction: an evolutionarily conserved hallmark of aging. Dis Model Mech 2023; 16:dmm049969. [PMID: 37144684 PMCID: PMC10184675 DOI: 10.1242/dmm.049969] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
A major challenge in the biology of aging is to understand how specific age-onset pathologies relate to the overall health of the organism. The integrity of the intestinal epithelium is essential for the wellbeing of the organism throughout life. In recent years, intestinal barrier dysfunction has emerged as an evolutionarily conserved feature of aged organisms, as reported in worms, flies, fish, rodents and primates. Moreover, age-onset intestinal barrier dysfunction has been linked to microbial alterations, elevated immune responses, metabolic alterations, systemic health decline and mortality. Here, we provide an overview of these findings. We discuss early work in the Drosophila model that sets the stage for examining the relationship between intestinal barrier integrity and systemic aging, then delve into research in other organisms. An emerging concept, supported by studies in both Drosophila and mice, is that directly targeting intestinal barrier integrity is sufficient to promote longevity. A better understanding of the causes and consequences of age-onset intestinal barrier dysfunction has significant relevance to the development of interventions to promote healthy aging.
Collapse
Affiliation(s)
- Anna M. Salazar
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Ricardo Aparicio
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Rebecca I. Clark
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Michael Rera
- Université de Paris, Inserm U1284, Center for Research and Interdisciplinarity, Paris 75004, France
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
The Crosstalk between Microbiome and Mitochondrial Homeostasis in Neurodegeneration. Cells 2023; 12:cells12030429. [PMID: 36766772 PMCID: PMC9913973 DOI: 10.3390/cells12030429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are highly dynamic organelles that serve as the primary cellular energy-generating system. Apart from ATP production, they are essential for many biological processes, including calcium homeostasis, lipid biogenesis, ROS regulation and programmed cell death, which collectively render them invaluable for neuronal integrity and function. Emerging evidence indicates that mitochondrial dysfunction and altered mitochondrial dynamics are crucial hallmarks of a wide variety of neurodevelopmental and neurodegenerative conditions. At the same time, the gut microbiome has been implicated in the pathogenesis of several neurodegenerative disorders due to the bidirectional communication between the gut and the central nervous system, known as the gut-brain axis. Here we summarize new insights into the complex interplay between mitochondria, gut microbiota and neurodegeneration, and we refer to animal models that could elucidate the underlying mechanisms, as well as novel interventions to tackle age-related neurodegenerative conditions, based on this intricate network.
Collapse
|
21
|
Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun Biol 2022; 5:1340. [PMID: 36477191 PMCID: PMC9729297 DOI: 10.1038/s42003-022-04295-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The human microbiota is believed to influence health. Microbiome dysbiosis may be linked to neurological conditions like Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We report the ability of a probiotic bacterial strain in halting neurodegeneration phenotypes. We show that Lacticaseibacillus rhamnosus HA-114 is neuroprotective in C. elegans models of amyotrophic lateral sclerosis and Huntington's disease. Our results show that neuroprotection from L. rhamnosus HA-114 is unique from other L. rhamnosus strains and resides in its fatty acid content. Neuroprotection by L. rhamnosus HA-114 requires acdh-1/ACADSB, kat-1/ACAT1 and elo-6/ELOVL3/6, which are associated with fatty acid metabolism and mitochondrial β-oxidation. Our data suggest that disrupted lipid metabolism contributes to neurodegeneration and that dietary intervention with L. rhamnosus HA-114 restores lipid homeostasis and energy balance through mitochondrial β-oxidation. Our findings encourage the exploration of L. rhamnosus HA-114 derived interventions to modify the progression of neurodegenerative diseases.
Collapse
|
22
|
Liu X, Fan Y, Mo T, Chen Q, Chen W. Comparative Study of the Gut Microbiota Community between the Farmed and Wild Mastacembelus armatus (Zig-Zag Eel). Metabolites 2022; 12:metabo12121193. [PMID: 36557231 PMCID: PMC9781078 DOI: 10.3390/metabo12121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cultivated and wild fish of the same species may exhibit different characteristics, such as in their flavor, growth and development. In some wild fish species, reproductive functions may even be retarded when wild individuals are moved into cultivated conditions. The gut microbiota may be one of the reasons for these phenomena as they have been reported to play an important role in host growth and development, as well as in normal reproductive functioning. Here, we used Mastacembelus armatus (zig-zag eel), a freshwater fish which shows anormal reproductive function in cultivated conditions, as a model to comparatively study the diversity, structure and function of gut microbiota in cultivated and wild groups by analyzing the 16S rRNA sequence of each group's microbiota. The results showed that Proteobacteria and Firmicutes were the dominant phyla in the gut microbiota of wild (accounting for 45.8% and 20.3% of the total number of Proteobacteria and Firmicutes, respectively) and farmed (accounting for 21.4% and 75.6% of the total number of Proteobacteria and Firmicutes, respectively) zig-zag eel. Wild zig-zag eels (Shannon = 3.56; Chao = 583.08; Ace = 579.18) had significantly higher alpha diversity than those in cultivated populations (Shannon = 2.09; Chao = 85.45; Ace = 86.14). A significant difference in the community structure of the gut microbiota was found between wild and cultivated populations. The wild zig-zag eel showed a high abundance of functional pathways in metabolism, genetic information processing and organismal system function. These results suggested that the diversity and function of gut microbiota in zig-zag eel were correlated with their diet and habitat conditions, which indicated that the management of cultivated populations should mimic the wild diet and habitat to improve the productivity and quality of farmed zig-zag eel.
Collapse
|
23
|
Mapping Genetics and Epigenetics to Explore the Pathways beyond the Correlated Ageing Phenotype. Genes (Basel) 2022; 13:genes13112169. [DOI: 10.3390/genes13112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Ageing is defined by the decline in the biological and physiological functions over time, which leads to health problems and increases risks of diseases. The modern societies are characterised by an ageing population, which represents challenges for the healthcare system. Within this context, there is a need to better understand the biological mechanisms beyond ageing in order to optimise geriatric therapies and medical approaches. Herein, we suggest exploring the genetic and epigenetic patterns related to ageing and correlate them with the ageing-related phenotype of the biological entities in order to establish mechanistic links and map the molecular pathways. Such links would have diverse implications in basic research, in clinics, as well as for therapeutic studies.
Collapse
|
24
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
25
|
Zhang J, Yi C, Han J, Ming T, Zhou J, Lu C, Li Y, Su X. Gut microbiome and metabolome analyses reveal the protective effect of special high-docosahexaenoic acid tuna oil on d-galactose-induced aging in mice. Food Sci Nutr 2022; 10:3814-3827. [PMID: 36348794 PMCID: PMC9632196 DOI: 10.1002/fsn3.2978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/04/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2023] Open
Abstract
Aging is closely related to altered gut function and its microbiome composition. To elucidate the mechanisms involved in the preventive effect of special high-docosahexaenoic acid tuna oil (HDTO) on senescence, the effects of different doses of HDTO on the gut microbiome and metabolome of d-galactose-induced aging mice were studied. Deferribacteres and Tenericutes and uridine might be used as indicator bacteria and characteristic metabolites to identify aging, respectively. HDTO markedly improved the impaired memory and antioxidant abilities induced by d-galactose. At the phylum level, the abundance of Firmicutes and Tenericutes was significantly increased upon d-galactose induction, while that of Bacteroidetes, Proteobacteria, and Deferribacteres was significantly decreased. At the genus level, the variation mainly presented as an increase in the abundance of the Firmicutes genera Ligilactobacillus, Lactobacillus, and Erysipelothrix, the decrease in the abundance of the Bacteroidetes genera Bacteroides and Alistipes, the Firmicutes genus Dielma, and the Deferribacteres genus Mucispirillum. HDTO supplementation reversed the alterations in the intestinal flora by promoting the proliferation of beneficial flora during the aging process; the metabolic pathways, such as glycine-serine-threonine metabolism, valine-leucine-isoleucine biosynthesis, and some metabolic pathways involved in uridine, were also partially restored. Furthermore, the correlation analysis illustrated an obvious correlation between gut microbiota, its metabolites, and aging-related indices. Moreover, it is worth noting that the metabolic regulation by dietary intervention varied with different HDTO doses and did not present a simple additive effect; indeed, each dose showed a unique modulation mechanism.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
- Faculty of Food ScienceZhejiang Pharmaceutical CollegeNingboChina
| | - Congmin Yi
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Tinghong Ming
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Ye Li
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Argo‐productsNingbo UniversityNingboChina
- School of Marine ScienceNingbo UniversityNingboChina
| |
Collapse
|
26
|
Zhu X, Zhang Z, Yang X, Qi L, Guo Y, Tang X, Xie Y, Chen D. RETRACTED: Improvement of extraction from Hericium erinaceus on the gut-brain axis in AD-like mice. Brain Res 2022; 1793:148038. [PMID: 35934088 DOI: 10.1016/j.brainres.2022.148038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/21/2022] [Accepted: 07/30/2022] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the lead author, Dr. Diling Chen. Dr. Chen alerted the Editor-in-Chief that data previously published in Aging (Albany NY). 2020 Jan 6; 12:260-287 https://doi.org/10.18632/aging.102614 were accidently reused in the above-referenced Brain Research article. Dr. Chen is a co-author on both articles. The reused content pertains to the fecal transplantation data of the model group, represented by Figure 2 in the Aging article and Figure 5 in the Brain Research article. Dr. Chen did not carefully check the data published by the team before the final submission, resulting in repeated use. The lead author states further that it was an honest mistake, and the team had no intention to plagiarize previously published material. All authors were notified and all are in agreement with the retraction. The authors apologize to the scientific community for any inconvenience or challenges resulting from the publication and retraction of this article.
Collapse
Affiliation(s)
- Xiangxiang Zhu
- Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou 510000, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zilei Zhang
- Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou 510000, China
| | - Xin Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Longkai Qi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yinrui Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| |
Collapse
|
27
|
Liu F, Duan M, Fu H, Zhao G, Han Y, Lan F, Ahmed Z, Cao G, Li Z, Ma D, Wang T. Orthopedic Surgery Causes Gut Microbiome Dysbiosis and Intestinal Barrier Dysfunction in Prodromal Alzheimer Disease Patients: A Prospective Observational Cohort Study. Ann Surg 2022; 276:270-280. [PMID: 35766370 PMCID: PMC9259038 DOI: 10.1097/sla.0000000000005489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate gut microbiota and intestinal barrier function changes after orthopedic surgery in elderly patients with either normal cognition (NC) or a prodromal Alzheimer disease phenotype (pAD) comprising either subjective cognitive decline (SCD) or amnestic mild cognitive impairment (aMCI). BACKGROUND Homeostatic disturbances induced by surgical trauma and/or stress can potentially alter the gut microbiota and intestinal barrier function in elderly patients before and after orthopedic surgery. METHODS In this prospective cohort study, 135 patients were subject to preoperative neuropsychological assessment and then classified into: NC (n=40), SCD (n=58), or aMCI (n=37). Their gut microbiota, bacterial endotoxin (lipopolysaccharide), tight junction (TJ) protein, and inflammatory cytokines in blood were measured before surgery and on postsurgical day 1, 3, and 7 (or before discharge). RESULTS The short-chain fatty acid (SCFA)-producing bacteria were lower while the gram-negative bacteria, lipopolysaccharide and TJ were higher preoperatively in both the SCD and aMCI (pAD) groups compared with the NC group. After surgery, a decrease in SCFA-producing bacteria, and an increase in both gram-negative bacteria and plasma claudin were significant in the pAD groups relative to the NC group. SCFA-producing bacteria were negatively correlated with TJ and cytokines in pAD patients on postsurgical day 7. Furthermore, surgery-induced perioperative metabolic stress and inflammatory responses were associated with gut microbiota alterations. CONCLUSIONS Surgery exacerbates both preexisting microbiota dysbiosis and intestinal barrier dysfunction in pAD patients, all of which may be associated with systemic inflammation and, in turn, may lead to further cognitive deterioration.
Collapse
Affiliation(s)
- Fangyan Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Mei Duan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fei Lan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Zara Ahmed
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Institute of Sleep and Consciousness Disorders, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms. Vet Sci 2022; 9:vetsci9080380. [PMID: 35893773 PMCID: PMC9331562 DOI: 10.3390/vetsci9080380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests, such as cockroaches, snake, crocodiles, water monitor lizards, etc., come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves against pathogens. Besides the immunity they may confer, bacteria associated with animals/pests may offer a potential source of novel antibacterial agents. This paper discusses the current knowledge of bacteria isolated from land and marine animals with antibacterial properties and proposes untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules. Abstract The development of novel bioactive molecules is urgently needed, especially with increasing fatalities occurring due to infections by bacteria and escalating numbers of multiple-drug-resistant bacteria. Several lines of evidence show that the gut microbiome of cockroaches, snakes, crocodiles, water monitor lizards, and other species may possess molecules that are bioactive. As these animals are routinely exposed to a variety of microorganisms in their natural environments, it is likely that they have developed methods to counter these microbes, which may be a contributing factor in their persistence on the planet for millions of years. In addition to the immune system, the gut microbiota of a host may thwart colonization of the gastro-intestine by pathogenic and/or foreign microorganisms through two mechanisms: (i) production of molecules with antibacterial potential targeting foreign microorganisms, or (ii) production of molecules that trigger host immunity targeting foreign microorganisms that penetrate the host. Herein, we discuss and deliberate on the current literature examining antibacterial activities that stem from the gut bacteria of animals such as crocodiles, cockroaches, and water monitor lizards, amongst other interesting species, which likely encounter a plethora of microorganisms in their natural environments. The overall aim is to unveil a potential library of novel bioactive molecules for the benefit of human health and for utilization against infectious diseases.
Collapse
|
29
|
Landis GN, Riggan L, Bell HS, Vu W, Wang T, Wang I, Tejawinata FI, Ko S, Tower J. Mifepristone Increases Life Span in Female Drosophila Without Detectable Antibacterial Activity. FRONTIERS IN AGING 2022; 3:924957. [PMID: 35935727 PMCID: PMC9354577 DOI: 10.3389/fragi.2022.924957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
31
|
Zhang S, Ning R, Zeng B, Deng F, Kong F, Guo W, Zhao J, Li Y. Gut Microbiota Composition and Metabolic Potential of Long-Living People in China. Front Aging Neurosci 2022; 14:820108. [PMID: 35875797 PMCID: PMC9300991 DOI: 10.3389/fnagi.2022.820108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Individuals with naturally long-life spans have been extensively studied to gain a greater understanding of what factors contribute to their overall health and ability to delay or avoid certain diseases. Our previous work showed that gut microbiota can be a new avenue in healthy aging studies. In the present study, a total of 86 Chinese individuals were assigned into three groups: the long-living group (90 + years old; n = 28), the elderly group (65–75 years old; n = 31), and the young group (24–48 years old; n = 27). These groups were used to explore the composition and functional genes in the microbiota community by using the metagenomic sequencing method. We found that long-living individuals maintained high diversity in gene composition and functional profiles. Furthermore, their microbiota displays less inter-individual variation than that of elderly adults. In the taxonomic composition, it was shown that long-living people contained more short-chain fatty acid (SCFA)-producing bacteria and a decrease in certain pathogenic bacteria. Functional analysis also showed that the long-living people were enriched in metabolism metabolites methanol, trimethylamine (TMA), and CO2 to methane, and lysine biosynthesis, but the genes related to riboflavin (vitamin B2) metabolism and tryptophan biosynthesis were significantly reduced in long-living individuals. Further, we found that long-living people with enriched SCFA- and lactic-producing bacteria and related genes, highly centered on producing key lactic acid genes (ldhA) and the genes of lysine that are metabolized to the butyrate pathway. In addition, we compared the gut microbiota signatures of longevity in different regions and found that the composition of the gut microbiota of the long-lived Chinese and Italian people was quite different, but both groups were enriched in genes related to methane production and glucose metabolism. In terms of SCFA metabolism, the Chinese long-living people were enriched with bacteria and genes related to butyric acid production, while the Italian long-living people were enriched with more acetic acid-related genes. These findings suggest that the gut microbiota of Chinese long-living individuals include more SCFA-producing bacteria and genes, metabolizes methanol, TMA, and CO2, and contains fewer pathogenic bacteria, thereby potentially contributing to the healthy aging of humans.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruihong Ning
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Ying Li,
| |
Collapse
|
32
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
33
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
34
|
Tang S, Li Y, Huang C, Yan S, Li Y, Chen Z, Wu Z. Comparison of Gut Microbiota Diversity Between Captive and Wild Tokay Gecko (Gekko gecko). Front Microbiol 2022; 13:897923. [PMID: 35783386 PMCID: PMC9248866 DOI: 10.3389/fmicb.2022.897923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Captive animals and wild animals may exhibit different characteristics due to the heterogeneity of their living environments. The gut microbiota play an important role in the digestion and absorption, energy metabolism, immune regulation, and physiological health of the host. However, information about the gut microbiota of captive and wild Gekko gecko is currently limited. To determine the difference in gut microbiota community composition, diversity, and structure between captive and wild geckos, we used the Illumina miseq platform to conduct high-throughput sequencing and bioinformatics analysis of the v3–v4 hypervariable region of 16S rRNA in 54 gecko samples. Our results showed that Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant gut microbiota phyla of the gecko. The dominant genera comprised mainly Pseudomonas, Burkholderia-caballeronia-paraburkholderia, Ralstonia, Romboutsia, and Bacteroides. Captive geckos had significantly higher alpha diversity and potential pathogenic bacteria than wild populations. Moreover, significant differences in beta diversity of gut microbiota were observed between two populations. Functional prediction analysis showed that the relative abundance of functional pathways of wild geckos was more higher in metabolism, genetic information processing and organismal system function than those in captive geckos. Total length significantly affected gut microbial community (R2 = 0.4527, p = 0.001) and explained 10.45% of the total variation for gut microbial community variance between two groups. These results may be related to differences in diet and living environment between two populations, suggesting that the management of captive populations should mimic wild environments to the greatest extent possible to reduce the impact on their gut microbiota.
Collapse
Affiliation(s)
- Sanqi Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Chengming Huang
- Key Laboratory of Animal Ecology and Conservation, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shufa Yan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yongtai Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zening Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- Zening Chen,
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- *Correspondence: Zhengjun Wu,
| |
Collapse
|
35
|
Hong S, Sun Y, Sun D, Wang C. Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections. iScience 2022; 25:104408. [PMID: 35663020 PMCID: PMC9157200 DOI: 10.1016/j.isci.2022.104408] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
In contrast to the well-characterized gut microbiomes, the composition and function of the insect body-surface microbiotas are still elusive and highly underexplored. Here we report the dynamic features of the Drosophila melanogaster surface microbiomes. It was found that the microbiomes assembled on fly surfaces could defend insects against fungal parasitic infections. The substantial increase of bacterial loads occurred within 10 days of fly eclosion, especially the expansion of Gilliamella species. The culturable bacteria such as Lactiplantibacillus plantarum could effectively inhibit fungal spore germinations, and the gnotobiotic addition of the isolated bacteria could substantially delay fungal infection of axenic flies. We found that the fly tarsal segments were largely accumulated with bacterial cells, which could accelerate cell dispersal onto different body parts to deter fungal spore germinations. Our findings will facilitate future investigations of the surface microbiotas affecting insect physiologies.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Sun
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
36
|
Zhang X, Jia L, He H, Yin H, Ming J, Hou T, Xiang J. Modulation of oxidative stress and gut microbiota by selenium-containing peptides from enshiensis Cardamine and structural-based characterization. Food Chem 2022; 395:133547. [DOI: 10.1016/j.foodchem.2022.133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
|
37
|
Arias-Rojas A, Iatsenko I. The Role of Microbiota in Drosophila melanogaster Aging. FRONTIERS IN AGING 2022; 3:909509. [PMID: 35821860 PMCID: PMC9261426 DOI: 10.3389/fragi.2022.909509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.
Collapse
Affiliation(s)
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
38
|
Liu X, Hasan KMF, Wei S. Immunological regulation, effects, extraction mechanisms, healthy utilization, and bioactivity of edible fungi: A comprehensive review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| | | | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University Guizhou China
| |
Collapse
|
39
|
Untersmayr E, Brandt A, Koidl L, Bergheim I. The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients 2022; 14:949. [PMID: 35267924 PMCID: PMC8912763 DOI: 10.3390/nu14050949] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The intestinal barrier, composed of the luminal microbiota, the mucus layer, and the physical barrier consisting of epithelial cells and immune cells, the latter residing underneath and within the epithelial cells, plays a special role in health and disease. While there is growing knowledge on the changes to the different layers associated with disease development, the barrier function also plays an important role during aging. Besides changes in the composition and function of cellular junctions, the entire gastrointestinal physiology contributes to essential age-related changes. This is also reflected by substantial differences in the microbial composition throughout the life span. Even though it remains difficult to define physiological age-related changes and to distinguish them from early signs of pathologies, studies in centenarians provide insights into the intestinal barrier features associated with longevity. The knowledge reviewed in this narrative review article might contribute to the definition of strategies to prevent the development of diseases in the elderly. Thus, targeted interventions to improve overall barrier function will be important disease prevention strategies for healthy aging in the future.
Collapse
Affiliation(s)
- Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| | - Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
40
|
Zhang X, Zhang H, Gong J, Yu H, Wu D, Hou J, Li M, Sun X. Aging affects the biological activity of fibroblast growth factor (FGF) in gastric epithelial cell, which is partially rescued by uridine. Bioengineered 2022; 13:3724-3738. [PMID: 35105283 PMCID: PMC8974118 DOI: 10.1080/21655979.2022.2029066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aging has become an irreversible trend in the world, the health problems caused by aging cannot be ignored. The physiological functions of human body begin to decline with aging, the decline of gastrointestinal function caused by aging is an important problem that needs to be resolved. In this work, we evaluated the anti-aging effect of uridine in the senescent gastric epithelial cell model, and found that the aging level of gastric epithelial cell was significantly down-regulated by uridine treatment, uridine could obviously down-regulate the ratio of the SA-β-gal-positive senescent cells. Furthermore, aging-related marker molecules (such as p16 and p21) were also significantly down-regulated under uridine treatment. Additionally, the levels of inflammation and oxidative stress were also significantly reduced by uridine treatment. Next, our further studies the effect of aging on FGF activity on gastric epithelial cell, and found that FGF/FGFR-mediated signaling pathways were significantly down-regulated. However, uridine treatment can not only alleviate the senescence of gastric epithelial cell, but also can partially restore the sensitivity of FGF signaling. Taken together, the current work indicates that uridine shows a good anti-aging effect, which lays a solid foundation for the related research in this filed.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huifeng Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Jingli Gong
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Di Wu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Junyu Hou
- School of Pharmacy, Beihua University, Jilin City, China
| | - Minghui Li
- School of Pharmacy, Beihua University, Jilin City, China
| | - Xin Sun
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| |
Collapse
|
41
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
42
|
Mikrobiota jelitowa a leki. Interakcje wpływające na skuteczność i bezpieczeństwo farmakoterapii. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Mikrobiota jelitowa stanowi nieodłączny element organizmu umożliwiający jego prawidłowe funkcjonowanie. Dzięki mikroorganizmom jelitowym możliwa jest stymulacja układu odpornościowego, synteza witamin czy poprawa wchłaniania składników odżywczych. Jednak jej aktywność może również niekorzystnie działać na organizm, m.in. z powodu przetwarzania treści jelitowej. Opisywana w artykule interakcja mikrobiota–lek uwzględnia pozytywny i negatywny wpływ mikroorganizmów jelitowych na farmakoterapię poprzez bezpośrednie i pośrednie oddziaływanie na lek w organizmie. Ze względu na to, że mikrobiom stanowi nieodłączny element organizmu, ingerencja nawet w jego niewielką część może doprowadzić do wystąpienia daleko idących, czasami niespodziewanych skutków. Stąd w celu poprawy skuteczności i bezpieczeństwa farmakoterapii konieczne jest wyjaśnienie mechanizmów oddziaływania mikrobioty na lek w organizmie.
W artykule podsumowano obecną wiedzę na temat biologicznej aktywności mikrobioty jelitowej, a zwłaszcza oddziaływań mikrobiota–leki determinujących skuteczność i bezpieczeństwo farmakoterapii. Wyszukiwanie przeprowadzono we wrześniu 2020 r. w bazach danych PubMed, Scopus, Web of Science, Cochrane Library i powszechnie dostępnej literaturze z użyciem terminów: „mikrobiota jelitowa”, „mikrobiom”, „metabolizm leku”, „interakcje mikrobiota–lek”. W artykule omówiono interakcje między mikrobiotą a lekami m.in. z grupy antybiotyków, inhibitorów pompy protonowej, sulfonamidów, pochodnych kwasu 5-aminosalicylowego, niesteroidowych leków przeciwzapalnych, przeciwnowotworowych, statyn czy metforminą.
Collapse
|
43
|
Rydbom J, Kohl H, Hyde VR, Lohr KM. Altered Gut Microbial Load and Immune Activation in a Drosophila Model of Human Tauopathy. Front Neurosci 2021; 15:731602. [PMID: 34803581 PMCID: PMC8597733 DOI: 10.3389/fnins.2021.731602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Tau is a microtubule-associated protein that stabilizes the neuronal cytoskeleton. In the family of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and chronic traumatic encephalopathy (CTE), abnormal tau aggregation destabilizes microtubule structure, contributing to a cascade of cellular processes leading to neuronal cell death. The gut microbiome has increasingly become a target of neurodegenerative disease research since gut microbiome imbalances have been linked to protein aggregation and inflammation through a bidirectional axis linking the gut and brain. Accordingly, the present study examined tau-mediated changes to gut microbiome composition and immune activation in a Drosophila melanogaster model of human mutant tauopathy. Fecal deposit quantification and gastric emptying time courses suggested an abnormal food distribution and reduced gut motility in tau transgenic flies compared to controls. Tau transgenic flies also showed an increase in gut bacteria colony forming units (CFUs) from diluted fly homogenate, indicating an increased bacterial load. Finally, we showed that tau transgenic flies have a trend towards elevated systemic levels of antimicrobial peptides targeting gram-negative bacteria using qPCR, suggesting an enhanced innate immune response to bacterial insult. These data demonstrate qualifiable and quantifiable gut microbial and innate immune responses to tauopathy. Furthermore, these results provide a framework for future studies targeting the gut microbiome as a modifier of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | - Kelly M. Lohr
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| |
Collapse
|
44
|
Schoberleitner I, Bauer I, Huang A, Andreyeva EN, Sebald J, Pascher K, Rieder D, Brunner M, Podhraski V, Oemer G, Cázarez-García D, Rieder L, Keller MA, Winkler R, Fyodorov DV, Lusser A. CHD1 controls H3.3 incorporation in adult brain chromatin to maintain metabolic homeostasis and normal lifespan. Cell Rep 2021; 37:109769. [PMID: 34610319 PMCID: PMC8607513 DOI: 10.1016/j.celrep.2021.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells. Using a specifically tailored quantitative mass spectrometry approach, we show that Chd1 disruption results in reduced H3.3 levels in heads of Chd1 mutant flies. Chd1 deletion perturbs brain chromatin structure in a similar way as H3.3 deletion and leads to global de-repression of transcription. The physiological consequences are reduced food intake, metabolic alterations, and shortened lifespan. Notably, brain-specific CHD1 expression rescues these phenotypes. We further demonstrate a strong genetic interaction between Chd1 and H3.3 chaperone Hira. Thus, our findings establish CHD1 as a factor required for the assembly of H3.3-containing chromatin in adult cells and suggest a crucial role for CHD1 in the brain as a regulator of organismal health and longevity.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Johanna Sebald
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Katharina Pascher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Melanie Brunner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Valerie Podhraski
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Daniel Cázarez-García
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Leila Rieder
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
45
|
Abstract
Aging has provided fruitful challenges for evolutionary theory, and evolutionary theory has deepened our understanding of aging. A great deal of genetic and molecular data now exists concerning mortality regulation and there is a growing body of knowledge concerning the life histories of diverse species. Assimilating all relevant data into a framework for the evolution of aging promises to significantly advance the field. We propose extensions of some key concepts to provide greater precision when applying these concepts to age-structured contexts. Secondary or byproduct effects of mutations are proposed as an important factor affecting survival patterns, including effects that may operate in small populations subject to genetic drift, widening the possibilities for mutation accumulation and pleiotropy. Molecular and genetic studies have indicated a diverse array of mechanisms that can modify aging and mortality rates, while transcriptome data indicate a high level of tissue and species specificity for genes affected by aging. The diversity of mechanisms and gene effects that can contribute to the pattern of aging in different organisms may mirror the complex evolutionary processes behind aging.
Collapse
Affiliation(s)
- Stewart Frankel
- Biology Department, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
46
|
Lynn MA, Eden G, Ryan FJ, Bensalem J, Wang X, Blake SJ, Choo JM, Chern YT, Sribnaia A, James J, Benson SC, Sandeman L, Xie J, Hassiotis S, Sun EW, Martin AM, Keller MD, Keating DJ, Sargeant TJ, Proud CG, Wesselingh SL, Rogers GB, Lynn DJ. The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Rep 2021; 36:109564. [PMID: 34433065 DOI: 10.1016/j.celrep.2021.109564] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Studies investigating whether there is a causative link between the gut microbiota and lifespan have largely been restricted to invertebrates or to mice with a reduced lifespan because of a genetic deficiency. We investigate the effect of early-life antibiotic exposure on otherwise healthy, normal chow-fed, wild-type mice, monitoring these mice for more than 700 days in comparison with untreated control mice. We demonstrate the emergence of two different low-diversity community types, post-antibiotic microbiota (PAM) I and PAM II, following antibiotic exposure. PAM II but not PAM I mice have impaired immunity, increased insulin resistance, and evidence of increased inflammaging in later life as well as a reduced lifespan. Our data suggest that differences in the composition of the gut microbiota following antibiotic exposure differentially affect host health and longevity in later life.
Collapse
Affiliation(s)
- Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Georgina Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Julien Bensalem
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Xuemin Wang
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen J Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Jocelyn M Choo
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Yee Tee Chern
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Saoirse C Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Lauren Sandeman
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sofia Hassiotis
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Emily W Sun
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Marianne D Keller
- Preclinical, Imaging & Research Laboratories (PIRL), South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Timothy J Sargeant
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steve L Wesselingh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Geraint B Rogers
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
47
|
Kim CS, Cha L, Sim M, Jung S, Chun WY, Baik HW, Shin DM. Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J Gerontol A Biol Sci Med Sci 2021; 76:32-40. [PMID: 32300799 PMCID: PMC7861012 DOI: 10.1093/gerona/glaa090] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Probiotics have been proposed to ameliorate cognitive impairment and depressive disorder via the gut–brain axis in patients and experimental animal models. However, the beneficial role of probiotics in brain functions of healthy older adults remains unclear. Therefore, a randomized, double-blind, and placebo-controlled multicenter trial was conducted to determine the effects of probiotics on cognition and mood in community-dwelling older adults. Sixty-three healthy elders (≥65 years) consumed either placebo or probiotics containing Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI for 12 weeks. The gut microbiota was analyzed using 16S rRNA sequencing and bioinformatics. Brain functions were measured using the Consortium to Establish a Registry for Alzheimer’s disease, Satisfaction with life scale, stress questionnaire, Geriatric depression scale, and Positive affect and negative affect schedule. Blood brain-derived neurotrophic factor (BDNF) was determined using enzyme-linked immunosorbent assay. Relative abundance of inflammation-causing gut bacteria was significantly reduced at Week 12 in the probiotics group (p < .05). The probiotics group showed greater improvement in mental flexibility test and stress score than the placebo group (p < .05). Contrary to placebo, probiotics significantly increased serum BDNF level (p < .05). Notably, the gut microbes significantly shifted by probiotics (Eubacterium and Clostridiales) showed significant negative correlation with serum BDNF level only in the probiotics group (RS = −0.37, RS = −0.39, p < .05). In conclusion, probiotics promote mental flexibility and alleviate stress in healthy older adults, along with causing changes in gut microbiota. These results provide evidence supporting health-promoting properties of probiotics as a part of healthy diet in the older adults.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Republic of Korea
| | - Lina Cha
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Republic of Korea
| | - Minju Sim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Republic of Korea
| | | | - Woo Young Chun
- Department of Psychology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Wook Baik
- Department of Internal Medicine, Clinical Nutrition and Metabolism, Bundang Jesaeng Hospital, Seongnam, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Republic of Korea.,Research Institution of Human Ecology, Seoul National University, Republic of Korea
| |
Collapse
|
48
|
Common features of aging fail to occur in Drosophila raised without a bacterial microbiome. iScience 2021; 24:102703. [PMID: 34235409 PMCID: PMC8246586 DOI: 10.1016/j.isci.2021.102703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lifespan is limited both by intrinsic decline in vigor with age and by accumulation of external insults. There exists a general picture of the deficits of aging, one that is reflected in a pattern of age-correlated changes in gene expression conserved across species. Here, however, by comparing gene expression profiling of Drosophila raised either conventionally, or free of bacteria, we show that ∼70% of these conserved, age-associated changes in gene expression fail to occur in germ-free flies. Among the processes that fail to show time-dependent change under germ-free conditions are two aging features that are observed across phylogeny, declining expression of stress response genes and increasing expression of innate immune genes. These comprise adaptive strategies the organism uses to respond to bacteria, rather than being inevitable components of age-dependent decline. Changes in other processes are independent of the microbiome and can serve as autonomous markers of aging of the individual.
Collapse
|
49
|
Domínguez-Santos R, Pérez-Cobas AE, Cuti P, Pérez-Brocal V, García-Ferris C, Moya A, Latorre A, Gil R. Interkingdom Gut Microbiome and Resistome of the Cockroach Blattella germanica. mSystems 2021; 6:e01213-20. [PMID: 33975971 PMCID: PMC8125077 DOI: 10.1128/msystems.01213-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cockroaches are intriguing animals with two coexisting symbiotic systems, an endosymbiont in the fat body, involved in nitrogen metabolism, and a gut microbiome whose diversity, complexity, role, and developmental dynamics have not been fully elucidated. In this work, we present a metagenomic approach to study Blattella germanica populations not treated, treated with kanamycin, and recovered after treatment, both naturally and by adding feces to the diet, with the aim of better understanding the structure and function of its gut microbiome along the development as well as the characterization of its resistome.IMPORTANCE For the first time, we analyze the interkingdom hindgut microbiome of this species, including bacteria, fungi, archaea, and viruses. Network analysis reveals putative cooperation between core bacteria that could be key for ecosystem equilibrium. We also show how antibiotic treatments alter microbiota diversity and function, while both features are restored after one untreated generation. Combining data from B. germanica treated with three antibiotics, we have characterized this species' resistome. It includes genes involved in resistance to several broad-spectrum antibiotics frequently used in the clinic. The presence of genetic elements involved in DNA mobilization indicates that they can be transferred among microbiota partners. Therefore, cockroaches can be considered reservoirs of antibiotic resistance genes (ARGs) and potential transmission vectors.
Collapse
Affiliation(s)
- Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
| | | | - Paolo Cuti
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (ISysBio), University of Valencia and CSIC, Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain
| |
Collapse
|
50
|
Sciambra N, Chtarbanova S. The Impact of Age on Response to Infection in Drosophila. Microorganisms 2021; 9:microorganisms9050958. [PMID: 33946849 PMCID: PMC8145649 DOI: 10.3390/microorganisms9050958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/26/2023] Open
Abstract
This review outlines the known cellular pathways and mechanisms involved in Drosophila age-dependent immunity to pathogenic microorganisms such as bacteria and fungi. We discuss the implication of host signaling pathways such as the Toll, Immune Deficiency (IMD), Janus kinase signal transducer and activator of transcription (JAK/STAT), and Insulin/Insulin Growth Factor/Target of Rapamycin (IIS/TOR) on immune function with aging. Additionally, we review the effects that factors such as sexual dimorphism, environmental stress, and cellular physiology exert on age-dependent immunity in Drosophila. We discuss potential tradeoffs between heightened immune function and longevity in the absence of infection, and we provide detailed tables outlining the various assays and pathogens used in the cited studies, as well as the age, sex, and strains of Drosophila used. We also discuss the overlapping effects these pathways and mechanisms have on one another. We highlight the great utility of Drosophila as a model organism and the importance of a greater focus on age-dependent antiviral immunity for future studies.
Collapse
|