1
|
Li X, Mao J. Research progress on the role of lipoxygenase and its inhibitors in prostate cancer. Future Oncol 2024; 20:3549-3568. [PMID: 39535136 PMCID: PMC11776861 DOI: 10.1080/14796694.2024.2419356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) has become a common disease among middle-aged and elderly men. The lipoxygenase (LOX) pathway plays a crucial role in the occurrence, development, invasion and metastasis of PCa and is therefore considered a new target for the prevention and treatment of PCa. 5-LOX and 12-LOX have a promoting effect on the occurrence, development, invasion and metastasis of PCa. 15-LOX-2 has an inhibitory effect on PCa. LOX inhibitors can effectively inhibit the metabolic activity of LOX. The research aims to review the mechanism of action and inhibitors of LOX in PCa, in order to provide relevant references for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaobing Li
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Mao
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
2
|
Lin Y, Chen M, Huang S, Chen Y, Ho JH, Lin F, Tan X, Chiang H, Huang C, Tu C, Cho D, Chiu S. Targeting Dual Immune Checkpoints PD-L1 and HLA-G by Trispecific T Cell Engager for Treating Heterogeneous Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309697. [PMID: 39234811 PMCID: PMC11538689 DOI: 10.1002/advs.202309697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/04/2024] [Indexed: 09/06/2024]
Abstract
Immunotherapy targeting immune checkpoints (ICPs), such as programmed death-ligand-1 (PD-L1), is used as a treatment option for advanced or metastatic non-small cell lung cancer (NSCLC). However, overall response rate to anti-PD-L1 treatment is limited due to antigen heterogeneity and the immune-suppressive tumor microenvironment. Human leukocyte antigen-G (HLA-G), an ICP as well as a neoexpressed tumor-associated antigen, is previously demonstrated to be a beneficial target in combination with anti-PD-L1. In this study, a nanobody-based trispecific T cell engager (Nb-TriTE) is developed, capable of simultaneously binding to T cells, macrophages, and cancer cells while redirecting T cells toward tumor cells expressing PD-L1- and/or HLA-G. Nb-TriTE shows broad spectrum anti-tumor effects in vitro by augmenting cytotoxicity mediated by human peripheral blood mononuclear cells (PBMCs). In a humanized immunodeficient murine NSCLC model, Nb-TriTE exhibits superior anti-cancer potency compared to monoclonal antibodies and bispecific T cell engagers. Nb-TriTE, at the dose with pharmacoactivity, does not induce additional enhancement of circulating cytokines secretion from PMBCs. Nb-TriTE effectively prolongs the survival of mice without obvious adverse events. In conclusion, this study introduces an innovative therapeutic approach to address the challenges of immunotherapy and the tumor microenvironment in NSCLC through utilizing the dual ICP-targeting Nb-TriTE.
Collapse
Affiliation(s)
- Yu‐Chuan Lin
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
| | - Mei‐Chih Chen
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
| | - Shi‐Wei Huang
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichung City404Taiwan
- Institute of Biomedical SciencesNational Chung Hsing UniversityTaichung City402Taiwan
| | - Yeh Chen
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichung City402Taiwan
| | - Jennifer Hui‐Chun Ho
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- Center for Translational Genomics and Regenerative Medicine ResearchChina Medical University HospitalTaichung City404Taiwan
- Department of OphthalmologyChina Medical University HospitalChina Medical UniversityTaichung City404Taiwan
- Department of Medical ResearchEye CenterChina Medical University HospitalTaichung City404Taiwan
| | - Fang‐Yu Lin
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
| | - Xiao‐Tong Tan
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
| | - Hung‐Che Chiang
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- College of MedicineChina Medical UniversityTaichung City404Taiwan
| | - Chiu‐Ching Huang
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- Division of Nephrology and the Kidney InstituteDepartment of Internal MedicineChina Medical University HospitalTaichung City404Taiwan
| | - Chih‑Yen Tu
- Division of Pulmonary and Critical CareDepartment of Internal MedicineChina Medical University HospitalTaichung City404Taiwan
- School of MedicineCollege of MedicineChina Medical UniversityTaichung City404Taiwan
| | - Der‐Yang Cho
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichung City404Taiwan
- Drug Development CenterChina Medical UniversityTaichung City404Taiwan
- Department of NeurosurgeryChina Medical University HospitalTaichung City404Taiwan
| | - Shao‐Chih Chiu
- Translational Cell Therapy CenterChina Medical University HospitalNo. 2, Yude Rd., North Dist.Taichung City404Taiwan
- Shine‐On BioMedical Co. Ltd.Rm. B, 10F., No. 573, Sec. 2, Taiwan Blvd., West Dist.Taichung City403Taiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichung City404Taiwan
- Drug Development CenterChina Medical UniversityTaichung City404Taiwan
| |
Collapse
|
3
|
Jafari S, Ardakan AK, Aghdam EM, Mesbahi A, Montazersaheb S, Molavi O. Induction of immunogenic cell death and enhancement of the radiation-induced immunogenicity by chrysin in melanoma cancer cells. Sci Rep 2024; 14:23231. [PMID: 39369019 PMCID: PMC11455848 DOI: 10.1038/s41598-024-72697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/10/2024] [Indexed: 10/07/2024] Open
Abstract
Chrysin is a natural flavonoid with anti-cancer effects. Despite its beneficial effects, little information is available regarding its immunogenic cell death (ICD) properties. In this work, we hypothesized that chrysin can potentiate radiotherapy(RT)-induced immunogenicity in melanoma cell line (B16-F10). We examined the effects of chrysin alone and in combination with radiation on ICD induction in B16-F10 cells. Cell viability was assessed using an MTT assay. Cell apoptosis and calreticulin (CRT) exposure were determined using flow cytometry. Western blotting and ELISA assay were employed to examine changes in protein expression. Combination therapy exhibited a synergistic effect, with an optimum combination index of 0.66. The synergistic anti-cancer effect correlated with increased cell apoptosis in cancer cells. Compared to the untreated control, chrysin alone and in combination with RT induced higher levels of DAMPs, such as CRT, HSP70, HMGB1, and ATP. The protein expression of p-STAT3/STAT3 and PD-L1 was reduced in B16-F10 cells exposed to chrysin alone and in combination with RT. Conditioned media from B16-F10 cells exposed to mono-and combination treatments elicited IL-12 secretion in dendritic cells (DCs), inducing a Th1 response. Our findings revealed that chrysin could induce ICD and intensify the RT-induced immunogenicity.
Collapse
Affiliation(s)
- Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Elnaz Mehdizadeh Aghdam
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
| | - Asghar Mesbahi
- Medical Radiation Research Team, 84 Gorge Road, South Morang, Melbourne, Australia
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| |
Collapse
|
4
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
5
|
Molina OE, LaRue H, Simonyan D, Hovington H, Vittrant B, Têtu B, Fradet V, Lacombe L, Bergeron A, Fradet Y. Regulatory and memory T lymphocytes infiltrating prostate tumors predict long term clinical outcomes. Front Immunol 2024; 15:1372837. [PMID: 38887294 PMCID: PMC11180786 DOI: 10.3389/fimmu.2024.1372837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction The localization, density but mostly the phenotype of tumor infiltrating lymphocytes (TIL) provide important information on the initial interaction between the host immune system and the tumor. Our objective was to assess the prognostic significance of T (CD3+), T regulatory (Treg) (FoxP3+) and T memory (Tmem) (CD45RO+) infiltrating lymphocytes and of genes associated with TIL in prostate cancer (PCa). Methods Immunohistochemistry (IHC) was used to assess the infiltration of CD3+, FoxP3+ and CD45RO+ cells in the tumor area, tumor margin and adjacent normal-like epithelium of a series of 98 PCa samples with long clinical follow-up. Expression of a panel of 31 TIL-associated genes was analyzed by Taqman Low-Density Array (TLDA) technology in another series of 50 tumors with long clinical follow-up. Kaplan-Meier and Cox proportional hazards regression analyses were performed to determine association of these markers with biochemical recurrence (BCR), need for definitive androgen deprivation therapy (ADT) or lethal PCa. Results TIL subtypes were present at different densities in the tumor, tumor margin and adjacent normal-like epithelium, but their density and phenotype in the tumor area were the most predictive of clinical outcomes. In multivariate analyses, a high density of Treg (high FoxP3+/CD3+ cell ratio) predicted a higher risk for need of definitive ADT (HR=7.69, p=0.001) and lethal PCa (HR=4.37, p=0.04). Conversely, a high density of Tmem (high CD45RO+/CD3+ cell ratio) predicted a reduced risk of lethal PCa (HR=0.06, p=0.04). TLDA analyses showed that a high expression of FoxP3 was associated with a higher risk of lethal PCa (HR=5.26, p=0.02). Expression of CTLA-4, PD-1, TIM-3 and LAG-3 were correlated with that of FoxP3. Amongst these, only a high expression of TIM-3 was associated with a significant higher risk for definitive ADT in univariate Cox regression analysis (HR=3.11, p=0.01). Conclusion These results show that the proportion of Treg and Tmem found within the tumor area is a strong and independent predictor of late systemic progression of PCa. Our results also suggest that inhibition of TIM-3 might be a potential approach to counter the immunosuppressive functions of Treg in order to improve the anti-tumor immune response against PCa.
Collapse
Affiliation(s)
- Oscar Eduardo Molina
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - Hélène LaRue
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - David Simonyan
- Plateforme de recherche clinique et évaluative, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Hélène Hovington
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - Benjamin Vittrant
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| | - Bernard Têtu
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de pathologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Axe oncologie, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
- Département de chirurgie, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Sun C, He Y, Wang G, Zhang G, Zhang Y, Shen H, Hu L, Sun Y, Jiang B, Wang X, Yuan K, Min W, Wang L, Sun H, Xiao Y, Yang P. Design, Synthesis, and Antitumor Activity Evaluation of Novel VISTA Small Molecule Inhibitors. J Med Chem 2024; 67:3590-3605. [PMID: 38412237 DOI: 10.1021/acs.jmedchem.3c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
VISTA (V-domain Ig suppressor of T cell activation) is a novel immune checkpoint protein and represents a promising target for cancer immunotherapy. Here, we report the design, synthesis, and evaluation of a series of methoxy-pyrimidine-based VISTA small molecule inhibitors with potent antitumor activity. By employing molecular docking and microscale thermophoresis (MST) assay, we identified a lead compound A1 that binds to VISTA protein with high affinity and optimized its structure. A4 was then obtained, which exhibited the strongest binding ability to VISTA protein, with a KD value of 0.49 ± 0.20 μM. In vitro, A4 significantly activated peripheral blood mononuclear cells (PBMCs) induced the release of cytokines such as IFN-γ and enhanced the cytotoxicity of PBMCs against tumor cells. In vivo, A4 displayed potent antitumor activity and synergized with PD-L1 antibody to enhance the therapeutic effect against cancer. These results suggest that compound A4 is an effective VISTA small molecule inhibitor, providing a basis for the future development of VISTA-targeted drugs.
Collapse
Affiliation(s)
- Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yuling He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Binjian Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Zhu W, Zeng H, Huang J, Wu J, Wang Y, Wang Z, Wang H, Luo Y, Lai W. Integrated machine learning identifies epithelial cell marker genes for improving outcomes and immunotherapy in prostate cancer. J Transl Med 2023; 21:782. [PMID: 37925432 PMCID: PMC10625713 DOI: 10.1186/s12967-023-04633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa), a globally prevalent malignancy, displays intricate heterogeneity within its epithelial cells, closely linked with disease progression and immune modulation. However, the clinical significance of genes and biomarkers associated with these cells remains inadequately explored. To address this gap, this study aimed to comprehensively investigate the roles and clinical value of epithelial cell-related genes in PCa. METHODS Leveraging single-cell sequencing data from GSE176031, we conducted an extensive analysis to identify epithelial cell marker genes (ECMGs). Employing consensus clustering analysis, we evaluated the correlations between ECMGs, prognosis, and immune responses in PCa. Subsequently, we developed and validated an optimal prognostic signature, termed the epithelial cell marker gene prognostic signature (ECMGPS), through synergistic analysis from 101 models employing 10 machine learning algorithms across five independent cohorts. Additionally, we collected clinical features and previously published signatures from the literature for comparative analysis. Furthermore, we explored the clinical utility of ECMGPS in immunotherapy and drug selection using multi-omics analysis and the IMvigor cohort. Finally, we investigated the biological functions of the hub gene, transmembrane p24 trafficking protein 3 (TMED3), in PCa using public databases and experiments. RESULTS We identified a comprehensive set of 543 ECMGs and established a strong correlation between ECMGs and both the prognostic evaluation and immune classification in PCa. Notably, ECMGPS exhibited robust predictive capability, surpassing traditional clinical features and 80 published signatures in terms of both independence and accuracy across five cohorts. Significantly, ECMGPS demonstrated significant promise in identifying potential PCa patients who might benefit from immunotherapy and personalized medicine, thereby moving us nearer to tailored therapeutic approaches for individuals. Moreover, the role of TMED3 in promoting malignant proliferation of PCa cells was validated. CONCLUSIONS Our findings highlight ECMGPS as a powerful tool for improving PCa patient outcomes and supply a robust conceptual framework for in-depth examination of PCa complexities. Simultaneously, our study has the potential to develop a novel alternative for PCa diagnosis and prognostication.
Collapse
Affiliation(s)
- Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Hengda Zeng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jiongduan Huang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jianjie Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yu Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Ziqiao Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Hua Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Wenjie Lai
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| |
Collapse
|
8
|
Wen XY, Wang RY, Yu B, Yang Y, Yang J, Zhang HC. Integrating single-cell and bulk RNA sequencing to predict prognosis and immunotherapy response in prostate cancer. Sci Rep 2023; 13:15597. [PMID: 37730847 PMCID: PMC10511553 DOI: 10.1038/s41598-023-42858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Prostate cancer (PCa) stands as a prominent contributor to morbidity and mortality among males on a global scale. Cancer-associated fibroblasts (CAFs) are considered to be closely connected to tumour growth, invasion, and metastasis. We explored the role and characteristics of CAFs in PCa through bioinformatics analysis and built a CAFs-based risk model to predict prognostic treatment and treatment response in PCa patients. First, we downloaded the scRNA-seq data for PCa from the GEO. We extracted bulk RNA-seq data for PCa from the TCGA and GEO and adopted "ComBat" to remove batch effects. Then, we created a Seurat object for the scRNA-seq data using the package "Seurat" in R and identified CAF clusters based on the CAF-related genes (CAFRGs). Based on CAFRGs, a prognostic model was constructed by univariate Cox, LASSO, and multivariate Cox analyses. And the model was validated internally and externally by Kaplan-Meier analysis, respectively. We further performed GO and KEGG analyses of DEGs between risk groups. Besides, we investigated differences in somatic mutations between different risk groups. We explored differences in the immune microenvironment landscape and ICG expression levels in the different groups. Finally, we predicted the response to immunotherapy and the sensitivity of antitumour drugs between the different groups. We screened 4 CAF clusters and identified 463 CAFRGs in PCa scRNA-seq. We constructed a model containing 10 prognostic CAFRGs by univariate Cox, LASSO, and multivariate Cox analysis. Somatic mutation analysis revealed that TTN and TP53 were significantly more mutated in the high-risk group. Finally, we screened 31 chemotherapeutic drugs and targeted therapeutic drugs for PCa. In conclusion, we identified four clusters based on CAFs and constructed a new CAFs-based prognostic signature that could predict PCa patient prognosis and response to immunotherapy and might suggest meaningful clinical options for the treatment of PCa.
Collapse
Affiliation(s)
- Xiao Yan Wen
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Ru Yi Wang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Bei Yu
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Yue Yang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Jin Yang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Han Chao Zhang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China.
- Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
9
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Maselli FM, Giuliani F, Laface C, Perrone M, Melaccio A, De Santis P, Santoro AN, Guarini C, Iaia ML, Fedele P. Immunotherapy in Prostate Cancer: State of Art and New Therapeutic Perspectives. Curr Oncol 2023; 30:5769-5794. [PMID: 37366915 DOI: 10.3390/curroncol30060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Prostate cancer (PC) is the most common type of tumor in men. In the early stage of the disease, it is sensitive to androgen deprivation therapy. In patients with metastatic castration-sensitive prostate cancer (mHSPC), chemotherapy and second-generation androgen receptor therapy have led to increased survival. However, despite advances in the management of mHSPC, castration resistance is unavoidable and many patients develop metastatic castration-resistant disease (mCRPC). In the past few decades, immunotherapy has dramatically changed the oncology landscape and has increased the survival rate of many types of cancer. However, immunotherapy in prostate cancer has not yet given the revolutionary results it has in other types of tumors. Research into new treatments is very important for patients with mCRPC because of its poor prognosis. In this review, we focus on the reasons for the apparent intrinsic resistance of prostate cancer to immunotherapy, the possibilities for overcoming this resistance, and the clinical evidence and new therapeutic perspectives regarding immunotherapy in prostate cancer with a look toward the future.
Collapse
Affiliation(s)
| | | | - Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Assunta Melaccio
- Medical Oncology, San Paolo Hospital, ASL Bari, 70123 Bari, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
12
|
Li D, Xu W, Chang Y, Xiao Y, He Y, Ren S. Advances in landscape and related therapeutic targets of the prostate tumor microenvironment. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37294106 DOI: 10.3724/abbs.2023092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
The distinct tumor microenvironment (TME) of prostate cancer (PCa), which promotes tumor proliferation and progression, consists of various stromal cells, immune cells, and a dense extracellular matrix (ECM). The understanding of the prostate TME extends to tertiary lymphoid structures (TLSs) and metastasis niches to provide a more concise comprehension of tumor metastasis. These constituents collectively structure the hallmarks of the pro-tumor TME, including immunosuppressive, acidic, and hypoxic niches, neuronal innervation, and metabolic rewiring. In combination with the knowledge of the tumor microenvironment and the advancement of emerging therapeutic technologies, several therapeutic strategies have been developed, and some of them have been tested in clinical trials. This review elaborates on PCa TME components, summarizes various TME-targeted therapies, and provides insights into PCa carcinogenesis, progression, and therapeutic strategies.
Collapse
Affiliation(s)
- Duocai Li
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yifan Chang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
13
|
Ahmed R, Lozano LE, Anastasio A, Lofek S, Mastelic-Gavillet B, Navarro Rodrigo B, Nguyen S, Dartiguenave F, Rodrigues-Dias SC, Cesson V, Valério M, Roth B, Kandalaft LE, Redchenko I, Hill AVS, Harari A, Romero P, Derré L, Viganó S. Phenotype and Reactivity of Lymphocytes Expanded from Benign Prostate Hyperplasic Tissues and Prostate Cancer. Cancers (Basel) 2023; 15:3114. [PMID: 37370724 DOI: 10.3390/cancers15123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Benign prostate hyperplasia (BPH) is a frequent condition in aging men, which affects life quality, causing principally lower urinary tract symptoms. Epidemiologic studies suggest that BPH may raise the risk of developing prostate cancer (PCa), most likely promoting a chronic inflammatory environment. Studies aiming at elucidating the link and risk factors that connect BPH and PCa are urgently needed to develop prevention strategies. The BPH microenvironment, similar to the PCa one, increases immune infiltration of the prostate, but, in contrast to PCa, immunosuppression may not be established yet. In this study, we found that prostate-infiltrating lymphocytes (PILs) expanded from hyperplastic prostate tissue recognized tumor-associated antigens (TAA) and autologous tissue, regardless of the presence of tumor cells. PILs expanded from BPH samples of patients with PCa, however, seem to respond more strongly to autologous tissue. Phenotypic characterization of the infiltrating PILs revealed a trend towards better expanding CD4+ T cells in infiltrates derived from PCa, but no significant differences were found. These findings suggest that T cell tolerance is compromised in BPH-affected prostates, likely due to qualitative or quantitative alterations of the antigenic landscape. Our data support the hypothesis that BPH increases the risk of PCa and may pave the way for new personalized preventive vaccine strategies for these patients.
Collapse
Affiliation(s)
- Ritaparna Ahmed
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Leyder Elena Lozano
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Amandine Anastasio
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Sebastien Lofek
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Beatris Mastelic-Gavillet
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Sylvain Nguyen
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Florence Dartiguenave
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Sonia-Cristina Rodrigues-Dias
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Massimo Valério
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lana Elias Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Irina Redchenko
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford OX3 7BN, UK
| | | | - Alexandre Harari
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| | - Selena Viganó
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
14
|
Li X, Zheng C, Xue X, Wu J, Li F, Song D, Li X. Integrated analysis of single-cell and bulk RNA sequencing identifies a signature based on macrophage marker genes involved in prostate cancer prognosis and treatment responsiveness. Funct Integr Genomics 2023; 23:115. [PMID: 37010617 DOI: 10.1007/s10142-023-01037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
In the tumor microenvironment, tumor-associated macrophages (TAMs) interact with cancer cells and contribute to the progression of solid tumors. Nonetheless, the clinical significance of TAM-related biomarkers in prostate cancer (PCa) is largely unexplored. The present study aimed to construct a macrophage-related signature (MRS) for predicting PCa patient prognosis based on macrophage marker genes. Six cohorts comprising 1056 PCa patients with RNA-Seq and follow-up data were enrolled. Based on macrophage marker genes identified by single-cell RNA-sequencing (scRNA-seq) analysis, univariate analysis, least absolute shrinkage and selection operator (Lasso)-Cox regression, and machine learning procedures were performed to derive a consensus MRS. Receiver operating characteristic curve (ROC), concordance index, and decision curve analyses were used to confirm the predictive capacity of the MRS. The predictive performance of the MRS for recurrence-free survival (RFS) was stable and robust, and the MRS outperformed traditional clinical variables. Furthermore, high-MRS-score patients presented abundant macrophage infiltration and high-expression levels of immune checkpoints (CTLA4, HAVCR2, and CD86). The frequency of mutations was relatively high in the high-MRS-score subgroup. However, the low-MRS-score patients had a better response to immune checkpoint blockade (ICB) and leuprolide-based adjuvant chemotherapy. Notably, abnormal ATF3 expression may be associated with docetaxel and cabazitaxel resistance in PCa cells, T stage, and the Gleason score. In this study, a novel MRS was first developed and validated to accurately predict patient survival outcomes, evaluate immune characteristics, infer therapeutic benefits, and provide an auxiliary tool for personalized therapy.
Collapse
Affiliation(s)
- Xiugai Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Chang Zheng
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxia Xue
- Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Junying Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Fei Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Dan Song
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
15
|
Han S, Shi T, Liao Y, Chen D, Yang F, Wang M, Ma J, Li H, Xu Y, Zhu T, Chen W, Wang G, Han Y, Xu C, Wang W, Cai S, Zhang X, Xing N. Tumor immune contexture predicts recurrence after prostatectomy and efficacy of androgen deprivation and immunotherapy in prostate cancer. J Transl Med 2023; 21:194. [PMID: 36918939 PMCID: PMC10012744 DOI: 10.1186/s12967-022-03827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/11/2022] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with notable interpatient heterogeneity. Implications of the immune microenvironment in predicting the biochemical recurrence-free survival (BCRFS) after radical prostatectomy and the efficacy of systemic therapies in prostate cancer remain ambiguous. METHODS The tumor immune contexture score (TICS) involving eight immune contexture-related signatures was developed using seven cohorts of 1120 patients treated with radical prostatectomy (training: GSE46602, GSE54460, GSE70769, and GSE94767; validation: GSE70768, DKFZ2018, and TCGA). The association between the TICS and treatment efficacy was investigated in GSE111177 (androgen deprivation therapy [ADT]) and EGAS00001004050 (ipilimumab). RESULTS A high TICS was associated with prolonged BCRFS after radical prostatectomy in the training (HR = 0.32, 95% CI 0.24-0.45, P < 0.001) and the validation cohorts (HR = 0.45, 95% CI 0.32-0.62, P < 0.001). The TICS showed stable prognostic power independent of tumor stage, surgical margin, pre-treatment prostatic specific antigen (PSA), and Gleason score (multivariable HR = 0.50, 95% CI 0.39-0.63, P < 0.001). Adding the TICS into the prognostic model constructed using clinicopathological features significantly improved its 1/2/3/4/5-year area under curve (P < 0.05). A low TICS was associated with high homologous recombination deficiency scores, abnormally activated pathways concerning DNA replication, cell cycle, steroid hormone biosynthesis, and drug metabolism, and fewer tumor-infiltrating immune cells (P < 0.05). The patients with a high TICS had favorable BCRFS with ADT (HR = 0.25, 95% CI 0.06-0.99, P = 0.034) or ipilimumab monotherapy (HR = 0.23, 95% CI 0.06-0.81, P = 0.012). CONCLUSIONS Our study delineates the associations of tumor immune contexture with molecular features, recurrence after radical prostatectomy, and the efficacy of ADT and immunotherapy. The TICS may improve the existing risk stratification systems and serve as a patient-selection tool for ADT and immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Taoping Shi
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China
| | - Yuchen Liao
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hu Li
- Department of Urology, Shanxian Central Hospital of Shandong Province, Heze, 274300, Shandong, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Tengfei Zhu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Wenxi Chen
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Yusheng Han
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China.
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
16
|
Immunotherapy for Prostate Cancer: A Current Systematic Review and Patient Centric Perspectives. J Clin Med 2023; 12:jcm12041446. [PMID: 36835981 PMCID: PMC9966657 DOI: 10.3390/jcm12041446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men worldwide, making up 21% of all cancer cases. With 345,000 deaths per year owing to the disease, there is an urgent need to optimize prostate cancer care. This systematic review collated and synthesized findings of completed Phase III clinical trials administering immunotherapy; a current clinical trial index (2022) of all ongoing Phase I-III clinical trial records was also formulated. A total of four Phase III clinical trials with 3588 participants were included administering DCVAC, ipilimumab, personalized peptide vaccine, and the PROSTVAC vaccine. In this original research article, promising results were seen for ipilimumab intervention, with improved overall survival trends. A total of 68 ongoing trial records pooling in 7923 participants were included, spanning completion until June 2028. Immunotherapy is an emerging option for patients with prostate cancer, with immune checkpoint inhibitors and adjuvant therapies forming a large part of the emerging landscape. With various ongoing trials, the characteristics and premises of the prospective findings will be key in improving outcomes in the future.
Collapse
|
17
|
Jafari S, Heydarian S, Lai R, Mehdizadeh Aghdam E, Molavi O. Silibinin induces immunogenic cell death in cancer cells and enhances the induced immunogenicity by chemotherapy. BIOIMPACTS : BI 2023; 13:51-61. [PMID: 36816998 PMCID: PMC9923812 DOI: 10.34172/bi.2022.23698] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Silibinin is a natural flavonoid compound known to induce apoptosis in cancer cells. Despite silibinin's safety and efficacy as an anticancer drug, its effects on inducing immunogenic cell death (ICD) are largely unknown. Herein, we have evaluated the stimulating effects of silibinin on ICD in cancer cells treated with silibinin alone or in combination with chemotherapy. Methods: The anticancer effect of silibinin, alone or in combination with doxorubicin or oxaliplatin (OXP), was assessed using the MTT assay. Compusyn software was used to analyze the combination therapy data. Western blotting was conducted to examine the level of STAT3 activity. Flow cytometry was used to analyze calreticulin (CRT) and apoptosis. The heat shock protein (HSP70), high mobility group box protein1 (HMGB1), and IL-12 levels were assessed by ELISA. Results: Compared to the negative control groups, silibinin induced ICD in CT26 and B16F10 cells and significantly enhanced the induction of this type of cell death by doxorubicin, and these changes were allied with substantial increases in the level of damage-associated molecular patterns (DAMPs) including CRT, HSP70, and HMGB1. Furthermore, conditioned media from cancer cells exposed to silibinin and doxorubicin was found to stimulate IL-12 secretion in dendritic cells (DCs), suggesting the link of this treatment with the induction of Th1 response. Silibinin did not augment the ICD response induced by OXP. Conclusion: Our findings showed that silibinin can induce ICD and it potentiates the induction of this type of cell death induced by chemotherapy in cancer cells.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Heydarian
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Ommoleila Molavi,
| |
Collapse
|
18
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
19
|
Sauer N, Szlasa W, Jonderko L, Oślizło M, Kunachowicz D, Kulbacka J, Karłowicz-Bodalska K. LAG-3 as a Potent Target for Novel Anticancer Therapies of a Wide Range of Tumors. Int J Mol Sci 2022; 23:9958. [PMID: 36077354 PMCID: PMC9456311 DOI: 10.3390/ijms23179958] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022] Open
Abstract
LAG-3 (Lymphocyte activation gene 3) protein is a checkpoint receptor that interacts with LSEC-tin, Galectin-3 and FGL1. This interaction leads to reduced production of IL-2 and IFN-γ. LAG-3 is widely expressed in different tumor types and modulates the tumor microenvironment through immunosuppressive effects. Differential expression in various tumor types influences patient prognosis, which is often associated with coexpression with immune checkpoint inhibitors, such as TIM-3, PD-1 and CTLA-4. Here, we discuss expression profiles in different tumor types. To date, many clinical trials have been conducted using LAG-3 inhibitors, which can be divided into anti-LAG-3 monoclonal antibodies, anti-LAG-3 bispecifics and soluble LAG-3-Ig fusion proteins. LAG-3 inhibitors supress T-cell proliferation and activation by disallowing for the interaction between LAG-3 to MHC-II. The process enhances anti-tumor immune response. In this paper, we will review the current state of knowledge on the structure, function and expression of LAG-3 in various types of cancer, as well as its correlation with overall prognosis, involvement in cell-based therapies and experimental medicine. We will consider the role of compounds targeting LAG-3 in clinical trials both as monotherapy and in combination, which will provide data relating to the efficacy and safety of proposed drug candidates.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Laura Jonderko
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | | | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | |
Collapse
|
20
|
Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Kandasamy S, Ramesh T, Gopalakrishnan AV. The Cellular and Molecular Immunotherapy in Prostate Cancer. Vaccines (Basel) 2022; 10:vaccines10081370. [PMID: 36016257 PMCID: PMC9416492 DOI: 10.3390/vaccines10081370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
In recent history, immunotherapy has become a viable cancer therapeutic option. However, over many years, its tenets have changed, and it now comprises a range of cancer-focused immunotherapies. Clinical trials are currently looking into monotherapies or combinations of medicines that include immune checkpoint inhibitors (ICI), CART cells, DNA vaccines targeting viruses, and adoptive cellular therapy. According to ongoing studies, the discipline should progress by incorporating patient-tailored immunotherapy, immune checkpoint blockers, other immunotherapeutic medications, hormone therapy, radiotherapy, and chemotherapy. Despite significantly increasing morbidity, immunotherapy can intensify the therapeutic effect and enhance immune responses. The findings for the immunotherapy treatment of advanced prostate cancer (PCa) are compiled in this study, showing that is possible to investigate the current state of immunotherapy, covering new findings, PCa treatment techniques, and research perspectives in the field’s unceasing evolution.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
21
|
Dezfouli EA, Kiaie SH, Danafar H, Nomani A, Sadeghizadeh M. BTN-PEG-PCL nanoparticles for targeted delivery of curcumin: In vitro and in Ovo assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Liu C, Gao Y, Ni J, Chen S, Hu Q, Wang C, Hu M, Chen M. The ferroptosis-related long non-coding RNAs signature predicts biochemical recurrence and immune cell infiltration in prostate cancer. BMC Cancer 2022; 22:788. [PMID: 35850679 PMCID: PMC9290257 DOI: 10.1186/s12885-022-09876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Findings from numerous studies have revealed that ferroptosis is closely related to tumorigenesis and immune cell infiltration. Long non-coding RNAs (lncRNAs) are reportedly involved in the progression of various cancers, including prostate cancer (PCa). This study was designed to establish a ferroptosis-related lncRNA (frlncRNA) signature to predict PCa prognosis. METHODS The frlncRNAs were identified by studying their expression by Pearson's correlation analysis. Differentially expressed prognosis related frlncRNAs were identified by the Wilcoxon test and univariate Cox regression analysis. The LASSO Cox regression model was used to build a model to predict biochemical recurrence (BCR) based on frlncRNAs. The GSEA software (version 4.1.0) was used to explore the enriched pathways in high- and low- risk groups. Patients with PCa were clustered into different subgroups by unsupervised clustering based on the frlncRNAs considered in the prognostic model. Real-time PCR and CCK8 assays were performed to verify the expression and function of frlncRNAs. RESULTS We identified 35 differentially expressed prognosis related frlncRNAs based on data on PCa from TCGA. A risk signature based on five frlncRNAs (AP006284.1, AC132938.1, BCRP3, AL360181.4 and AL135999.1), was confirmed to perform well in predicting BCR. The high-risk group had higher disease grades and a greater number of infiltrating immune cells. Besides this, we found that the five frlncRNAs were connected with typical immune checkpoints. With respect to molecular mechanisms, several metabolic pathways were found to enriched in the low-risk group. Furthermore, patients could be classified into different subtypes with different PSA-free times using the five frlncRNAs. Notably, AP006284.1, AC132938.1, BCRP3 and AL135999.1 were upregulated in PCa cells and tissues, whereas AL360181.4 exhibited the opposite trend. The downregulation of BCRP3 and AP006284.1 impaired the proliferation of 22RV1 cells. CONCLUSION We generated a prognostic model based on five frlncRNAs, with clinical usefulness, and thus provided a novel strategy for predicting the BCR of patients with PCa.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiaxuan Ni
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Saisai Chen
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiang Hu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Can Wang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Mingjin Hu
- Department of Urology, Lishui People's Hospital, Nanjing, 210009, Jiangsu, China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China. .,Department of Urology, Lishui People's Hospital, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
23
|
Seervai RNH, Sinha A, Kulkarni RP. Mechanisms of dermatologic toxicities to immune checkpoint inhibitor cancer therapies. Clin Exp Dermatol 2022; 47:1928-1942. [PMID: 35844072 DOI: 10.1111/ced.15332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
The discovery of immune checkpoint inhibition (ICI) sparked a revolution in the era of targeted anticancer therapy. While monoclonal antibodies targeting the CTLA-4 and PD-1 axes have improved survival in patients with advanced cancers, these immunotherapies are associated with a wide spectrum of dermatologic immune-related adverse events (irAEs). Several publications have addressed the clinical and histopathologic classification of these skin-directed irAEs, their impact on antitumor immunity and survival, and the critical role of supportive oncologic dermatology in their management. Here, we review the current understanding of the mechanistic drivers of immune-related skin toxicities with a focus on inflammatory, immunobullous, melanocyte/pigment-related reactions. We detail the specific immune-based mechanisms that may underlie different cutaneous reactions. We also discuss potential mechanisms as they relate to non-cutaneous irAEs and potential overlap with cutaneous irAEs, techniques to study differences in immune-related versus de novo skin reactions, and how treatment of these adverse events impacts cancer treatment, patient quality of life, and overall survival. An improved understanding of the mechanistic basis of cutaneous irAEs will allow us to develop and utilize blood-based biomarkers that could help ultimately predict onset and/or severity of these irAEs and to implement rational mechanistic-based treatment strategies that are targeted to the irAEs while potentially avoiding abrogating anti-tumor effect of ICIs.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Internal Medicine, Providence Portland Medical Center, Portland, Oregon, 97213.,Medical Scientist Training Program, Baylor College of Medicine, 77030, Houston, Texas, USA.,Department of Dermatology, Baylor College of Medicine, 77030, Houston, Texas, USA
| | - Avilasha Sinha
- Department of Dermatology, Baylor College of Medicine, 77030, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, 77030, Houston, Texas, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA.,Department of Biomedical Engineering, Oregon Health and Science University, 97239, Portland, OR.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 97239, Portland, OR.,Operative Care Division, VA Portland Health Care System, 92739, Portland, OR
| |
Collapse
|
24
|
Zhang C, Qi F, Zheng Y, Xia X, Li X, Wang X. Comprehensive Genomic Characterization of Tumor Microenvironment and Relevant Signature in Clear Cell Renal Cell Carcinoma. Front Oncol 2022; 12:749119. [PMID: 35651807 PMCID: PMC9149313 DOI: 10.3389/fonc.2022.749119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To systematically investigate the characterization of tumor microenvironment (TME) in clear cell renal cell carcinoma (ccRCC), we performed a comprehensive analysis incorporating genomic alterations, cellular interactions, infiltrating immune cells, and risk signature. Patients and Methods Multi-omics data including RNA-seq, single-nucleotide variant (SNV) data, copy number variation (CNV) data, miRNA, and corresponding prognostic data were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database. The CIBERSORT algorithm was utilized to identify prognostic TME subclusters, and TMEscore was further quantified. Moreover, the mutational landscape of TCGA-KIRC was explored. Lastly, TIDE resource was applied to assess the significance of TMEscore in predicting immunotherapeutic benefits. Results We analyzed the TME infiltration patterns from 621 ccRCC patients and identified 5 specific TME subclusters associated with clinical outcomes. Then, we found that TMEcluster5 was significantly related to favorable prognosis and enriched memory B-cell infiltration. Accordingly, we depicted the clustering landscape of TMEclusters, TMEscore levels, tumor mutation burden (TMB), tumor grades, purity, and ploidy in all patients. Lastly, TIDE was used to assess the efficiency of immune checkpoint blockers (ICBs) and found that the TMEscore has superior predictive significance to TMB, making it an essential independent prognostic biomarker and drug indicator for clinical use. Conclusions Our study depicted the clustering landscape of TMEclusters, TMEscore levels, TMB, tumor grades, purity, and ploidy in total ccRCC patients. The TMEscore was proved to have promising significance for predicting prognosis and ICB responses, in accordance with the goal of developing rationally individualized therapeutic interventions.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Xia
- Department of Anatomy, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Urology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinwei Wang
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
26
|
Yu Y, Liu B, Chen S, Wang J, Chen F, Liu T, Jiang N, Chen W, Weng S, Cai X, Xiang D. Trichostatin A inhibits dendritic cell maturation through down-regulating NF-κ B (p65) pathway. Mol Biol Rep 2022; 49:2619-2627. [PMID: 35028853 DOI: 10.1007/s11033-021-07065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent evidence suggested that histone deacetylase inhibitor (HDACi) could inhibit dendritic cell (DC) maturation. However, the mechanism is unclear. Here, we aimed to study whether Trichostatin A (TSA), the most widely studied HDACi, inhibits the maturation of DCs by down-regulating NF-κB (p65) pathway. METHODS AND RESULTS Mouse bone marrow-derived DCs were cultured. Lipopolysaccharide (LPS) was applied as stimulation for maturation. Triptolide (TTL) was applied as p65 inhibitor. Microphotography and flow cytometry showed that TSA and p65 inhibitor separately inhibited the maturation of DCs stimulated by LPS from the aspects of cell morphology and cell phenotype. Mixed lymphocyte reaction test and ELISA showed that TSA and p65 inhibitor synergistically inhibited the proliferation of T lymphocytes stimulated by DCs, reduced the secretion of pro-inflammatory cytokine IL-12 and elevated the secretion of anti-inflammatory cytokine IL-10. Western blot and RT-qPCR showed that TSA down-regulated the expression of phosphorylated IκBα, phosphorylated-p65, Ikkβ and Ikkγ, suggesting TSA down-regulates NF-κB (p65) pathway. CONCLUSIONS TSA inhibits DC maturation through down-regulating NF-κB (p65) pathway.
Collapse
Affiliation(s)
- Ying Yu
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Bing Liu
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Siyan Chen
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Jianxun Wang
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Feng Chen
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Tian Liu
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Nan Jiang
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Wensi Chen
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Shengbei Weng
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaoxiao Cai
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China
| | - Daoman Xiang
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
27
|
Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers (Basel) 2022; 14:cancers14051245. [PMID: 35267553 PMCID: PMC8909751 DOI: 10.3390/cancers14051245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment landscape of advanced prostate cancer (PCa) is constantly improving with the approval of many new therapeutic options. Immunotherapy in PCa has been investigated with disappointing results. This review aims to evaluate the potential role of immunotherapy in both castration-sensitive and castration-resistant PCa, discussing the immunobiology of PCa, the results of the current literature, and the ongoing clinical trials. Potential prognostic and/or predictive factors and future perspectives are also discussed. Abstract In the last 10 years, many new therapeutic options have been approved in advanced prostate cancer (PCa) patients, granting a more prolonged survival in patients with metastatic disease, which, nevertheless, remains incurable. The emphasis on immune checkpoint inhibitors (ICIs) has led to many trials in this setting, with disappointing results until now. Therefore, we discuss the immunobiology of PCa, presenting ongoing trials and the available clinical data, to understand if immunotherapy could represent a valid option in this disease, and which subset of patients may be more likely to benefit. Current evidence suggests that the tumor microenvironment needs a qualitative rather than quantitative evaluation, along with the genomic determinants of prostate tumor cells. The prognostic or predictive value of immunotherapy biomarkers, such as PD-L1, TMB, or dMMR/MSI-high, needs further evaluation in PCa. Monotherapy with immune checkpoint inhibitors (ICIs) has been modestly effective. In contrast, combined strategies with other standard treatments (hormonal agents, chemotherapy, PARP inhibitors, radium-223, and TKIs) have shown some results. Immunotherapy should be better investigated in biomarker-selected patients, particularly with specific pathway aberrations (e.g., AR-V7 variant, HRD, CDK12 inactivated tumors, MSI-high tumors). Lastly, we present new possible targets in PCa that could potentially modulate the tumor microenvironment and improve antitumor activity with ICIs.
Collapse
|
28
|
Deng J, Xiao W, Wang Z. FAM46C as a Potential Marker for Pan-Cancer Prognosis and Predicting Immunotherapeutic Efficacy. Front Genet 2022; 13:810252. [PMID: 35222533 PMCID: PMC8864238 DOI: 10.3389/fgene.2022.810252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Background:FAM46C is a common mutated gene in tumours. A comprehensive understanding of the relationship between FAM46C expression and pan-cancer can guide clinical prognosis and broaden the immunotherapeutic targets.Methods: Data from The Cancer Genome Atlas and Genotype-Tissue Expression (GTEx) databases were obtained, and gene expression of different tumour types and stages was analysed. Immunohistochemical analysis was performed to detect differences in the FAM46C protein levels in normal and cancerous tissues. The genetic variation of FAM46C was characterised using cBioPortal. The clinical prognostic value of FAM46C and the impact of FAM46C expression levels on the prognosis of patients with different types of cancer were assessed based on Kaplan–Meier and Cox regression analyses. Gene set enrichment analysis (GSEA) was used to analyse the pathways associated with FAM46C. Correlations between FAM46C expression levels and immune infiltration were assessed using the TIMER2 database and CIBERSORT algorithm, and correlations between FAM46C expression and the ESTIMATE, immune and stromal scores were analysed using the ESTIMATE algorithm. In addition, we also analysed the correlation between FAM46C expression and immune activation, suppression genes and immune chemokines.Results: The expression level of FAM46C was correlated with the prognosis of most tumours, and low expression levels often suggested a poor prognosis. FAM46C was positively correlated with the abundance of CD4+ T cells, CD8+ T cells and plasma B lymphocytes in the tumour microenvironment. FAM46C exhibited a strong correlation with immunomodulatory pathways, immunomodulatory factors and immune markers. In addition, high FAM46C expression correlated with tumour mutational burden in acute myeloid leukaemia and microsatellite instability in endometrial cancer.Conclusion: Our study suggests that FAM46C can be a potential prognostic marker for pan-cancer, is closely associated with immune regulation and may be an immune checkpoint to guide future clinical immunotherapy.
Collapse
Affiliation(s)
- Jiehua Deng
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wei Xiao
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, China
| | - Zheng Wang
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zheng Wang,
| |
Collapse
|
29
|
Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer. Cancer Lett 2022; 525:9-21. [PMID: 34715253 DOI: 10.1016/j.canlet.2021.10.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in western countries. Androgen deprivation therapy (ADT) is considered the standard therapy for recurrent prostate cancer; however, this therapy may lead to ADT resistance and tumor progression, which seems to be regulated by epithelial-mesenchymal transition (EMT) and/or neuroendocrine differentiation (NED). In addition, recent data suggested the involvement of either adaptive or innate infiltrated immune cells in the initiation, progression, metastasis, and treatment of prostate cancer. In this review, we outlined the characteristics and roles of these immune cells in the initiation, progression, metastasis, and treatments of prostate cancer. We also summarized the current therapeutic strategies in targeting immune cells of the prostate tumor microenvironment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
30
|
Targeting Inflammatory Signaling in Prostate Cancer Castration Resistance. J Clin Med 2021; 10:jcm10215000. [PMID: 34768524 PMCID: PMC8584457 DOI: 10.3390/jcm10215000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Although castration-resistant prostate cancer (CRPC) as a whole, by its name, refers to the tumors that relapse and/or regrow independently of androgen after androgen deprivation therapy (ADT), untreated tumor, even in early-stage primary prostate cancer (PCa), contains androgen-independent (AI) PCa cells. The transformation of androgen-dependent (AD) PCa to AI PCa under ADT is a forced evolutionary process, in which the small group of AI PCa cells that exist in primary tumors has the unique opportunity to proliferate and expand selectively and dominantly, while some AD PCa cells that have escaped from ADT-induced death acquire the capability to survive in an androgen-depleted environment. The adaptation and reprogramming of both PCa cells and the tumor microenvironment (TME) under ADT make PCa much stronger than primary tumors so that, currently, there are no effective therapeutic methods available for the treatment of CRPC. Many mechanisms have been found to be related to the emergence and maintenance of PCa castration resistance; in this review, we focus on the role of inflammatory signaling in both PCa cells and the TME for the emergence and maintenance of CRPC and summarize the recent advances of therapeutic strategies that target inflammatory signaling for the treatment of CRPC.
Collapse
|
31
|
Giunta EF, Annaratone L, Bollito E, Porpiglia F, Cereda M, Banna GL, Mosca A, Marchiò C, Rescigno P. Molecular Characterization of Prostate Cancers in the Precision Medicine Era. Cancers (Basel) 2021; 13:4771. [PMID: 34638258 PMCID: PMC8507555 DOI: 10.3390/cancers13194771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) therapy has been recently revolutionized by the approval of new therapeutic agents in the metastatic setting. However, the optimal therapeutic strategy in such patients should be individualized in the light of prognostic and predictive molecular factors, which have been recently studied: androgen receptor (AR) alterations, PTEN-PI3K-AKT pathway deregulation, homologous recombination deficiency (HRD), mismatch repair deficiency (MMRd), and tumor microenvironment (TME) modifications. In this review, we highlighted the clinical impact of prognostic and predictive molecular factors in PCa patients' outcomes, identifying biologically distinct subtypes. We further analyzed the relevant methods to detect these factors, both on tissue, i.e., immunohistochemistry (IHC) and molecular tests, and blood, i.e., analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Moreover, we discussed the main pros and cons of such techniques, depicting their present and future roles in PCa management, throughout the precision medicine era.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Enrico Bollito
- Department of Pathology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, 10060 Turin, Italy;
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO2 8QD, UK;
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|
32
|
Guo CX, Huang X, Xu J, Zhang XZ, Shen YN, Liang TB, Bai XL. Combined targeted therapy and immunotherapy for cancer treatment. World J Clin Cases 2021; 9:7643-7652. [PMID: 34621816 PMCID: PMC8462242 DOI: 10.12998/wjcc.v9.i26.7643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Although targeted therapies and immunotherapies have been effective against several malignancies, the respective monotherapies are limited by low and/or short-term responses. Specific inhibitors of oncogenic signaling pathways and tumor-associated angiogenesis can activate the anti-tumor immune responses by increasing tumor antigen presentation or intratumor T cell infiltration. Additional insights into the effects and mechanisms of targeted therapies on the induction of anti-tumor immunity will facilitate development of rational and effective combination strategies that synergize rapid tumor regression and durable response. In this review, we have summarized the recent combinations of targeted therapies and immunotherapies, along with the associated clinical challenges.
Collapse
Affiliation(s)
- Cheng-Xiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xiao-Zhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Nan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ting-Bo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
33
|
Zhou Q, Li K, Lai Y, Yao K, Wang Q, Zhan X, Peng S, Cai W, Yao W, Zang X, Xu K, Huang J, Huang H. B7 score and T cell infiltration stratify immune status in prostate cancer. J Immunother Cancer 2021; 9:jitc-2021-002455. [PMID: 34417325 PMCID: PMC8381330 DOI: 10.1136/jitc-2021-002455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs), especially programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis blockers, exhibit prominent antitumor effects against numerous malignancies, their benefit for patients with prostate cancer (PCa) has been somewhat marginal. This study aimed to assess the feasibility of B7-H3 or HHLA2 as alternative immunotherapeutic targets in PCa. METHODS Immunohistochemistry was performed to evaluate the expression pattern of PD-L1, B7-H3 and HHLA2 and the infiltration of CD8+ and Foxp3+ lymphocytes in 239 PCa tissues from two independent cohorts. The correlations between B7-H3 and HHLA2 and clinicopathological features, including the presence of CD8+ and Foxp3+ tumor-infiltrating lymphocytes (TILs), were explored. RESULTS HHLA2 expression was much higher than PD-L1 expression but lower than B7-H3 expression in PCa tissues. High expression of both B7-H3 and HHLA2 was significantly associated with higher Gleason score and tumor stage, lymph node metastasis and dismal overall survival (OS) and cancer-specific survival (CSS). Moreover, a high B7 score, defined as high B7-H3 expression and/or high HHLA2 expression, was an independent prognostic predictor for PCa. Of note, a high B7 score was negatively correlated with CD8+ TILs. Importantly, a new immune classification, based on the B7 score and CD8+ TILs, successfully stratified OS and CSS in PCa. CONCLUSIONS Both B7-H3 and HHLA2 have a critical impact on the immunosuppressive microenvironment, and the B7 score could be used as an independent prognostic factor for PCa. The B7 score combined with CD8+ TILs could be used as a new immune classification to stratify the risk of death, especially cancer-related death, for patients with PCa. These findings may provide insights that could improve response to immune-related comprehensive therapy for PCa in the future.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kai Yao
- Department of urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangyu Zhan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wei Yao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xingxing Zang
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, china
| |
Collapse
|
34
|
Song Q, Zhang G, Wang B, Cao G, Li D, Wang Y, Zhang Y, Geng J, Li H, Li Y. Reinforcing the Combinational Immuno-Oncotherapy of Switching "Cold" Tumor to "Hot" by Responsive Penetrating Nanogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36824-36838. [PMID: 34314148 DOI: 10.1021/acsami.1c08201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although immuno-oncotherapy in clinic has gained great success, the immunosuppressive tumor microenvironment (TME) existing in the "cold" tumor with insufficient and exhausted lymphocytes may result in a lower-than-expected therapeutic efficiency. Therefore, a properly designed synergistic strategy that can effectively turn the "cold" tumor to "hot" should be considered to improve the therapeutic effects of immuno-oncotherapy. Herein, TME-responsive penetrating nanogels (NGs) were developed, which can improve the delivery and penetration of the co-loaded resiquimod (R848) and green tea catechin (EGCG) in tumors by a nano-sized controlled releasing system of the soluble cyclodextrin-drug inclusion complex. Consequently, the NGs effectively promoted the maturation of dendritic cells, stimulated the cytotoxic T lymphocytes (CTLs), and decreased the PD-L1 expression in tumors. The combination of NGs with the OX40 agonist (αOX40) further synergistically enhanced the activation and infiltration of CTLs into the deep tumor and inhibited the suppression effects from the regulatory T cells (Tregs). As a result, an increased ratio of active CTLs to Tregs in tumors (20.66-fold) was achieved with a 91.56% tumor suppression effect, indicating a successful switch of "cold" tumors to "hot" for an immunologically beneficial TME with significantly improved anti-tumor immune therapeutics. This strategy could be tailored to other immuno-oncotherapeutic approaches to solve the urgent efficiency concerns of the checkpoint-based treatment in clinic.
Collapse
Affiliation(s)
- Qingle Song
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoli Cao
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Yu Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Geng
- Center for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
35
|
Panunzio A, Tafuri A, Princiotta A, Gentile I, Mazzucato G, Trabacchin N, Antonelli A, Cerruto MA. Omics in urology: An overview on concepts, current status and future perspectives. Urologia 2021; 88:270-279. [PMID: 34169788 DOI: 10.1177/03915603211022960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent technological advances in molecular biology have led to great progress in the knowledge of structure and function of cells and their main constituents. In this setting, 'omics' is standing out in order to significantly improve the understanding of etiopathogenetic mechanisms of disease and contribute to the development of new biochemical diagnostics and therapeutic tools. 'Omics' indicates the scientific branches investigating every aspect of cell's biology, including structures, functions and dynamics pathways. The main 'omics' are genomics, epigenomics, proteomics, transcriptomics, metabolomics and radiomics. Their diffusion, success and proliferation, addressed to many research fields, has led to many important acquisitions, even in Urology. Aim of this narrative review is to define the state of art of 'omics' application in Urology, describing the most recent and relevant findings, in both oncological and non-oncological diseases, focusing the attention on urinary tract infectious, interstitial cystitis, urolithiasis, prostate cancer, bladder cancer and renal cell carcinoma. In Urology the majority of 'omics' applications regard the pathogenesis and diagnosis of the investigated diseases. In future, its role should be implemented in order to develop specific predictors and tailored treatments.
Collapse
Affiliation(s)
- Andrea Panunzio
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alessandro Tafuri
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.,Department of Neuroscience, Imaging and Clinical Science, Physiology and Physiopathology division, "G. D'Annunzio" University, Chieti, Italy
| | - Alessandro Princiotta
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Ilaria Gentile
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giovanni Mazzucato
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Nicolò Trabacchin
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alessandro Antonelli
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria Angela Cerruto
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
36
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
37
|
Hu M, Li Y, Lu Y, Wang M, Li Y, Wang C, Li Q, Zhao H. The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ 2021; 9:e11306. [PMID: 34012727 PMCID: PMC8109006 DOI: 10.7717/peerj.11306] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) influences the occurrence and progression of tumors, and hypoxia is an important characteristic of the TME. The expression of programmed death 1 (PD1)/programmed death-ligand 1 (PDL1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), and other immune checkpoints in hypoxic malignant tumors is often significantly increased, and is associated with poor prognosis. The application of immune checkpoint inhibitors (ICIs) for treating lung cancer, urothelial carcinoma, and gynecological tumors has achieved encouraging efficacy; however, the rate of efficacy of ICI single-drug treatment is only about 20%. In the present review, we discuss the possible mechanisms by which the hypoxic TME regulates immune checkpoints. By activating hypoxia-inducible factor-1α (HIF-1α), regulating the adenosine (Ado)-A2aR pathway, regulating the glycolytic pathway, and driving epithelial-mesenchymal transition (EMT) and other biological pathways, hypoxia regulates the expression levels of CTLA4, PD1, PDL1, CD47, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain 3 (TIM3), and other immune checkpoints, which interfere with the immune effector cell anti-tumor response and provide convenient conditions for tumors to escape immune surveillance. The combination of HIF-1α inhibitors, Ado-inhibiting tumor immune microenvironment regulatory drugs, and other drugs with ICIs has good efficacy in both preclinical studies and phase I-II clinical studies. Exploring the effects of TME hypoxia on the expression of immune checkpoints and the function of infiltrating immune cells has greatly clarified the relationship between the hypoxic TME and immune escape, which is of great significance for the development of new drugs and the search for predictive markers of the efficacy of immunotherapy for treating malignant tumors. In the future, combination therapy with hypoxia pathway inhibitors and ICIs may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Min Hu
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfu Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingrui Li
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Zhao
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
38
|
Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021; 19:110. [PMID: 33865432 PMCID: PMC8052859 DOI: 10.1186/s12951-021-00861-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Nowadays, a potent challenge in cancer treatment is considered the lack of efficacious strategy, which has not been able to significantly reduce mortality. Chemoimmunotherapy (CIT) as a promising approach in both for the first-line and relapsed therapy demonstrated particular benefit from two key gating strategies, including chemotherapy and immunotherapy to cancer therapy; therefore, the discernment of their participation and role of potential synergies in CIT approach is determinant. In this study, in addition to balancing the pros and cons of CIT with the challenges of each of two main strategies, the recent advances in the cancer CIT have been discussed. Additionally, immunotherapeutic strategies and the immunomodulation effect induced by chemotherapy, which boosts CIT have been brought up. Finally, harnessing and development of the nanoparticles, which mediated CIT have expatiated in detail.
Collapse
Affiliation(s)
- Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147, Urmia, Iran.
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, 5166-15731, Tabriz, Iran.
| |
Collapse
|
39
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
40
|
Witt K, Evans-Axelsson S, Lundqvist A, Johansson M, Bjartell A, Hellsten R. Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer. Cancer Immunol Immunother 2021; 70:3155-3166. [PMID: 33786638 PMCID: PMC8505385 DOI: 10.1007/s00262-021-02915-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/13/2021] [Indexed: 01/21/2023]
Abstract
There is an urgent need for new treatment options in metastatic drug-resistant prostate cancer. Combining immunotherapy with other targeted therapies may be an effective strategy for advanced prostate cancer. In the present study, we sought to investigate to enhance the efficacy of anti-CTLA-4 therapy against prostate cancer by the combination with STAT3 inhibition. Male C57BL6 mice were subcutaneously inoculated with the murine prostate cancer cell line RM-1. Tumor progression was monitored following treatment with vehicle, the small molecule STAT3 inhibitor GPB730, anti-CTLA-4 or GPB730 + anti-CTLA-4. Treatment with anti-CTLA-4 or anti-CTLA-4 + GPB730 significantly inhibited tumor growth and enhanced survival compared to vehicle. Combining anti-CTLA-4 treatment with GPB730 resulted in a significantly prolonged survival compared to anti-CTLA-4 alone. GPB730 significantly increased infiltration of CD45 + cells in tumors of anti-CTLA-4-treated mice compared to anti-CTLA-4 alone. The levels of tumor-infiltrating Tregs were significantly decreased and the CD8:Treg ratio significantly increased by GPB730 treatment in combination with anti-CTLA-4 compared to anti-CTLA-4 alone. Immunohistochemical analysis showed a significant increase in CD45-positive cells in anti-CTLA-4 and anti-CTLA-4 + GPB730-treated tumors compared to vehicle or GPB730 monotherapy. Plasma levels of IL10 were significantly increased by anti-CTLA-4 compared to vehicle but no increase was observed when combining anti-CTLA-4 with GPB730. In conclusion, STAT3 inhibition by GPB730 enhances the antitumoral activity of anti-CTLA-4 and decreases the intratumoral Treg frequency in a prostate cancer mouse model. These results support the combination of STAT3 inhibition with anti-CTLA-4 therapy to increase clinical responses in patients with prostate cancer.
Collapse
Affiliation(s)
- Kristina Witt
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susan Evans-Axelsson
- Division of Urological Cancers, Institution of Translational Medicine, Lund University, Malmö, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anders Bjartell
- Division of Urological Cancers, Institution of Translational Medicine, Lund University, Malmö, Sweden
| | - Rebecka Hellsten
- Division of Urological Cancers, Institution of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
41
|
Hu W, Wang Y, Fang Z, He W, Li S. Integrated Characterization of lncRNA-Immune Interactions in Prostate Cancer. Front Cell Dev Biol 2021; 9:641891. [PMID: 33665192 PMCID: PMC7921328 DOI: 10.3389/fcell.2021.641891] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer is among the top mortality factors in male around the world. Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in tumor biology and immunology. However, lncRNA-immune interactions have not yet examined in prostate cancer. Here, we performed integrated analysis to characterize lncRNA-immune interactions in prostate cancer through multidimensional aspects, including immune-related hallmarks, tumor immunogenomic signatures, immune-related biological processes, immune cells, and immune checkpoints. We dissected the dysregulation of lncRNAs and their clinical relevance in prostate cancer, such as RP11-627G23.1 and RP11-465N4.5. Immune-related hallmarks took up the major parts among top significant lncRNA-hallmark interactions. Our analysis revealed that TGF-β signaling pathway was the most frequent to associate with lncRNAs, which is a signature of immune response in cancer. In addition, immune response and its regulation were the most closely connected immunological processes with lncRNA, implying the regulatory roles of lncRNAs on immune response in prostate cancer. We found that memory resting CD4+ T cells were the most lncRNA-correlated immune cell. LINC00861 was found to be potentially intervening targets of immunotherapy for prostate cancer patients, which was significantly associated with PD-1 and CTLA4. Collectively, we offered a handy resource to investigate regulatory roles of lncRNAs on tumor immunology and the development of clinical utility of lncRNAs in prostate cancer.
Collapse
Affiliation(s)
- Wei Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanru Wang
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhixiao Fang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shengli Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. Int J Mol Sci 2020; 21:ijms21249511. [PMID: 33327545 PMCID: PMC7765031 DOI: 10.3390/ijms21249511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.
Collapse
|
43
|
Vittrant B, Bergeron A, Molina OE, Leclercq M, Légaré XP, Hovington H, Picard V, Martin-Magniette ML, Livingstone J, Boutros PC, Collins C, Fradet Y, Droit A. Immune-focused multi-omics analysis of prostate cancer: leukocyte Ig-Like receptors are associated with disease progression. Oncoimmunology 2020; 9:1851950. [PMID: 33299664 PMCID: PMC7714461 DOI: 10.1080/2162402x.2020.1851950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) immunotherapy has shown limited efficacy so far, even in advanced-stage cancers. The success rate of PCa immunotherapy might be improved by approaches more adapted to the immunobiology of the disease. The objective of this study was to perform a multi-omics analysis to identify immune genes associated with PCa progression to better characterize PCa immunobiology and propose new immunotherapeutic targets. mRNA, miRNA, methylation, copy number aberration, and single nucleotide variant datasets from The Cancer Genome Atlas PRAD cohort were analyzed after filtering for genes associated with immunity. Sparse partial least squares-discriminant analyses were performed to identify features associated with biochemical recurrence (BCR) in each type of omics data. Selected features predicted BCR with a balanced error rate (BER) of 0.20 to 0.51 in single-omics and of 0.05 in multi-omics analyses. Amongst features associated with BCR were genes from the Immunoglobulin Ig-like Receptor (LILR) family which are immune checkpoints with immunotherapeutic potential. Using Multivariate INTegrative (MINT) analysis, the association of five LILR genes with BCR was quantified in a combination of three RNA-seq datasets and confirmed with Kaplan-Meier analysis in both these and in an independent RNA-seq dataset. Finally, immunohistochemistry showed that a high number of LILRB1 positive cells within the tumors predicted long-term adverse outcomes. Thus, tumors characterized by abnormal expression of LILR genes have an elevated risk of recurring after definitive local therapy. The immunotherapeutic potential of these regulators to stimulate the immune response against PCa should be evaluated in pre-clinical models.
Collapse
Affiliation(s)
- Benjamin Vittrant
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
- Laboratoire d’Uro-Oncologie Expérimentale, Axe Oncologie, Centre de Recherche Du CHU de Québec-Université Laval, Québec, Canada
| | - Alain Bergeron
- Laboratoire d’Uro-Oncologie Expérimentale, Axe Oncologie, Centre de Recherche Du CHU de Québec-Université Laval, Québec, Canada
| | - Oscar Eduardo Molina
- Laboratoire d’Uro-Oncologie Expérimentale, Axe Oncologie, Centre de Recherche Du CHU de Québec-Université Laval, Québec, Canada
| | - Mickael Leclercq
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Xavier-Philippe Légaré
- Laboratoire d’Uro-Oncologie Expérimentale, Axe Oncologie, Centre de Recherche Du CHU de Québec-Université Laval, Québec, Canada
| | - Hélène Hovington
- Laboratoire d’Uro-Oncologie Expérimentale, Axe Oncologie, Centre de Recherche Du CHU de Québec-Université Laval, Québec, Canada
| | - Valérie Picard
- Laboratoire d’Uro-Oncologie Expérimentale, Axe Oncologie, Centre de Recherche Du CHU de Québec-Université Laval, Québec, Canada
| | - Marie-Laure Martin-Magniette
- Universities of Paris Saclay, Paris, Evry, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Gif Sur Yvette, France
| | - Julie Livingstone
- Departments of Human Genetics & Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
| | - Paul C. Boutros
- Departments of Human Genetics & Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
- Departments of Medical Biophysics and Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Colin Collins
- Vancouver Prostate Cancer Centre, Vancouver, British Columbia, Canada
| | - Yves Fradet
- Laboratoire d’Uro-Oncologie Expérimentale, Axe Oncologie, Centre de Recherche Du CHU de Québec-Université Laval, Québec, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| |
Collapse
|
44
|
Immune-related biomarker risk score predicts prognosis in prostate cancer. Aging (Albany NY) 2020; 12:22776-22793. [PMID: 33197890 PMCID: PMC7746334 DOI: 10.18632/aging.103921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/25/2020] [Indexed: 12/23/2022]
Abstract
In this study, we constructed a model using a Cox proportional hazards model based on the expression of eight immune-related genes that were associated with prognosis in prostate cancer: EDNRB, ANGPTL2, TNFSF15, TNFRSF10D, EDN2, BMP2, NLRP14, and PLK1. We then identified associations between risk scores calculated with the model, tumor microenvironment characteristics, and immune cell infiltration. Prostate cancer patients in the high score group had poorer prognoses, and validation with the external GSE54460 dataset confirmed that the scoring model predicted biochemical recurrence with AUC values of 0.749 at 1 year, 0.804 at 3 years, and 0.774 at 5 years. Proportions of infiltrated M2 macrophages and regulatory T cells were increased in the high risk group, while CD8+ T cells were increased in the low risk group. Network analysis revealed that PLK1 may be a key regulator of the immune-suppressive microenvironment in prostate cancer. Double immunofluorescence labeling of a prostate cancer tissue microarray indicated that PLK1 expression correlated positively with numbers of infiltrating macrophages. These results indicate that an immune- related, gene-based risk score effectively reflects immune microenvironment characteristics and predicts prognosis in prostate cancer.
Collapse
|
45
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
46
|
Gamat-Huber M, Jeon D, Johnson LE, Moseman JE, Muralidhar A, Potluri HK, Rastogi I, Wargowski E, Zahm CD, McNeel DG. Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers (Basel) 2020; 12:cancers12102831. [PMID: 33008010 PMCID: PMC7601088 DOI: 10.3390/cancers12102831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The only vaccine approved by FDA as a treatment for cancer is sipuleucel-T, a therapy for patients with metastatic castration-resistant prostate cancer (mCRPC). Most investigators studying anti-tumor vaccines believe they will be most effective as parts of combination therapies, rather than used alone. Unfortunately, the cost and complexity of sipuleucel-T makes it difficult to feasibly be used in combination with many other agents. In this review article we discuss the use of DNA vaccines as a simpler vaccine approach that has demonstrated efficacy in several animal species. We discuss the use of DNA vaccines in combination with traditional treatments for mCRPC, and other immune-modulating treatments, in preclinical and early clinical trials for patients with mCRPC. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is a challenging disease to treat, with poor outcomes for patients. One antitumor vaccine, sipuleucel-T, has been approved as a treatment for mCRPC. DNA vaccines are another form of immunotherapy under investigation. DNA immunizations elicit antigen-specific T cells that cause tumor cell lysis, which should translate to meaningful clinical responses. They are easily amenable to design alterations, scalable for large-scale manufacturing, and thermo-stable for easy transport and distribution. Hence, they offer advantages over other vaccine formulations. However, clinical trials with DNA vaccines as a monotherapy have shown only modest clinical effects against tumors. Standard therapies for CRPC including androgen-targeted therapies, radiation therapy and chemotherapy all have immunomodulatory effects, which combined with immunotherapies such as DNA vaccines, could potentially improve treatment. In addition, many investigational drugs are being developed which can augment antitumor immunity, and together with DNA vaccines can further enhance antitumor responses in preclinical models. We reviewed the literature available prior to July 2020 exploring the use of DNA vaccines in the treatment of prostate cancer. We also examined various approved and experimental therapies that could be combined with DNA vaccines to potentially improve their antitumor efficacy as treatments for mCRPC.
Collapse
|
47
|
Rizzo A, Mollica V, Cimadamore A, Santoni M, Scarpelli M, Giunchi F, Cheng L, Lopez-Beltran A, Fiorentino M, Montironi R, Massari F. Is There a Role for Immunotherapy in Prostate Cancer? Cells 2020; 9:E2051. [PMID: 32911806 PMCID: PMC7564598 DOI: 10.3390/cells9092051] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decade, immunotherapy has revolutionized the treatment landscape of several hematological and solid malignancies, reporting unprecedented response rates. Unfortunately, this is not the case for metastatic castration-resistant prostate cancer (mCRPC), as several phase I and II trials assessing programmed death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors have shown limited benefits. Moreover, despite sipuleucel-T representing the only cancer vaccine approved by the Food and Drug Administration (FDA) for mCRPC following the results of the IMPACT trial, the use of this agent is relatively limited in everyday clinical practice. The identification of specific histological and molecular biomarkers that could predict response to immunotherapy represents one of the current challenges, with an aim to detect subgroups of mCRPC patients who may benefit from immune checkpoint monoclonal antibodies as monotherapy or in combination with other anticancer agents. Several unanswered questions remain, including the following: is there-or will there ever be-a role for immunotherapy in prostate cancer? In this review, we aim at underlining the failures and promises of immunotherapy in prostate cancer, summarizing the current state of art regarding cancer vaccines and immune checkpoint monoclonal antibodies, and discussing future research directions in this immunologically "cold" malignancy.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 40138 Bologna, Italy; (A.R.); (V.M.)
| | - Veronica Mollica
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 40138 Bologna, Italy; (A.R.); (V.M.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62012 Macerata, Italy;
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesca Giunchi
- Department of Pathology, Ospedale Maggiore and University of Bologna, 40138 Bologna, Italy; (F.G.); (M.F.)
| | - Liang Cheng
- Laboratory Medicine and Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Michelangelo Fiorentino
- Department of Pathology, Ospedale Maggiore and University of Bologna, 40138 Bologna, Italy; (F.G.); (M.F.)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesco Massari
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 40138 Bologna, Italy; (A.R.); (V.M.)
| |
Collapse
|
48
|
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells 2020; 9:E1823. [PMID: 32752206 PMCID: PMC7464343 DOI: 10.3390/cells9081823] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Immune-checkpoint blockers (ICBs) have revolutionized oncology and firmly established the subfield of immuno-oncology. Despite this renaissance, a subset of cancer patients remain unresponsive to ICBs due to widespread immuno-resistance. To "break" cancer cell-driven immuno-resistance, researchers have long floated the idea of therapeutically facilitating the immunogenicity of cancer cells by disrupting tumor-associated immuno-tolerance via conventional anticancer therapies. It is well appreciated that anticancer therapies causing immunogenic or inflammatory cell death are best positioned to productively activate anticancer immunity. A large proportion of studies have emphasized the importance of immunogenic apoptosis (i.e., immunogenic cell death or ICD); yet, it has also emerged that necroptosis, a programmed necrotic cell death pathway, can also be immunogenic. Emergence of a proficient immune profile for necroptosis has important implications for cancer because resistance to apoptosis is one of the major hallmarks of tumors. Putative immunogenic or inflammatory characteristics driven by necroptosis can be of great impact in immuno-oncology. However, as is typical for a highly complex and multi-factorial disease like cancer, a clear cause versus consensus relationship on the immunobiology of necroptosis in cancer cells has been tough to establish. In this review, we discuss the various aspects of necroptosis immunobiology with specific focus on immuno-oncology and cancer immunotherapy.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Pieter De Wijngaert
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Cell Death Investigation and Therapy Laboratory, Ghent University, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
49
|
Lin Y, Zhao X, Miao Z, Ling Z, Wei X, Pu J, Hou J, Shen B. Data-driven translational prostate cancer research: from biomarker discovery to clinical decision. J Transl Med 2020; 18:119. [PMID: 32143723 PMCID: PMC7060655 DOI: 10.1186/s12967-020-02281-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor with increasing incidence and high heterogeneity among males worldwide. In the era of big data and artificial intelligence, the paradigm of biomarker discovery is shifting from traditional experimental and small data-based identification toward big data-driven and systems-level screening. Complex interactions between genetic factors and environmental effects provide opportunities for systems modeling of PCa genesis and evolution. We hereby review the current research frontiers in informatics for PCa clinical translation. First, the heterogeneity and complexity in PCa development and clinical theranostics are introduced to raise the concern for PCa systems biology studies. Then biomarkers and risk factors ranging from molecular alternations to clinical phenotype and lifestyle changes are explicated for PCa personalized management. Methodologies and applications for multi-dimensional data integration and computational modeling are discussed. The future perspectives and challenges for PCa systems medicine and holistic healthcare are finally provided.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiaojun Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhijun Miao
- Department of Urology, Suzhou Dushuhu Public Hospital, Suzhou, 215123, China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|