1
|
Habeeba KU, Rasmi AR. Anti-inflammatory and in silico docking studies of Litsea wightiana (Nees) Hook.f. (Lauraceae) leaf constituents. Nat Prod Res 2024:1-8. [PMID: 39093996 DOI: 10.1080/14786419.2024.2385023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Current study aimed to disclose the anti-inflammatory potential of the methanolic leaf extracts of L. wightiana (LWME). The in vitro studies focused on enzyme inhibition assays targeting the key enzymes such as cyclooxygenase, lipoxygenase and nitric oxide synthase and revealed that LWME effectively inhibited the activity of these enzymes. Gene expression studies confirmed the anti-inflammatory effect, demonstrating down regulation of genes associated with inflammation and key proinflammatory factors such as COX-2, TNF-α, IL-6 and NFkB. In vivo anti-inflammatory experiments by carrageenan-induced paw edoema method in model animals and inflammation was found to be reduced by 10% concentration of extract and significant at P˂0.001 level. GCMS and LCMS analysis were conducted and the resulted compounds were docked against target proteins indicated that most of the bioactive compounds showed better binding affinity with enzymes in which the dicentrinone showed higher affinity and it may be useful in the treatment of several ailments.
Collapse
Affiliation(s)
| | - Avanoor Ramanathan Rasmi
- PG & Research Department of Botany, Government Victoria College, University of Calicut, Palakkad, Kerala, India
| |
Collapse
|
2
|
Shan M, Zhao X, Sun P, Qu X, Cheng G, Qin LP. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorg Chem 2024; 149:107506. [PMID: 38833989 DOI: 10.1016/j.bioorg.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Collapse
Affiliation(s)
- Mengyi Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xuan Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Peng Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xinhao Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
3
|
Luke SS, Raj MN, Ramesh S, Bhatt NP. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of squalene against inflammation. In Silico Pharmacol 2024; 12:44. [PMID: 38756678 PMCID: PMC11093945 DOI: 10.1007/s40203-024-00217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Squalene (SQ) has been documented in the past for its ability to reduce inflammation, but its mechanism needs more information. In this study, we investigated squalene as an anti-inflammatory drug candidate and the framework involved in treating inflammation (INF) using the network pharmacology concept. The molecular targets of SQ and INF that are available in databases and the overlaps between these targets were demonstrated using InteractiVenn. The protein-protein networks were generated that in turn revealed several key targets and were further processed with Cytoscape. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) studies were performed. We also performed molecular docking tests that validated the binding affinity of molecular targets and drugs. A total of 100 SQ targets and 11,417 INF-related targets yielded 93 overlapping targets. Seven core targets, CRHR1, EGFR, ERBB2, HIF1A, SLC6A3, MAP2K1, and F2R were found to be relevant with respective to SQ's anti-inflammatory activity. The underlying mechanism of SQ with regard to INF was interpreted by analyzing various enrichment analyses along with the KEGG pathway. In conclusion, SQ played a vital role in the management of INF by regulating CRHR1, EGFR, ERBB2, HIF1A, SLC6A3, MAP2K1, and F2R. The research outcomes are crucial as they offer significant insights into the use of SQ for combating inflammation. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00217-0.
Collapse
Affiliation(s)
- Shana Sara Luke
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| | - M. Naveen Raj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| | - Suraj Ramesh
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| | - N. Prasanth Bhatt
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| |
Collapse
|
4
|
Parwez S, Chaurasia A, Mahapatra PP, Ahmed S, Siddiqi MI. Integrated machine learning-based virtual screening and biological evaluation for identification of potential inhibitors against cathepsin K. Mol Divers 2024:10.1007/s11030-024-10845-5. [PMID: 38662177 DOI: 10.1007/s11030-024-10845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Cathepsin K is a type of cysteine proteinase that is primarily expressed in osteoclasts and has a key role in the breakdown of bone matrix protein during bone resorption. Many studies suggest that the deficiency of cathepsin K is concomitant with a suppression of osteoclast functioning, therefore rendering the resorptive properties of cathepsin K the most prominent target for osteoporosis. This innovative work has identified a novel anti-osteoporotic agent against Cathepsin K by using a comparison of machine learning and deep learning-based virtual screening followed by their biological evaluation. Out of ten shortlisted compounds, five of the compounds (JFD02945, JFD02944, RJC01981, KM08968 and SB01934) exhibit more than 50% inhibition of the Cathepsin K activity at 0.1 μM concentration and are considered to have a promising inhibitory effect against Cathepsin K. The comprehensive docking, MD simulation, and MM/PBSA investigations affirm the stable and effective interaction of these compounds with Cathepsin K to inhibit its function. Furthermore, the compounds RJC01981, KM08968 and SB01934 are represented to have promising anti-osteoporotic properties for the management of osteoporosis owing to their significantly well predicted ADMET properties.
Collapse
Affiliation(s)
- Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Animesh Chaurasia
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pinaki Parsad Mahapatra
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Tu Y, Tan L, Tao H, Li Y, Liu H. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154862. [PMID: 37216761 DOI: 10.1016/j.phymed.2023.154862] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Monitoring target engagement at various stages of drug development is essential for natural product (NP)-based drug discovery and development. The cellular thermal shift assay (CETSA) developed in 2013 is a novel, broadly applicable, label-free biophysical assay based on the principle of ligand-induced thermal stabilization of target proteins, which enables direct assessment of drug-target engagement in physiologically relevant contexts, including intact cells, cell lysates and tissues. This review aims to provide an overview of the work principles of CETSA and its derivative strategies and their recent progress in protein target validation, target identification and drug lead discovery of NPs. METHODS A literature-based survey was conducted using the Web of Science and PubMed databases. The required information was reviewed and discussed to highlight the important role of CETSA-derived strategies in NP studies. RESULTS After nearly ten years of upgrading and evolution, CETSA has been mainly developed into three formats: classic Western blotting (WB)-CETSA for target validation, thermal proteome profiling (TPP, also known as MS-CETSA) for unbiased proteome-wide target identification, and high-throughput (HT)-CETSA for drug hit discovery and lead optimization. Importantly, the application possibilities of a variety of TPP approaches for the target discovery of bioactive NPs are highlighted and discussed, including TPP-temperature range (TPP-TR), TPP-compound concentration range (TPP-CCR), two-dimensional TPP (2D-TPP), cell surface-TPP (CS-TPP), simplified TPP (STPP), thermal stability shift-based fluorescence difference in 2D gel electrophoresis (TS-FITGE) and precipitate supported TPP (PSTPP). In addition, the key advantages, limitations and future outlook of CETSA strategies for NP studies are discussed. CONCLUSION The accumulation of CETSA-based data can significantly accelerate the elucidation of the mechanism of action and drug lead discovery of NPs, and provide strong evidence for NP treatment against certain diseases. The CETSA strategy will certainly bring a great return far beyond the initial investment and open up more possibilities for future NP-based drug research and development.
Collapse
Affiliation(s)
- Yanbei Tu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
Asiamah I, Obiri SA, Tamekloe W, Armah FA, Borquaye LS. Applications of Molecular Docking in Natural Products-Based Drug Discovery. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
7
|
Tanawattanasuntorn T, Rattanaburee T, Thongpanchang T, Graidist P. Trans-(±)-Kusunokinin Binding to AKR1B1 Inhibits Oxidative Stress and Proteins Involved in Migration in Aggressive Breast Cancer. Antioxidants (Basel) 2022; 11:antiox11122347. [PMID: 36552555 PMCID: PMC9774946 DOI: 10.3390/antiox11122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Synthetic trans-(±)-kusunokinin ((±)KU), a potential anticancer substance, was revealed to have an inhibitory effect on breast cancer. According to the computational modeling prediction, AKR1B1, an oxidative stress and cancer migration protein, could be a target protein of trans-(-)-kusunokinin. In this study, we determined the binding of (±)KU and AKR1B1 on triple-negative breast and non-serous ovarian cancers. We found that (±)KU exhibited a cytotoxic effect that was significantly stronger than zopolrestat (ZP) and epalrestat (EP) (known AKR1B1 inhibitors) on breast and ovarian cancer cells. (±)KU inhibited aldose reductase activity that was stronger than trans-(-)-arctiin ((-)AR) but weaker than ZP and EP. Interestingly, (±)KU stabilized AKR1B1 on SKOV3 and Hs578T cells after being heated at 60 and 75 °C, respectively. (±)KU decreased malondialdehyde (MDA), an oxidative stress marker, on Hs578T cells in a dose-dependent manner and the suppression was stronger than EP. Furthermore, (±)KU downregulated AKR1B1 and its downstream proteins, including PKC-δ, NF-κB, AKT, Nrf2, COX2, Twist2 and N-cadherin and up-regulated E-cadherin. (±)KU showed an inhibitory effect on AKR1B1 and its downstream proteins, similar to siRNA-AKR1B1. Interestingly, the combination of siRNA-AKR1B1 with EP or (±)KU showed a greater effect on the suppression of AKR1B1, N-cadherin, E-cadherin and NF-κB than single treatments. Taken together, we concluded that (±)KU-bound AKR1B1 leads to the attenuation of cellular oxidative stress, as well as the aggressiveness of breast cancer cell migration.
Collapse
Affiliation(s)
- Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-45-1184
| |
Collapse
|
8
|
Identify promising IKK-β inhibitors: A docking-based 3D-QSAR study combining molecular design and molecular dynamics simulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Target based structural optimization of substituted pyrazolopyrimidine analogues as inhibitor for IRAK4 by 3D-QSAR and molecular simulation. Struct Chem 2022. [DOI: 10.1007/s11224-022-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Qiu Y, Yu Y, Lan P, Wang Y, Li Y. An Overview on Total Valorization of Litsea cubeba as a New Woody Oil Plant Resource toward a Zero-Waste Biorefinery. Molecules 2021; 26:molecules26133948. [PMID: 34203392 PMCID: PMC8272090 DOI: 10.3390/molecules26133948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Abstract
With the increasing global demand for edible oils and the restriction of arable land minimum in China, woody oil plants have gradually become the optimal solution to cover the shortage of current edible oil supply and to further improve the self-sufficiency rate. However, due to the lack of knowledge and technique, problems like “how to make full use of these plant resources?” and “how to guide consumers with reasonable data?” limit the development of woody oilseed industry towards a sustainable circular economy. In this review, several emerging unique woody oil plants in China were introduced, among which Litsea cubeba as a new woody oil plant was highlighted as a reference case based on its current research progress. Unlike other woody oil plants, essential oil rather than oil from Litsea cubeba has always been the main product through the years due to its interesting biological activities. Most importantly, its major component, citral, could be the base for other synthesized perfume compounds with added value. Moreover, the sustainable biorefinery of large amounts of waste residual after Litsea cubeba essential oil processing is now technically feasible, which could inspire a total valorization pathway for other woody oil plants to make more competitive plant-based products with both economic, social, and ecological benefits.
Collapse
Affiliation(s)
- Yufei Qiu
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (Y.Q.); (Y.Y.)
| | - Yasi Yu
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (Y.Q.); (Y.Y.)
| | - Ping Lan
- Faculty of Pharmacy, Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China;
| | - Yong Wang
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (Y.Q.); (Y.Y.)
- Correspondence: (Y.W.); (Y.L.); Tel.: +86-20-8522-0032 (Y.W. & Y.L.); Fax: +86-20-8522-6630 (Y.W. & Y.L.)
| | - Ying Li
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (Y.Q.); (Y.Y.)
- Qingyuan Yaokang Biotechnology, Qingyuan 513200, China
- Correspondence: (Y.W.); (Y.L.); Tel.: +86-20-8522-0032 (Y.W. & Y.L.); Fax: +86-20-8522-6630 (Y.W. & Y.L.)
| |
Collapse
|
11
|
Wang Y, Zou J, Jia Y, Liang Y, Zhang X, Wang CL, Wang X, Guo D, Shi Y, Yang M. A Study on the Mechanism of Lavender in the Treatment of Insomnia Based on Network Pharmacology. Comb Chem High Throughput Screen 2021; 23:419-432. [PMID: 32233997 DOI: 10.2174/1386207323666200401095008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 12/22/2022]
Abstract
AIMS AND OBJECTIVE The common disease of insomnia has complex and diverse clinical manifestations. Lavender represents an effective treatment of insomnia, but the molecular mechanism underlying the effectiveness of this treatment is not clear. The purpose of this study is to investigate the active components, target proteins and molecular pathways of lavender in the treatment of insomnia, thus explaining its possible mechanism. MATERIALS AND METHODS Firstly, 54 active components of lavender were identified by gas chromatography-mass spectrometry (GC-MS). The target protein of lavender was predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and the target protein of insomnia was predicted by the DisGeNET and DrugBank databases. Then, the "component-target-disease" network diagram was constructed using the Cytoscape 3.7.1 software. KEGG and GO enrichments were analyzed using the R statistical language. Finally, the key target proteins were verified by collecting and verifying the target protein GEO data using the Discovery Studio 3.5 molecular docking verification software. RESULTS 906 target proteins of lavender were predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and 182 insomnia target proteins were predicted by the DisGeNET and DrugBank databases. The results of GO enrichment analysis showed that it included the reaction process of ammonium ion, the regulation of the membrane potential and the secretion of catecholamine, while the results of KEGG enrichment included the calcium signaling pathway, serotonin synapse, morphine addiction and many more. Finally, using the Discovery Studio3.5 molecular docking verification software, it was verified that the key target proteins are ADRB1 and HLA-DRB1. CONCLUSION The components in the lavender essential oil include the Ethyl 2-(5-methyl-5-vinyltetrahydrofuran- 2-yl)propan-2-ylcarbonate (0.774); 5-Oxatricyclo[8.2.0.04,6]dodecane, 4,12,12-trimethyl- 9-methylene-, (1R,4R,6R,10S)-(0.147); P-Cymen-7-ol (0.063); .alpha-Humulenem (0.317); Acetic acid, hexyl ester (1.374); etc. The role lavender plays in the treatment of insomnia might be accomplished through the regulation of the key targets ADRB1 and HLA-DRB1.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China
| | - Junbo Zou
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China,Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - Yanzhuo Jia
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China
| | - Yulin Liang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China
| | - Xiaofei Zhang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China,Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China,Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| | - Chang-Li Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China,Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - Xiao Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China,Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - Dongyan Guo
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China,Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - Yajun Shi
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, P.R. China,Department of Pharmaceutics, College of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - Ming Yang
- Ministry of Education, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
| |
Collapse
|
12
|
Wang Y, Zou J, Jia Y, Zhang X, Wang C, Shi Y, Guo D, Wu Z, Wang F. The Mechanism of Lavender Essential Oil in the Treatment of Acute Colitis Based on "Quantity-Effect" Weight Coefficient Network Pharmacology. Front Pharmacol 2021; 12:644140. [PMID: 33981227 PMCID: PMC8107818 DOI: 10.3389/fphar.2021.644140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to introduce a new weight coefficient combined with network pharmacology to predict the potential active components, action targets, and signal pathways of lavender essential oil and to investigate the therapeutic effect of lavender essential oil on colitis through animal experiments. The component targets of lavender essential oil were mined from the Pubchem and SwissTargetPrediction databases, and the relative content of lavender essential oil was compared with OB (oral bioavailability) to establish a “quantity–effect” weight coefficient. Online databases such as GeneCards and String were used to construct a “lavender essential oil compound target disease target” network to extract the key targets of core compounds acting on diseases. The clusterProfiler package in R language programming of Rstudio software was used to analyze the enrichment of the related targets by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the enriched pathways were reordered according to the “quantity–effect” weight coefficient of the targets they participated in. Following up on the findings, the pharmacodynamic test showed that, after injecting lavender essential oil into mice, the levels of inflammatory cytokines including EGFR, TNF-α, and IFN-γ in serum and colon tissue decreased, and lavender essential oil could mediate Th17 cell differentiation by reducing dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) colonic mucosal damage. The results indicated that lavender essential oil can alleviate DSS-induced colonic mucosal injury in ulcerative Colitis mice. Based on the network pharmacology of the “quantity–effect” weight coefficient, this study indicated that lavender essential oil can regulate the level of inflammatory factors, inhibit inflammatory reactions through a multicomponent and multitarget strategy, and ultimately alleviate the colonic mucosal injury of UC mice. Through the weight coefficient network pharmacology mining, it was concluded that the Th17 cell differentiation, PI3K-Akt signaling pathway, and Th1 and Th2 cell differentiation of lavender essential oil in the treatment of UC may be the key pathway for the treatment of the disease. Through the establishment of a weight coefficient combined with network pharmacology and the combination of dose and effect, it shows that network pharmacology may provide a better basis for the treatment of disease mechanism.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Junbo Zou
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanzhuo Jia
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaofei Zhang
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Changli Wang
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dongyan Guo
- Department of Pharmaceutics, College of Pharmacy, the Key Laboratory of Basic and New Drug Resea Rchof Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenfeng Wu
- Department of Pharmaceutics, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Fang Wang
- Department of Pharmaceutics, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
13
|
Yu Z, Deng T, Wang P, Sun T, Xu Y. Ameliorative effects of total coumarins from the fructus of Cnidium monnieri (L.) Cuss. on 2,4-dinitrochlorobenzene-induced atopic dermatitis in rats. Phytother Res 2021; 35:3310-3324. [PMID: 33634904 DOI: 10.1002/ptr.7052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 01/23/2023]
Abstract
Atopic dermatitis (AD), which is characterized by intense pruritus and serious inflammation, is a chronic skin disease. Modern studies have testified that the total coumarins from the fructus of Cnidium monnieri (TCFC) possess evident biological activities based on their coumarin compounds. The purpose of this manuscript is to investigate the effects of topical use of TCFC on immune response, inflammation, and skin barrier function in rats with 2,4-dinitrochlorobenzene (DNCB)-induced AD. Results indicated that the skin lesion scores of rats were obviously reduced after the management of TCFC, and the spleen and thymus indices also were markedly repressed. TCFC significantly inhibited the overproduction of TNF-α, interferon-γ, interleukin (IL)-4, IL-13, thymic stromal lymphopoietin, and immunoglobulin E; the epidermal thickness and number of mast cells were notably decreased. The western blot experiment was conducted to determine the effects of TCFC on the mitogen-activated protein kinases signaling pathway. Results indicated that phosphorylation of extracellular signal-regulated kinases, p38, and c-Jun amino-terminal kinases was significantly blocked by TCFC. In addition, TCFC could upregulate the expression of filaggrin in dorsal skin, which means that TCFC showed a protective effect on skin barrier disruption. Furthermore, TCFC downregulated the levels of IL-1β, IL-4, IL-31, and TSLP mRNA and upregulated the expression of filaggrin mRNA in the dorsal skin of rats. Our research demonstrated the ameliorative effects of TCFC on AD-like rats by inhibiting immune response and inflammation and recovering skin barrier function.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ting Deng
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Xu Y, Chen W, Chen Z, Huang M, Yang F, Zhang Y. Mechanism of Action of Xiaoyao San in Treatment of Ischemic Stroke is Related to Anti-Apoptosis and Activation of PI3K/Akt Pathway. Drug Des Devel Ther 2021; 15:753-767. [PMID: 33654381 PMCID: PMC7910098 DOI: 10.2147/dddt.s280217] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The traditional Chinese medicine (TCM) formulation Xiaoyao San (XYS) has a good clinical effect in treating ischemic stroke (IS). We explored the mechanism and material basis of XYS in IS treatment. METHODS Network pharmacology was used to construct a network of XYS components and IS targets. R software was used to analyze the biological process and pathway analysis of the targets of XYS in IS treatment. In vitro, a model of apoptosis of PC12 cells induced by oxygen-glucose deprivation/reperfusion (OGD/R) was established to evaluate the neuroprotective effect of XYS and its influence on the expression of apoptotic protein-related genes. The affinity between the potentially active compounds in XYS and apoptotic proteins was evaluated by molecular docking. RESULTS XYS was shown to have 136 chemical components that exert potential anti-IS activity by acting on 175 proteins. Bioinformatics analysis showed that apoptosis and the phosphoinositide 3-kinase/protein kinase B (PI3K-Akt) signaling pathway were the main signaling pathways of XYS. In vitro experiments showed that XYS could improve the effect of OGD/R on PC12-cell activity (EC50 = 0.43 mg/mL) and inhibit apoptosis. The main mechanisms were related to the improvement of oxidative stress and regulation of apoptosis-related gene expression. Molecular docking showed that C22, C102 and other components in XYS had a strong affinity with apoptosis-related proteins. CONCLUSION Network pharmacology, in vitro experiments, and molecular docking were used, for the first time, to study the material basis and molecular mechanism of XYS in IS treatment from the perspective of multiple targets and multiple pathways. We provided a new approach for the future study of TCM formulations in the treatment of complex diseases.
Collapse
Affiliation(s)
- Yue Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Weiyin Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Zeran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, ChengduSichuan, 610041, People’s Republic of China
| | - Mengyuan Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Fang Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Yang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| |
Collapse
|
15
|
Wang J, Chen W, Zhong H, Luo Y, Zhang L, He L, Wu C, Li L. Identify of promising isoquinolone JNK1 inhibitors by combined application of 3D-QSAR, molecular docking and molecular dynamics simulation approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren's syndrome: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:191-202. [PMID: 33509710 DOI: 10.1016/j.joim.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Primary Sjogren's syndrome (pSS) is a chronic autoimmune disease involving exocrine glands. Current studies have found that the occurrence of the disease is closely related to genetic, environmental and neuroendocrine factors, as well as abnormal activation of T and B lymphocytes. The etiology and pathogenesis of pSS is complex, and there is a lack of specific targeted drugs. Traditional Chinese medicines (TCMs) have been comprehensively investigated for their treatment effects on pSS. Through a systematic review of the literature, we summarized the TCMs used to treat pSS, and find that there are four major ways that TCMs are used, including upregulation of aquaporin proteins, suppression of cell apoptosis, suppression of the abnormal activation of B lymphocytes and suppression of the abnormal activation of T lymphocytes (balancing T helper type [Th]1/Th2 & Th17/Treg and suppressing follicular helper T [Tfh] cells). However, there are not enough data about the active constituents, quality control, pharmacokinetics, toxicity and modern preparations of these TCMs; therefore, more investigations are needed. This paper highlights the importance of TCMs for treating pSS and provides guidance for future investigations.
Collapse
|
17
|
Liu J, Zhang Q, Li RL, Wei SJ, Gao YX, Ai L, Wu CJ, Pu XF. Anti-proliferation and anti-migration effects of an aqueous extract of Cinnamomi ramulus on MH7A rheumatoid arthritis-derived fibroblast-like synoviocytes through induction of apoptosis, cell arrest and suppression of matrix metalloproteinase. PHARMACEUTICAL BIOLOGY 2020; 58:863-877. [PMID: 32878533 PMCID: PMC8641682 DOI: 10.1080/13880209.2020.1810287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Cinnamomi ramulus, the dry twig of Cinnamomum cassia Presl. (Lauraceae), has been reported to exert several activities such as antitumor, anti-inflammatory, and analgesic effects. OBJECTIVE This study investigates the effects of an aqueous extract of Cinnamomi ramulus (ACR) on rheumatoid arthritis (RA). MATERIALS AND METHODS TNF-α-induced RA-derived fibroblast-like synoviocyte MH7A cells were incubated with ACR (0.1-2 mg/mL) for 24 h. The proliferation was tested using CCK-8 and colony formation assays. The migration and invasion abilities were measured using transwell tests and wound healing assays. Apoptosis and cell cycle were examined by flow cytometry. The potential mechanisms were determined by western blotting and quantitative real-time PCR. UPLC-QE-MS/MS was used for chromatographic analysis of ACR and its compounds were identified. Molecular docking strategy was used to screen the potential anti-RA active compounds of ACR. RESULTS We found that ACR induced apoptosis in MH7A cells at concentrations of 0.4, 0.8, and 1.2 mg/mL. The proliferation of MH7A cells was reduced and the cell cycle was blocked in the G2/M phase at concentrations of 0.2, 0.4, 0.6 mg/mL. Migration and invasion of MH7A cells were reduced through inhibiting the expression of MMP-1, MMP-2, and MMP-3. The molecular docking strategy results showed that 9 compounds in ACR have good affinity with protein crystal, and benzyl cinnamate (10-100 µg/mL) could inhibit cell migration and induce apoptosis. CONCLUSIONS The anti-RA effect of ACR may be attributed to its anti-proliferative and anti-migration effects on synovial fibroblasts. These data suggest that Cinnamomi ramulus may have therapeutic value for the treatment of RA.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- Chengdu Institute for Food and Drug Control, Chengdu, P.R. China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Shu-Jun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yong-Xiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Li Ai
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xu-Feng Pu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- Chengdu Institute for Food and Drug Control, Chengdu, P.R. China
- Chengdu Medical and Health Investment Group Co. Ltd, Chengdu, P.R. China
| |
Collapse
|
18
|
Jia Y, Zou J, Wang Y, Zhang X, Shi Y, Liang Y, Guo D, Yang M. Action mechanism of Roman chamomile in the treatment of anxiety disorder based on network pharmacology. J Food Biochem 2020; 45:e13547. [PMID: 33152801 DOI: 10.1111/jfbc.13547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
Anxiety disorder is a common psychiatric disease. Roman chamomile as medicine or tea has long been used as a mild tranquilizer to reduce anxiety, but the mechanism is unclear. This research is based on network pharmacology combined with database mining to find the ingredients, action pathways and key targets of Roman chamomile for the treatment of anxiety. About 126 common targets related to chamomile and anxiety were obtained, and these targets were involved in 56 KEGG pathways. GEO screened LRRK2 as a key protein, and molecular docking showed that the protein could stably bind to drug components. Roman chamomile has the characteristics of multi-target and multi-pathway in the treatment of anxiety disorder. Its possible mechanism is to intervene anxiety disorder in the process of disease development, such as neuroactive ligand-receptor interaction, serotonin synapse, and cAMP signaling pathway. LRRK2 may be an important gene for Roman chamomile in the treatment of anxiety disorder. PRACTICAL APPLICATIONS: Roman chamomile is well known for its use in medicine and tea making. It contains many nutrients, which can relieve people's anxiety, help sleep, antibacterial and anti-inflammatory. In this article, through network pharmacology combined with Gene Expression Omnibus data mining and molecular docking, the target and mechanism of Roman chamomile in the treatment of anxiety were discussed, and its efficacy was verified by model animals, which not only clarified its mechanism at the systematic level, but also proved to be effective at the biological level. It provides a reference for the further development and utilization of Roman chamomile.
Collapse
Affiliation(s)
- Yanzhuo Jia
- Department of Pharmaceutics, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Junbo Zou
- Department of Pharmaceutics, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yao Wang
- Department of Pharmaceutics, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaofei Zhang
- Department of Pharmaceutics, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yajun Shi
- Department of Pharmaceutics, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yulin Liang
- Department of Pharmaceutics, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dongyan Guo
- Department of Pharmaceutics, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ming Yang
- Department of Pharmaceutics, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
19
|
Zhang Q, Li R, Peng W, Zhang M, Liu J, Wei S, Wang J, Wu C, Gao Y, Pu X. Identification of the Active Constituents and Significant Pathways of Guizhi-Shaoyao-Zhimu Decoction for the Treatment of Diabetes Mellitus Based on Molecular Docking and Network Pharmacology. Comb Chem High Throughput Screen 2020; 22:584-598. [PMID: 31642770 DOI: 10.2174/1386207322666191022101613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022]
Abstract
AIM AND OBJECTIVE This study was designed to explore the active compounds and significant pathways of Guizhi-Shaoyao-Zhimu decoction (GSZD) for treating diabetes mellitus using molecular docking combined with network pharmacology. MATERIALS AND METHODS Chemical constituents of GSZD and diabetes-related target proteins were collected from various databases. Then, compounds were filtered by Lipinski's and Veber's rules with Discovery studio software. The "Libdock" module was used to carry out molecular docking, and LibDockScores, default cutoff values for hydrogen bonds, and van der Waals interactions were recorded. LibDockScore of the target protein and its prototype ligand was considered as the threshold, and compounds with higher LibDockScores than the threshold were regarded as the active constituents of GSZD. Cytoscape software was used to construct the herb-active molecule-target interaction network of GSZD. ClueGO and CluePedia were applied to enrich the analysis of the biological functions and pathways of GSZD. RESULTS A total of 275 potential active compounds with 57 possible pathways in GSZD were identified by molecular docking combined with network pharmacology. TEN, INSR, PRKAA2, and GSK3B are the four most important target proteins. Gancaonin E, 3'-(γ,γ-dimethylallyl)-kievitone, aurantiamide, curcumin and 14-O-cinnamoylneoline, could interact with more than 14 of the selected target proteins. Besides, 57 potential pathways of GSZD were identified, such as insulin signaling pathway, metabolites and energy regulation, glucose metabolic process regulation, and positive regulation of carbohydrate metabolic process, etc. Conclusion: These results showed that molecular docking combined with network pharmacology is a feasible strategy for exploring bioactive compounds and mechanisms of Chinese medicines, and GSZD can be used to effectively treat diabetes through multi-components and multi-targets & pathways.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shujun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiaolong Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongxiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xufeng Pu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Chengdu Institute for Food and Drug Control, Chengdu 611137, China
| |
Collapse
|
20
|
Fan L, Zhang C, Ai L, Wang L, Li L, Fan W, Li R, He L, Wu C, Huang Y. Traditional uses, botany, phytochemistry, pharmacology, separation and analysis technologies of Euonymus alatus (Thunb.) Siebold: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112942. [PMID: 32423879 DOI: 10.1016/j.jep.2020.112942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euonymus alatus (Thunb.) Siebold (E. alatus), a well-known medicinal plant, has been widely used thousands of years in China for the treatment of various diseases such as urticaria, dysmenorrhea, wound, dysentery, blood stasis, rheumatism and arthritis. Due to the extensive application of E. alatus in the fields of ethnopharmacological usage, the pharmaceutical researches of E. alatus keeps deepening. AIM OF THE STUDY This paper reviewed and summarized the integrated research progress of this medicinal plant. A comprehensive summary and comparison of traditional usages, botany, phytochemistry, pharmacology, toxicology, separation and analysis technologies of the E. alatus highlight recent scientific advances, which provides new insights into the research and development of this medicinal plant and would be helpful to promote the research situation of underlying pharmacological mechanisms and further utilizations of E. alatus. MATERIAL AND METHODS Literature survey was carried out via classic books of herbal medicine, PhD. and MSc. Dissertations. Online scientific databases including Pubmed, SciFinder, Science Direct, Scopus, the Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI) and others were searched up to February 2020 to identify eligible studies. All literatures of the research subject are analyzed and summarized in this review. RESULTS The E. alatus has been widely used in traditional practice in China, Korea and other Asian Countries. In the study of phytochemistry, more than 230 chemical constituents have been isolated and identified from E. alatus, including sesquiterpenoids, diterpenoids, triterpenoids, flavonoids, phenylpropanoids, lignans, steroids, alkaloids and other compounds. Among them, literature reports show that flavonoids and steroids are the most important bioactive substances found in this plant. A number of researches also have shown that extracts and compounds from E. alatus exert a wide spectrum of pharmacological effects, including antidiabetic effect, anti-tumor effects, anti-inflammatory effects, hepatoprotective effects, antioxidant effects, antibacterial effects, as well as other effects. However, most of the studies without clinical research. Research into plant's toxicological effects has also been limited. In addition, this review also summarizes and compares the separation and analysis technologies of E. alatus. CONCLUSIONS E. alatus has potential for the treatment of many diseases, especially tumors and diabetes. But many traditional uses of E. alatus have not been validated by current investigations. Additionally, modern studies haven't gone far enough into its pharmacological effects and the corresponding chemical constituents, more efforts should be made to illuminate the underlying mechanisms of E. alatus for treatment of tumors and diabetes. Moreover, the toxicological effects of this plant can be further studied. Currently, there are limited studies on its side effects and toxicological effects, which should provide further guidance for the safety of clinical use.
Collapse
Affiliation(s)
- Linhong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chunling Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Lin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wenxiang Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yongliang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610072, China.
| |
Collapse
|
21
|
Yu L, Jia D, Feng K, Sun X, Xu W, Ding L, Xin H, Qin L, Han T. A natural compound (LCA) isolated from Litsea cubeba inhibits RANKL-induced osteoclast differentiation by suppressing Akt and MAPK pathways in mouse bone marrow macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112873. [PMID: 32298753 DOI: 10.1016/j.jep.2020.112873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Litsea cubeba (Lour.) Pers. has been traditionally used as a folk prescription for treating rheumatic diseases in China. AIM OF THE STUDY This study aimed to investigate the effects and underlying mechanism of LCA, a new type of dibenzyl butane lignin compound extracted from L. cubeba, on macrophage colony stimulating factor (M-CSF) plus receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in mouse-derived bone marrow macrophages (BMMs). MATERIAL AND METHODS TRAP staining, TRAP enzyme activity assay and actin ring staining were applied to identify the effects of LCA on osteoclast differentiation. Protein expression of NFATc1, c-Fos and MMP-9, and phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-induced osteoclasts was determined using western blotting to investigate the underlying mechanism. RESULTS LCA significantly suppressed RANKL-induced osteoclast differentiation by inhibiting TRAP activity, decreasing the number of TRAP+ multinuclear osteoclasts and reducing the formation of F-actin ring without obvious cytotoxicity in BMMs. Moreover, LCA treatment strongly reduced protein expression of NFATc1, c-Fos and MMP-9, and attenuated the phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-stimulated BMMs. CONCLUSIONS LCA ameliorated RANKL-induced osteoclast differentiation via inhibition of Akt and MAPK signalings in BMMs, and may serve as a potential pro-drug for bone destruction prevention.
Collapse
Affiliation(s)
- Luyao Yu
- School of Pharmacy, Second Military Medical University, Shanghai, China; School of Life Science, Shanghai Normal University, Shanghai, China
| | - Dan Jia
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Kunmiao Feng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xiaolei Sun
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wumu Xu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Luying Ding
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Hailiang Xin
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Luping Qin
- School of Pharmacy, Second Military Medical University, Shanghai, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ting Han
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
22
|
Wu W, Xie Z, Zhang Q, Ma Y, Bi X, Yang X, Li B, Chen J. Hyperoside Ameliorates Diabetic Retinopathy via Anti-Oxidation, Inhibiting Cell Damage and Apoptosis Induced by High Glucose. Front Pharmacol 2020; 11:797. [PMID: 32547397 PMCID: PMC7273924 DOI: 10.3389/fphar.2020.00797] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/03/2022] Open
Abstract
Background Hyperoside (Hyp) is a flavonoid substance extracted from plants, which has the functions of anti-cancer, anti-inflammatory, and anti-oxidation. In the previous study, we found that Hyp reduced the injury of rat retinal vascular endothelial cells (RVECs) induced by H2O2. Method In the present research, we evaluated the protective effect of Hyp on the pathological damage of retina caused by high glucose of diabetes mellitus (DM) in in vitro and in vivo experiments. The effect of Hyp on cell viability, oxidative stress level, and apoptosis of RVECs was assessed. Results Hyp significantly reduced the of RVECs damage, oxidative stress level, and cell apoptosis induced by high glucose in vitro. In DM model rats, Hyp treatment could significantly reduce blood glucose levels and the pathological damage of retina caused by DM and increase the proliferation of RVECs while exerting the inhibition on apoptotic activity. Furthermore, Hyp treatment decreased the expressions of apoptotic proteins including caspase-3, caspase-9, and Bax in RVECs of DM rats, while increased the expression of anti-apoptotic protein Bcl-2. Conclusion Hyp may have protective effect on diabetes-induced retinopathy by reducing oxidative stress, inhibiting cell damage, and apoptosis induced by high glucose.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhaolu Xie
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yunqi Ma
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoting Bi
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xue Yang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Yu ZJ, Xu Y, Peng W, Liu YJ, Zhang JM, Li JS, Sun T, Wang P. Calculus bovis: A review of the traditional usages, origin, chemistry, pharmacological activities and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112649. [PMID: 32068140 DOI: 10.1016/j.jep.2020.112649] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calculus bovis (C. bovis), a widespread known traditional animal drug in China and Japan, has been widely used for a long time to treat various diseases, including high fever, convulsion and stroke. The aim of the present paper is to comprehensively review knowledge about C. bovis in terms of traditional usages, origin, chemical constituents, pharmacological activities and toxicology to seek an applicable substitute for NCB and provide potential new strategies utilizing C. bovis. Additionally, directions and perspectives for future investigations regarding C. bovis are also discussed. MATERIALS AND METHODS In this paper, the traditional usages, origin, chemical constituents, pharmacology, and toxicology of C. bovis are comprehensively and systematically summarized by searching scientific databases, including Web of Science, PubMed, ScienceDirect, Springer, CNKI, Baidu Scholar and others. Additionally, some classic books of Chinese herbal medicine, academic papers authored by individuals with MSc and PhD degrees, local government reports as well as the state of local drug standards are also retrieved. RESULTS Currently, C. bovis mainly derives from four sources: natural Calculus bovis (NCB), Calculus bovis sativus (CBS), Cultured calculus bovis (CCB) and Calculus bovis artifactus (CBA). Owing to their different formation processes, the chemical constituents of the four kinds of C. bovis show certain differences. Additionally, over 44 chemical constituents have been isolated and identified from C. bovis, mainly including bile pigments, bile acids, cholesterols and amino acids. Further investigations have revealed a wide range of pharmacological effects of C. bovis, with effects on the nervous system, cardiovascular system, respiratory system, digestive system, immune system and others. Furthermore, NCB and CBA show hypotoxicity, but high concentrations of bilirubin can cause neurotoxicity and hearing impairment. Additionally, pharmacokinetic data for C. bovis are still lacking. CONCLUSION CBS contains analogous types and amounts of constituents and exerts similar therapeutic effects to NCB. Thus, CBS might be used as a sustainable substitute for NCB. Furthermore, the configuration and concentration of bile acids and bilirubin in C. bovis are responsible for the difference in pharmacological effects in the four types C. bovis. Further studies should focus on the structure-function relationship of bile acids and bilirubin in C. bovis by employing pharmacokinetics.
Collapse
Affiliation(s)
- Zhi-Jie Yu
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Wei Peng
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yu-Jie Liu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Jin-Ming Zhang
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jin-Song Li
- The First People's Hospital of Guangyuan, Guangyuan, 628017, PR China
| | - Tao Sun
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Ping Wang
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
24
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
25
|
Zhang Q, Liu J, Zhang M, Wei S, Li R, Gao Y, Peng W, Wu C. Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis. Biomolecules 2019; 9:biom9120795. [PMID: 31795133 PMCID: PMC6995542 DOI: 10.3390/biom9120795] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a known chronic autoimmune disease can cause joint deformity and even loss of joint function. Fibroblast-like synoviocytes (FLS), one of the main cell types in synovial tissues of RA patients, are key effector cells in the development of RA and are considered as promising therapeutic targets for treating RA. Herbal medicines are precious resources for finding novel agents for treating various diseases including RA. It is reported that induction of apoptosis in FLS is an important mechanism for the herbal medicines to treat RA. Consequently, this paper reviewed the current available references on pro-apoptotic effects of herbal medicines on FLS and summarized the related possible signal pathways. Taken together, the main related signal pathways are concluded as death receptors mediated apoptotic pathway, mitochondrial dependent apoptotic pathway, NF-κB mediated apoptotic pathways, mitogen-activated protein kinase (MAPK) mediated apoptotic pathway, endoplasmic reticulum stress (ERS) mediated apoptotic pathway, PI3K-Akt mediated apoptotic pathway, and other reported pathways such as janus kinase/signal transducers and activators of transcription (JAK-STAT) signal pathway. Understanding the apoptosis induction pathways in FLS of these herbal medicines will not only help clear molecular mechanisms of herbal medicines for treating RA but also be beneficial for finding novel candidate therapeutic drugs from natural herbal medicines. Thus, we expect the present review will highlight the importance of herbal medicines and its components for treating RA via induction of apoptosis in FLS, and provide some directions for the future development of these mentioned herbal medicines as anti-RA drugs in clinical.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Shujun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Yongxiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| |
Collapse
|
26
|
Seashore-Ludlow B, Axelsson H, Lundbäck T. Perspective on CETSA Literature: Toward More Quantitative Data Interpretation. SLAS DISCOVERY 2019; 25:118-126. [PMID: 31665966 DOI: 10.1177/2472555219884524] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular thermal shift assay (CETSA) was introduced in 2013 to investigate drug-target engagement inside live cells and tissues. As with all thermal shift assays, the response measured by CETSA is not simply governed by ligand affinity to the investigated target protein, but the thermodynamics and kinetics of ligand binding and protein unfolding also contribute to the observed protein stabilization. This limitation is commonly neglected in current applications of the method to validate the target of small-molecule probes. Instead, there is an eagerness to make direct comparisons of CETSA measurements with functional and phenotypic readouts from cells at 37 °C. Here, we present a perspective of the early CETSA literature and put the accumulated data into a quantitative context. The analysis includes annotation of ~270 peer-reviewed papers, the majority of which do not consider the underlying biophysical basis of CETSA. We also detail what future technology developments are needed to enable CETSA-based optimization of structure-activity relationships and more appropriate comparisons of these data with functional or phenotypic responses. Finally, we describe ongoing developments in assay formats that allow for CETSA measurements at single-cell resolution, with the aspiration to allow differentiation in cellular target engagement between cells in co-cultures and more complex models, such as organoids and potentially even tissue.
Collapse
Affiliation(s)
- Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden.,Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
27
|
Wang J, Peng W, Li X, Fan W, Wei D, Wu B, Fan L, Wu C, Li L. Towards to potential 2-cyano-pyrimidines cathepsin-K inhibitors: An in silico design and screening research based on comprehensive application of quantitative structure–activity relationships, molecular docking and ADMET prediction. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Antiobesity, Regulation of Lipid Metabolism, and Attenuation of Liver Oxidative Stress Effects of Hydroxy- α-sanshool Isolated from Zanthoxylum bungeanum on High-Fat Diet-Induced Hyperlipidemic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5852494. [PMID: 31534622 PMCID: PMC6732614 DOI: 10.1155/2019/5852494] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/24/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
Zanthoxylum bungeanum is a traditional Chinese medicine (TCM) used to relieve pain, dispel dampness, stop diarrhea, and prevent itching. The aim of this study was to investigate the antiobesity and hypolipidemic effects of hydroxy-α-sanshool (HAS) isolated from Z. bungeanum on hyperlipidemic rats. Wistar rats (n = 48) were randomly divided into six groups: (1) normal diet rats (ND), (2) high-fat diet- (HFD-) treated rats, (3) HFD+fenofibrate-treated rats (HFD+FNB), (4) HFD+low dose of HAS-treated rats (HFD+LD, 9 mg/kg), (5) HFD+middle dose of HAS-treated rats (HFD+MD, 18 mg/kg), and (6) HFD+high dose of HAS-treated rats (HFD+HD, 36 mg/kg). The body weight and food intake of the rats were recorded during the treatment period. After 4 weeks of HAS treatment, abdominal adipose tissues were observed and total cholesterol (T-CHO), triglycerides (TG), high-density lipoprotein (HDL) cholesterol (HDL-C), and low-density lipoprotein (LDL) cholesterol (LDL-C) of serum and liver tissues were determined. Furthermore, histochemical examinations using oil red O and hematoxylin-eosin staining (H&E) were carried out and levels of malondialdehyde (MDA) and glutathione (GSH) and activities of superoxide dismutase (SOD) in the liver were determined. After HFD feeding, the body weight gain and food efficiency ratio of HFD rats were significantly enhanced (p < 0.05vs. ND rats) and HAS treatment (18 and 36 mg/kg) significantly decreased the body weight gain and food efficiency ratio (p < 0.05vs. HFD rats). In addition, HAS treatment could decrease the abdominal adipose tissues and liver adipocytes. Furthermore, HAS treatment significantly decreased the T-CHO, TG, and LDL-C, whereas it increased HDL-C (p < 0.05vs. HFD rats) in serum and the liver. HAS treatment increased the GSH level and SOD activity in the liver (p < 0.05vs. HFD rats), whereas it decreased the levels of MDA (p < 0.05vs. HFD rats). mRNA analyses suggested that HAS treatment increases the expression of Pparg (proliferator-activated receptor γ) and Apoe (peroxisome apolipoprotein E). Immunohistochemistry and Western blotting indicated that HAS stimulation increased the levels of PPARγ and APOE in the liver, as a stress response of the body defense system. These results revealed that HAS exerts antiobesity and hypolipidemic activities in HFD rats by reducing liver oxidative stress and thus could be considered as a potential candidate drug to cure or prevent obesity and hyperlipidemia.
Collapse
|
29
|
Song J, Luo J, Ma Z, Sun Q, Wu C, Li X. Quality and Authenticity Control of Functional Red Yeast Rice-A Review. Molecules 2019; 24:E1944. [PMID: 31137594 PMCID: PMC6572552 DOI: 10.3390/molecules24101944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
Red yeast rice (RYR) is made by fermenting the rice with Monascus. It is commonly used in food colorants, dyeing, and wine making in China and its neighboring countries. Nowadays RYR has two forms on the market: common RYR is used for food products, the other form is functional RYR for medicine. However, some researchers reported that commercial lovastatin (structure is consistent with monacolin K) is illegally added to common RYR to meet drug quality standards, so as to imitate functional RYR and sell the imitation at a higher price. Based on current detection methods, it is impossible to accurately distinguish whether functional RYR is adulterated. Therefore, it is especially important to find a way to authenticate functional RYR. In the current review, the advances in history, applications, components (especially monacolins, monacolins detection methods), quality standards, authentication methods and perspectives for the future study of RYR are systematically reviewed.
Collapse
Affiliation(s)
- Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zubing Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
30
|
Antistress Effects of San-Huang-Xie-Xin Decoction on Restraint-Stressed Mice Revealed by 1H NMR-Based Metabolomics and Biochemistry Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5897675. [PMID: 31178969 PMCID: PMC6501203 DOI: 10.1155/2019/5897675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 03/10/2019] [Indexed: 11/25/2022]
Abstract
San-Huang-Xie-Xin decoction (SHXXD), composed of Rhei Radix et Rhizoma, Coptidis Rhizoma, and Scutellariae Radix, is a representative antipyretic and detoxifying prescription in traditional Chinese medicine. In this study, we investigated the antistress effects and underlying mechanisms of San-Huang-Xie-Xin decoction (SHXXD) on restraint-stressed mice by 1H NMR-based metabolomics combined with biochemistry assay. A total of 48 male mice (5 weeks old, 18-22 g) were divided randomly into 6 groups (n = 8), including the normal group, restraint-stressed group, vitamin C group (positive drug, 17 mg/kg), and 3-dosage groups of SHXXD (200, 400, and 800 mg/kg). The stress model was induced by restraining mice in a polypropylene centrifuge tube for 6 h every day. The rotarod test was performed, and several biochemical indicators were measured. Moreover, other 24 animals were divided into 3 groups (n = 8) including the normal group, restraint-stressed group, and SHXXD group (800 mg/kg) for 1H NMR-based metabolomics analysis. Our results showed that SHXXD significantly increased the rotarod time, thymus index, spleen index, and the levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and interleukin- (IL-) 2, but decreased the levels of malondialdehyde (MDA), IL-1β, tumor necrosis factor- (TNF-) α, corticosterone (CORT), and adrenocorticotropic hormone (ACTH) in restraint-stressed mice. Moreover, the contents of eight endogenous metabolites that were changed by restraint stress were significantly reversed by SHXXD. The results of both metabolomics and biochemical analysis indicated that SHXXD (800 mg/kg, p.o.) could improve the biochemical changes and metabolic disorders in restraint-stressed mice by antioxidation and anti-inflammation, enhancing the body's immune function and restoring several disturbed metabolic pathways (i.e., lipid metabolism, glycolysis and gluconeogenesis, inflammatory injury, and energy metabolism). Taken together, these results indicated that SHXXD has a potential antistress effect in restraint-stressed mice and could be considered as a candidate drug for stress-related disorders.
Collapse
|
31
|
Xu Z, Chen H, Wang Z, Fan F, Shi P, Tu M, Du M. Isolation and Characterization of Peptides from Mytilus edulis with Osteogenic Activity in Mouse MC3T3-E1 Preosteoblast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1572-1584. [PMID: 30614690 DOI: 10.1021/acs.jafc.8b06530] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Seafood provides a range of health benefits because of its high protein levels. In this study, a novel peptide, YPRKDETGAERT, was identified from NHA-2 of Mytilus edulis by capillary-electrophoresis electrospray ionization-quadrupole-time of flight (CESI-Q-TOF). Peptide YPRKDETGAERT showed the highest affinity among all the peptides, with -CDOCKER energy values of 204.482 kcal/mol on one integrin (PDB: 3VI4 ) and 210.16 kcal/mol on another integrin (PDB: 1L5G ). The secondary mass spectrogram at the m/ z of peptide YPRKDETGAERT was 1422.53 Da, which was determined by CESI-Q-TOF. Peptide YPRKDETGAERT induced an increase of 28.27 ± 3.66% in mouse-MC3T3-E1-preosteoblast-cell growth. The alkaline-phosphatase activity of peptide YPRKDETGAERT was 2.79 ± 0.07 mU, which was an increase of 21.25% compared with that of the control. These results provide theoretical and practical insights for the preparation and application of osteogenic peptides in the functional-foods industry.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| | - Fengjiao Fan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Pujie Shi
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Maolin Tu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian 116034 , China
| |
Collapse
|
32
|
Wang JL, Li L, Hu MB, Wu B, Fan WX, Peng W, Wei DN, Wu CJ. In silico drug design of inhibitor of nuclear factor kappa B kinase subunit beta inhibitors from 2-acylamino-3-aminothienopyridines based on quantitative structure–activity relationships and molecular docking. Comput Biol Chem 2019; 78:297-305. [DOI: 10.1016/j.compbiolchem.2018.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 11/17/2022]
|
33
|
Tan S, Xu J, Lai A, Cui R, Bai R, Li S, Liang W, Zhang G, Jiang S, Liu S, Zheng M, Wang W. Curculigoside exerts significant anti‑arthritic effects in vivo and in vitro via regulation of the JAK/STAT/NF‑κB signaling pathway. Mol Med Rep 2019; 19:2057-2064. [PMID: 30664158 PMCID: PMC6390071 DOI: 10.3892/mmr.2019.9854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to investigate the anti-arthritic effects of curculigoside isolated from the rhizome of Curculigo orchioides Gaertn in vivo and in vitro, as well as to determine the potential underlying mechanisms. A rat model of arthritis was induced with type II collagen. Arthritic rats were treated with curculigoside (50 mg/kg) and blood samples were collected to determine serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, IL-12 and IL-17A. Furthermore, indices of the thymus and spleen were determined. The anti-proliferative effects of curculigoside were detected with Cell Counting kit-8 assays in rheumatoid arthritis-derived fibroblast-like synoviocyte MH7A cells. In addition, expression levels of Janus kinase (JAK)1, JAK3, signal transducer and activator of transcription (STAT)3, nuclear factor (NF)-κB p65 and its inhibitor (IκB) were determined by western blotting. The results revealed that curculigoside inhibited paw swelling and arthritis scores in type II collagen-induced arthritic (CIA) rats. Additionally, curculigoside decreased serum levels of TNF-α, IL-1β, IL-6, IL-10, IL-12 and IL-17A in CIA rats. Curculigoside also significantly inhibited MH7A cell proliferation in a time and concentration-dependent manner. Furthermore, treatment downregulated the expression of JAK1, JAK3 and STAT3, and upregulated cytosolic nuclear factor (NF)-κB p65 and IκB. In conclusion, the results of the present study indicated that curculigoside exhibited significant anti-arthritic effects in vivo and in vitro, and the molecular mechanism may be associated with the JAK/STAT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shirui Tan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650032, P.R. China
| | - Jian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Aiyun Lai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ruomei Cui
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ru Bai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shu Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wei Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Guofang Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shaoquan Jiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mai Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wei Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
34
|
Zhang M, Xie M, Wei D, Wang L, Hu M, Zhang Q, He Z, Peng W, Wu C. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum attenuates learning and memory impairments in scopolamine-treated mice. Food Funct 2019; 10:7315-7324. [DOI: 10.1039/c9fo00045c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Learning and memory impairments are common symptoms of dementia in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Mingguo Xie
- Department of Radiology
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu 610075
- P.R. China
| | - Daneng Wei
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Li Wang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Meibian Hu
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Qing Zhang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Zuxin He
- Sichuan Sino-Dandard Pharmaceutical Co. Ltd
- Luxi industrial development zone
- Mianyang 621101
- P.R. China
| | - Wei Peng
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Chunjie Wu
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| |
Collapse
|
35
|
Anti-allergic rhinitis effects of caffeoylquinic acids from the fruits of Xanthium strumarium in rodent animals via alleviating allergic and inflammatory reactions. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Zhai L, Wang X. Syringaresinol‑di‑O‑β‑D‑glucoside, a phenolic compound from Polygonatum sibiricum, exhibits an antidiabetic and antioxidative effect on a streptozotocin‑induced mouse model of diabetes. Mol Med Rep 2018; 18:5511-5519. [PMID: 30365054 PMCID: PMC6236259 DOI: 10.3892/mmr.2018.9580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 11/26/2022] Open
Abstract
Syringaresinol-di-O-β-D-glucoside (SOG) is a phenolic compound extracted from Polygonatum sibiricum. The present study aimed to investigate the antidiabetic effect of SOG on streptozocin (STZ)-induced diabetic mice and determine the potential underlying mechanisms. In the present study, fasting blood glucose and organ indexes of mice were analyzed. Body weight, water intake and food intake were also recorded. Furthermore, serum fasting insulin, pancreatic insulin and pancreatic interleukin-6 levels of mice were determined using ELISA kits to investigate the effect of SOG on the levels of insulin. Levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C) and free fatty acid (FFA) in the serum of mice, and levels of TC, TG and total protein in the kidney, were also determined to investigate the effects of SOG on lipid and protein metabolism in mice. Furthermore, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) levels, as well as total antioxidant capacity (T-AOC), in the kidneys of mice were determined to investigate the effect of SOG on oxidative stress. Western blotting was also performed to determine the expression of proteins associated with oxidative stress. The results demonstrated that SOG (25, 50 and 75 mg/kg) induced a significant antidiabetic effect in mice. Treatment with SOG promoted insulin secretion and decreased TC, TG, LDL-C, VLDL-C, FFA, MDA, SOD, CAT, AST, ALT and ALP levels in the kidneys of mice, as well as kidney TC and TG levels, but increased the levels of kidney total protein and the T-AOC in kidneys. Furthermore, SOG treatment could significantly downregulate the expressions of nitrotyrosine and transforming growth factor-β1 in diabetic mice. Therefore, the present study indicated that SOG may exert an antidiabetic effect on STZ-induced diabetic mice and that the mechanism of SOG may be associated with its antioxidative activity.
Collapse
Affiliation(s)
- Liping Zhai
- Department of Endocrinology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xu Wang
- Department of Endocrinology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
37
|
Ameliorative effect of Xiaoyao-jieyu-san on post-stroke depression and its potential mechanisms. J Nat Med 2018; 73:76-84. [DOI: 10.1007/s11418-018-1243-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022]
|