1
|
Yu J, Qiu J, Zhang Z, Cui X, Guo W, Sheng M, Gao M, Wang D, Xu L, Ma X. Redox Biology in Adipose Tissue Physiology and Obesity. Adv Biol (Weinh) 2023; 7:e2200234. [PMID: 36658733 DOI: 10.1002/adbi.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), a by-product of mitochondrial oxidative phosphorylation and cellular metabolism, is vital for cellular survival, proliferation, damage, and senescence. In recent years, studies have shown that ROS levels and redox status in adipose tissue are strongly associated with obesity and metabolic diseases. Although it was previously considered that excessive production of ROS and impairment of antioxidant capability leads to oxidative stress and potentially contributes to increased adiposity, it has become increasingly evident that an adequate amount of ROS is vital for adipocyte differentiation and thermogenesis. In this review, by providing a systematic overview of the recent understanding of the key factors of redox systems, endogenous mechanisms for redox homeostasis, advanced techniques for dynamic redox monitoring, as well as exogenous stimuli for redox production in adipose tissues and obesity, the importance of redox biology in metabolic health is emphasized.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| |
Collapse
|
2
|
Pavão ML, Ferin R, Lima A, Baptista J. Cysteine and related aminothiols in cardiovascular disease, obesity and insulin resistance. Adv Clin Chem 2022; 109:75-127. [DOI: 10.1016/bs.acc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Maternal cysteine intake influenced oxidative status and lipid-related gut microbiota and plasma metabolomics in male suckling piglets. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
High Plasma Cystine Levels Are Associated with Blood Pressure and Reversed by CPAP in Patients with Obstructive Sleep Apnea. J Clin Med 2021; 10:jcm10071387. [PMID: 33808409 PMCID: PMC8037115 DOI: 10.3390/jcm10071387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) independent of obesity (OBS) imposes severe cardiovascular risk. To what extent plasma cystine concentration (CySS), a novel pro-oxidative vascular risk factor, is increased in OSA with or without OBS is presently unknown. We therefore studied CySS together with the redox state and precursor amino acids of glutathione (GSH) in peripheral blood mononuclear cells (PBMC) in untreated male patients with OSA (apnea-hypopnea-index (AHI) > 15 h-1, n = 28) compared to healthy male controls (n = 25) stratifying for BMI ≥ or < 30 kg m-2. Fifteen OSA patients were reassessed after 3-5-months CPAP. CySS correlated with cumulative time at an O2-saturation <90% (Tu90%) (r = 0.34, p < 0.05) beside BMI (r = 0.58, p < 0.001) and was higher in subjects with "hypoxic stress" (59.4 ± 2.0 vs. 50.1 ± 2.7 µM, p < 0.01) defined as Tu90% ≥ 15.2 min (corresponding to AHI ≥ 15 h-1). Moreover, CySS significantly correlated with systolic (r = 0.32, p < 0.05) and diastolic (r = 0.31, p < 0.05) blood pressure. CPAP significantly lowered CySS along with blood pressure at unchanged BMI. Unexpectedly, GSH antioxidant capacity in PBMC was increased with OSA and reversed with CPAP. Plasma CySS levels are increased with OSA-related hypoxic stress and associated with higher blood pressure. CPAP decreases both CySS and blood pressure. The role of CySS in OSA-related vascular endpoints and their prevention by CPAP warrants further studies.
Collapse
|
5
|
Dludla PV, Mazibuko-Mbeje SE, Nyambuya TM, Mxinwa V, Tiano L, Marcheggiani F, Cirilli I, Louw J, Nkambule BB. The beneficial effects of N-acetyl cysteine (NAC) against obesity associated complications: A systematic review of pre-clinical studies. Pharmacol Res 2019; 146:104332. [DOI: 10.1016/j.phrs.2019.104332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
6
|
Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J Endocr Soc 2019; 3:1727-1747. [PMID: 31528832 PMCID: PMC6735759 DOI: 10.1210/js.2019-00065] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperinsulinemia is strongly associated with type 2 diabetes. Racial and ethnic minority populations are disproportionately affected by diabetes and obesity-related complications. This mini-review provides an overview of the genetic and environmental factors associated with hyperinsulinemia with a focus on racial and ethnic differences and its metabolic consequences. The data used in this narrative review were collected through research in PubMed and reference review of relevant retrieved articles. Insulin secretion and clearance are regulated processes that influence the development and progression of hyperinsulinemia. Environmental, genetic, and dietary factors are associated with hyperinsulinemia. Certain pharmacotherapies for obesity and bariatric surgery are effective at mitigating hyperinsulinemia and are associated with improved metabolic health. Hyperinsulinemia is associated with many environmental and genetic factors that interact with a wide network of hormones. Recent studies have advanced our understanding of the factors affecting insulin secretion and clearance. Further basic and translational work on hyperinsulinemia may allow for earlier and more personalized treatments for obesity and metabolic diseases.
Collapse
Affiliation(s)
- Dylan D Thomas
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Barbara E Corkey
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Nawfal W Istfan
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Caroline M Apovian
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
7
|
Thiol/Disulphide Homeostasis, Ischemia Modified Albumin, and Ferroxidase as Oxidative Stress Markers in Women with Obesity with Insulin Resistance. J Med Biochem 2019; 38:445-451. [PMID: 31496908 PMCID: PMC6708298 DOI: 10.2478/jomb-2019-0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background The purpose of the study was to determine oxidative stress-related plasma thiol/disulphide, ischemia-modified albumin (IMA) levels and ferroxidase activity among women with obesity in insulin-resistant and non-insulin-resistant groups in comparison with an overweight group. Methods We compared plasma thiol/disulphide, IMA levels, and ferroxidase activity between the study groups. We analyzed plasma thiol/disulphide homeostasis with a newly developed automated measurement method; IMA with Albumin Cobalt Binding Test and ferroxidase (ceruloplasmin) levels with an automated, colourimetric method. Results There were no significant differences between insulin-resistant and non-insulin-resistant women with obesity in terms of plasma native thiol, total thiol, disulphide, disulphide/native thiol ratio, disulphide/total thiol or native thiol/total thiol values. Ferroxidase activity was higher in insulin-resistant than in non-insulin-resistant women with obesity and higher in the total women with obesity group than in the overweight subjects (p<0.001, and p=0.014, respectively). IMA was lower in the insulin-resistant group than in the non-insulin-resistant group and overweight groups (p=0.011, and p=0.042, respectively). Conclusions The significantly greater increase in ferroxidase activity in insulin-resistant subjects with obesity may reflect its role as a positive acute phase protein. These findings may be related to the pathogenesis of the disease. Changes in oxidative status occur in women with obesity, and partially in overweight subjects. The ferroxidase activity of ceruloplasmin plays a crucial role in iron homeostasis and lowers oxidative stress by reducing the detrimental effects of iron.
Collapse
|
8
|
Soto D, Gomez-Serrano M, Pieralisi A, Calvo JC, Peral B, Guerra LN. N-acetylcysteine inhibits kinase phosphorylation during 3T3-L1 adipocyte differentiation. Redox Rep 2016; 22:265-271. [PMID: 27670786 DOI: 10.1080/13510002.2016.1223267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Reports investigating the effects of antioxidants on obesity have provided contradictory results. We have previously demonstrated that treatment with the antioxidant N-acetylcysteine (NAC) inhibits cellular triglyceride (Tg) accumulation as well as total cellular monoamine oxidase A (MAOA) expression in 3T3-L1 mature adipocytes (Calzadilla et al., Redox Rep. 2013;210-218). Here we analyzed the role of NAC on adipogenic differentiation pathway. METHODS Assays were conducted using 3T3-L1 preadipocytes (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC). We studied the effects of different doses of NAC (0.01 or 1 mM) on DC, to evaluate cellular expression of phospho-JNK½ (pJNK½), phospho-ERK½ (pERK½) and, mitochondrial expression of citrate synthase, fumarate hydratase and MAOA. RESULTS Following the differentiation of preadipocytes, an increase in the expression levels of pJNK½ and pERK½ was observed, together with mitotic clonal expansion (MCE). We found that both doses of NAC decreased the expression of pJNK½ and pERK½. Consistent with these results, NAC significantly inhibited MCE and modified the expression of different mitochondrial proteins. DISCUSSION Our results suggested that NAC could inhibit Tg and mitochondrial protein expression by preventing both MCE and kinase phosphorylation.
Collapse
Affiliation(s)
- Daniela Soto
- a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires - IQUIBICEN, CONICET , Buenos Aires , Argentina
| | - María Gomez-Serrano
- b Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid, (CSIC, UAM) , Madrid , Spain
| | - Azul Pieralisi
- a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires - IQUIBICEN, CONICET , Buenos Aires , Argentina
| | | | - Belén Peral
- b Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid, (CSIC, UAM) , Madrid , Spain
| | - Liliana N Guerra
- a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires - IQUIBICEN, CONICET , Buenos Aires , Argentina
| |
Collapse
|
9
|
Szkudlinska MA, von Frankenberg AD, Utzschneider KM. The antioxidant N-Acetylcysteine does not improve glucose tolerance or β-cell function in type 2 diabetes. J Diabetes Complications 2016; 30:618-22. [PMID: 26922582 PMCID: PMC4834245 DOI: 10.1016/j.jdiacomp.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 01/25/2023]
Abstract
UNLABELLED Hyperglycemia induces oxidative stress and thereby may exacerbate β-cell dysfunction in type 2 diabetes (T2DM). Notably, glutathione (GSH), synthesized from N-Acetylcysteine (NAC), neutralizes reactive oxygen species within cells and is low in individuals with diabetes. AIM Determine if NAC supplementation improves β-cell function and glucose tolerance by decreasing oxidative stress in T2DM. METHODS Thirteen subjects (6M/7F) with T2DM (duration: 0-13 years, median: 2 years), treated with diet/exercise alone (n=7) or metformin (n=6), underwent a 2-h oral glucose tolerance test (OGTT) at baseline, after 2 weeks supplementation with 600 mg NAC orally twice daily, and again after 2 weeks supplementation with 1200 mg NAC twice daily. The following measurements were made: fasting glucose and fructosamine for glycemic control, incremental AUC glucose (0-120 min) for glucose tolerance, and Δ insulin/Δ glucose (0-30 min) for the early insulin response to glucose. Fasting erythrocyte GSH and GSSG (oxidized glutathione) levels, plasma thiobarbituric acid reactive substances (TBARS), and urine F2α isoprostanes were measured to assess oxidative status. RESULTS Subjects were middle aged (mean ± SEM: 53.9 ± 3.2 years), obese (BMI 37.3 ± 2.8 kg/m(2)), and relatively well-controlled (HbA1c 6.7 ± 0.3%, 50 mmol/mol). Glycemic control, glucose tolerance, insulin release, and oxidative markers did not change with either dose of NAC. CONCLUSIONS Based on the lack of any short-term benefit from NAC supplementation on markers of glucose metabolism, β-cell response, and oxidative status, it is unlikely to be a valuable therapeutic approach for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Magdalena A Szkudlinska
- Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System and University of Washington, Seattle, WA.
| | - Anize D von Frankenberg
- Post-Graduate Endocrinology Program, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Kristina M Utzschneider
- Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System and University of Washington, Seattle, WA.
| |
Collapse
|
10
|
Jain SK, Kanikarla-Marie P, Warden C, Micinski D. L-cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats. Mol Nutr Food Res 2016; 60:1090-8. [PMID: 26778482 PMCID: PMC4876732 DOI: 10.1002/mnfr.201500667] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/05/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
Abstract
Scope Vitamin D binding protein (VDBP) status has an effect on and can potentially improve the status of 25(OH) vitamin D and increase the metabolic actions of 25(OH) vitamin D under physiological and pathological conditions. Diabetes is associated with lower levels of glutathione (GSH) and 25(OH) vitamin D. This study examined the hypothesis that upregulation of GSH will also upregulate blood levels of VDBP and 25(OH) vitamin D in type 2 diabetic rats. Methods and results L‐cysteine (LC) supplementation was used to upregulate GSH status in a FL83B hepatocyte cell culture model and in vivo using Zucker diabetic fatty (ZDF) rats. Results show that LC supplementation upregulates both protein and mRNA expression of VDBP and vitamin D receptor (VDR) and GSH status in hepatocytes exposed to high glucose, and that GSH deficiency, induced by glutamate cysteine ligase knockdown, resulted in the downregulation of GSH, VDBP, and VDR and an increase in oxidative stress levels in hepatocytes. In vivo, LC supplementation increased GSH and protein and mRNA expression of VDBP and vitamin D 25‐hydroxylase (CYP2R1) in the liver, and simultaneously resulted in elevated blood levels of LC and GSH, as well as increases in VDBP and 25(OH) vitamin D levels, and decreased inflammatory biomarkers in ZDF rats compared with those in placebo‐supplemented ZDF rats consuming a similar diet. Conclusion LC supplementation may provide a novel approach by which to raise blood levels of VDBP and 25(OH) vitamin D in type 2 diabetes.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Preeti Kanikarla-Marie
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Cassandra Warden
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - David Micinski
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| |
Collapse
|
11
|
Cheraghi E, Mehranjani MS, Shariatzadeh MA, Esfahani MHN, Ebrahimi Z. N-Acetylcysteine improves oocyte and embryo quality in polycystic ovary syndrome patients undergoing intracytoplasmic sperm injection: an alternative to metformin. Reprod Fertil Dev 2016; 28:723-31. [DOI: 10.1071/rd14182] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/17/2014] [Indexed: 01/20/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with low-quality oocytes. The aim of the present study was to investigate the effects of metformin (MET), N-acetylcysteine (NAC) and their combination on follicular fluid parameters, oocytes and embryo quality in PCOS patients. A prospective randomised placebo-controlled pilot study on 60 Iranian women with PCOS (aged 25–35 years) undergoing intracytoplasmic sperm injection (ICSI) was designed. Women were divided into four groups (n = 15 in each): (1) an MET, administered 1500 mg day–1 MET; (2) an NAC group, administered 1800 mg day–1 NAC; (3) an NAC + MET group; and (4) a placebo group. Drugs were administered from the 3rd day of previous cycle until the day of oocyte aspiration (6 weeks treatment in total). Data were analysed by one-way ANOVA, with significance set at P < 0.05. The number of immature and abnormal oocytes decreased significantly in the NAC compared with placebo group, with a concomitant increase in the number of good-quality embryos in the NAC group (P < 0.05). Malondialdehyde levels decreased significantly in the NAC and NAC + MET groups compared with the placebo-treated group (P < 0.02). In addition, there were significant decreases in leptin levels in the NAC, MET and NAC + MET groups compared with the placebo group (P < 0.001). Insulin and LH levels were significantly lower in the MET and NAC groups compared with the placebo-treated group (P < 0.02). We concluded that NAC improves oocyte and embryo quality and could be administered as an alternative to MET.
Collapse
|
12
|
Hildebrandt W, Sauer R, Bonaterra G, Dugi KA, Edler L, Kinscherf R. Oral N-acetylcysteine reduces plasma homocysteine concentrations regardless of lipid or smoking status. Am J Clin Nutr 2015; 102:1014-24. [PMID: 26447155 DOI: 10.3945/ajcn.114.101964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 08/27/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Elevated total plasma homocysteine (tHcy) is considered to be an independent cardiovascular disease risk factor, although tHcy lowering by B-vitamins improves only certain clinical endpoints. N-acetylcysteine (NAC), a thiol-containing antioxidant, acutely lowers tHcy and possibly also blood pressure. However, to our knowledge, at present no conclusive long-term evaluation exists that controls for factors such as hyperlipidemia, smoking, medication, and disease stage, all of which affect the thiol redox state, including tHcy. OBJECTIVE We reanalyzed 2 double-blind, placebo-controlled trials in unmedicated middle-aged men, one in a hyperlipidemic group (HYL group; n = 40) and one in a normolipidemic group (NOL group; n = 42), each stratified for smokers and nonsmokers. DESIGN We evaluated the effect of 4 wk of oral NAC (1.8 g/d) on tHcy (primary endpoint), plasma thiol (cysteine), and intracellular glutathione concentrations as well as on blood pressure. The HYL group had total cholesterol >220 mg/dL or triglycerides >150 mg/dL. RESULTS NAC treatment significantly (P = 0.001, multivariate analysis of variance for repeated measures) lowered postabsorptive plasma concentrations of tHcy by -11.7% ± 3.0% (placebo: 4.1% ± 3.6%) while increasing those of cysteine by 28.1% ± 5.7% (placebo: 4.0% ± 3.4%) with no significant impact of hyperlipidemia or smoking. Moreover, NAC significantly decreased systolic (P = 0.003) and diastolic (P = 0.017) blood pressure within all subjects with a significant reduction in diastolic pressure in the HYL group (P = 0.008) but not in the NOL group. An explorative stepwise multiple regression analysis identified 1) post-treatment cysteine as well as 2) pretreatment tHcy and 3) albumin plasma concentrations as being significant contributors to tHcy reduction. CONCLUSIONS Four weeks of oral NAC treatment significantly decreased plasma tHcy concentrations, irrespective of lipid or smoking status, and lowered systolic blood pressure in both normolipidemic and hyperlipidemic men, with significant diastolic blood pressure reductions in the HYL group only. Increased oral intake of cysteine may therefore be considered for primary or secondary prevention of vascular events with regard to the 2 independent risk factors of hyperhomocysteinemia and arterial hypertension.
Collapse
Affiliation(s)
| | - Roland Sauer
- Immunochemistry and Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | | | - Klaus A Dugi
- Internal Medicine I, University of Heidelberg, Heidelberg, Germany; Departments of
| | - Lutz Edler
- Biostatistics, Deutsches Krebsforschungszentrum, Heidelberg, Germany; and
| | | |
Collapse
|
13
|
Padmaja Divya S, Pratheeshkumar P, Son YO, Vinod Roy R, Andrew Hitron J, Kim D, Dai J, Wang L, Asha P, Huang B, Xu M, Luo J, Zhang Z. Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway. Toxicol Sci 2015; 146:290-300. [PMID: 25979314 DOI: 10.1093/toxsci/kfv089] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure.
Collapse
Affiliation(s)
- Sasidharan Padmaja Divya
- *Center for Research on Environmental Disease, Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | | | | | | | - John Andrew Hitron
- *Center for Research on Environmental Disease, Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA
| | - Lei Wang
- *Center for Research on Environmental Disease
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Bin Huang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40504 and
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 Veterans Drive, Lexington, KY 40536, USA,
| |
Collapse
|
14
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides. Toxicology 2014; 322:1-13. [DOI: 10.1016/j.tox.2014.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 02/06/2023]
|
15
|
Wong S, Kirkland JL, Schwanz HA, Simmons AL, Hamilton JA, Corkey BE, Guo W. Effects of thiol antioxidant β-mercaptoethanol on diet-induced obese mice. Life Sci 2014; 107:32-41. [PMID: 24802126 DOI: 10.1016/j.lfs.2014.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 12/25/2022]
Abstract
AIMS Obesity and insulin resistance are associated with increased oxidant stress. However, treatments of obese subjects with different types of antioxidants often give mixed outcomes. In this work, we sought to determine if long-term supplementation of a thiol antioxidant, β-mercaptoethanol, to diet-induced obese mice may improve their health conditions. MAIN METHODS Middle-age mice with pre-existing diet-induced obesity were provided with low concentration β-mercaptoethanol (BME) in drinking water for six months. Animals were assessed for body composition, gripping strength, spontaneous physical and metabolic activities, as well as insulin and pyruvate tolerance tests. Markers of inflammation were assessed in plasma, fat tissue, and liver. KEY FINDINGS BME-treated mice gained less fat mass and more lean mass than the control animals. They also showed increased nocturnal locomotion and respiration, as well as greater gripping strength. BME reduced plasma lipid peroxidation, decreased abdominal fat tissue inflammation, reduced fat infiltration into muscle and liver, and reduced liver and plasma C-reactive protein. However, BME was found to desensitize insulin signaling in vivo, an effect also confirmed by in vitro experiments. SIGNIFICANCE Long-term supplementation of low dose thiol antioxidant BME improved functional outcomes in animals with pre-existing obesity. Additional studies are needed to address the treatment impact on insulin sensitivity if a therapeutic value is to be explored.
Collapse
Affiliation(s)
- Siu Wong
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Heidi A Schwanz
- Department of Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Amber L Simmons
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - James A Hamilton
- Department of Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wen Guo
- Research Program in Men's Health, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Rapamycin inhibition of polyposis and progression to dysplasia in a mouse model. PLoS One 2014; 9:e96023. [PMID: 24763434 PMCID: PMC3999114 DOI: 10.1371/journal.pone.0096023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 04/02/2014] [Indexed: 01/09/2023] Open
Abstract
Familial adenomatous polyposis (FAP) is often due to adenomatous polyposis coli (APC) gene germline mutations. Somatic APC defects are found in about 80% of colorectal cancers (CRCs) and adenomas. Rapamycin inhibits mammalian target of rapamycin (mTOR) protein, which is often expressed in human adenomas and CRCs. We sought to assess the effects of rapamycin in a mouse polyposis model in which both Apc alleles were conditionally inactivated in colon epithelium. Two days after inactivating Apc, mice were given rapamycin or vehicle in cycles of two weeks on and two weeks off. Polyps were scored endoscopically. Mice were euthanized at time points or when moribund, and tissue analyses were performed. In other studies, mice with demonstrable Apc-defective colon polyps were given rapamycin, followed by analysis of their colon tissues. The median survival of mice receiving rapamycin treatment cycles was 21.5 versus 6.5 weeks in control mice (p = 0.03), and rapamycin-treated mice had a significantly lower percentage of their colon covered with polyps (4.3+/− 2 vs 56.5+/− 10.8 percent, p = 0.001). Mice with Apc-deficient colon tissues that developed high grade dysplasia treated with rapamycin underwent treatment for significantly longer than mice treated with vehicle (15.8 vs 5.1 weeks, p = 0.003). In Apc-defective colon tissues, rapamycin treatment was linked to decreased levels of β-catenin and Sox9 at 7 weeks. Other effects of rapamycin in Apc-defectivecolon tissues included decreased proliferation and increased numbers of differentiated goblet cells at 7 weeks. Rapamycin did not affect β-catenin-regulated gene expression in cultured intestinal epithelial cells. Rapamycin has potent inhibitory effects in a mouse colon polyposis model, and mTOR inhibition is linked to decreased proliferation and increased expression of differentiation markers in Apc-mutant colon epithelium and delays development of dysplasia. Our findings highlight the possibility that mTOR inhibitors may have relevance for polyposis inhibition approaches in FAP patients.
Collapse
|
17
|
Elshorbagy AK, Valdivia-Garcia M, Mattocks DAL, Plummer JD, Orentreich DS, Orentreich N, Refsum H, Perrone CE. Effect of taurine and N-acetylcysteine on methionine restriction-mediated adiposity resistance. Metabolism 2013; 62:509-17. [PMID: 23154184 DOI: 10.1016/j.metabol.2012.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/07/2012] [Accepted: 10/09/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Methionine-restricted (MR) rats, which are lean and insulin sensitive, have low serum total cysteine (tCys) and taurine and decreased hepatic expression and activity indices of stearoyl-coenzyme A desaturase-1 (SCD1). These effects are partly or completely reversed by cysteine supplementation. We investigated whether reversal of MR phenotypes can be achieved by other sulfur compounds, namely taurine or N-acetylcysteine (NAC). METHODS MR and control-fed (CF) rats were supplemented with taurine (0.5%) or NAC (0.5%) for 12weeks. Adiposity, serum sulfur amino acids (SAA), Scd1 gene expression in liver and white adipose tissue, and SCD1 activity indices (calculated from serum fatty acid profile) were monitored. RESULTS Taurine supplementation of MR rats did not restore weight gain or hepatic Scd1 expression or indices to CF levels, but further decreased adiposity. Taurine supplementation of CF rats did not affect adiposity, but lowered triglyceridemia. NAC supplementation in MR rats raised tCys and partly or completely reversed MR effects on weight, fat %, Scd1 expression in liver and white adipose tissue, and estimated SCD1 activity. In CF rats, NAC decreased body fat % and lowered SCD1-18 activity index (P<0.001). Serum triglycerides and leptin were over 40% lower in CF+NAC relative to CF rats (P≤0.003 for both). In all groups, change in tCys correlated with change in SCD1-16 index (partial r=0.60, P<0.001) independent of other SAA. CONCLUSION The results rule out taurine as a mediator of increased adiposity produced by cysteine in MR, and show that NAC, similar to L-cysteine, blocks anti-obesity effects of MR. Our data show that dietary SAA can influence adiposity in part through mechanisms that converge on SCD1 function. This may have implications for understanding and preventing human obesity.
Collapse
|
18
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease and kidney failure. Essential hypertension results from a combination of genetic and lifestyle factors. One such lifestyle factor is diet, and its role in the control of blood pressure has come under much scrutiny. Just as increased salt and sugar are known to elevate blood pressure, other dietary factors may have antihypertensive effects. Studies including the Optimal Macronutrient Intake to Prevent Heart Disease (OmniHeart) study, Multiple Risk Factor Intervention Trial (MRFIT), International Study of Salt and Blood Pressure (INTERSALT) and Dietary Approaches to Stop Hypertension (DASH) study have demonstrated an inverse relationship between dietary protein and blood pressure. One component of dietary protein that may partially account for its antihypertensive effect is the nonessential amino acid cysteine. Studies in hypertensive humans and animal models of hypertension have shown that N-acetylcysteine, a stable cysteine analogue, lowers blood pressure, which substantiates this idea. Cysteine may exert its antihypertensive effects directly or through its storage form, glutathione, by decreasing oxidative stress, improving insulin resistance and glucose metabolism, lowering advanced glycation end products, and modulating levels of nitric oxide and other vasoactive molecules. Therefore, adopting a balanced diet containing cysteine-rich proteins may be a beneficial lifestyle choice for individuals with hypertension. An example of such a diet is the DASH diet, which is low in salt and saturated fat; includes whole grains, poultry, fish and nuts; and is rich in vegetables, fruits and low-fat dairy products.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | | | |
Collapse
|
19
|
|
20
|
Elshorbagy AK, Kozich V, Smith AD, Refsum H. Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Curr Opin Clin Nutr Metab Care 2012; 15:49-57. [PMID: 22108094 DOI: 10.1097/mco.0b013e32834d199f] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The concentrations of several plasma amino acids increase in obesity. Notably, plasma total concentrations of the sulphur amino acid cysteine (tCys) are linearly associated with fat mass in large population studies. Animal and cellular experiments support the concept that cysteine may be obesogenic. Here we review experimental and epidemiologic findings linking cysteine and related compounds with fat regulation and obesity. RECENT FINDINGS tCys, and to a lesser extent cystathionine, are the only plasma sulphur amino acids consistently associated with human obesity, whereas glutathione is inversely associated with BMI. Supplementing cyste(i)ne in rodents decreases energy expenditure and promotes adiposity, whereas defects of cysteine-synthesizing enzymes decrease body weight. In adipocytes, cysteine inhibits lipolysis and promotes lipogenesis via H2O2 production. Unlike most plasma amino acids, tCys levels do not decrease with gastric bypass-induced weight loss, further supporting the concept that elevated cysteine may be a cause, not a consequence of obesity. Although cysteine products (glutathione, taurine and H2S) are altered in obesity, they do not appear to explain cysteine's effects on body weight. SUMMARY Cellular, animal and epidemiologic data are consistent with the view that cysteine is obesogenic. Targeted research linking in-vitro and in-vivo findings is needed to elucidate mechanisms involved.
Collapse
|
21
|
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A 2011; 108:14608-13. [PMID: 21873205 DOI: 10.1073/pnas.1111308108] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle.
Collapse
|
22
|
Kinscherf R. Redox pioneer: Professor Wulf Dröge. Antioxid Redox Signal 2011; 14:2319-23. [PMID: 21175356 DOI: 10.1089/ars.2010.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dr. Wulf Dröge is recognized here as a redox pioneer because he has published as first author an article on antioxidant/redox biology that has been cited more than 2000 times and over 10 articles that have been cited more than 100 times. One of the key discoveries (1987) was the stimulatory effect of superoxide radicals and hydrogen peroxide on lymphocyte functions, which triggered a series of studies on the role of reactive oxygen species, glutathione, and its precursor cysteine in physiological and pathological processes. He discovered abnormally low cysteine and glutathione levels in human immunodeficiency virus-infected patients and the age-related decline in the postabsorptive plasma cysteine concentration, which is believed to cause age-related oxidative stress. He developed a theoretical concept of the mechanism of aging and death, which is outlined in his books Avoiding the First Cause of Death and Challenging the Limits of the Human Lifespan.
Collapse
Affiliation(s)
- Ralf Kinscherf
- Department of Medical Cell Biology University of Marburg, Marburg, Germany.
| |
Collapse
|
23
|
Gayatri K, Kumar JS, Kumar BB. Metformin and N-acetyl Cysteine in Polycystic Ovarian Syndrome–-A Comparative Study. ACTA ACUST UNITED AC 2010. [DOI: 10.1177/117739361000100002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective To compare the effects of Metformin with N-acetyl cysteine in polycystic ovarian syndrome (PCOS). Methods A prospective, randomised controlled study was conducted in the Department of Obstetrics and Gynaecology in a Medical College and General Hospital. Total 115 cases of polycystic ovarian syndrome presenting with different complaints were selected for the study. Fifty nine cases were treated with Metformin (Group-M) and other 56 with N-acetyl cysteine (Group-N). Primary outcome measures are improvement in clinical features and biochemical profile, where as secondary outcome measures are improvement in hormonal profile and ultrasonographic findings. Statistical analysis was done by Z test and Chi square test. Results From each group, 50 patients were ultimately evaluated. There was significant improvement in some of the clinical features like weight gain, acne and hirsutism in group-N ( P < 0.05), but there was no significant change in other features like oligomenorrhea, amenorrhoea and infertility. The biochemical markers of insulin resistance like fasting insulin, fasting glucose/insulin ratio and HOMA-IR were significantly reduced in group-N. Hormone levels like serum LH, FSH, TT and LH/FSH ratio was significantly decreased in group-N, but FT, FT/TT ratio and SHBG were similar in both the groups. Ultrasonographic findings were similar in both the groups. Conclusion N-acetyl Cysteine had better improvement in clinical, biochemical and hormonal profile than Metformin in PCOS patients. It can be used as a substitute for insulin reducing medications in treatment of PCOS patients, considering its limited adverse effects.
Collapse
Affiliation(s)
- Kar Gayatri
- Obstetrics and gynaecology, MKCG Medical College, Berhampur, India
| | - Jena Saubhagya Kumar
- Obstetrics and Gynaecology, Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry, India
| | - Behera Basanta Kumar
- Community Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry, India
| |
Collapse
|
24
|
Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol 2008; 29:20-30. [PMID: 18936159 DOI: 10.1128/mcb.00544-08] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of insulin resistance and type 2 diabetes mellitus and in diabetic vascular complications. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, improve insulin sensitivity and are currently used for the treatment of type 2 diabetes mellitus. Here, we show that TZD prevents oxidative stress-induced insulin resistance in human skeletal muscle cells, as indicated by the increase in insulin-stimulated glucose uptake and insulin signaling. Importantly, TZD-mediated activation of PPARgamma induces gene expression of glutathione peroxidase 3 (GPx3), which reduces extracellular H(2)O(2) levels causing insulin resistance in skeletal muscle cells. Inhibition of GPx3 expression prevents the antioxidant effects of TZDs on insulin action in oxidative stress-induced insulin-resistant cells, suggesting that GPx3 is required for the regulation of PPARgamma-mediated antioxidant effects. Furthermore, reduced plasma GPx3 levels were found in patients with type 2 diabetes mellitus and in db/db/DIO mice. Collectively, these results suggest that the antioxidant effect of PPARgamma is exclusively mediated by GPx3 and further imply that GPx3 may be a therapeutic target for insulin resistance and diabetes mellitus.
Collapse
|
25
|
Dröge W, Kinscherf R. Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 2008; 10:661-78. [PMID: 18162053 DOI: 10.1089/ars.2007.1953] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms leading to the increase in free radical-derived oxidative stress in "normal aging" remains obscure. Here we present our perspective on studies from different fields that reveal a previously unnoticed vicious cycle of oxidative stress. The plasma cysteine concentrations during starvation in the night and early morning hours (the postabsorptive state) decreases with age. This decrease is associated with a decrease in tissue concentrations of the cysteine derivative and quantitatively important antioxidant glutathione. The decrease in cysteine reflects changes in the autophagic protein catabolism that normally ensures free amino acid homeostasis during starvation. Autophagy is negatively regulated by the insulin receptor signaling cascade that is enhanced by oxidative stress in the absence of insulin. This synopsis of seemingly unrelated processes reveals a novel mechanism of progressive oxidative stress in which decreasing antioxidant concentrations and increasing basal (postabsorptive) insulin receptor signaling activity compromise not only the autophagic protein catabolism but also the activity of FOXO transcription factors (i.e., two functions that were found to have an impact on lifespan in several animal models of aging). In addition, the aging-related decrease in glutathione levels is likely to facilitate certain "secondary" disease-related mechanisms of oxidative stress. Studies on cysteine supplementation show therapeutic promise.
Collapse
Affiliation(s)
- Wulf Dröge
- Department of Research and Development, Immunotec Inc, Vaudreuil, Québec, Canada.
| | | |
Collapse
|
26
|
Abstract
Autophagy, or cellular self-digestion, is a cellular pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. For example, autophagic dysfunction is associated with cancer, neurodegeneration, microbial infection and ageing. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions. Autophagic proteolysis and sirtuin activity, in turn, are downregulated by the insulin signaling pathway, and impaired autophagic activity has been associated with neurodegeneration. In genetic studies, impairment of insulin receptor signaling causes spectacular lifespan extension in nematodes, fruit flies, and mice. The predicted effects of age-related oxidative stress on sirtuins and autophagic activity and the corresponding effects of antioxidants remain to be tested experimentally. However, several correlates of aging have been shown to be ameliorated by antioxidants. Oxidative damage to mitochondrial DNA and the electron transport chain, perturbations in brain iron and calcium homeostasis, and changes in plasma cysteine homeostasis may altogether represent causes and consequences of increased oxidative stress. Aging and cognitive decline thus appear to involve changes at multiple nodes within a complex regulatory network.
Collapse
Affiliation(s)
- Wulf Dröge
- Immunotec Research Ltd., 300 Joseph-Carrier, Vaudreuil-Dorion, Quebec, Canada J7V 5V5.
| | | |
Collapse
|
28
|
Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, Curtis RK, Jimenez-Linan M, Blount M, Yeo GSH, Lopez M, Seppänen-Laakso T, Ashcroft FM, Orešič M, Vidal-Puig A. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 2007; 3:e64. [PMID: 17465682 PMCID: PMC1857730 DOI: 10.1371/journal.pgen.0030064] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 03/07/2007] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2(-/-) Lep(ob)/Lep(ob) (POKO mouse), resulted in decreased fat mass, severe insulin resistance, beta-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the beta-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b) increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of beta-cells to insulin resistance.
Collapse
Affiliation(s)
- Gema Medina-Gomez
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sarah L Gray
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Kenju Shimomura
- University Laboratory of Physiology, University of Oxford, Oxford, United Kingdom
| | - Sam Virtue
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark Campbell
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | - R. Keira Curtis
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mercedes Jimenez-Linan
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Margaret Blount
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Giles S. H Yeo
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Miguel Lopez
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Frances M Ashcroft
- University Laboratory of Physiology, University of Oxford, Oxford, United Kingdom
| | - Matej Orešič
- Technical Research Centre of Finland (VTT), Espoo, Finland
| | - Antonio Vidal-Puig
- Department of Clinical Biochemistry, Histopathology, University of Cambridge/Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Muscle wasting as it typically occurs in old age and in certain diseases is poorly understood. This review summarizes recent findings suggesting a role for redox-sensitive signaling cascades in catabolic processes. RECENT FINDINGS The redox-sensitive transcription factors nuclear factor kappaB and activator protein 1 facilitate ubiquitin-proteasome-dependent proteolysis. Nuclear factor kappaB also plays a role in induced expression of tumor necrosis factor alpha and other inflammatory cytokines that have been implicated in catabolic processes. The activities of nuclear factor kappaB and activator protein 1 are stimulated not only by hydrogen peroxide, which is produced in tissues by regulated enzymatic processes, but also by an oxidative shift in thiol-disulfide redox status. The oxidative shift that is typically seen in old age and certain catabolic conditions may thus play a causative role in catabolic processes. Another prominent case in point is insulin-independent 'basal' insulin receptor kinase activity, which is strongly enhanced by hydrogen peroxide or by an oxidative shift in redox status. The insulin receptor signaling cascade induces anabolic and anticatabolic effects, but its abnormal upregulation under starving conditions potentially compromises glucose and amino acid homeostasis. In genetic animal studies, impairment of insulin receptor signaling was shown to increase life span. SUMMARY These findings may provide a rationale for cysteine supplementation in catabolic conditions.
Collapse
Affiliation(s)
- Wulf Dröge
- Immunotec Research Ltd, Vaudreuil-Dorion, Québec, Canada.
| |
Collapse
|
30
|
Abstract
The early stages of type 2 diabetes mellitus are characterized by the development of insulin resistance (IRe) in muscle cells and adipocytes with the concomitant loss of beta-cell compensation. We have extensively reviewed the literature related to metabolic and signalling pathways of reactive oxygen species (ROS) in regard to the coordinated development of oxidative stress and IRe. We considered the hypothesis that oxidative stress leads to IRe in muscle cells and adipocytes, but found that the data are more consistent with the hypothesis that the cellular mechanisms that protect against oxidative stress per se are capable of creating an ROS-dependent insulin-resistant state. Furthermore, ROS-induced mitochondrial dysfunction can lead to disruptions of lipid metabolism, increasing the intracellular lipid content, and, in addition, contribute to lipid-dependent IRe in myocytes. Together, these two ROS-activated pathways to IRe can contribute to a global state of profound resistance to insulin action. Therapeutic strategies should, therefore, be directed towards reducing insulin resistance without an increase in ROS production or concentration. Pharmacological or other approaches to IRe that result in the activation of mitochondrial biogenesis in particular could be highly beneficial in the prevention or treatment of both insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- L E Fridlyand
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
31
|
Dröge W. Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos Trans R Soc Lond B Biol Sci 2005; 360:2355-72. [PMID: 16321806 PMCID: PMC1569588 DOI: 10.1098/rstb.2005.1770] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) are constantly produced in biological tissues and play a role in various signalling pathways. Abnormally high ROS concentrations cause oxidative stress associated with tissue damage and dysregulation of physiological signals. There is growing evidence that oxidative stress increases with age. It has also been shown that the life span of worms, flies and mice can be significantly increased by mutations which impede the insulin receptor signalling cascade. Molecular studies revealed that the insulin-independent basal activity of the insulin receptor is increased by ROS and downregulated by certain antioxidants. Complementary clinical studies confirmed that supplementation of the glutathione precursor cysteine decreases insulin responsiveness in the fasted state. In several clinical trials, cysteine supplementation improved skeletal muscle functions, decreased the body fat/lean body mass ratio, decreased plasma levels of the inflammatory cytokine tumour necrosis factor alpha (TNF-alpha), improved immune functions, and increased plasma albumin levels. As all these parameters degenerate with age, these findings suggest: (i) that loss of youth, health and quality of life may be partly explained by a deficit in cysteine and (ii) that the dietary consumption of cysteine is generally suboptimal and everybody is likely to have a cysteine deficiency sooner or later.
Collapse
Affiliation(s)
- Wulf Dröge
- Division of Redox Physiology and Aging Research, Deutsches KrebsforschungszentrumIm Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Meurer SK, Lahme B, Tihaa L, Weiskirchen R, Gressner AM. N-acetyl-L-cysteine suppresses TGF-beta signaling at distinct molecular steps: the biochemical and biological efficacy of a multifunctional, antifibrotic drug. Biochem Pharmacol 2005; 70:1026-34. [PMID: 16098950 DOI: 10.1016/j.bcp.2005.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/01/2005] [Accepted: 07/01/2005] [Indexed: 01/23/2023]
Abstract
The interrelated signaling via TGF-beta1 and reactive oxygen species has a profound impact on fibrogenesis and is therefore selected as target for antifibrotic therapies. This prompted us to investigate the influence of the antioxidant N-acetyl-L-cysteine on TGF-beta signaling in culture-activated hepatic stellate cells, the most relevant pro-fibrogenic cell type in liver. Dissection of the molecular steps involved in TGF-beta signaling revealed that N-acetyl-L-cysteine dose-dependently abrogated the induction of the TGF-beta1 signaling reporter gene activation, the phosphorylation of Smad2 and Smad3, and the up-regulation of Smad7 mRNA. By means of Western blot analysis and cross-linking experiments, it was demonstrated that these effects are based on disintegration of TGF-beta1 and the TGF-beta receptor endoglin, as well as a reduced ligand binding capacity of betaglycan. We conclude that N-acetyl-L-cysteine is a specific inhibitor of TGF-beta signaling targeting different components of the TGF-beta signaling machinery. In conclusion, these findings suggest that this non-toxic aminothiol downregulates TGF-beta signal transduction thereby mediating beneficial effects on experimental liver fibrosis characterized by TGF-beta hyperactivity.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
33
|
Abstract
The life span of nematodes, fruit flies, and mice can be significantly increased (and aging-related changes decreased) by mutations affecting insulin receptor signaling. This effect involves several cellular functions which are negatively regulated by the insulin receptor and thus typically expressed under fasting conditions. This involvement raises the question of whether the insulin-independent basal receptor kinase activity in the postabsorptive state can be decreased without compromising the physiologically important response to insulin in the postprandial state. Recent studies have shown that (a) the basal human insulin receptor kinase activity is increased under oxidative conditions in the absence of insulin and (b) insulin signaling in the fasted state can be decreased by cysteine supplementation. Cysteine supplementation has also been shown to improve certain aging-related parameters, suggesting that the average dietary cysteine consumption in Western countries may be suboptimal. These findings provide a conceptual framework that extends the "free radical theory of aging."
Collapse
Affiliation(s)
- Wulf Dröge
- Professor of Immunology, Senior Vice-President, Research & Development, Immunotec Research Ltd., 300 Joseph Carrier, Vaudreuil-Dorion, Quebec, J7V 5V5, Canada
| |
Collapse
|
34
|
Dröge W. Oxidative enhancement of insulin receptor signaling: experimental findings and clinical implications. Antioxid Redox Signal 2005; 7:1071-7. [PMID: 15998262 DOI: 10.1089/ars.2005.7.1071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signaling through the insulin receptor and several other receptor tyrosine kinases is subject to redox regulation. Prolonged exposure to hydrogen peroxide impairs the action of insulin, and may account to some extent for the decreased insulin responsiveness in hyperglycemic diabetic patients. However, insulin receptor kinase (IRK) autophosphorylation and/or kinase activity were found to be markedly enhanced by a more limited exposure to hydrogen peroxide or by an oxidative shift in the thiol/disulfide redox status. Oxidative enhancement of IRK function may be mediated by two different mechanisms with similar effects, i.e., by direct oxidative activation of IRK activity or by oxidative inactivation of a protein tyrosine phosphatase, which otherwise down-regulates IRK-mediated signaling. As both mechanisms enhance IRK activity in the absence of insulin, there is a strong possibility that the background IRK activity in the postabsorptive period may be abnormally increased in certain oxidative conditions and thereby disturb the metabolism of glucose and other energy substrates. This remains to be tested. In line with the oxidative enhancement of IRK activity, clinical studies have shown that treatment with a thiol-containing antioxidant increases the postabsorptive glucose and/or insulin concentrations (i.e., the HOMA-R index) at least under certain conditions. This effect may have therapeutic implications.
Collapse
Affiliation(s)
- Wulf Dröge
- Tumor Immunology Program, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| |
Collapse
|
35
|
Schmitt TL, Hotz-Wagenblatt A, Klein H, Dröge W. Interdependent regulation of insulin receptor kinase activity by ADP and hydrogen peroxide. J Biol Chem 2004; 280:3795-801. [PMID: 15563471 DOI: 10.1074/jbc.m410352200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin signaling requires autophosphorylation of the insulin receptor kinase (IRK) domain. Using purified recombinant IRK fragments and the isolated intact insulin receptor, we show here that autophosphorylation is inhibited by ADP and that this effect is essentially reversed by hydrogen peroxide. Autophosphorylation was inhibited by hydrogen peroxide (60 microM) in the absence of ADP but enhanced in the presence of inhibitory concentrations of ADP (67 microM). Enhancement by hydrogen peroxide required direct interaction of hydrogen peroxide with the kinase domain and was not seen in insulin receptor mutants C1245A and C1308A. A similar enhancement was obtained in intact cells in the absence of insulin upon treatment with 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea, indicating that IRK activity can be alternatively enhanced by a shift in the thiol/disulfide redox status. Molecular modeling of the IRK domain indicated that the ATP-binding site becomes distorted after releasing the nucleotide unless the IRK domain is oxidatively derivatized at Cys1245. Recent clinical studies suggest that these effects may play a role in obesity due to the fact that cytoplasmic creatine kinase in combination with phosphocreatine normally ensures rapid removal of ADP in muscle cells but not in fat cells.
Collapse
Affiliation(s)
- Thomas L Schmitt
- Division of Immunochemistry, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|