1
|
Xiang S, Li Y, Khan SN, Zhang W, Yuan G, Cui J. Exploiting the Anticancer, Antimicrobial and Antiviral Potential of Naphthoquinone Derivatives: Recent Advances and Future Prospects. Pharmaceuticals (Basel) 2025; 18:350. [PMID: 40143127 PMCID: PMC11944738 DOI: 10.3390/ph18030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer remains a primary cause of mortality, with over 18.1 million new cases and 9.6 million deaths globally in 2018. Chemotherapy, which utilizes a spectrum of cytotoxic drugs targeting the rapidly dividing cancer cells, is a predominant treatment modality. However, the tendency of chemotherapeutics to induce drug resistance and exhibit non-specific cytotoxicity necessitates the development of new anticancer agents with heightened efficacy and minimized toxicity. In recent years, the discovery of safe and effective antibacterial/antiviral agents has also been a hot spot in medicinal chemistry. This paper comprehensively reviews the synthesis, anticancer/antibacterial/antiviral activity, and structure-activity relationships of natural 1,4-naphthoquinones and their derivatives. It highlights their potential as efficient and low-toxicity antitumor and anti-infectious drug candidates.
Collapse
Affiliation(s)
- Shouyan Xiang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shah Nawaz Khan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Weixin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoyang Yuan
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
| | - Jiahua Cui
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (S.X.); (G.Y.)
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Wang J, Wang H, Ding Y, Cao N, Nan F, Wu F, Li C, Liang X, Xiao M, Guo J, Gao Z, Yan L, Zhou T, Li Y, Zhai Z. Gp350-targeted CAR-T therapy in EBV-positive Burkitt lymphoma: pre-clinical development of gp350 CAR-T. J Transl Med 2025; 23:171. [PMID: 39930509 PMCID: PMC11809011 DOI: 10.1186/s12967-025-06188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an oncovirus belonging to the herpesvirus family, associated with the pathogenesis of multiple malignancies, particularly Burkitt lymphoma (BL). The virus remains latent in host cells and plays a critical role in tumor progression through various mechanisms. A key glycoprotein, gp350, expressed during the lytic phase of EBV, is instrumental in viral entry into B cells and presents a unique antigenic target, making it a promising candidate for immunotherapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) therapy. METHODS In this study, we engineered CAR-T cells targeted against the gp350 glycoprotein and assessed their therapeutic potential through a series of in vitro and in vivo experiments. The efficacy of the gp350-CAR-T cells was evaluated by comparing their cytotoxic effects against both EBV-positive and -negative tumor cell lines. We utilized a xenograft model of Burkitt lymphoma to monitor the impact of gp350-CAR-T cell administration on tumor progression and overall survival. RESULTS The engineered gp350-CAR-T cells demonstrated potent cytotoxicity specifically against EBV-positive tumor cell lines. In our in vivo xenograft model, administration of gp350-CAR-T cells resulted in significant inhibition of tumor growth, highlighting their capability to effectively target and eliminate EBV-positive lymphomas. This selectivity underscores the potential of utilizing gp350 as a specific target for immunotherapy. CONCLUSION Our findings advocate for the clinical application of gp350-directed CAR-T therapy as a prospective treatment strategy for patients with relapsed or refractory EBV-positive tumors. Given the encouraging preclinical results, further research is warranted to optimize CAR-T cell production processes and extend the potential of this therapy to other EBV-associated malignancies, paving the way for improved outcomes in affected patient populations.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Hematology, Tongling People's Hospital, Tongling, 244000, Anhui, China
| | - Huiping Wang
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yangyang Ding
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Nengneng Cao
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Fengya Nan
- Department of Pathology, Department of Pathology, Anhui Medical University, The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Fan Wu
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Cong Li
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xue Liang
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Meng Xiao
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Hematology, Jining NO. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Jinjing Guo
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Laboratory, Fuyang People's Hospital, Fuyang, 236000, Anhui, China
| | - Zhimai Gao
- ZENO Biotechnology (Shenzhen) Co, Shenzhen, 518000, Guangdong, China
| | - Li Yan
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Tielin Zhou
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore, 188778, Singapore
- Eximmium Pte. Ltd., 600 North Bridge Road, Singapore, 188778, Singapore
| | - Yanli Li
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Department of Pathology, Department of Pathology, Anhui Medical University, The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Zhimin Zhai
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
3
|
Ragab EM, Gamal DME, El-Najjar FF, Elkomy HA, Ragab MA, Elantary MA, Basyouni OM, Moustafa SM, El-Naggar SA, Elsherbiny AS. New insights into Notch signaling as a crucial pathway of pancreatic cancer stem cell behavior by chrysin-polylactic acid-based nanocomposite. Discov Oncol 2025; 16:107. [PMID: 39891818 PMCID: PMC11787125 DOI: 10.1007/s12672-025-01846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Pancreatic cancer is an extremely deadly illness for which there are few reliable treatments. Recent research indicates that malignant tumors are highly variable and consist of a tiny subset of unique cancer cells, known as cancer stem cells (CSCs), which are responsible for the beginning and spread of tumors. These cells are typically identified by the expression of specific cell surface markers. A population of pancreatic cancer stem cells with aberrantly active developmental signaling pathways has been identified in recent studies of human pancreatic tumors. Among these Notch signaling pathway has been identified as a key regulator of CSCs self-renewal, making it an attractive target for therapeutic intervention. Chrysin-loaded polylactic acid (PLA) as polymeric nanoparticles systems have been growing interest in using as platforms for improved drug delivery. This review aims to explore innovative strategies for targeted therapy and optimized drug delivery in pancreatic CSCs by manipulating the Notch pathway and leveraging PLA-based drug delivery systems. Furthermore, we will assess the capability of PLA nanoparticles to enhance the bioavailability and effectiveness of gemcitabine in pancreatic cancer cells. The insights gained from this review have the potential to contribute to the development of novel treatment approaches that combine targeted therapy with advanced drug delivery utilizing biodegradable polymeric nanoparticles.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Fares F El-Najjar
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hager A Elkomy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A Ragab
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mariam A Elantary
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar M Basyouni
- Chemistry/Zoology Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sherif M Moustafa
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Shimaa A El-Naggar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Wang YN, Zhai XY, Wang Z, Gao CL, Mi SC, Tang WL, Fu XM, Li HB, Yue LF, Li PF, Xi SY. Jianpi-Huatan-Huoxue-Anshen formula ameliorates gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with H22 hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4209-4231. [DOI: 10.4251/wjgo.v16.i10.4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Jianpi-Huatan-Huoxue-Anshen formula [Tzu-Chi cancer-antagonizing & life-protecting II decoction (TCCL)] is a Chinese medical formula that has been clinically shown to reduce the gastrointestinal side effects of chemotherapy in cancer patients and improve their quality of life. However, its effect and mechanism on the intestinal microecology after chemotherapy are not yet clear.
AIM To discover the potential mechanisms of TCCL on gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with hepatocellular carcinoma (HCC).
METHODS Ninety-six mice were inoculated subcutaneously with HCC cells. One week later, the mice received a large dose of 5-fluorouracil by intraperitoneal injection to establish a HCC chemotherapy model. Thirty-six mice were randomly selected before administration, and feces, ileal tissue, and ileal contents were collected from each mouse. The remaining mice were randomized into normal saline, continuous chemotherapy, Yangzheng Xiaoji capsules-treated, and three TCCL-treated groups. After treatment, feces, tumors, liver, spleen, thymus, stomach, jejunum, ileum, and colon tissues, and ileal contents were collected. Morphological changes, serum levels of IL-1β, IL-6, IL-8, IL-10, IL-22, TNF-α, and TGF-β, intestinal SIgA, and protein and mRNA expression of ZO-1, NF-κB, Occludin, MUC-2, Claudin-1, and IκB-α in colon tissues were documented. The effect of TCCL on the abundance and diversity of intestinal flora was analyzed using 16S rDNA sequencing.
RESULTS TCCL treatment improved thymus and spleen weight, thymus and spleen indexes, and body weight, decreased tumor volumes and tumor tissue cell density, and alleviated injury to gastric, ileal, and colonic mucosal tissues. Among proteins and genes associated with inflammation, IL-10, TGF-β, SIgA, ZO-1, MUC-2, and Occludin were upregulated, whereas NF-κB, IL-1β, IL-6, TNF-α, IL-22, IL-8, and IκB-α were downregulated. Additionally, TCCL increased the proportions of fecal Actinobacteria, AF12, Adlercreutzia, Clostridium, Coriobacteriaceae, and Paraprevotella in the intermediate stage of treatment, decreased the proportions of Mucipirillum, Odoribacter, RF32, YS2, and Rikenellaceae but increased the proportions of p_Deferribacteres and Lactobacillus at the end of treatment. Studies on ileal mucosal microbiota showed similar findings. Moreover, TCCL improved community richness, evenness, and the diversity of fecal and ileal mucosal flora.
CONCLUSION TCCL relieves pathological changes in tumor tissue and chemotherapy-induced gastrointestinal injury, potentially by reducing the release of pro-inflammatory factors to repair the gastrointestinal mucosa, enhancing intestinal barrier function, and maintaining gastrointestinal microecological balance. Hence, TCCL is a very effective adjuvant to chemotherapy.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xiang-Yang Zhai
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zheng Wang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chun-Ling Gao
- Department of Radiotherapy, Chenggong Hospital of Xiamen University, PLA 73rd Army Hospital, Xiamen 361003, Fujian Province, China
| | - Sui-Cai Mi
- Department of Oncology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361015, Fujian Province, China
| | - Wen-Li Tang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xue-Min Fu
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Huai-Bang Li
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Li-Feng Yue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Peng-Fei Li
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Sheng-Yan Xi
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| |
Collapse
|
5
|
Gautam M, Gabrani R. Comparative analysis of α-pinene alone and combined with temozolomide in human glioblastoma cells. Nat Prod Res 2024; 38:3657-3662. [PMID: 37665021 DOI: 10.1080/14786419.2023.2252152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
α-Pinene (PEN) is a phyto compound present in terpene plants. In traditional medicine, PEN has been used for its anti-inflammatory, pain-relieving, and bronchodilator properties. The effect of PEN in combination with temozolomide (TMZ) in glioblastoma multiforme (GBM) cells has been evaluated. The action of the PEN + TMZ combination on cell migration, soft-agar, and cell death was determined in LN229 and U87MG human glioblastoma cells. In combination, PEN with TMZ showed a synergistic inhibitory effect in the GBM cells. The PEN + TMZ treatment showed a higher fluorescent intensity and reduced the percentage of wound area closure compared to the compound alone. The compounds in combination also resulted in a reduction in single-cell colony formation. To conclude, the study showed that plant-derived PEN enhanced the effectiveness of standard chemotherapeutic, TMZ, in LN229 and U87MG cells.
Collapse
Affiliation(s)
- Megha Gautam
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Reema Gabrani
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Tang Z, Zhou P, Sun H. Clinical Efficacy of Yiqi Yangyin Decoction Combined with Adjuvant Chemotherapy on the Postoperative Life Quality of Breast Cancer. Nutr Cancer 2024; 76:824-830. [PMID: 38909291 DOI: 10.1080/01635581.2024.2364392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Postoperative adjuvant chemotherapy could improve the life quality of patients with breast cancer but also bring side effects and cause adverse reactions. Yiqi Yangyin decoction has been reported to possess anti-cancer activity and has been employed in the postoperative treatment of various cancers. A total of 128 patients with breast cancer who received surgical therapy were enrolled in this study and were randomly grouped as the control and the test group to receive different therapies. Patients in the control group received single chemotherapy of fluorouracil and hydrochloride, while the therapy of the test group patients supplemented Yiqi Yangyin decoction based on the control group. Both two therapeutic strategies improved life quality and TCM syndrome scores of enrolled patients, and the supplement of Yiqi Yangyin decoction significantly improved the therapeutic effect. Adverse reactions including nausea, vomiting, thrombocytopenia, diarrhea, leukopenia, and hemoglobinia occurred in both two groups, but the application of Yiqi Yangyin decoction significantly alleviated adverse reactions. Additionally, patients in the test group showed a better 1-year disease-free survival. The combination of adjuvant chemotherapy with Yiqi Yangyin decoction could improve postoperative life quality, improve therapeutic efficacy, and reduce adverse reactions in patients with breast cancer.
Collapse
Affiliation(s)
- Zhengju Tang
- Department of Traditional Chinese Medicine & Integrated Traditional Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Peng Zhou
- Department of Traditional Chinese Medicine & Integrated Traditional Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Huali Sun
- Department of Oncology Radiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Liao W, Chen Y, Shan S, Chen Z, Wen Y, Chen W, Zhao C. Marine algae-derived characterized bioactive compounds as therapy for cancer: A review on their classification, mechanism of action, and future perspectives. Phytother Res 2024. [PMID: 38895929 DOI: 10.1002/ptr.8240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
In 2022, there were around 20 million new cases and over 9.7 million cancer-related deaths worldwide. An increasing number of metabolites with anticancer activity in algae had been isolated and identified, which were promising candidates for cancer therapy. Red algae are well-known for the production of brominated metabolites, including terpenoids and phenols, which have the capacity to induce cell toxicity. Some non-toxic biological macromolecules, including polysaccharides, are distinct secondary metabolites found in many algae, particularly green algae. They possess anticancer activities by inhibiting tumor angiogenesis, stimulating the immune response, and inducing apoptosis. However, the structure-activity relationship between these components and antitumor activity, as well as certain taxa within the algae, remains relatively unstudied. This work is based on the reports published from 2003 to 2024 in PubMed and ISI Web of Science databases. A comprehensive review of the characterized algal anticancer active compounds, together with their structure and mechanism of action was performed. Also, their structure-activity relationship was preliminarily summarized to better assess their potential properties as a natural, safe bioactive product to be used as an alternative for the treatment of cancers, leading to new opportunities for drug discovery.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaobin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Shan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Zhengxin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Carvalho AR, da Silva RL, Vieira Neto EC, Carneiro MC, Motta ACF, Campanelli AP, Fischer Rubira CM, da Silva Santos PS. Oral herpes simplex virus infection in patients undergoing chemotherapy - an integrative review. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc28. [PMID: 38883407 PMCID: PMC11177226 DOI: 10.3205/dgkh000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Aim The purpose of this study is to undertake an integrative literature review in order to determine the prevalence, etiology, and reactivation of oral HSV infection in patients receiving chemotherapy (CT). Methods The study was carried out in the PubMed/MEDLINE, Embase, Virtual Health Library, and Scopus databases, using the descriptors "Herpes Simplex", "Viral Diseases", "Mouth", and "Antineoplastic Agents". Results The findings suggest that HSV infection is widespread in this group of patients and can be severe. HSV infection is frequent in CT patients, and treatment should begin as soon as it is feasible, utilizing antivirals to avoid future difficulties, as patients are immunocompromised. Conclusion It is critical for health professionals to be fully informed on the dangers and treatment choices available, with the most appropriate therapy for each circumstance. Furthermore, more recent research with acceptable methodological rigor is required to better quantify the prevalence of HSV in these patients.
Collapse
Affiliation(s)
- Aristéa Ribeiro Carvalho
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Renan Lemos da Silva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ed Campos Vieira Neto
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo
| | - Mailon Cury Carneiro
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo
| | - Ana Carolina Fragoso Motta
- Department of Stomatology, Public Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Cassia Maria Fischer Rubira
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
9
|
Han LY, Yu H, Wang S, Bao YR, Li TJ, Zheng Y, Luo X, Jia MN, Zhang Q, Meng XS. Classical prescription Floris Sophorae Powder treat colorectal cancer by regulating KRAS/MEK-ERK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117805. [PMID: 38278374 DOI: 10.1016/j.jep.2024.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) belongs to the category of intestinal wind, anal ulcer, abdominal mass and other diseases in traditional Chinese medicine (TCM). Floris Sophorae Powder (F.S), is a classical prescription is recorded in Puji Benshi Fang for the treatment of intestinal carbuncle. It has been incorporated into the prescriptions for the treatment of intestinal diseases and achieved remarkable results in modern medicine. However, the mechanism of F.S in the treatment of colorectal cancer remains unclear and requires further study. AIM OF THE STUDY To investigate F.S in treating CRC and clarify the underlying mechanism. MATERIALS AND METHODS This study was based on Dextran Sulfate Sodium Salt (DSS) combined with Azoxymethane (AOM) induced CRC mouse model to clarify the pharmacological effects of F.S. The serum metabolomics was used to study the mechanism of action, and the chemical composition of F.S was found by UPLC-Q-TOF-MS. The rationality of serm metabolomics results was verified through the clinical target database of network pharmacology, and the upstream and downstream targets of related pathways were found. The mechanism pathway was verified by Western blot to clarify its mechanism of action. RESULTS In vivo pharmacological experiments showed that F.S inhibited tumor growth and improved hematochezia. The vital signs of mice in the high-dose F.S group approached to those in the control group. A total of 43 differential metabolites were found to be significantly changed by serum metabolomics. F.S could modulate and recover most of the differential metabolites, which proved to be closely related to the KRAS/MEK-ERK signaling pathway. A total of 46 compounds in F.S were identified, and the rationality of serm metabolic pathway was verified by network pharmacology. Western blot results also verified that the expression of KRAS, E2F1, p-MEK and p-ERK were significantly decreased after F.S treatment. CONCLUSION Classical prescription Floris Sophorae Powder treat colorectal cancer by regulating KRAS/MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Li-Ying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Hao Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Yong-Rui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Tian-Jiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Ying Zheng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Xi Luo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Meng-Nan Jia
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Qiang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Xian-Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| |
Collapse
|
10
|
Che H, Li L, Zhao B, Hu L, Xiao L, Liu P, Liu S, Hou Z. Asperuloside alleviates cyclophosphamide-induced myelosuppression by promoting AMPK/mTOR pathway-mediated autophagy. J Biochem Mol Toxicol 2024; 38:e23641. [PMID: 38348709 DOI: 10.1002/jbt.23641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Cyclophosphamide (CTX) is a common anticancer chemotherapy drug, and myelosuppression is the most common serious side effect. Asperuloside (ASP), the active component of Hedyotis diffusa Willd., may have the effect of ameliorating chemotherapy-induced myelosuppression. This study aimed to explore the effect and possible mechanism of ASP on CTX-induced myelosuppression. Male SPF C57BL/6 mice were randomly divided into five groups: control group, CTX (25 mg/kg) group, CTX + granulocyte-macrophage-colony stimulating factor (GM-CSF) (5 μg/kg) group, CTX + high-dose ASP (50 mg/kg) group and CTX + low-dose ASP (25 mg/kg) group, with six mice in each group. The body weight of mice was monitored every other day, the hematopoietic progenitor cell colony number was measured by colony forming unit, and the relevant blood indicators were detected. Femoral bone marrow was observed by hematoxylin-eosin, C-kit expression was detected by immunohistochemistry, and autophagy and adenine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway protein expressions were detected by immunohistochemistry and western blotting (WB). Then the AMPK inhibitor dorsomorphin was used to interfere with AMPK/mTOR pathway. Results showed that ASP significantly increased the body weight of CTX-induced mice, increased the number of hematopoietic progenitor cells, the expression of white blood cells, red blood cells, platelets, GM-CSF, thrombopoietin and erythropoietin in blood, and the expression of C-kit in bone marrow. In addition, ASP further promoted the expression of Beclin1 and LC-3II/I induced by CTX, and regulated the protein expressions in the AMPK/mTOR pathway. The use of dorsomorphin inhibited the alleviation effect of ASP on CTX-induced myelosuppression and the promotion effect of ASP on autophagy. In conclusion, ASP alleviated CTX-induced myelosuppression by promoting AMPK/mTOR pathway-mediated autophagy.
Collapse
Affiliation(s)
- Hong Che
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linlin Li
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bingjie Zhao
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Hu
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiao
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijia Liu
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songshan Liu
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhufa Hou
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
12
|
Wang X, Hao A, Song G, Elena V, Sun Y, Zhang H, Zhan Y, An H, Chen Y. Inhibitory effect of daidzein on the calcium-activated chloride channel TMEM16A and its anti-lung adenocarcinoma activity. Int J Biol Macromol 2023; 253:127261. [PMID: 37802433 DOI: 10.1016/j.ijbiomac.2023.127261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
TMEM16A is highly expressed in a variety of tumor cells and is involved in the growth and metastasis of malignancies. It has been established that down-regulation of TMEM16A expression or functional activity can inhibit tumor cells growth. However, there is a lack of targeted inhibitors with high efficiency and low toxicity. Here, we identified a novel inhibitor daidzein from dozens of natural product molecules. Whole-cell patch clamp data indicated that daidzein inhibits TMEM16A channel in a dose-dependent manner, with IC50 of 1.39 ± 0.59 μM. Western blot result showed that daidzein can also reduce the expression of TMEM16A protein in LA795 cells. These results indicated that the inhibitory effects of daidzein exert on TMEM16A in two ways, both inhibiting TMEM16A current and decreasing its protein expression. In addition, the putative binding sites of daidzein on TMEM16A are G608, G628, and K839 through molecular docking. Moreover, daidzein concentration-dependently reduced cell viability and cell migration, causing G1/S cell cycle arrest in vitro. It was also confirmed that daidzein can effectively inhibit the growth of LA795 lung adenocarcinoma cells implanted nude mice in vivo. In conclusion, daidzein can be used as a lead compound for the development of therapeutic drugs for lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuzhao Wang
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Anqi Hao
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Guoqiang Song
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Vorobeva Elena
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yiming Sun
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Hailin Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yong Zhan
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
13
|
Sabokrouh A, Sadeghi Motlagh B, Atabi F. Study of anticancer effects of platinum levetiracetam and levetiracetam via cancer biomarkers genes expression on HepG2 cell line. Mol Biol Rep 2023; 50:9431-9439. [PMID: 37831345 DOI: 10.1007/s11033-023-08890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND High expression of some anticancer biomarkers such as telomerase and B cell lymphoma-2(Bcl-2), microRNA-21(miRNA-21), and low expression FAS ligand (FASLG) are reported in many cancers. Some anticancer drugs such as Levetiracetam(Lev) produce their effects via the change of expression of these biomarkers. The present study aimed to evaluate the anti-cancer effects of a new compound, Platinum Levetiracetam(Pt-Lev), gene expression of mentioned biomarkers on hepatocyte G2 (HepG2) cells compared to Lev. METHODS AND RESULTS In this study, Human Dermal fibroblast cells (HDF) were used as the negative control group (group A) HepG2 cells were divided into three groups: untreated cancer cells as positive group (group B), groups C and D were treated with, Lev and Pt-Lev, respectively. After evaluating lethal concentration 50% (LC50) for the examined drugs using the MTT test, biomarker gene expression was evaluated by real-time PCR. No Apoptotic cell was found in groups C or D before drug treatment, but it was present using different concentrations of the drugs. Results indicated that telomerase and miRNA-21 genes expression was significantly lower and FASLG was higher in group D compared with group C but there was no significant difference for Bcl-2 expression between these two groups. CONCLUSIONS For the first time, it was indicated that Pt-Lev has anticancer effects by inhibiting telomerase and Bcl-2 and miRNA-21 and increasing FASLG gene expression and its effects were more than Lev. It effectively exerted its anticancer effects by extending apoptosis on HepG2 cells.
Collapse
Affiliation(s)
- Abdolreza Sabokrouh
- Department of Biochemistry, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Baharak Sadeghi Motlagh
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fereshteh Atabi
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
15
|
Wu MY, Kao IF, Fu CY, Yen SK. Effects of Adding Chitosan on Drug Entrapment Efficiency and Release Duration for Paclitaxel-Loaded Hydroxyapatite-Gelatin Composite Microspheres. Pharmaceutics 2023; 15:2025. [PMID: 37631239 PMCID: PMC10459076 DOI: 10.3390/pharmaceutics15082025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Hydroxyapatite-gelatin microspheres with cone-like pores were synthesized via the wet-chemical method using ammonium dihydrogen phosphate ((NH4)H2PO4) and calcium nitrate (Ca(NO3)2·4H2O) as a source of calcium and phosphate ions with the addition of gelatin, which proved to be more osteoconductive than commercial products, such as fibrin glue and Osteoset® Bone Graft Substitute. Following the method of the previous study for loading paclitaxel (PTX), a drug entrapment efficiency of around 58% was achieved, which is much lower than that of the doxorubicin (DOX)-loaded one. Since PTX is hydrophobic while DOX is hydrophilic, the order of chitosan processing and addition of the solvent were tuned in this study, finally leading to an increase in drug entrapment efficiency of 94%. Additionally, the release duration of PTX exceeded six months. The MTT assay indicated that the effect of drug release on the suppression of cancer cells reached more than 40% after one week, thereby showcasing PTX's capacity to carry out its medicinal functions without being affected by the loading procedures.
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
- Department of Orthopaedics, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Orthopaedics, Taichung Armed Forces General Hospital, Taichung 40705, Taiwan
| | - I-Fang Kao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
| | - Chien-Yao Fu
- Department of Orthopaedics, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Orthopaedics, Taichung Armed Forces General Hospital, Taichung 40705, Taiwan
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
| |
Collapse
|
16
|
Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, Zhu G, Lei L, Li S. Emerging biomaterials for tumor immunotherapy. Biomater Res 2023; 27:47. [PMID: 37194085 PMCID: PMC10189985 DOI: 10.1186/s40824-023-00369-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. MAIN BODY This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. CONCLUSION Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
de Castro Alves CE, Koidan G, Hurieva AN, de Freitas Gomes A, Costa de Oliveira R, Guimarães Costa A, Ribeiro Boechat AL, Correa de Oliveira A, Zahorulko S, Kostyuk A, Soares Pontes G. Cytotoxic and immunomodulatory potential of a novel [2-(4-(2,5-dimethyl-1H-pyrrol-1-yl)-1H-pyrazol-3-yl)pyridine] in myeloid leukemia. Biomed Pharmacother 2023; 162:114701. [PMID: 37062222 DOI: 10.1016/j.biopha.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer ranks among the leading causes of mortality worldwide. However, the efficacy of commercially available anticancer drugs is compromised by the emerging challenge of drug resistance. This study aimed to investigate the anticancer and immunomodulatory potential of a recently developed a novel [2-(4-(2,5-dimethyl-1 H-pyrrol-1-yl)- 1 H-pyrazol-3-yl) pyridine]. The cytotoxic potential of the compound was assessed using the MTT assay on both cancerous HL60 (acute myeloid leukemia) and K562 (chronic myeloid leukemia) cell lines, as well as non-cancerous Vero cells and human peripheral blood mononuclear cells (PBMCs). A clonogenic assay was employed to evaluate the anticancer efficacy of the compound, while flow cytometry was utilized to investigate its effect on cell cycle arrest. Furthermore, the immunomodulatory potential of the compound was assessed by quantifying inflammatory and anti-inflammatory biomarkers in the supernatant of PBMCs previously treated with the compound. Our study revealed that the novel pyridine ensemble exhibits selective cytotoxicity against HL60 (IC50 = 25.93 µg/mL) and K562 (IC50 = 10.42 µg/mL) cell lines, while displaying no significant cytotoxic effect on non-cancerous cells. In addition, the compound induced a decrease of 18% and 19% in the overall activity of COX-1 and COX-2, respectively. Concurrently, it upregulated the expression of cytokines including IL4, IL6, IL10, and IL12/23p40, while downregulating INFγ expression. These findings suggest that the compound has the potential to serve as a promising candidate for the treatment of acute and chronic myeloid leukemias due to its effective antiproliferative and immunomodulatory activities, without causing cytotoxicity in non-cancerous cells.
Collapse
Affiliation(s)
- Carlos Eduardo de Castro Alves
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Georgyi Koidan
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Anastasiia N Hurieva
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Alice de Freitas Gomes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Regiane Costa de Oliveira
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Allyson Guimarães Costa
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Antônio Luiz Ribeiro Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil
| | - André Correa de Oliveira
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Serhii Zahorulko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Gemilson Soares Pontes
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil.
| |
Collapse
|
18
|
Babu T, Ghareeb H, Basu U, Schueffl H, Theiner S, Heffeter P, Koellensperger G, Metanis N, Gandin V, Ott I, Schmidt C, Gibson D. Oral Anticancer Heterobimetallic Pt IV -Au I Complexes Show High In Vivo Activity and Low Toxicity. Angew Chem Int Ed Engl 2023; 62:e202217233. [PMID: 36628505 DOI: 10.1002/anie.202217233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
AuI -carbene and PtIV -AuI -carbene prodrugs display low to sub-μM activity against several cancer cell lines and overcome cisplatin (cisPt) resistance. Linking a cisPt-derived PtIV (phenylbutyrate) complex to a AuI -phenylimidazolylidene complex 2, yielded the most potent prodrug. While in vivo tests against Lewis Lung Carcinoma showed that the prodrug PtIV (phenylbutyrate)-AuI -carbene (7) and the 1 : 1 : 1 co-administration of cisPt: phenylbutyrate:2 efficiently inhibited tumor growth (≈95 %), much better than 2 (75 %) or cisPt (84 %), 7 exhibited only 5 % body weight loss compared to 14 % for 2, 20 % for cisPt and >30 % for the co-administration. 7 was much more efficient than 2 at inhibiting TrxR activity in the isolated enzyme, in cells and in the tumor, even though it was much less efficient than 2 at binding to selenocysteine peptides modeling the active site of TrxR. Organ distribution and laser-ablation (LA)-ICP-TOFMS imaging suggest that 7 arrives intact at the tumor and is activated there.
Collapse
Affiliation(s)
- Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Hiba Ghareeb
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Austria
| | | | - Norman Metanis
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, 35131, Padova, Italy
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Claudia Schmidt
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| |
Collapse
|
19
|
Yao S, Li W, Liu S, Cai Y, Zhang Q, Tang L, Yu S, Jing Y, Yin X, Cheng H. Aldehyde dehydrogenase 2 polymorphism is associated with chemotherapy-related cognitive impairment in patients with breast cancer who receive chemotherapy. Cancer Med 2023; 12:5209-5221. [PMID: 36200595 PMCID: PMC10028021 DOI: 10.1002/cam4.5319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chemotherapy-related cognitive impairment (CRCI) is a common but easily overlooked condition that markedly affects the quality of life (QOL) of patients with breast cancer. The rs671 is a common gene polymorphism of aldehyde dehydrogenase 2 (ALDH2) in Asia that is involved in aldehyde metabolism and may be closely related to CRCI. However, no study has yet summarised the association between ALDH2 and CRCI. METHODS This study enrolled one hundred and twenty-four patients diagnosed with breast cancer according to the pathology results, genotyped for ALDH2 single-nucleotide polymorphisms (SNP) to explore these. The mini-mental state exam (MMSE), verbal fluency test (VFT), and digit span test (DST) results were compared in these patients before and after chemotherapy (CT). RESULTS We found that patients with ALDH2 gene genotypes of rs671_GG, rs886205_GG, rs4648328_CC, and rs4767944_TT polymorphisms were more likely to suffer from cognitive impairment during chemotherapy. A trend toward statistical significance was observed for rs671_GG of DST (z = 2.769, p = 0.006), VFT (t = 4.624, P<0.001); rs886205_GG of DST (z = 3.663, P<0.001); rs4648328_CC of DST (z = 2.850, p = 0.004), VFT (t = 3.477, p = 0.001); and rs4767944_TT of DST (z = 2.967, p = 0.003), VFT (t = 2.776, p = 0.008). The cognitive indicators of these patients significantly decreased after chemotherapy (p < 0.05). The difference in ALDH2 rs671 was most obvious. CONCLUSION Our results showed what kinds of ALDH2 genotyped patients that are more likely to develop CRCI. In the future, it may be possible to infer the risk of CRCI by detecting the single-nucleotide locus of ALDH2 that is conducive to strengthening clinical interventions for these patients and improving their QOL. More importantly, this study has important implications for Asian women with breast cancer as ALDH2 rs671 is a common polymorphism in Asians.
Collapse
Affiliation(s)
- Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Shaochun Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Yinlian Cai
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Jing
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Xiangxiang Yin
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
20
|
Ribeiro E, Costa B, Vasques-Nóvoa F, Vale N. In Vitro Drug Repurposing: Focus on Vasodilators. Cells 2023; 12:671. [PMID: 36831338 PMCID: PMC9954697 DOI: 10.3390/cells12040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Drug repurposing aims to identify new therapeutic uses for drugs that have already been approved for other conditions. This approach can save time and resources compared to traditional drug development, as the safety and efficacy of the repurposed drug have already been established. In the context of cancer, drug repurposing can lead to the discovery of new treatments that can target specific cancer cell lines and improve patient outcomes. Vasodilators are a class of drugs that have been shown to have the potential to influence various types of cancer. These medications work by relaxing the smooth muscle of blood vessels, increasing blood flow to tumors, and improving the delivery of chemotherapy drugs. Additionally, vasodilators have been found to have antiproliferative and proapoptotic effects on cancer cells, making them a promising target for drug repurposing. Research on vasodilators for cancer treatment has already shown promising results in preclinical and clinical studies. However, additionally research is needed to fully understand the mechanisms of action of vasodilators in cancer and determine the optimal dosing and combination therapy for patients. In this review, we aim to explore the molecular mechanisms of action of vasodilators in cancer cell lines and the current state of research on their repurposing as a treatment option. With the goal of minimizing the effort and resources required for traditional drug development, we hope to shed light on the potential of vasodilators as a viable therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
21
|
Bazrafshani MS, Pardakhty A, Kalantari Khandani B, Tajadini H, Ghazanfari Pour S, Hashemi S, Amiri S, Mehmandoost S, Beigzadeh A, Abbaszadeh S, Sharifi H. The prevalence and predictors of herb-drug interactions among Iranian cancer patients during chemotherapy courses. BMC Complement Med Ther 2023; 23:41. [PMID: 36750849 PMCID: PMC9903537 DOI: 10.1186/s12906-023-03869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The concurrent usage of herbal medicines with conventional therapies is an important concern in cancer treatment which can lead to unexpected consequences like herb-drug interactions. This study aimed to determine the prevalence of potential herb-drug interactions and to predict factors associated with herb-drug interactions for cancer patients. METHODS This cross-sectional study was conducted among a convenience sample of 315 cancer patients referring to the oncology clinics of Kerman city in 2018. Data were collected via comprehensive face-to-face interviews and medical chart reviews. A drug interaction checker was used to determine herb-drug interactions. The information of patients was compared based on herb-drug interactions using bivariable logistic regression models, and predictors were determined by the multivariable logistic regression model. All analyses were performed by Stata software version 16. RESULTS Of 262 patients (83.2% of the patients) who used herbal medicines, 209 patients [79.8% (95% Confidence Intervals (CI): 75.2 - 85.1)] had potential herb-drug interactions. Chamomile was the most popular herbal medicine (n = 163, 78.0%), and minor and moderate herb-drug interactions were caused by green tea (n = 34, 16.3%) and peppermint (n = 78, 37.5%). The number of chemotherapeutic agents (OR: 1.92, 95% CI: 1.43-2.58; P-value < 0.0001) and the experienced of pain during chemotherapy courses (OR = 2.22, 95%CI:1.00-4.94; P-value = 0.04) were some of the predictors of herb-drug interactions among cancer patients. CONCLUSION Herbal medicine use during chemotherapy was found prevalent among cancer patients; of them, the experience of potential herb-drug interactions was highly frequent. Oncologists and clinical pharmacologists are recommended to take into account challenges associated with herb-drug interactions in their routine practices, particularly during chemotherapy among these patients.
Collapse
Affiliation(s)
- Maliheh Sadat Bazrafshani
- grid.412105.30000 0001 2092 9755HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, 7616914111 Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Behjat Kalantari Khandani
- grid.412105.30000 0001 2092 9755Department of Internal Medicine, Hematology and Oncology Division, Kerman University of Medical Sciences, Kerman, Iran
| | - Haleh Tajadini
- grid.412105.30000 0001 2092 9755Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadra Ghazanfari Pour
- grid.412105.30000 0001 2092 9755Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Hashemi
- grid.412105.30000 0001 2092 9755Departement of Medical Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Shiva Amiri
- grid.412105.30000 0001 2092 9755Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran ,grid.412105.30000 0001 2092 9755Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Mehmandoost
- grid.412105.30000 0001 2092 9755HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, 7616914111 Iran
| | | | - Samaneh Abbaszadeh
- grid.412105.30000 0001 2092 9755HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, 7616914111 Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, 7616914111, Iran.
| |
Collapse
|
22
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
23
|
Artym J, Zimecki M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023; 11:114. [PMID: 36672622 PMCID: PMC9856106 DOI: 10.3390/biomedicines11010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
In this article, we review the benefits of application of colostrum and colostrum-derived proteins in animal models and clinical trials that include chemotherapy with antimetabolic drugs, radiotherapy and surgical interventions. A majority of the reported investigations was performed with bovine colostrum (BC) and native bovine or recombinant human lactoferrin (LF), applied alone, in nutraceutics or in combination with probiotics. Apart from reducing side effects of the applied therapeutics, radiation and surgical procedures, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, colostrum and colostrum proteins, preferably administered with probiotic bacteria, are highly recommended for inclusion to therapeutic protocols in cancer chemo- and radiotherapy as well as during the surgical treatment of cancer patients.
Collapse
Affiliation(s)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-114 Wrocław, Poland
| |
Collapse
|
24
|
GilHerrero L, Courneya KS, McNeely ML, Castellanos M, González Marquez AI, Pollan M, Casla-Barrio S. Effects of a Clinical Exercise Program on Health-Related Fitness and Quality of Life in Spanish Cancer Patients Receiving Adjuvant Therapy. Integr Cancer Ther 2022; 21:15347354221141715. [PMID: 36565156 PMCID: PMC9793061 DOI: 10.1177/15347354221141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To report the feasibility and effectiveness of a newly developed clinical exercise program for improving maximal cardiorespiratory fitness in Spanish cancer patients receiving adjuvant chemotherapy or radiation. We also examined the effectiveness of the exercise program for improving maximal muscular strength, body composition, fatigue, and quality of life, and explored if the effectiveness varied based on selected patient characteristics. DESIGN The study was a single group implementation feasibility study using a pre-posttest design. METHODS Participants performed a 12-week, twice-weekly, supervised, multi-component exercise program during adjuvant therapy. Paired t-tests were used to assess pre-post changes, and analyses of covariance were used to compare effectiveness based on selected patient characteristics. RESULTS We had 100 cancer patients referred to the clinical exercise program of which 85 (85%) initiated the exercise program and 76 (89%) completed the post-intervention fitness assessment. Exercise significantly improved VO2max by 4.8 mL/kg/minutes (P < .001, d = 0.74). Exercise also significantly improved chest strength (P < .001, d = 0.82), leg strength (P < .001, d = 1.27), lean body mass (P < .001, d = 0.11), skeletal muscle mass (P < .001; d = 0.09), fat mass (P < .001; d = 0.10), % body fat (P < .001; d = 0.17), quality of life (P = .0017; d = 0.41), and fatigue (P = .007; d = 0.46). Treatment modality, cancer type, and age affected some exercise responses, especially related to body composition changes. CONCLUSIONS A 12-week, supervised, multi-component exercise program was effective for improving health-related fitness and quality of life in Spanish cancer patients receiving adjuvant therapy. Our results show the benefits of incorporating clinical exercise programming into the supportive care of cancer patients receiving treatments. REGISTRATION The study protocol is registered at ClinicalTrials.gov (NCT05078216).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Soraya Casla-Barrio
- Universidad Pontificia de Comillas,
Madrid, Spain,Soraya Casla-Barrio, Universidad Pontificia
de Comillas, Nursing Department, Av. San Juan de Dios, 1, Madrid 28350, Spain.
| |
Collapse
|
25
|
Jeske ST, Macedo MRP, Bianchi T, Leon ÍF, Pinheiro NB, Borsuk S, Villela M. Molecular characterization of Giardia lamblia and risk factors for giardiasis among immunocompromised patients in southern Brazil. BRAZ J BIOL 2022; 82:e265055. [PMID: 36515297 DOI: 10.1590/1519-6984.265055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Acute Giardia infections often cause diarrhea and stomach upset. Chronic infections can lead to malnutrition, micronutrient deficiencies, malabsorption and weight loss. This study assessed the prevalence of G. lambia infection and assessed associated risk factors among immunocompomised patients undergoing chemotherapeutic treatment in southern Brazil. A total of 110 immunocompromised patients in Pelotas, RS, Brazil, consented to participate in this study and were recruited. Socioeconomic and epidemiological profile of patients was collected by questionnaire. The prevalence for Giardia were determined through microscopy by the centrifugation-flotation technique using stool samples of every patient. In addition, the genetic characterization of the parasite was carried out by amplifying and sequencing the glutamate dehydrogenase (gdh) gene. By microscopy, the prevalence of giardiasis was 17.3% (19/110). Furthermore, the DNA sequences revealed that 7 (36.8%) out of 19 isolates belonged to assemblage B, while 6 of them (31.6%) belonged to assemblage C, 5 (26.3%) to assemblage A and 1 (5.3%) to assemblage D. Risk factors (p ≤ 0.05) for giardiasis were schooling level (OR=8.0 (1.02 - 62.91) sharing a house with more than three people (OR=14.1 (3.77 - 52.51), water sources (OR=38.9 (10.4 - 145.7), sewage treatment (OR=14.2 (3.1 - 65.5), waste destination (OR=7.44 (2.0 - 27.3), owning pets (OR=4.6 (1.0 - 21.2) and cultivating a vegetable garden (OR=4.2 (1.3 - 13.6). The prevalence of G. lamblia in immunocompromised patients was considered elevate with the identification of four assemblage of the parasite (A, B, C and D).
Collapse
Affiliation(s)
- S T Jeske
- Universidade Federal de Pelotas - UFPel, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| | - M R P Macedo
- Universidade Federal de Pelotas - UFPel, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| | - T Bianchi
- Universidade Federal de Pelotas - UFPel, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| | - Í F Leon
- Universidade Federal de Pelotas - UFPel, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| | - N B Pinheiro
- Universidade Federal de Pelotas - UFPel, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| | - S Borsuk
- Universidade Federal de Pelotas - UFPel, Centro de Desenvolvimento Tecnológico, Laboratório de Biotecnologia Infecto-parasitária, Pelotas, RS, Brasil
| | - M Villela
- Universidade Federal de Pelotas - UFPel, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil
| |
Collapse
|
26
|
Jaradat N, Ghanim M, Abualhasan MN, Rajab A, Kojok B, Abed R, Mousa A, Arar M. Chemical compositions, antibacterial, antifungal and cytotoxic effects of Alhagi mannifera five extracts. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:869-877. [PMID: 34384010 DOI: 10.1515/jcim-2021-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Plants were used as medicines thousands of years ago. Conventional medicine use is increasing and many of the currently used drugs are extracted from herbal sources. In Palestinian traditional medicine, the Alhagi mannifera plant is used for the treatment of cancer. Our study aimed to extract this plant using five solvent fractions, identifying their chemical compositions, and evaluating their antimicrobial and cytotoxic effects. METHODS The successive technique was used to extract five solvent fractions of A. mannifera. While the spectral analysis was used to characterize quantitatively and qualitatively the chemical components of these extracts. The antimicrobial activity of plant extracts was evaluated against seven microbial strains using a broth micro-dilution assay. The cytotoxic activity was assessed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay against cervical cancer cell line (HeLa). RESULTS A total of 165 compounds were identified in A. mannifera different extracts. In the petroleum ether extract were found a total of 55 compounds. The major compounds were 2,5-cyclooctadien-1-ol (9.42%), 3-chloropropionic acid, heptyl ester (9.42%), carbonic acid, ethyl nonyl ester (9.42%) and chloroacetic acid. In methylene chloride extract a total of 11 compounds were found, and the major compounds were m-ainobenzenesulfonyl fluoride (14.35%), dodecane,2,6,10-trimethyl- (14.35%) and propanoic acid,2,2-dimethyl-,2-ethylexyl ester (14.35%). In chloroform extract, a total of 23 compounds were found. The major compounds were 5-ethyl-1-nonene (21.28%), and decanedioic acid, bis(2-ethylhexyl) ester (21.28%). In acetone extract were found a total of 47 compounds and the major compound was phenol,2,4-bis(1,1-dimethylethyl)- (5.22%). In methanol extract a total of 29 compounds were found and the major compounds were 3-o-methyl-d-glucose (10.79%), myo-inositol, 2-c-methyl- (10.79%), myo-inositol, 4-c-methyl- (10.79%), and scyllo-inositol,1C-methyl- (10.79%). All extracts showed antimicrobial activity. However, the petroleum ether extract showed the most potent antimicrobial effect against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, MRSA, and Candida albicans with minimal inhibitory concentration (MIC) values of 1.25, 1.25, 6.25, 0.325, 6.25, and 1.56 μg/mL, respectively. De facto, chloroform extract followed by ether extract displayed potential cytotoxic activity with IC50 values of 0.2 and 1.2 mg/mL, respectively. CONCLUSIONS A. mannifera was found to contain a variety of phytochemicals and its chloroform extract showed a potent cytotoxic effect on HeLa cancer cells. In addition, petroleum ether showed potent antimicrobial agents and these extracts look promising as drug candidates. Further in vivo investigations should be conducted to provide the basis for developing new cancer and microbial infections treatments.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Murad N Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Amany Rajab
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Boushra Kojok
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ruba Abed
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ahmed Mousa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
27
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
28
|
Gelbrich N, Miebach L, Berner J, Freund E, Saadati F, Schmidt A, Stope M, Zimmermann U, Burchardt M, Bekeschus S. Non-invasive medical gas plasma augments bladder cancer cell toxicity in preclinical models and patient-derived tumor tissues. J Adv Res 2022; 47:209-223. [PMID: 35931323 PMCID: PMC10173201 DOI: 10.1016/j.jare.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Medical gas plasma therapy has been successfully applied to several types of cancer in preclinical models. First palliative tumor patients suffering from advanced head and neck cancer benefited from this novel therapeutic modality. The gas plasma-induced biological effects of reactive oxygen and nitrogen species (ROS/RNS) generated in the plasma gas phase result in oxidation-induced lethal damage to tumor cells. OBJECTIVES This study aimed to verify these anti-tumor effects of gas plasma exposure on urinary bladder cancer. METHODS 2D cell culture models, 3D tumor spheroids, 3D vascularized tumors grown on the chicken chorion-allantois-membrane (CAM) in ovo, and patient-derived primary cancer tissue gas plasma-treated ex vivo were used. RESULTS Gas plasma treatment led to oxidation, growth retardation, motility inhibition, and cell death in 2D and 3D tumor models. A marked decline in tumor growth was also observed in the tumors grown in ovo. In addition, results of gas plasma treatment on primary urothelial carcinoma tissues ex vivo highlighted the selective tumor-toxic effects as non-malignant tissue exposed to gas plasma was less affected. Whole-transcriptome gene expression analysis revealed downregulation of tumor-promoting fibroblast growth factor receptor 3 (FGFR3) accompanied by upregulation of apoptosis-inducing factor 2 (AIFm2), which plays a central role in caspase-independent cell death signaling. CONCLUSION Gas plasma treatment induced cytotoxicity in patient-derived cancer tissue and slowed tumor growth in an organoid model of urinary bladder carcinoma, along with less severe effects in non-malignant tissues. Studies on the potential clinical benefits of this local and safe ROS therapy are awaited.
Collapse
Affiliation(s)
- Nadine Gelbrich
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Stempelstr. 13, 18057 Rostock, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Matthias Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Uwe Zimmermann
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Martin Burchardt
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
29
|
Dinger N, Panzetta V, Russo C, Netti PA, Sirignano M. In vitro effects of combustion generated carbon dots on cellular parameters in healthy and cancerous breast cells. Nanotoxicology 2022; 16:733-756. [PMID: 36403151 DOI: 10.1080/17435390.2022.2144775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanomaterials are an inventive class of materials with wide applications in state-of-the-art bioimaging and therapeutics. They allow a broad range of tunable and integrated advantages of structural flexibility, chemical and thermal stability, upright electrical conductivity, and the option of scale-up and mass production. In the context of nanomedicine, carbon nanomaterials have been used extensively to mitigate the serious side effects of conventional chemotherapy and also to enable early cancer diagnostics, given their wide range of tunable properties. A class of carbon nanomaterials, called carbon dots (CDs) are small carbon-based nanoparticles and have been a valued discovery due to their photoluminescence, low photobleaching, and high surface area to mass ratio. The process of producing these CDs had so far been a high energy demanding process involving wet chemistry for purification. A one-step tunable production of luminescent CDs from fuel rich combustion reactors was recently presented by our group. In this paper, we explore the effects of these yellow luminescent combustion-generated CDs in MCF7 adenocarcinoma and MCF10a normal breast epithelial cells. We observed that these CDs, also at nontoxic doses, can affect basic cellular functions, such as cell cycle and proliferation; induce substantial changes on the physical parameters of the plasma membrane; and change the overall appearance of a cell in terms of morphology.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy.,Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Health Care IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Paolo Antonio Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy.,Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Health Care IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
30
|
Tian C, Tang Z, Hou Y, Mushtaq A, Naz S, Yu Z, Farheen J, Iqbal MZ, Kong X. Facile Synthesis of Multifunctional Magnetoplasmonic Au-MnO Hybrid Nanocomposites for Cancer Theranostics. NANOMATERIALS 2022; 12:nano12081370. [PMID: 35458078 PMCID: PMC9027802 DOI: 10.3390/nano12081370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Significant attention is paid to the design of magnetoplasmonic nanohybrids, which exploit synergistic properties for biomedical applications. Here, a facile method was employed to prepare plasmonic magnetic Au-MnO heterostructured hybrid nanoparticles for imaging-guided photothermal therapy of cancers in vitro, with the view to reducing the serious drawbacks of chemotherapy and gadolinium-based contrast agents. The biocompatibility of the prepared Au-MnO nanocomposites was further enhanced by Food and Drug Administration (FDA)-approved triblock copolymers Pluronic® F-127 and chitosan oligosaccharide (COS), with complementary support to enhance the absorption in the near-infrared (NIR) region. In addition, synthesized COS-PF127@Au-MnO nanocomposites exhibited promising contrast enhancement in T1 MR imaging with a good r1 relaxivity value (1.2 mM-1 s-1), demonstrating a capable substitute to Gd-based toxic contrast agents. In addition, prepared COS-PF127@Au-MnO hybrid nanoparticles (HNPs) produced sufficient heat (62 °C at 200 μg/mL) to ablate cancerous cells upon 808 nm laser irradiation, inducing cell toxicity, and apoptosis. The promising diagnostic and photothermal therapeutic performance demonstrated the appropriateness of the COS-PF127@Au-MnO HNPs as a potential theranostic agent.
Collapse
Affiliation(s)
- Cong Tian
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Shafaq Naz
- Department of Mathematics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan;
| | - Zhangsen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing 312000, China;
| | - Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
- Correspondence: (M.Z.I.); (X.K.)
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (C.T.); (Z.T.); (Y.H.); (A.M.); (J.F.)
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
- Correspondence: (M.Z.I.); (X.K.)
| |
Collapse
|
31
|
Maiuolo J, Musolino V, Gliozzi M, Carresi C, Oppedisano F, Nucera S, Scarano F, Scicchitano M, Guarnieri L, Bosco F, Macrì R, Ruga S, Cardamone A, Coppoletta AR, Ilari S, Mollace A, Muscoli C, Cognetti F, Mollace V. The Employment of Genera Vaccinium, Citrus, Olea, and Cynara Polyphenols for the Reduction of Selected Anti-Cancer Drug Side Effects. Nutrients 2022; 14:1574. [PMID: 35458136 PMCID: PMC9025632 DOI: 10.3390/nu14081574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most widespread diseases globally and one of the leading causes of death. Known cancer treatments are chemotherapy, surgery, radiation therapy, targeted hormonal therapy, or a combination of these methods. Antitumor drugs, with different mechanisms, interfere with cancer growth by destroying cancer cells. However, anticancer drugs are dangerous, as they significantly affect both cancer cells and healthy cells. In addition, there may be the onset of systemic side effects perceived and mutagenicity, teratogenicity, and further carcinogenicity. Many polyphenolic extracts, taken on top of common anti-tumor drugs, can participate in the anti-proliferative effect of drugs and significantly reduce the side effects developed. This review aims to discuss the current scientific knowledge of the protective effects of polyphenols of the genera Vaccinium, Citrus, Olea, and Cynara on the side effects induced by four known chemotherapy, Cisplatin, Doxorubicin, Tamoxifen, and Paclitaxel. In particular, the summarized data will help to understand whether polyphenols can be used as adjuvants in cancer therapy, although further clinical trials will provide crucial information.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Vincenzo Musolino
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Sara Ilari
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
32
|
Application of Multiple Strategies to Improve the Production of the Potential Cancer Drug 4-Acetylantroquinonol B (4-AAQB) by the Rare Fungus Antrodia cinnamomea. Appl Biochem Biotechnol 2022; 194:2720-2730. [PMID: 35257317 DOI: 10.1007/s12010-022-03811-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
4-Acetylantroquinonol B (4-AAQB) was identified in the rare fungus Antrodia cinnamomea and has been proven to be a potential therapeutic agent for cancer treatment. But the extraction of 4-AAQB from the fruit body led to a low yield and limited its further application in the pharmaceutical field. In this work, 4-AAQB production was enhanced in the submerged fermentation by the combination of exogenous additives, surfactants with the in situ extractive fermentation. 4-Methylbenzoic acid was proven to be an efficient additive for the accumulation of 4-AAQB by Antrodia cinnamomea, while 2% (w/v) Tween-80 added on the first day as surfactant and 30% (w/v) oleic acid added on the sixteenth day as extractant were the most available couples for 4-AAQB production in the in situ extractive fermentation. The combination of these multiple strategies resulted in the yield of 4-AAQB to 17.27 mg/g dry cell weight with a titer of 140 mg/L, which was the highest titer of 4-AAQB reported so far. It showed that the combination of these strategies had a significant promotion on 4-AAQB production by A. cinnamomea, which laid a good foundation for its large-scale production and also provided a viable method for the cultivation of other rare fungi.
Collapse
|
33
|
Öcalan S, Üzar-Özçetin YS. The relationship between rumination, fatigue and psychological resilience among cancer survivors. J Clin Nurs 2021; 31:3595-3604. [PMID: 34957629 DOI: 10.1111/jocn.16187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
AIM AND OBJECTIVES The study's purpose was to examine the association between rumination, fatigue and psychological resilience among cancer survivors. BACKGROUND Cancer is a disease that causes difficult lives in individuals. Individuals can struggle with cancer-related fatigue (CRF) and ruminative thoughts during and after the disease process. However, it can also be seen that some individuals make sense out of their cancer experience and turn into stronger individuals. DESIGN A cross-sectional design. METHODS This study was conducted from February through November 2020. Data were collected from 159 cancer survivors using Event Related Rumination Inventory, Cancer Fatigue Scale and Connor-Davidson Resilience Scale. RESULTS The findings showed that intrusive rumination significantly and negatively mediated psychological resilience but significantly and positively mediated with CRF. In contrast, deliberate rumination was significantly and positively mediated psychological resilience but significantly and negatively mediated with CRF. The effects of intrusive and deliberate rumination on fatigue were .431 (CI =0.042-0.635) and -.285 (CI = -0.163 to 0.491), respectively. In addition, the effects of intrusive and deliberate rumination on psychological resilience were -.253 (CI = -0.177 to 0.447) and .304 (CI = 0.045-0.124), respectively. CONCLUSIONS The findings underline the mediating role of rumination on CRF and psychological resilience among cancer survivors. The findings also delineate the associations between rumination, CRF and psychological resilience, which differ based on rumination type. RELEVANCE TO CLINICAL PRACTICE The findings are particularly important to oncology nurses, who are the main sources of psychosocial care. To support cancer survivors and mobilise their resources, oncology nurses should be made aware of the different types and effects of rumination. With the help of this awareness, oncology nurses can enhance managing intrusive rumination, replacing intrusive ruminations with deliberate ones, mobilising resources and promoting psychological resilience.
Collapse
Affiliation(s)
- Sinem Öcalan
- Psychiatric Nursing Department, Faculty of Nursing, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
34
|
Shang L, Zhou X, Zhang J, Shi Y, Zhong L. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer. Molecules 2021; 26:molecules26216532. [PMID: 34770941 PMCID: PMC8588551 DOI: 10.3390/molecules26216532] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide, which seriously threatens women’s physical and mental health. In recent years, photodynamic therapy (PDT) has shown significant advantages in cancer treatment. PDT involves activating photosensitizers with appropriate wavelengths of light, producing transient levels of reactive oxygen species (ROS). Compared with free photosensitizers, the use of nanoparticles in PDT shows great advantages in terms of solubility, early degradation, and biodistribution, as well as more effective intercellular penetration and targeted cancer cell uptake. Under the current circumstances, researchers have made promising efforts to develop nanocarrier photosensitizers. Reasonably designed photosensitizer (PS) nanoparticles can be achieved through non-covalent (self-aggregation, interfacial deposition, interfacial polymerization or core-shell embedding and physical adsorption) or covalent (chemical immobilization or coupling) processes and accumulate in certain tumors through passive and/or active targeting. These PS loading methods provide chemical and physical stability to the PS payload. Among nanoparticles, metal nanoparticles have the advantages of high stability, adjustable size, optical properties, and easy surface functionalization, making them more biocompatible in biological applications. In this review, we summarize the current development and application status of photodynamic therapy for breast cancer, especially the latest developments in the application of metal nanocarriers in breast cancer PDT, and highlight some of the recent synergistic therapies, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results.
Collapse
Affiliation(s)
- Liang Shang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Xinglu Zhou
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin 150081, China;
| | - Jiarui Zhang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Yujie Shi
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (L.S.); (J.Z.); or (Y.S.)
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Correspondence:
| |
Collapse
|
35
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
36
|
Anwar DM, El-Sayed M, Reda A, Fang JY, Khattab SN, Elzoghby AO. Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes. Expert Opin Drug Deliv 2021; 18:1609-1625. [PMID: 34254868 DOI: 10.1080/17425247.2021.1955853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The use of herbal compounds in cancer therapy has great potential to promote the efficacy of current cancer therapeutic strategies. Herbal compounds were successfully reported to enhance tumor cells sensitization to the action of chemo-, hormonal- and gene-therapeutic agents via different mechanisms. Herbal ingredients can affect different signaling pathways, reduce the toxic side effects or inhibit the efflux of anticancer drugs.Areas covered: This review will discuss the delivery of herbal compounds with other cancer treatments such as hormonal, small molecule inhibitors and inorganic hybrids to tumor cells. An overview of physicochemical properties of herbal components that require intelligent design of combo-nanomedicines for efficient co-delivery of those herbal-derived and other anticancer agents was discussed. Nanocarriers provide various benefits to overcome the shortcomings of the encapsulated herbal compounds including improved solubility, increased stability and enhanced tumor targeting. Different nanocarrier systems were the focus of this review.Expert opinion: Multifunctional nanocarrier systems encapsulating herbal and different anticancer drugs showed to be a wonderful approach in the treatment of cancer enabling the co-delivery of anticancer drugs with versatile modes of action in an accurate manner in an attempt to enhance the efficacy, benefit from the synergism between the drugs as well as to minimize the development of multi-drug resistance. The main challenge point is the early detection and management of any developed adverse effect.
Collapse
Affiliation(s)
- Doaa M Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Arab Academy for Science Technology & Maritime Transport, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mousa El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Asmaa Reda
- Nanomedicine Division, Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt.,Molecular and Cellular Biology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of AnesthesiologyChang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Prosser KE, Xie D, Chu A, MacNeil GA, Varju BR, Kadakia RT, Que EL, Walsby CJ. Copper(II) Pyridyl Aminophenolates: Hypoxia-Selective, Nucleus-Targeting Cytotoxins, and Magnetic Resonance Probes. Chemistry 2021; 27:9839-9849. [PMID: 33878230 DOI: 10.1002/chem.202100603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/10/2022]
Abstract
Targeting the low-oxygen (hypoxic) environments found in many tumours by using redox-active metal complexes is a strategy that can enhance efficacy and reduce the side effects of chemotherapies. We have developed a series of CuII complexes with tridentate pyridine aminophenolate-based ligands for preferential activation in the reduction window provided by hypoxic tissues. Furthermore, ligand functionalization with a pendant CF3 group provides a 19 F spectroscopic handle for magnetic-resonance studies of redox processes at the metal centre and behaviour in cellular environments. The phenol group in the ligand backbone was substituted at the para position with H, Cl, and NO2 to modulate the reduction potential of the CuII centre, giving a range of values below the window expected for hypoxic tissues. The NO2 -substituted complex, which has the highest reduction potential, showed enhanced cytotoxic selectivity towards HeLa cells grown under hypoxic conditions. Cell death occurs by apoptosis, as determined by analysis of the cell morphology. A combination of 19 F NMR and ICP-OES indicates localization of the NO2 complex in HeLa cell nuclei and increased cellular accumulation under hypoxia. This correlates with DNA nuclease activity being the likely origin of cytotoxic activity, as demonstrated by cleavage of DNA plasmids in the presence of the CuII nitro complex and a reducing agent. Selective detection of the paramagnetic CuII complexes and their diamagnetic ligands by 19 F MRI suggests hypoxia-targeting theranostic applications by redox activation.
Collapse
Affiliation(s)
- Kathleen E Prosser
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada.,Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Da Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Annica Chu
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Bryton R Varju
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
38
|
Büchler J, Gschwend JE, Retz M, Schmid SC. [Muscle-invasive bladder cancer]. Urologe A 2021; 60:769-775. [PMID: 34014342 DOI: 10.1007/s00120-021-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
Bladder cancer, which is a complex disease, can be treated with a variety of stage-oriented treatment options. In this article, the treatment recommendations of the German S3 guideline "Early detection, diagnosis, treatment and aftercare of bladder cancer" are applied in a fictitious case study. In a patient with invasive transitional cell carcinoma, the treatment options-ranging from bladder preservation to radical cystectomy with neoadjuvant chemotherapy-are discussed on the basis of the current literature.
Collapse
Affiliation(s)
- Jakob Büchler
- Klinik und Poliklinik für Urologie, Universitätsklinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland.
| | - Jürgen E Gschwend
- Klinik und Poliklinik für Urologie, Universitätsklinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | - Margitta Retz
- Klinik und Poliklinik für Urologie, Universitätsklinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| | - Sebastian C Schmid
- Klinik und Poliklinik für Urologie, Universitätsklinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Deutschland
| |
Collapse
|
39
|
Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
40
|
Knödler M, Buyel JF. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol Adv 2021; 47:107683. [PMID: 33373687 DOI: 10.1016/j.biotechadv.2020.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Molecular farming in plants is an emerging platform for the production of pharmaceutical proteins, and host species such as tobacco are now becoming competitive with commercially established production hosts based on bacteria and mammalian cell lines. The range of recombinant therapeutic proteins produced in plants includes replacement enzymes, vaccines and monoclonal antibodies (mAbs). But plants can also be used to manufacture toxins, such as the mistletoe lectin viscumin, providing an opportunity to express active antibody-toxin fusion proteins, so-called recombinant immunotoxins (RITs). Mammalian production systems are currently used to produce antibody-drug conjugates (ADCs), which require the separate expression and purification of each component followed by a complex and hazardous coupling procedure. In contrast, RITs made in plants are expressed in a single step and could therefore reduce production and purification costs. The costs can be reduced further if subcellular compartments that accumulate large quantities of the stable protein are identified and optimal plant growth conditions are selected. In this review, we first provide an overview of the current state of RIT production in plants before discussing the three key components of RITs in detail. The specificity-defining domain (often an antibody) binds cancer cells, including solid tumors and hematological malignancies. The toxin provides the means to kill target cells. Toxins from different species with different modes of action can be used for this purpose. Finally, the linker spaces the two other components to ensure they adopt a stable, functional conformation, and may also promote toxin release inside the cell. Given the diversity of these components, we extract broad principles that can be used as recommendations for the development of effective RITs. Future research should focus on such proteins to exploit the advantages of plants as efficient production platforms for targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- M Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| |
Collapse
|
41
|
Liu Y, Xie S, Li L, Si Y, Zhang W, Liu X, Guo L, Liu B, Lu R. Clinical observations of bone marrow transfusion for promoting bone marrow reconstruction after chemotherapy for AIDS-related lymphoma. BMC Immunol 2021; 22:10. [PMID: 33509081 PMCID: PMC7845098 DOI: 10.1186/s12865-021-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND This study investigates the effect of autologous bone marrow transfusion (BMT) on the reconstruction of both bone marrow and the immune system in patients with AIDS-related lymphoma (ARL). METHODS A total of 32 patients with ARL participated in this study. Among them, 16 participants were treated with conventional surgery and chemotherapy (control group) and the remaining 16 patients were treated with chemotherapy followed by autologous bone marrow transfusion via a mesenteric vein (8 patients, ABM-MVI group) or a peripheral vein (8 patients, ABM-PI group). Subsequently, peripheral blood and lymphocyte data subsets were detected and documented in all patients. RESULTS Before chemotherapy, no significant difference in indicators was observed between three groups of ARL patients. Unexpectedly, 2 weeks after the end of 6 courses of chemotherapy, the ABM-MVI group, and the ABM-PI group yielded an increased level of CD8+T lymphocytes, white blood cells (WBC), and platelet (PLT) in peripheral blood in comparison to the control group. Notably, the number of CD4+T lymphocytes in the ABM-PI group was significantly higher than that in the other two groups. Additionally, no significant difference in haemoglobin levels was observed before and after chemotherapy in both the ABM-MVI and ABM-PI groups, while haemoglobin levels in the control group decreased significantly following chemotherapy. CONCLUSIONS Autologous bone marrow transfusion after chemotherapy can promote the reconstruction of both bone marrow and the immune system. There was no significant difference in bone marrow recovery and reconstruction between the mesenteric vein transfusion group and the peripheral vein transfusion group.
Collapse
Affiliation(s)
- Yixuan Liu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Lei Li
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Yanhui Si
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Weiwei Zhang
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Xin Liu
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Baochi Liu
- Department of surgery, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Emodin enhances cisplatin sensitivity in non-small cell lung cancer through Pgp downregulation. Oncol Lett 2021; 21:230. [PMID: 33613719 PMCID: PMC7856686 DOI: 10.3892/ol.2021.12491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cisplatin resistance is one of the main causes of chemotherapy failure and tumor progression in non-small cell lung cancer (NSCLC). Emodin has been demonstrated to induce NSCLC cell apoptosis and act as a potential cancer therapeutic agent. However, whether emodin could affect NSCLC cell sensitivity toward cisplatin remains unclear. The present study aimed to determine the effect of emodin and cisplatin combination on the chemosensitivity of NSCLC cells. A549 and H460 cells were treated with different concentrations of cisplatin and/or emodin. Cell Counting Kit-8, fluorescence microscopy, immunofluorescence assays and flow cytometry were used to determine cell proliferation, drug efflux, DNA damage level and cell apoptosis, respectively. P-glycoprotein (Pgp) and multidrug resistance-associated protein 1 (MRP1) expression was detected by western blotting. The results demonstrated that emodin and cisplatin inhibited the proliferation of A549 and H460 cells. Furthermore, emodin inhibited the drug efflux in A549 and H460 cells in a dose-dependent manner. In addition, emodin enhanced cisplatin-induced apoptosis and DNA damage in A549 and H460 cells. Emodin also decreased Pgp expression in A549 and H460 cells in a dose-dependent manner; however, it had no effect on MRP1 expression. Taken together, the results from the present study demonstrated that emodin can increase A549 and H460 cell sensitivity to cisplatin by inhibiting Pgp expression. Emodin may therefore be considered as an effective adjuvant for cisplatin treatment.
Collapse
|
43
|
Motamedi Z, Amini SA, Raeisi E, Lemoigne Y, Heidarian E. Combined Effects of Protocatechuic Acid and 5-Fluorouracil on p53 Gene Expression and Apoptosis in Gastric Adenocarcinoma Cells. Turk J Pharm Sci 2020; 17:578-585. [PMID: 33389946 DOI: 10.4274/tjps.galenos.2019.69335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives This study evaluated the combined effects of protocatechuic acid (PCA) and 5-fluorouracil (5-FU) on gastric adenocarcinoma (AGS) cells. Materials and Methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry technique, real-time quantitative polymerase chain reaction, and Western blotting were used to investigate cytotoxic effects, colony formation, apoptosis, p53 gene expression, and Bcl-2 protein level in AGS cells treated with 5-FU and PCA. Results Our results demonstrated that PCA (500 μM) alone or in combination with 5-FU (10 μM) inhibited AGS cell proliferation, inhibited a colony formation, and increased apoptosis compared with untreated control cells. Moreover, the combined 5-FU/PCA exposure led to upregulation of p53 and downregulation of Bcl-2 protein when compared to the untreated control cells. Conclusion The results demonstrate that the combined 5-FU/PCA may promote antiproliferative and pro-apoptotic effects with the inhibition of colony formation in AGS cells. The mechanisms by which the combined 5-FU/PCA exposure exerts its effects are associated with upregulation of p53 gene expression and downregulation of Bcl-2 level. Therefore, the combination of 5-FU with PCA not only could be a promising approach to potentially reduce the dose requirements of 5-FU but also could promote apoptosis via p53 and Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Zahra Motamedi
- Shahrekord University of Medical Sciences, Basic Health Sciences Institute, Clinical Biochemistry Research Center, Shahrekord, Iran
| | - Sayed Asadollah Amini
- Shahrekord University of Medical Sciences, Basic Health Sciences Institute, Cellular and Molecular Research Center, Shahrekord, Iran
| | - Elham Raeisi
- Shahrekord University of Medical Sciences, Department of Medical Physics and Radiology, School of Allied Medical Sciences, Shahrekord, Iran
| | | | - Esfandiar Heidarian
- Shahrekord University of Medical Sciences, Basic Health Sciences Institute, Clinical Biochemistry Research Center, Shahrekord, Iran
| |
Collapse
|
44
|
ÖCALAN S, ÜZAR ÖZÇETİN YS. Kanser Deneyiminde Ruminasyon, Tükenmişlik ve Psikolojik Sağlamlık. PSIKIYATRIDE GUNCEL YAKLASIMLAR 2020. [DOI: 10.18863/pgy.664396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Chen YC, Chen PN, Lin CW, Yang WE, Ho YT, Yang SF, Chuang CY. Cantharidic acid induces apoptosis in human nasopharyngeal carcinoma cells through p38-mediated upregulation of caspase activation. ENVIRONMENTAL TOXICOLOGY 2020; 35:619-627. [PMID: 31916385 DOI: 10.1002/tox.22897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Cantharidic acid (CA) is the hydrolysis product of the acid anhydride cantharidin, which is a natural toxin secreted by several species of blister beetles. Several studies have indicated that as an inhibitor of protein phosphatase 2 (PP2A), CA induces apoptosis in various human cancer cells. However, the effect of CA on human nasopharyngeal carcinoma (NPC) cells and the underlying pathways have not been addressed. In our current study, we tested the hypothesis that CA treatment reduces the viability of human NPC cells (HONE-1, NPC-39, and NPC-BM) by inducing apoptosis. Results indicated that CA markedly reduced cell viability, which was revealed by the upregulation of caspase activation in extrinsic and intrinsic apoptosis pathways as well as the upregulation of extracellular-signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase 1/2 (JNK1/2) pathways. Coadministration of a p38 inhibitor (SB203580) with CA abolished the activation of caspase proteins. These findings indicated that CA treatment leads to apoptosis in human NPC cells through the upregulation of caspase activation, mediated particularly by the p38 pathway. Hence, CA is a promising therapeutic agent for human NPC.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
46
|
Wang Y, Zhang H, Xie J, Liu Y, Wang S, Zhao Q. Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal therapy compared with two dimensional graphene oxide nanosheets. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Guo S, Chen Y, Shi S, Wang X, Zhang H, Zhan Y, An H. Arctigenin, a novel TMEM16A inhibitor for lung adenocarcinoma therapy. Pharmacol Res 2020; 155:104721. [PMID: 32097750 DOI: 10.1016/j.phrs.2020.104721] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
TMEM16A plays critical roles in physiological process and may serve as drug targets for diverse diseases. Recently, TMEM16A has started to be regarded as potential primary lung adenocarcinoma targets. Here, we identified that arctigenin, a natural compound, is a novel TMEM16A inhibitor, and it can suppress lung adenocarcinoma growth through inhibiting TMEM16A both in vitro and in vivo. Our data also showed that the IC50 of actigenin to TMEM16A whole-cell current was 19.29 ± 4.69 μM, and the putative binding sites of arctigenin in TMEM16A were R515 and R535. Arctigenin concentration-dependently inhibited the proliferation and migration of LA795, however, the inhibition effect can be abolished by knockdown of the endogenous TMEM16A with shRNA. Further, we injected arctigenin on xenograft mouse model which exhibited significant antitumor activity with no adverse effect. At last, western blotting results showed the mechanism of arctigenin inhibiting lung adenocarcinoma was through inhibiting MAPK pathway. In summary, TMEM16A is a novel drug target for lung adenocarcinoma treatment. Arctigenin can be used as a lead compound for the development of lung adenocarcinoma therapy drugs.
Collapse
Affiliation(s)
- Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xuzhao Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yong Zhan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
48
|
Ma D, Zou Y, Chu Y, Liu Z, Liu G, Chu J, Li M, Wang J, Sun SY, Chang Z. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics 2020; 10:3708-3721. [PMID: 32206117 PMCID: PMC7069095 DOI: 10.7150/thno.41677] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cancers remain a threat to human health due to the lack of effective therapeutic strategies. Great effort has been devoted to the discovery of drug targets to treat cancers, but novel oncoproteins still need to be unveiled for efficient therapy. Methods: We show that CREPT is highly expressed in pancreatic cancer and is associated with poor disease-free survival. CREPT overexpression promotes but CREPT deletion blocks colony formation and proliferation of pancreatic cancer cells. To provide a proof of concept for CREPT as a new target for the inhibition of pancreatic cancer, we designed a cell-permeable peptide-based proteolysis targeting chimera (PROTAC), named PRTC, based on the homodimerized leucine-zipper-like motif in the C-terminus domain of CREPT to induce its degradation in vivo. Results: PRTC has high affinity for CREPT, with Kd = 0.34 +/- 0.11 μM and is able to permeate into cells because of the attached membrane-transportable peptide RRRRK. PRTC effectively induces CREPT degradation in a proteasome-dependent manner. Intriguingly, PRTC inhibits colony formation, cell proliferation, and motility in pancreatic cancer cells and ultimately impairs xenograft tumor growth, comparable to the effect of CREPT deletion. Conclusions: PRTC-induced degradation of CREPT leads to inhibition of tumor growth, which is promising for the development of new drugs against pancreatic cancer. In addition, using an interacting motif based on the dimerized structure of proteins may be a new way to design a PROTAC aiming at degrading any protein without known interacting small molecules or peptides.
Collapse
Affiliation(s)
- Danhui Ma
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yutian Zou
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- College of Letters and Science, University of California, Berkeley, 101 Durant Hall, Berkeley, CA 94720
| | - Yunxiang Chu
- Department of Gastroenterology, Emergency General Hospital, Beijing 100028, China
| | - Zhengsheng Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaochao Liu
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Jun Chu
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jiayu Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Shi-yong Sun
- Department of Hematology and Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Noh S, Choi E, Hwang CH, Jung JH, Kim SH, Kim B. Dietary Compounds for Targeting Prostate Cancer. Nutrients 2019; 11:nu11102401. [PMID: 31597327 PMCID: PMC6835786 DOI: 10.3390/nu11102401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the third most common cancer worldwide, and the burden of the disease is increased. Although several chemotherapies have been used, concerns about the side effects have been raised, and development of alternative therapy is inevitable. The purpose of this study is to prove the efficacy of dietary substances as a source of anti-tumor drugs by identifying their carcinostatic activities in specific pathological mechanisms. According to numerous studies, dietary substances were effective through following five mechanisms; apoptosis, anti-angiogenesis, anti-metastasis, microRNA (miRNA) regulation, and anti-multi-drug-resistance (MDR). About seventy dietary substances showed the anti-prostate cancer activities. Most of the substances induced the apoptosis, especially acting on the mechanism of caspase and poly adenosine diphosphate ribose polymerase (PARP) cleavage. These findings support that dietary compounds have potential to be used as anticancer agents as both food supplements and direct clinical drugs.
Collapse
Affiliation(s)
- Seungjin Noh
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Eunseok Choi
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Cho-Hyun Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Ji Hoon Jung
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| |
Collapse
|
50
|
Shen J, Wang Q, Lv Y, Dong J, Xuan G, Yang J, Wu D, Zhou J, Yu G, Tang G, Li X, Huang F, Chen X. Nanomedicine Fabricated from A Boron-dipyrromethene (BODIPY)-Embedded Amphiphilic Copolymer for Photothermal-Enhanced Chemotherapy. ACS Biomater Sci Eng 2019; 5:4463-4473. [DOI: 10.1021/acsbiomaterials.9b01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Shen
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Qiwen Wang
- Heart and Vascular Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang, P. R. China
| | - Yuanyuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jingyin Dong
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Guida Xuan
- School of Medicine, Zhejiang University City College, Hangzhou 310015, P. R. China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Wu
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guping Tang
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao Li
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
- The Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|