1
|
Sadria M, Swaroop V. Discovering governing equations of biological systems through representation learning and sparse model discovery. NAR Genom Bioinform 2025; 7:lqaf048. [PMID: 40290314 PMCID: PMC12034105 DOI: 10.1093/nargab/lqaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding the governing rules of complex biological systems remains a significant challenge due to the nonlinear, high-dimensional nature of biological data. In this study, we present CLERA, a novel end-to-end computational framework designed to uncover parsimonious dynamical models and identify active gene programs from single-cell RNA sequencing data. By integrating a supervised autoencoder architecture with Sparse Identification of Nonlinear Dynamics, CLERA leverages prior knowledge to simultaneously extract related low-dimensional representation and uncover the underlying dynamical systems that drive the processes. Through the analysis of both synthetic and biological data, CLERA demonstrates robust performance in reconstructing gene expression dynamics, identifying key regulatory genes, and capturing temporal patterns across distinct cell types. CLERA's ability to generate dynamic interaction networks, combined with network rewiring using Personalized PageRank to highlight central genes and active gene programs, offers new insights into the complex regulatory mechanisms underlying cellular processes.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Vasu Swaroop
- Department of Computer Science Information Systems, BITS-Pilani, Pilani Campus, Pilani 333031, India
| |
Collapse
|
2
|
Heidenreich AC, Bacigalupo L, Rossotti M, Rodríguez-Seguí SA. Identification of mouse and human embryonic pancreatic cells with adult Procr + progenitor transcriptomic and epigenomic characteristics. Front Endocrinol (Lausanne) 2025; 16:1543960. [PMID: 40017694 PMCID: PMC11864936 DOI: 10.3389/fendo.2025.1543960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
Background The quest to find a progenitor cell in the adult pancreas has driven research in the field for decades. Many potential progenitor cell sources have been reported, but so far this is a matter of debate mainly due to reproducibility issues. The existence of adult Procr+ progenitor cells in mice islets has been recently reported. These were shown to comprise ~1% of islet cells, lack expression of Neurog3 and endocrine hormones, and to be capable of differentiating into all endocrine cell types. However, these findings had limited impact, as further evidence supporting the existence and function of Procr+ progenitors has not emerged. Methods and findings We report here an unbiased comparison across mouse and human pancreatic samples, including adult islets and embryonic tissue, to track the existence of Procr+ progenitors originally described based on their global gene expression signature. We could not find Procr+ progenitors on other mouse or human adult pancreatic islet samples. Unexpectedly, our results revealed a transcriptionally close mesothelial cell population in the mouse and human embryonic pancreas. These Procr-like mesothelial cells of the embryonic pancreas share the salient transcriptional and epigenomic features of previously reported Procr+ progenitors found in adult pancreatic islets. Notably, we report here that Procr-like transcriptional signature is gradually established in mesothelial cells during mouse pancreas development from E12.5 to E17.5, which has its largest amount. Further supporting a developmentally relevant role in the human pancreas, we additionally report that a transcriptionally similar population is spontaneously differentiated from human pluripotent stem cells cultured in vitro along the pancreatic lineage. Conclusions Our results show that, although the previously reported Procr+ progenitor cell population could not be found in other adult pancreatic islet samples, a mesothelial cell population with a closely related transcriptional signature is present in both the mouse and human embryonic pancreas. Several lines of evidence presented in this work support a developmentally relevant function for these Procr-like mesothelial cells.
Collapse
Affiliation(s)
- Ana C. Heidenreich
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucas Bacigalupo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martina Rossotti
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago A. Rodríguez-Seguí
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
de Oliveira EF, Garg P, Hjerling-Leffler J, Batista-Brito R, Sjulson L. Identifying patterns differing between high-dimensional datasets with generalized contrastive PCA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607264. [PMID: 39149388 PMCID: PMC11326262 DOI: 10.1101/2024.08.08.607264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
High-dimensional data have become ubiquitous in the biological sciences, and it is often desirable to compare two datasets collected under different experimental conditions to extract low-dimensional patterns enriched in one condition. However, traditional dimensionality reduction techniques cannot accomplish this because they operate on only one dataset. Contrastive principal component analysis (cPCA) has been proposed to address this problem, but it has seen little adoption because it requires tuning a hyperparameter resulting in multiple solutions, with no way of knowing which is correct. Moreover, cPCA uses foreground and background conditions that are treated differently, making it ill-suited to compare two experimental conditions symmetrically. Here we describe the development of generalized contrastive PCA (gcPCA), a flexible hyperparameter-free approach that solves these problems. We first provide analyses explaining why cPCA requires a hyperparameter and how gcPCA avoids this requirement. We then describe an open-source gcPCA toolbox containing Python and MATLAB implementations of several variants of gcPCA tailored for different scenarios. Finally, we demonstrate the utility of gcPCA in analyzing diverse high-dimensional biological data, revealing unsupervised detection of hippocampal replay in neurophysiological recordings and heterogeneity of type II diabetes in single-cell RNA sequencing data. As a fast, robust, and easy-to-use comparison method, gcPCA provides a valuable resource facilitating the analysis of diverse high-dimensional datasets to gain new insights into complex biological phenomena.
Collapse
Affiliation(s)
| | - Pranjal Garg
- All India Institute of Medical Sciences, Rishikesh, India
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
4
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, Buchwald P, Grilli A, Caroli J, Bicciato S, Serafini P. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun 2022; 13:1815. [PMID: 35383192 PMCID: PMC8983715 DOI: 10.1038/s41467-022-29377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
The ability to detect and target β cells in vivo can substantially refine how diabetes is studied and treated. However, the lack of specific probes still hampers a precise characterization of human β cell mass and the delivery of therapeutics in clinical settings. Here, we report the identification of two RNA aptamers that specifically and selectively recognize mouse and human β cells. The putative targets of the two aptamers are transmembrane p24 trafficking protein 6 (TMED6) and clusterin (CLUS). When given systemically in immune deficient mice, these aptamers recognize the human islet graft producing a fluorescent signal proportional to the number of human islets transplanted. These aptamers cross-react with endogenous mouse β cells and allow monitoring the rejection of mouse islet allografts. Finally, once conjugated to saRNA specific for X-linked inhibitor of apoptosis (XIAP), they can efficiently transfect non-dissociated human islets, prevent early graft loss, and improve the efficacy of human islet transplantation in immunodeficient in mice.
Collapse
Affiliation(s)
- Dimitri Van Simaeys
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana De La Fuente
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Zoso
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victoria Kuznetsova
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Grilli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jimmy Caroli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Cheimonidi C, Grivas IN, Sesti F, Kavrochorianou N, Gianniou DD, Taoufik E, Badounas F, Papassideri I, Rizzi F, Tsitsilonis OE, Haralambous S, Trougakos IP. Clusterin overexpression in mice exacerbates diabetic phenotypes but suppresses tumor progression in a mouse melanoma model. Aging (Albany NY) 2021; 13:6485-6505. [PMID: 33744871 PMCID: PMC7993736 DOI: 10.18632/aging.202788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/13/2021] [Indexed: 04/24/2023]
Abstract
Clusterin (CLU) is an ATP-independent small heat shock protein-like chaperone, which functions both intra- and extra-cellularly. Consequently, it has been functionally involved in several physiological (including aging), as well as in pathological conditions and most age-related diseases, e.g., cancer, neurodegeneration, and metabolic syndrome. To address CLU function at an in vivo model we established CLU transgenic (Tg) mice bearing ubiquitous or pancreas-targeted CLU overexpression (OE). Our downstream analyses in established Tg lines showed that ubiquitous or pancreas-targeted CLU OE in mice affected antioxidant, proteostatic and metabolic pathways. Targeted OE of CLU in the pancreas, which also resulted in CLU upregulation in the liver likely via systemic effects, increased basal glucose levels in the circulation and exacerbated diabetic phenotypes. Furthermore, by establishing a syngeneic melanoma mouse tumor model we found that ubiquitous CLU OE suppressed melanoma cells growth, indicating a likely tumor suppressor function in early phases of tumorigenesis. Our observations provide in vivo evidence corroborating the notion that CLU is a potential modulator of metabolic and/or proteostatic pathways playing an important role in diabetes and tumorigenesis.
Collapse
Affiliation(s)
- Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Ioannis N. Grivas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fabiola Sesti
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Nadia Kavrochorianou
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fotis Badounas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Federica Rizzi
- Dipartimento di Medicina e Chirurgia, Universita di Parma, Parma 43125, Italy
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Roma 00136, Italy
| | - Ourania E. Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sylva Haralambous
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| |
Collapse
|
7
|
Urbanczyk M, Zbinden A, Layland SL, Duffy G, Schenke-Layland K. Controlled Heterotypic Pseudo-Islet Assembly of Human β-Cells and Human Umbilical Vein Endothelial Cells Using Magnetic Levitation. Tissue Eng Part A 2019; 26:387-399. [PMID: 31680653 PMCID: PMC7187983 DOI: 10.1089/ten.tea.2019.0158] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
β-Cell functionality and survival are highly dependent on the cells' microenvironment and cell–cell interactions. Since the pancreas is a highly vascularized organ, the crosstalk between β-cells and endothelial cells (ECs) is vital to ensure proper function. To understand the interaction of pancreatic β-cells with vascular ECs, we sought to investigate the impact of the spatial distribution on the interaction of human cell line-based β-cells (EndoC-βH3) and human umbilical vein endothelial cells (HUVECs). We focused on the evaluation of three major spatial distributions, which can be found within human islets in vivo, in tissue-engineered heterotypic cell spheroids, so-called pseudo-islets, by controlling the aggregation process using magnetic levitation. We report that heterotypic spheroids formed by spontaneous aggregation cannot be maintained in culture due to HUVEC disassembly over time. In contrast, magnetic levitation allows the formation of stable heterotypic spheroids with defined spatial distribution and significantly facilitated HUVEC integration. To the best of our knowledge, this is the first study that introduces a human-only cell line-based in vitro test system composed of a coculture of β-cells and ECs with a successful stimulation of β-cell secretory function monitored by a glucose-stimulated insulin secretion assays. In addition, we systematically investigate the impact of the spatial distribution on cocultures of human β-cells and ECs, showing that the architecture of pseudo-islets significantly affects β-cell functionality.
Collapse
Affiliation(s)
- Max Urbanczyk
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry Duffy
- Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, California
| |
Collapse
|
8
|
Zhu Z, Lin Y, Li X, Driver JA, Liang L. Shared genetic architecture between metabolic traits and Alzheimer's disease: a large-scale genome-wide cross-trait analysis. Hum Genet 2019; 138:271-285. [PMID: 30805717 PMCID: PMC7193309 DOI: 10.1007/s00439-019-01988-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
A growing number of studies clearly demonstrate a substantial link between metabolic dysfunction and the risk of Alzheimer's disease (AD), especially glucose-related dysfunction; one hypothesis for this comorbidity is the presence of a common genetic etiology. We conducted a large-scale cross-trait GWAS to investigate the genetic overlap between AD and ten metabolic traits. Among all the metabolic traits, fasting glucose, fasting insulin and HDL were found to be genetically associated with AD. Local genetic covariance analysis found that 19q13 region had strong local genetic correlation between AD and T2D (P = 6.78 × 10- 22), LDL (P = 1.74 × 10- 253) and HDL (P = 7.94 × 10- 18). Cross-trait meta-analysis identified 4 loci that were associated with AD and fasting glucose, 3 loci that were associated with AD and fasting insulin, and 20 loci that were associated with AD and HDL (Pmeta < 1.6 × 10- 8, single trait P < 0.05). Functional analysis revealed that the shared genes are enriched in amyloid metabolic process, lipoprotein remodeling and other related biological pathways; also in pancreas, liver, blood and other tissues. Our work identifies common genetic architectures shared between AD and fasting glucose, fasting insulin and HDL, and sheds light on molecular mechanisms underlying the association between metabolic dysregulation and AD.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yifei Lin
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jane A Driver
- Geriatric Research Education and Clinical Center and Massachusetts Veterans Epidemiology Research and Information Center, VA Medical Center, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Park JW, Nam KT, Shin JH, Kim IY, Choi KM, Roh KJ, Oh SH, Yun YM, Suh JG, Oh YS, Yoon YS, Seong JK. Clusterin is highly expressed in tubular complexes during spontaneous pancreatitis of spontaneous hypertensive rats. J Vet Med Sci 2018; 80:1553-1557. [PMID: 30111670 PMCID: PMC6207517 DOI: 10.1292/jvms.18-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pancreatitis is an inflammatory disorder of pancreas which leads to varying degrees of
pancreatic endocrine and exocrine dysfunction and manifests in either acute or chronic
forms. Spontaneous pancreatitis in experimental animals has rarely been reported. Here, we
found acute to chronic courses of spontaneous pancreatitis in spontaneously hypertensive
rats (SHRs), showing the formation of tubular complexes (TCs) and enhanced islet
regeneration. We investigated the expression pattern of clusterin in the pancreas of SHRs
based on immunohistochemistry (IHC). IHC analysis revealed the strong expression of
clusterin in dedifferentiated duct-like cells and regenerative islets of TCs. These
results imply that clusterin might be involved in the formation of TCs and parenchymal
regeneration during rat pancreatitis.
Collapse
Affiliation(s)
- Jun Won Park
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Ki Taek Nam
- Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jae Hoon Shin
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kyung Mi Choi
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kyung-Jin Roh
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Seung Hyun Oh
- Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,College of Pharmacy, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si Gyeonggi-do, 13120, Korea
| | - Young-Min Yun
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, 61 Iljudong-ro, Jeju-si Jeju-do, 63294, Korea
| | - Jun-Gyo Suh
- Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Department of Medical Genetics and Experimental Animal Center, College of Medicine, Hallym University, 1 Hallimdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Korea
| | - Yang-Seok Oh
- Department of Medical Genetics and Experimental Animal Center, College of Medicine, Hallym University, 1 Hallimdaehak-gil, Chuncheon-si, Gangwon-do, 24252, Korea
| | - Yeo Sung Yoon
- Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Department of Anatomy and Cell Biology, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Korea Mouse Phenotyping Center (KMPC), 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
10
|
Nakashima Y, Miyagi-Shiohira C, Kobayashi N, Saitoh I, Watanabe M, Noguchi H. A proteome analysis of pig pancreatic islets and exocrine tissue by liquid chromatography with tandem mass spectrometry. Islets 2017; 9:159-176. [PMID: 29099648 PMCID: PMC5710700 DOI: 10.1080/19382014.2017.1389826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is a proteome analysis method, and the shotgun analysis by LC-MS/MS comprehensively identifies proteins from tissues and cells with high resolving power. In this study, we analyzed the protein expression in pancreatic tissue by LC-MS/MS. Islets isolated from porcine pancreata (purity ≥95%) and exocrine tissue (purity ≥99%) were used in this study. LC-MS/MS showed that 13 proteins were expressed in pancreatic islets only (Group I), 43 proteins were expressed in both islets and exocrine tissue (Group I&E), and 102 proteins were expressed in exocrine tissue only (Group E). Proteins involved in islet differentiation and cell proliferation were identified in Group I (e.g. CLUS, CMGA, MIF). In addition, various functional proteins (e.g. SCG2, TBA1A) were identified in islet by using the new method of 'principal component analysis (PCA)'. However, the function of such proteins on islets remains unclear. EPCAM was identified in Group E. Group E was found to include proteins involved in clinical inflammatory diseases such as pancreatitis (e.g. CBPA1, CGL, CYTB, ISK1 and PA21B). Many of these identified proteins were reported less frequently in previous studies, and HS71B, NEC2, PRAF3 and SCG1 were newly detected in Group I while CPNS1, DPEP1, GANAB, GDIB, GGT1, HSPB1, ICTL, VILI, MUTA, NDKB, PTGR1, UCHL3, VAPB and VINC were newly detected in Group E. These results show that comprehensive expression analysis of proteins by LC-MS/MS is useful as a method to investigate new factors constructing cellular component, biological process, and molecular function.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- CONTACT Hirofumi Noguchi Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
11
|
Donadel G, Pastore D, Della-Morte D, Capuani B, Lombardo MF, Pacifici F, Bugliani M, Grieco FA, Marchetti P, Lauro D. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes. Int J Mol Sci 2017; 18:2234. [PMID: 29068419 PMCID: PMC5713204 DOI: 10.3390/ijms18112234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF)-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL)-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s) by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1) and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05) increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1), Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2), compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9) were decreased (p < 0.05). These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.
Collapse
Affiliation(s)
- Giulia Donadel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy.
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Marco F Lombardo
- Agenzia regionale per la protezione ambientale (ARPA) Lazio, Sezione di Roma, 00173 Rome, Italy.
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Marco Bugliani
- Endocrinology and Metabolism of Transplantation, Azienda Ospedaliero-Universitaria (A.O.U.) Pisana, 56126 Pisa, Italy.
| | - Fabio A Grieco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | - Piero Marchetti
- Endocrinology and Metabolism of Transplantation, Azienda Ospedaliero-Universitaria (A.O.U.) Pisana, 56126 Pisa, Italy.
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
12
|
Yelamanchi SD, Kumar M, Madugundu AK, Gopalakrishnan L, Dey G, Chavan S, Sathe G, Mathur PP, Gowda H, Mahadevan A, Shankar SK, Prasad TSK. Characterization of human pineal gland proteome. MOLECULAR BIOSYSTEMS 2017; 12:3622-3632. [PMID: 27714013 DOI: 10.1039/c6mb00507a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pineal gland is a neuroendocrine gland located at the center of the brain. It is known to regulate various physiological functions in the body through secretion of the neurohormone melatonin. Comprehensive characterization of the human pineal gland proteome has not been undertaken to date. We employed a high-resolution mass spectrometry-based approach to characterize the proteome of the human pineal gland. A total of 5874 proteins were identified from the human pineal gland in this study. Of these, 5820 proteins were identified from the human pineal gland for the first time. Interestingly, 1136 proteins from the human pineal gland were found to contain a signal peptide domain, which indicates the secretory nature of these proteins. An unbiased global proteomic profile of this biomedically important organ should benefit molecular research to unravel the role of the pineal gland in neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Soujanya D Yelamanchi
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and School of Biotechnology, KIIT University, Bhubaneswar 751 024, India.
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and Manipal University, Madhav Nagar, Manipal 576 104, India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | | | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and Manipal University, Madhav Nagar, Manipal 576 104, India
| | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and Manipal University, Madhav Nagar, Manipal 576 104, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and Manipal University, Madhav Nagar, Manipal 576 104, India
| | - Premendu P Mathur
- School of Biotechnology, KIIT University, Bhubaneswar 751 024, India. and Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and School of Biotechnology, KIIT University, Bhubaneswar 751 024, India. and YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575 018, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India. and Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India
| | - Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India. and Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India and Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India. and YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575 018, India and Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India
| |
Collapse
|
13
|
Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas. Pancreas 2016; 45:735-42. [PMID: 26580455 DOI: 10.1097/mpa.0000000000000555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. METHODS Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). RESULTS The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. CONCLUSIONS The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.
Collapse
|
14
|
Xue T, Wei L, Zha DJ, Qiao L, Lu LJ, Chen FQ, Qiu JH. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med 2015; 35:637-44. [PMID: 25605314 PMCID: PMC4314421 DOI: 10.3892/ijmm.2015.2075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/14/2015] [Indexed: 01/23/2023] Open
Abstract
Stem cell therapy has attracted widespread attention for a number of diseases. Recently, neural stem cells (NSCs) from the cochlear nuclei have been identified, indicating a potential direction for the treatment of sensorineural hearing loss. Acoustic stimuli play an important role in the development of the auditory system. In this study, we aimed to determine whether acoustic stimuli induce NSC development and differentiation through the upregulation of clusterin (CLU) in NSCs isolated from the cochlear nuclei. To further clarify the underlying mechanisms involved in the development and differentiation of NSCs exposed to acoustic stimuli, we successfully constructed animal models in which was CLU silenced by an intraperitoneal injection of shRNA targeting CLI. As expected, the NSCs from rats treated with LV-CLU shRNA exhibited a lower proliferation ratio when exposed to an augmented acoustic environment (AAE). Furthermore, the inhibition of cell apoptosis induced by exposure to AAE was abrogated after silencing the expression of the CLU gene. During the differentiation of acoustic stimuli-exposed stem cells into neurons, the number of astrocytes was significantly reduced, as evidenced by the expression of the cell markers, microtubule associated protein-2 (MAP-2) and glial fibrillary acidic protein (GFAP), which was markedly inhibited when the CLU gene was silenced. Our results indicate that acoustic stimuli may induce the development and differentiation of NSCs from the cochlear nucleus mainly through the CLU pathway. Our study suggests that CLU may be a novel target for the treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Tao Xue
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Wei
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ding-Jun Zha
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Qiao
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lian-Jun Lu
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu-Quan Chen
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian-Hua Qiu
- Department of Otolaryngology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
15
|
Kwon MJ, Ju TJ, Heo JY, Kim YW, Kim JY, Won KC, Kim JR, Bae YK, Park IS, Min BH, Lee IK, Park SY. Deficiency of clusterin exacerbates high-fat diet-induced insulin resistance in male mice. Endocrinology 2014; 155:2089-101. [PMID: 24684302 DOI: 10.1210/en.2013-1870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study examined the role of clusterin in insulin resistance in high fat-fed wild-type and clusterin knockout (KO) mice. The plasma levels of glucose and C-peptide and islet size were increased in clusterin KO mice after an 8-week high-fat diet. In an ip glucose tolerance test, the area under the curve for glucose was not different, whereas the area under the curve for insulin was higher in clusterin KO mice. In a hyperinsulinemic-euglycemic clamp, the clamp insulin levels were higher in clusterin KO mice after the high-fat diet. After adjusting for the clamp insulin levels, the glucose infusion rate, suppression of hepatic glucose production, and glucose uptake were lower in clusterin KO mice in the high fat-fed group. The plasma levels of clusterin and clusterin mRNA levels in the skeletal muscle and liver were increased by the high-fat diet. The mRNA levels of the antioxidant enzymes were lower, and the mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1 and cytokines and protein carbonylation were higher in the skeletal muscle and liver in clusterin KO mice after the high-fat diet. Palmitate-induced gene expressions of NOX1 and cytokines were higher in the primary cultured hepatocytes of clusterin KO mice compared with the wild-type mice. Clusterin inhibited the gene expression and reactive oxygen species generation by palmitate in the hepatocytes and C2C12. AKT phosphorylation by insulin was reduced in the hepatocytes of clusterin KO mice. These results suggest that clusterin plays a protective role against high-fat diet-induced insulin resistance through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Min Jung Kwon
- Departments of Physiology (M.J.K., T.-j.J., J.-Y.H., Y.-W.K., J.-Y.K., S.-Y.P.), Internal Medicine (K.-C.W.), Biochemistry and Molecular Biology (J.-R.K.), and Pathology (Y.K.B.) and Aging-Associated Vascular Disease Research Center (T.-j.J., J.-Y.H., J.-R.K., S.-Y.P.), College of Medicine, Yeungnam University, Daegu 705-703, South Korea; Department of Anatomy (I.-S.P.), College of Medicine, Inha University, Incheon 400-712, South Korea; Department of Pharmacology (B.-H.M.), College of Medicine, Korea University, Seoul 136-705, South Korea; and Department of Internal Medicine (I.-K.L.), School of Medicine, Kyungpook National University, Daegu 700-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Choi JH, Lim KH, Park E, Kim JY, Choi YK, Baek KH. Glutamate-ammonia ligase and reduction of G0 population in PANC-1 cells. J Cell Biochem 2012; 114:303-13. [DOI: 10.1002/jcb.24370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/13/2012] [Indexed: 12/18/2022]
|
17
|
Choi JH, Lee MY, Kim Y, Shim JY, Han SM, Lee KA, Choi YK, Jeon HM, Baek KH. Isolation of genes involved in pancreas regeneration by subtractive hybridization. Biol Chem 2011; 391:1019-29. [PMID: 20536387 DOI: 10.1515/bc.2010.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The deterioration of β cells in the pancreas is a crucial factor in the progression of diabetes mellitus; therefore, the recovery of β cells is of vital importance for effective diabetic therapeutic strategies. Partially pancreatectomized rats have been used for the investigation of pancreatic regeneration. Because it was determined that tissue extract from the partially-dissected pancreas induces pancreatic differentiation in embryonic stem cells, paracrine factors were thought to be involved in the regeneration. In this study, we screened for genes that had higher mRNA levels 2 days after 60%-pancreatectomy. The genes were isolated using subtractive hybridization and DNA sequencing. Twelve genes (adipsin, Aplp2, Clu, Col1a2, Glul, Krt8, Lgmn, LOC299907, LOC502894, Pla2g1b, Reg3α and Xbp1) were identified, and RT-PCR and real-time PCR analyses were performed to validate their expression levels. Among the genes identified, three genes (Glul, Lgmn and Reg3a) were selected for further analyses. Assays revealed that Glul and Reg3α enhance cell growth. Glul, Lgmn and Reg3α change the expression level of islet marker genes, where NEUROD, NKX2.2, PAX4 and PAX6 are up-regulated and somatostatin is down-regulated. Thus, we believe that Glul, Lgmn and Reg3a can serve as novel targets in diabetes mellitus genetic therapy.
Collapse
Affiliation(s)
- Jong-Ho Choi
- College of Medicine, CHA University, CHA General Hospital, Seoul 135-081, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee S, Hong SW, Min BH, Shim YJ, Lee KU, Lee IK, Bendayan M, Aronow BJ, Park IS. Essential role of clusterin in pancreas regeneration. Dev Dyn 2011; 240:605-15. [PMID: 21290478 DOI: 10.1002/dvdy.22556] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 02/01/2023] Open
Abstract
Based on our previous observations that clusterin induction accompanies pancreas regeneration in the rat, we sought to determine if regeneration might be impaired in mice that lacked clusterin. We studied the impact of absent clusterin on morphogenic and functional features of regenerating pancreas. Clusterin induction was accompanied in the regenerating pancreas by a robust development of new lobules with ductules, acini, and endocrine islets in wild type after partial pancreatectomy. In clusterin knock-out mice, however, pancreatectomy resulted in a poor formation of regenerating lobule. In particular, regeneration of beta-cells was also significantly reduced and was associated with persistent hyperglycemia. Duct cells obtained from pancreatectomized clusterin knock-out mice exhibited impaired beta-cell formation in vitro; this was restored by administration of exogenous clusterin. We suggest that clusterin plays a critical role to promote both exocrine and endocrine regeneration following pancreas injury, as well as for in vitro beta-cell regeneration.
Collapse
|
19
|
Choi JH, Lee MY, Ramakrishna S, Kim Y, Shim JY, Han SM, Kim JY, Lee DH, Choi YK, Baek KH. LCP1 up-regulated by partial pancreatectomy supports cell proliferation and differentiation. MOLECULAR BIOSYSTEMS 2011; 7:3104. [DOI: 10.1039/c1mb05326d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Sonn CH, Yu YB, Hong YJ, Shim YJ, Bluestone JA, Min BH, Lee KM. Clusterin synergizes with IL-2 for the expansion and IFN-γ production of natural killer cells. J Leukoc Biol 2010; 88:955-63. [PMID: 20729304 DOI: 10.1189/jlb.0310157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CLU is a secreted, multifunctional protein implicated in several immunologic and pathologic conditions. As the level of serum CLU was shown to be elevated during inflammatory responses, we questioned if CLU might interact with circulating lymphocytes leading to functional consequences. To assess this possibility directly, mouse splenocytes and purified NK cells were cultured with varying dose of CLU, and its effect on cell proliferation was examined. Our data showed that CLU up-regulated DNA synthesis and expansion of NK cells significantly in response to a suboptimal, but not maximal, dose of IL-2, and CLU alone did not exhibit such effects. This CLU-mediated synergy required the co-presence of CLU at the onset of IL-2 stimulation and needed a continuous presence during the rest of the culture. Importantly, NK cells stimulated with CLU showed increased formation of cell clusters and a CD69 activation receptor, representing a higher cellular activation status compared with those from the control group. Furthermore, these NK cells displayed elevated IFN-γ production upon RMA/S tumor target exposures, implying that CLU regulates not only NK cell expansion but also effector function of NK cells. Collectively, our data present a previously unrecognized function of CLU as a novel regulator of NK cells via providing costimulation required for cell proliferation and IFN-γ secretion. Therefore, the role of CLU on NK cells should be taken into consideration for the previously observed, diverse functions of CLU in chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Chung Hee Sonn
- Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Fanjul M, Gmyr V, Sengenès C, Ratovo G, Dufresne M, Lefebvre B, Kerr-Conte J, Hollande E. Evidence for epithelial-mesenchymal transition in adult human pancreatic exocrine cells. J Histochem Cytochem 2010; 58:807-23. [PMID: 20530463 DOI: 10.1369/jhc.2010.955807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been shown that adult pancreatic ductal cells can dedifferentiate and act as pancreatic progenitors. Dedifferentiation of epithelial cells is often associated with the epithelial-mesenchymal transition (EMT). In this study, we investigated the occurrence of EMT in adult human exocrine pancreatic cells both in vitro and in vivo. Cells of exocrine fraction isolated from the pancreas of brain-dead donors were first cultured in suspension for eight days. This led to the formation of spheroids, composed of a principal population of cells with duct-like phenotype. When cultivated in tissue culture-treated flasks, spheroid cells exhibited a proliferative capacity and coexpressed epithelial (cytokeratin7 and cytokeratin19) and mesenchymal (vimentin and alpha-smooth muscle actin) markers as well as marker of progenitor pancreatic cells (pancreatic duodenal homeobox factor-1) and surface markers of mesenchymal stem cells. The switch from E-cadherin to N-cadherin associated with Snail1 expression suggested that these cells underwent EMT. In addition, we showed coexpression of epithelial and mesenchymal markers in ductal cells of one normal adult pancreas and three type 2 diabetic pancreases. Some of the vimentin-positive cells were found to coexpress glucagon or amylase. These results point to the occurrence of EMT, which may take place on dedifferentiation of ductal cells during the regeneration or renewal of human pancreatic tissues.
Collapse
Affiliation(s)
- Marjorie Fanjul
- Institut National de la Santé et de la Recherche Médicale U858, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang T, Wang H, Saunee NA, Breslin MB, Lan MS. Insulinoma-associated antigen-1 zinc-finger transcription factor promotes pancreatic duct cell trans-differentiation. Endocrinology 2010; 151:2030-9. [PMID: 20215568 PMCID: PMC2869251 DOI: 10.1210/en.2009-1224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulinoma-associated antigen-1 (INSM1/IA-1) is a unique zinc-finger transcription factor restrictedly expressed in pancreatic beta-cells during early pancreas development. INSM1 is transiently activated by the islet-specific endocrine factor neurogenin 3, and it subsequently regulates downstream target genes NeuroD1 and insulin during beta-cell maturation. Here, we examined how the INSM1 transcription factor contributes to endocrine cell differentiation using a defined serum-free medium-primed pancreatic duct cell model. We showed that ectopic expression of INSM1 can promote Panc-1 cell trans-differentiation. INSM1 up-regulates two islet transcription factors (ITFs), paired box 6 and homeodomain transcription factor 6.1, whereas other ITFs, including pancreatic duodenal homeobox-1 (Pdx-1), homeodomain transcription factor 2.2, NeuroD1, paired box 4, and neurogenin 3, were either down-regulated or absent. The result suggests that INSM1 is capable of regulating multiple ITFs and the insulin gene either directly or indirectly. When we overexpressed three ITFs, INSM1/Pdx-1/NeuroD1, in the Panc-1 differentiation model, higher insulin expression was observed in parallel with the activation of an additional ITF, neurogenin 3, signifying endocrine cell activation. Insulin expression from the three ITFs stimulation was readily detected by immunostaining and increased 40% as compared with the insulin-transferrin-selenium-LacZ control. Furthermore, we examined the differential chromatin acetylation patterns within the insulin promoter region using the chromatin immunoprecipitation assay. INSM1 alone can selectively enhance acetylation of histone H4, whereas NeuroD1 and Pdx-1 favor the acetylation of histone H3. Both H3 and H4 histone acetylations facilitate insulin gene expression. The consistent functional effect of INSM1, either with or without other ITFs, promotes pancreatic duct cell differentiation as well as induces Panc-1 cell cycle arrest.
Collapse
Affiliation(s)
- Tao Zhang
- Children's Hospital, Research and Education Building, New Orleans, Louisiana 70118, USA
| | | | | | | | | |
Collapse
|
23
|
Vareka I, Stejskal D, Varekova R, Burianova K, Hnatek J. Changes in clusterin serum concentration levels in oncologic patients during the course of spa therapy--a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153:117-20. [PMID: 19771135 DOI: 10.5507/bp.2009.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Clusterin (70-80 kDa; synonym ApoJ) is a stress-associated cytoprotective glycoprotein involved in many physiological and pathophysiological processes and it is up-regulated by various apoptotic triggers in many cancers and neurodegenerative diseases. AIM Measurement of serum clusterin values in individuals with a history of cancer before and after spa therapy. METHODS Serum clusterin concentration (ELISA) was determined in a group of 26 oncologic patients (4 men and 22 women) at the beginning and at the end (the 18th or 19th day) of spa treatment. The spa treatment lasted 3 weeks. The patients with various types of cancer had undergone basic therapy (surgery, chemotherapy, actinotherapy) prior to spa treatment. They were divided according to the interval between the end of basic treatment and the start of spa therapy. Patients coming within 12 months comprised group A (n=15) while patients coming later comprised group B (n=11). RESULTS clusterin concentrations increased in 11 patients (73%) and decreased in 4 (27%) in group A and increased in 5 (45%) and decreased in 6 (55%) in group B. The non-parametric sign test was non-significant. There were positive value of average change between the second and the first sample in group A and negative value in group B. In group A the parametric test showed significant increased clusterin concentration at the end of spa treatment but the data had non-parametric distribution in fact. CONCLUSION It is concluded that early spa therapy increases clusterin serum concentration. This is probably due to to the positive effects of balneotherapy. However the sample was very small and further research is required.
Collapse
Affiliation(s)
- Ivan Vareka
- Spa Luhacovice Inc., Luhacovice, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
Manesso E, Toffolo GM, Saisho Y, Butler AE, Matveyenko AV, Cobelli C, Butler PC. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat. Am J Physiol Endocrinol Metab 2009; 297:E323-30. [PMID: 19470833 PMCID: PMC2724115 DOI: 10.1152/ajpendo.00284.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.
Collapse
Affiliation(s)
- Erica Manesso
- 1Department of Information Engineering, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
We previously reported that clusterin enhances astrocyte proliferation and extracellular signal-regulated kinase (ERK) activity. It, however, remains largely unknown how clusterin promotes cell growth. Here, we investigate the signaling pathway and related molecules underlying astrocyte proliferation by clusterin. Exogenous clusterin stimulates Ras-dependent Raf-1/mitogen-activated protein kinase kinase (MEK)/ERK activation. Clusterin-induced astrocyte proliferation and ERK1/2 phosphorylation were abrogated by either AG1478 (an inhibitor of epidermal growth factor receptor, EGFR) or EGFR small interfering RNA. Furthermore, clusterin treatment provoked tyrosine phosphorylation of EGFR (pY(1173)), which was also blocked by AG1478. These results suggest that clusterin requires EGFR activation to deliver its mitogenic signal through the Ras/Raf-1/MEK/ERK signaling cascade in astrocytes.
Collapse
|
26
|
Solichova P, Karpisek M, Ochmanova R, Hanulova Z, Humenanska V, Stejskal D, Bartek J. Urinary clusterin concentrations--a possible marker of nephropathy? Pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 151:233-6. [PMID: 18345256 DOI: 10.5507/bp.2007.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Clusterin is a glycoprotein which participates in a number of pathophysiological processes in the organism. Information about clusterin use in the diagnosis of nephropathy and the differential diagnosis of proteinuria has been published recently. AIM Search for correlations between urinary clusterin concentration and other renal function markers. Evaluation of urinary clusterin measurement use in the differential diagnosis of nephropathy. METHODS Urea, creatinine, IgG, transferin, Na, K in serum and 24-hour collected urine were measured in a sample of 82 individuals. Cystatin C in sera was also measured as were GMT, alpha-1 microglobulin, albumin, total protein in urine. In all probands urinary clusterin was assayed (ELISA). RESULTS Urinary clusterin values correlated with urinary total protein concentrations (r = 0.28; p = 0.018), total protein/creatinine index (r = 0.26; p = 0.02). No correlation was found between urine clusterin concentration and glomerular filtration rate, age, urine GMT/creatinine, alpha-1-microglobulin, urine albumin and albumin/creatinine ratio or Na, K fractional excretions. We found no urinary clusterin differences by sex of probands. No evidence of any relationship between urine clusterin and presence of defect of renal function, number of risk factors (chi(2) = 16.0; DF = 15; p = 0.38), albumin/creatinine index (chi(2) = 0.76; DF = 3; p = 0,86), total protein/creatinine (chi(2) = 6.5; DF = 3; p = 0.09), GMT/creatinine (chi(2) = 2.3; DF = 3; p = 0.51), high urinary alpha-1-microglobulin (chi(2) = 4.1; DF = 3; p = 0.25) or decreased of GFR (chi(2) = 1.3; DF = 3; p = 0.74). CONCLUSIONS A positive correlation exists between urinary clusterin and urinary total protein and total protein/ creatinine index. Urinary clusterin measurement with ELISA test does not offer any advantage over routinely used parameters for nephropathy diagnosis and the differential diagnosis of proteinuria type.
Collapse
Affiliation(s)
- Pavlina Solichova
- Department of Laboratory Medicine, Hospital Sternberk Branch Office Central Moravia Hospital Company, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sordi V, Bertuzzi F, Piemonti L. Diabetes mellitus: an opportunity for therapy with stem cells? Regen Med 2008; 3:377-97. [PMID: 18462060 DOI: 10.2217/17460751.3.3.377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In both Type 1 and 2 diabetes, insufficient numbers of insulin-producing beta-cells are a major cause of defective control of blood glucose and its complications. Restoration of damaged beta-cells by endocrine pancreas regeneration would be an ideal therapeutic option. The possibility of generating insulin-secreting cells with adult pancreatic stem or progenitor cells has been investigated extensively. The conversion of differentiated cells such as hepatocytes into beta-cells is being attempted using molecular insights into the transcriptional make-up of beta-cells. Additionally, the enhanced proliferation of beta-cells in vivo or in vitro is being pursued as a strategy for regenerative medicine for diabetes. Advances have also been made in directing the differentiation of embryonic stem cells into beta-cells. Although progress is encouraging, major gaps in our understanding of developmental biology of the pancreas and adult beta-cell dynamics remain to be bridged before a therapeutic application is made possible.
Collapse
Affiliation(s)
- Valeria Sordi
- Laboratory of Experimental Surgery, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|
28
|
Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 2007; 18:393-400. [PMID: 18023200 DOI: 10.1016/j.tem.2007.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 09/21/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are 18-22 nucleotide RNA molecules that mediate post-transcriptional gene silencing, primarily by binding to the 3' untranslated region of their target mRNA. Several studies have demonstrated the role of miRNAs in mouse pancreas development (miR-124a, miR-503, miR-541, miR-214) as well as in insulin secretion (miR-375, miR-9). Pancreatic transcription factors that are temporally expressed during early pancreas development are re-expressed during pancreas regeneration following pancreatectomy in mice. The only exception to this is Neurogenin3 (NGN3). Here, we discuss recent evidence for miRNA-mediated silencing of ngn3, which inhibits endocrine cell development via the classical 'stem cell pathway' during mouse pancreatic regeneration, thereby favoring beta-cell regeneration.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Stem Cells and Diabetes Section, Lab 10, National Center for Cell Science, Ganeshkhind Road, Pune 411007, India
| | | | | |
Collapse
|
29
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2007; 14:170-96. [PMID: 17940437 DOI: 10.1097/med.0b013e3280d5f7e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Shin YJ, Kang SW, Jeong SY, Shim YJ, Kim YH, Kim BM, Kee SH, Park JJ, Park IS, Min BH. Clusterin enhances proliferation of primary astrocytes through extracellular signal-regulated kinase activation. Neuroreport 2007; 17:1871-5. [PMID: 17179861 DOI: 10.1097/wnr.0b013e328010ac99] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Clusterin, a secretory glycoprotein, has been shown to be up-regulated in the reactive astrocytes in response to brain injury and neurodegenerative diseases, but its function has not been clearly elucidated. In this study, we investigate whether clusterin has growth-stimulatory activity in astrocytes. Suppression of clusterin with antisense oligonucleotide induced growth arrest, whereas transient overexpression of clusterin by cDNA transfection or exogenous treatment with purified clusterin promoted proliferation of the primary astrocytes in culture. This clusterin-stimulated proliferation was abrogated by PD98059, an inhibitor of mitogen-activated protein kinase kinase. These results suggest that clusterin might play an important role in astrogliosis by stimulating the proliferation of astrocytes through activation of the extracellular signal-regulated kinase 1/2 signaling pathway.
Collapse
Affiliation(s)
- Yong-Jae Shin
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In the twenty-first century, diabetic patients are likely to be one of the major beneficiaries from the advancement of regenerative medicine through cellular therapies. Though the existence of a specific self-renewing stem cell within the pancreas is still far from clear, a surprising variety of cells within the pancreas can differentiate towards a beta-cell phenotype: ductular cells, periductular mesenchymal cells and beta-cells themselves can all give rise to new beta-cells. Extra-pancreatic adult somatic stem cells, in particular, those originating from bone marrow may also be capable of differentiating to beta-cells, though equally well the beneficial effects of bone marrow cells may reside in their contribution to the damaged islet vasculature. Forced expression of the beta-cell-specific transcription factor Pdx1 in hepatocytes also holds promise as a therapeutic strategy to increase insulin levels in diabetic individuals. Embryonic stem (ES) cells are clearly another possible source for generating beta-cells, but ES cells are beyond the scope of this review, which focuses on adult stem and progenitor cells capable of producing beta-cells. Despite considerable endeavour, we still have much to learn in the field of pancreatic regeneration prior to any clinically applicable therapy based upon adult stem cells.
Collapse
Affiliation(s)
- Tariq G Fellous
- Centre for Diabetes and Metabolic Medicine, Queen Mary's School of Medicine and Dentistry, Institute of Cell and Molecular Science, 4 Newark Street, Whitechapel, London E1 2AT.
| | | | | | | |
Collapse
|
32
|
Gao R, Ustinov J, Korsgren O, Mikkola M, Lundin K, Otonkoski T. Maturation of in vitro-generated human islets after transplantation in nude mice. Mol Cell Endocrinol 2007; 264:28-34. [PMID: 17116362 DOI: 10.1016/j.mce.2006.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 10/03/2006] [Accepted: 10/03/2006] [Indexed: 11/17/2022]
Abstract
The long-term function of human pancreatic islet grafts may depend on the neogenesis of beta cells from epithelial precursors within the grafted tissue. We have developed an in vitro model for human islet neogenesis. In this study, we have investigated the morphological signs of maturation in cultivated human islet buds (CHIBs) before and after transplantation. Clusterin is a molecule associated with beta-cell differentiation in rodents. In adult human islets, clusterin expression was located only in alpha- and PP-cells, but in CHIBs and human fetal islets, it was distributed in all four types of endocrine cells. Some immature endocrine cells in the CHIBs co-expressed insulin and glucagon. After transplantation, CHIBs became mature with one type of hormone per endocrine cell, and clusterin expression became restricted in alpha-cells. Cells co-expressing endocrine markers and cytokeratin 19, as a sign of ductal to endocrine cell transition, were frequently detected in both fresh islets and CHIBs after transplantation. We conclude that clusterin may be involved in the development of islets, and the in vitro-derived islets become mature after transplantation into nude mice. Ductal cell differentiation into endocrine cells may be an important factor in sustaining the long-term function of islet transplants.
Collapse
Affiliation(s)
- Ru Gao
- Program of Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
33
|
Itahana Y, Piens M, Sumida T, Fong S, Muschler J, Desprez PY. Regulation of clusterin expression in mammary epithelial cells. Exp Cell Res 2006; 313:943-51. [PMID: 17274979 PMCID: PMC1853384 DOI: 10.1016/j.yexcr.2006.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 11/22/2006] [Accepted: 12/14/2006] [Indexed: 11/18/2022]
Abstract
Mammary epithelial cells undergo changes in growth, invasion, differentiation, and dedifferentiation throughout much of adult hood, and most strikingly during pregnancy, lactation, and involution. Clusterin is a multifunctional glycoprotein that is involved in the differentiation and morphogenesis of epithelia, and that is important in the regulation of postnatal mammary gland development. However, the mechanisms that regulate clusterin expression are still poorly understood. Here, we show that clusterin is up-regulated twice during mouse mammary gland development, a first time at the end of pregnancy and a second time at the beginning of the involution. These points of clusterin up-regulation coincide with the dramatic phenotypic and functional changes occurring in the mammary gland. Using cell culture conditions that resemble the regulatory microenvironment in vivo, we determined that the factors responsible for the first up-regulation of clusterin levels can include the extracellular matrix component, laminin, and the lactogenic hormones, prolactin and hydrocortisone. On the other hand, the second and most dramatic up-regulation of clusterin can be due to the potent induction by TGF-beta1, and this up-regulation by TGF-beta1 is dependent on beta1 integrin ligand-binding activity. Moreover, the level of expression of beta-casein, a marker of mammary epithelial cell differentiation, was decreased upon treatment of cells with clusterin siRNA. Overall, these findings reveal several novel pathways for the regulation of clusterin expression during mammary gland development, and suggest that clusterin is a morphogenic factor that plays a key role during differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | - Pierre-Yves Desprez
- Corresponding author: California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107; Tel: (415) 600-1760; Fax (415) 600-1725; E-mail:
| |
Collapse
|