1
|
Rahati S, Kamalinezhad M, Ebrahimi A, Eshraghian M, Pishva H. Accelerated wound healing induced by spinach extract in experimental model diabetic rats with streptozotocin. Sci Rep 2023; 13:14933. [PMID: 37696865 PMCID: PMC10495437 DOI: 10.1038/s41598-023-42033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Patients with diabetes often have difficult-to-heal wounds. Spinacia oleracea extract comprises anti-inflammatory and anti-oxidative compounds; this research, therefore, studied the impact of Spinacia oleracea extracts on ulcer regeneration. This study was conducted on 72 adult Wistar rats (200 [Formula: see text] 20 g). They were randomly divided into six groups of twelve. A: Diabetic group receiving normal saline. B: Non-diabetic group receiving normal saline. C: Diabetic group receiving spinach aqueous extract. D: Diabetic group receiving spinach alcoholic extract. E: preventive group that received aqueous extract for 2 months. F: preventive group that received alcoholic extract for 2 months. Ulcer regeneration, vascular endothelium growth factor, blood sugar, and weight changes were measured on days 3, 7, 14, 21, and 30. Macroscopic investigation of the wounds non-diabetic control group, diabetic group, as well as spinach aqueous and alcoholic extract groups, were compared and there were significant changes (P < 0.05). Pathologic examination in the spinach aqueous and alcoholic extract groups, and nondiabetic group than in the diabetic group revealed significant advances (P < 0.05). On the third and seventh days, Vascular endothelium growth factor detected significant differences between groups (P < 0.05). Results indicate that, in regenerating diabetic ulcers, Spinacia oleracea may be effective. It influences the ulcer structure and speed.
Collapse
Affiliation(s)
- Sara Rahati
- Department of Cellular - Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Abdolali Ebrahimi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Eshraghian
- Department of Epidemiology and Biostatistic, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Pishva
- Department of Cellular - Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Impact of Dietary Crude Protein Level on Hepatic Lipid Metabolism in Weaned Female Piglets. Animals (Basel) 2021; 11:ani11061829. [PMID: 34207398 PMCID: PMC8235084 DOI: 10.3390/ani11061829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary It has been reported that a high crude protein diet could reverse the diet-induced lipid accumulation in the liver of mice and rodents. However, in vivo data supporting a functional role of a high crude protein diet on hepatic lipid metabolism-associated genes and proteins in weaned piglets is not available. In the present study, we aimed to provide a mechanistic insight into alterations in the hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis in response to different dietary crude protein levels. Our results demonstrated that dietary crude protein could regulate hepatic lipid metabolism through regulating hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis. The result indicated an important role of dietary crude protein in regulating hepatic lipid metabolism in weaned piglets. Abstract Amino acids serve not only as building blocks for proteins, but also as substrates for the synthesis of low-molecular-weight substances involved in hepatic lipid metabolism. In the present study, eighteen weaned female piglets at 35 days of age were fed a corn- and soybean meal-based diet containing 20%, 17%, or 14% crude protein (CP), respectively. We found that 17% or 20% CP administration reduced the triglyceride and cholesterol concentrations, while enhanced high-density lipoprotein cholesterol (HDL-C) concentration in serum. Western blot analysis showed that piglets in the 20% CP group had higher protein abundance of hormone-sensitive triglyceride lipase (HSL) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), as compared with other groups. Moreover, the mRNA expression of sterol regulatory element binding transcription factor 1 (SREBPF1), fatty acid synthase (FASN), and stearoyl-CoA desaturase (SCD) were lower in the 17% or 20% CP group, compared with those of the piglets administered with 14% CP. Of note, the mRNA level of acetyl-CoA carboxylase alpha (ACACα) was lower in the 17% CP group, compared with other groups. Additionally, the mRNA level of lipoprotein lipase (LPL), peroxisome proliferator-activated receptor alpha α (PPARα), glucose-6-phosphatase catalytic subunit (G6PC), and phosphoenolpyruvate carboxykinase 1 (PKC1) in the liver of piglets in the 20% CP group were higher than those of the 14% CP group. Collectively, our results demonstrated that dietary CP could regulate hepatic lipid metabolism through altering hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis.
Collapse
|
3
|
de Meeûs d’Argenteuil C, Boshuizen B, Oosterlinck M, van de Winkel D, De Spiegelaere W, de Bruijn CM, Goethals K, Vanderperren K, Delesalle CJG. Flexibility of equine bioenergetics and muscle plasticity in response to different types of training: An integrative approach, questioning existing paradigms. PLoS One 2021; 16:e0249922. [PMID: 33848308 PMCID: PMC8043414 DOI: 10.1371/journal.pone.0249922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Equine bioenergetics have predominantly been studied focusing on glycogen and fatty acids. Combining omics with conventional techniques allows for an integrative approach to broadly explore and identify important biomolecules. Friesian horses were aquatrained (n = 5) or dry treadmill trained (n = 7) (8 weeks) and monitored for: evolution of muscle diameter in response to aquatraining and dry treadmill training, fiber type composition and fiber cross-sectional area of the M. pectoralis, M. vastus lateralis and M. semitendinosus and untargeted metabolomics of the M. pectoralis and M. vastus lateralis in response to dry treadmill training. Aquatraining was superior to dry treadmill training to increase muscle diameter in the hindquarters, with maximum effect after 4 weeks. After dry treadmill training, the M. pectoralis showed increased muscle diameter, more type I fibers, decreased fiber mean cross sectional area, and an upregulated oxidative metabolic profile: increased β-oxidation (key metabolites: decreased long chain fatty acids and increased long chain acylcarnitines), TCA activity (intermediates including succinyl-carnitine and 2-methylcitrate), amino acid metabolism (glutamine, aromatic amino acids, serine, urea cycle metabolites such as proline, arginine and ornithine) and xenobiotic metabolism (especially p-cresol glucuronide). The M. vastus lateralis expanded its fast twitch profile, with decreased muscle diameter, type I fibers and an upregulation of glycolytic and pentose phosphate pathway activity, and increased branched-chain and aromatic amino acid metabolism (cis-urocanate, carnosine, homocarnosine, tyrosine, tryptophan, p-cresol-glucuronide, serine, methionine, cysteine, proline and ornithine). Trained Friesians showed increased collagen and elastin turn-over. Results show that branched-chain amino acids, aromatic amino acids and microbiome-derived xenobiotics need further study in horses. They feed the TCA cycle at steps further downstream from acetyl CoA and most likely, they are oxidized in type IIA fibers, the predominant fiber type of the horse. These study results underline the importance of reviewing existing paradigms on equine bioenergetics.
Collapse
Affiliation(s)
- Constance de Meeûs d’Argenteuil
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, The Netherlands
| | - Maarten Oosterlinck
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Klara Goethals
- Department of Nutrition, Genetics and Ethology, Research Group Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine John Ghislaine Delesalle
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Jafari-Vayghan H, Varshosaz P, Hajizadeh-Sharafabad F, Razmi HR, Amirpour M, Tavakoli-Rouzbehani OM, Alizadeh M, Maleki V. A comprehensive insight into the effect of glutamine supplementation on metabolic variables in diabetes mellitus: a systematic review. Nutr Metab (Lond) 2020; 17:80. [PMID: 32983244 PMCID: PMC7517657 DOI: 10.1186/s12986-020-00503-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is one of the most important threats to human health in the twenty-first century.
The use of complementary and alternative medicine to prevent, control, and reduce the complications of diabetes mellitus is increasing at present. Glutamine amino acid is known as a functional food.
The purpose of this systematic review is to determine the potential role of glutamine supplementation on metabolic variables in diabetes mellitus. For this review, PubMed, SCOPUS, Embase, ProQuest, and Google Scholar databases were searched from inception through April 2020. All clinical trial and animal studies assessing the effects of glutamine on diabetes mellitus were eligible for inclusion. 19 studies of 1482 articles met the inclusion criteria. Of the 19 studies, nine studies reported a significant increase in serum GLP-1 levels. Also, eight studies showed reducing in serum levels of fasting blood sugar, four studies reducing in postprandial blood sugar, and triglyceride after glutamine supplementation. Although glutamine resulted in a significant increase in insulin production in seven studies, the findings on Hb-A1c levels were inconclusive. In addition to, despite of the results was promising for the effects of glutamine on weight changes, oxidative stress, and inflammation, more precise clinical trials are needed to obtain more accurate results. In conclusion, glutamine supplementation could improve glycemic control and levels of incretins (such as GLP-1 and GIP) in diabetes mellitus. However, more studies are needed for future studies.
Collapse
Affiliation(s)
- Hamed Jafari-Vayghan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Parisa Varshosaz
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON Canada
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Razmi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Amirpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Mansour A, Mohajeri-Tehrani MR, Qorbani M, Ghamari M, Larijani B, Hosseini S. Postprandial glycemia and insulin secretion following glutamine administration: A randomized controlled trial. INT J VITAM NUTR RES 2020; 90:425-429. [PMID: 32729784 DOI: 10.1024/0300-9831/a000463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Objective: The objective of the present study is to investigate the effects of glutamine administration on postprandial glycemia, insulin, and C-peptide concentration in patients with type 2 diabetes. Methods: A randomized, double-blind, placebo-controlled trial was conducted on patients with type 2 diabetes so that 33 subjects were recruited in each group. The patients were randomly allocated to receive either 30 g/d glutamine or placebo (with instructions to take in half glass of ice-cold water 5 to 10 min before each main meal) for 6 weeks. Postprandial C-peptide, insulin, and glucose were measured at the baseline and at the end of the study at 30 and 90 min after consuming a meal comprising wheat-cake and reduced fat milk. Results: The repeated measures ANOVA revealed no significant difference between the groups for glucose and insulin after 6 weeks of intervention (p > 0.05). However, C-peptide was reduced in both intervention groups at all measurement points. Between-group differences remained significant by the end of the study (p = 0.02). Conclusions: Glutamine supplementation before each main meal does not represent an effective nutritional strategy to improve postprandial glycemic control or postprandial insulin secretion in type 2 diabetes patients.
Collapse
Affiliation(s)
- Asieh Mansour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Department of Biostatistics and Epidemiology, Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahsa Ghamari
- Student Research Committee Faculty of Medical Urima, University of Medical Sciences, Uremia, Iran
| | - Bagher Larijani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
de Fatima Silva F, de Morais H, Ortiz Silva M, da Silva FG, Vianna Croffi R, Serrano-Nascimento C, Rodrigues Graciano MF, Rafael Carpinelli A, Barbosa Bazotte R, de Souza HM. Akt activation by insulin treatment attenuates cachexia in Walker-256 tumor-bearing rats. J Cell Biochem 2020; 121:4558-4568. [PMID: 32056265 DOI: 10.1002/jcb.29682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/16/2020] [Indexed: 11/11/2022]
Abstract
Cancer-bearing often exhibits hypoinsulinemia, insulin (INS) resistance and glutamine depletion associated with cachexia. However, INS and glutamine effects on cachexia metabolic abnormalities, particularly on tumor-affected proteins related to INS resistance, are poorly known. The main purpose of this study was to investigate the effects of INS and glutamine dipeptide (GDP) treatments on phospho-protein kinase B (p-Akt), and phospho-hormone sensitive lipase (p-HSL) in Walker-256 tumor-bearing rats. INS (NPH, 40 UI/kg, subcutaneous), GDP (1.5 g/kg, oral), INS+GDP or vehicle (control rats) were administered for 13 days, once a day, starting at the day of inoculation of tumor cells. The experiments were performed 4 hours after the last treatment to evaluate acute effects of INS and GDP, besides the chronic effects. INS and/or INS+GDP treatments, which markedly increased the insulinemia, increased the p-Akt: total Akt ratio and prevented the increased p-HSLSer552 : total HSL ratio in the retroperitoneal fat of tumor-bearing rats, without changing the INS resistance and increased expression of factor tumor necrosis-α (TNF-α) in this tissue. INS and INS+GDP also increased the p-Akt: total Akt ratio, whereas GDP and INS+GDP increased the GLUT4 glucose transporter gene expression, in the gastrocnemius muscle of the tumor-bearing rats. Accordingly, treatments with INS and INS+GDP markedly reduced glycemia, increased retroperitoneal fat and attenuated the body mass loss of tumor-bearing rats. In conclusion, hyperinsulinemia induced by high-dose INS treatments increased Akt phosphorylation and prevented increased p-HSLSer552 : total HSL ratio, overlapping INS resistance. These effects are consistent with increased fat mass gain and weight loss (cachexia) attenuation of tumor-bearing rats, evidencing that Akt activation is a potential strategy to prevent loss of fat mass in cancer cachexia.
Collapse
Affiliation(s)
| | - Hely de Morais
- Department of Physiological Sciences, State University of Londrina, Londrina, Parana, Brazil
| | - Milene Ortiz Silva
- Department of Physiological Sciences, State University of Londrina, Londrina, Parana, Brazil
| | | | - Rafael Vianna Croffi
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Parana, Brazil
| | | | | | | | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringa, Parana, Brazil
| | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Parana, Brazil
| |
Collapse
|
7
|
Feng J, Lu S, Ou B, Liu Q, Dai J, Ji C, Zhou H, Huang H, Ma Y. The Role of JNk Signaling Pathway in Obesity-Driven Insulin Resistance. Diabetes Metab Syndr Obes 2020; 13:1399-1406. [PMID: 32425571 PMCID: PMC7196768 DOI: 10.2147/dmso.s236127] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is not only closely related to insulin resistance but is one of the main factors leading to the formation of Type 2 Diabetes (T2D) too. The c-Jun N-terminal kinase (JNK) family is a member of the mitogen-activated protein kinase (MAPK) superfamily. JNK is also one of the most investigated signal transducers in obesity and insulin resistance. JNK-centric JNK signaling pathway can be activated by growth factors, cytokines, stress responses, and other factors. Many researches have identified that the activated phosphorylation JNK negatively regulates insulin signaling pathway in insulin resistance which can be simultaneously regulated by multiple signaling pathways related to the JNK signaling pathway. In this review, we provide an overview of the composition of the JNK signaling pathway, its regulation of insulin signaling pathway, and the relationship between the JNK signaling pathway and other pathways in insulin resistance.
Collapse
Affiliation(s)
- Jia Feng
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Shiyin Lu
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Biqian Ou
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Qian Liu
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Jiaxin Dai
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Chunyan Ji
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Haiqing Zhou
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Hongke Huang
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
| | - Yi Ma
- Institute of Biomedicine, Department of Cellular Biology, Jinan University, Guangzhou, People’s Republic of China
- National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, People’s Republic of China
- Correspondence: Yi Ma Institute of Biomedicine, Department of Cellular Biology, Jinan University, 601 Huangpu Ave West, Guangzhou, Guangdong510632, People’s Republic of China Tel/Fax +86 20 8522 1983 Email
| |
Collapse
|
8
|
Azizi S, Mahdavi R, Vaghef-Mehrabany E, Maleki V, Karamzad N, Ebrahimi-Mameghani M. Potential roles of Citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus, current evidence and future directions: A systematic review. Clin Exp Pharmacol Physiol 2019; 47:187-198. [PMID: 31612510 DOI: 10.1111/1440-1681.13190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Diabetes mellitus is a prevalent endocrine disorder worldwide. Citrulline is an α-amino acid, which is abundant in watermelon, and a precursor of arginine and nitric oxide. Decreased bioavailability of nitric oxide is associated with insulin resistance. The present systematic review focused on the existing evidence of citrulline and watermelon extract effects on metabolic and inflammatory parameters in diabetes mellitus. METHODS A systematic search of the databases PubMed, Scopus, EMBASE, ProQuest and Google Scholar was conducted for relevant papers published from inception until October 2018. All clinical trials, animal and in vitro studies published in the English language that assessed the role of citrulline and watermelon extract on diabetes mellitus, were eligible. Studies providing inadequate information were excluded. RESULTS Out of 1262 articles we found, only eight articles met the inclusion criteria for analysis. In three studies an increase in the synthesis of nitric oxide was reported with citrulline and watermelon extract supplementation. Four studies showed a significant reduction in blood glucose after supplementation with watermelon extract, and two studies reported a decrease in a number of inflammatory biomarkers following citrulline supplementation. Although citrulline intake caused a significant reduction in HOMA-IR in one study, inconsistent results were revealed on the effects of citrulline and watermelon extract on insulin levels and lipid profile. CONCLUSION Citrulline and watermelon extract could improve nitric oxide synthesis, glycaemic status and inflammation in diabetes mellitus. However, further studies are required to shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Samaneh Azizi
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Vaghef-Mehrabany
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Karamzad
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Durante W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients 2019; 11:nu11092092. [PMID: 31487814 PMCID: PMC6769761 DOI: 10.3390/nu11092092] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence indicates that l-glutamine (Gln) plays a fundamental role in cardiovascular physiology and pathology. By serving as a substrate for the synthesis of DNA, ATP, proteins, and lipids, Gln drives critical processes in vascular cells, including proliferation, migration, apoptosis, senescence, and extracellular matrix deposition. Furthermore, Gln exerts potent antioxidant and anti-inflammatory effects in the circulation by inducing the expression of heme oxygenase-1, heat shock proteins, and glutathione. Gln also promotes cardiovascular health by serving as an l-arginine precursor to optimize nitric oxide synthesis. Importantly, Gln mitigates numerous risk factors for cardiovascular disease, such as hypertension, hyperlipidemia, glucose intolerance, obesity, and diabetes. Many studies demonstrate that Gln supplementation protects against cardiometabolic disease, ischemia-reperfusion injury, sickle cell disease, cardiac injury by inimical stimuli, and may be beneficial in patients with heart failure. However, excessive shunting of Gln to the Krebs cycle can precipitate aberrant angiogenic responses and the development of pulmonary arterial hypertension. In these instances, therapeutic targeting of the enzymes involved in glutaminolysis such as glutaminase-1, Gln synthetase, glutamate dehydrogenase, and amino acid transaminase has shown promise in preclinical models. Future translation studies employing Gln delivery approaches and/or glutaminolysis inhibitors will determine the success of targeting Gln in cardiovascular disease.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
10
|
Coqueiro AY, Raizel R, Bonvini A, Rogero MM, Tirapegui J. Effects of glutamine and alanine supplementation on muscle fatigue parameters of rats submitted to resistance training. Nutrition 2019; 65:131-137. [PMID: 31100607 DOI: 10.1016/j.nut.2018.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/29/2018] [Indexed: 11/16/2022]
|
11
|
Yi M, Li Q, Zhao Y, Nie S, Wu N, Wang D. Metabolomics study on the therapeutic effect of traditional Chinese medicine Xue-Fu-Zhu-Yu decoction in coronary heart disease based on LC-Q-TOF/MS and GC-MS analysis. Drug Metab Pharmacokinet 2019; 34:340-349. [PMID: 31474470 DOI: 10.1016/j.dmpk.2019.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
The present study aims is to investigate the metabolic mechanism of Xue-Fu-Zhu-Yu decoction (XFZYD) in the treatment of blood-stasis syndrome in Coronary Heart Disease (CHD). To that end, 30 CHD patients with Blood-Stasis Syndrome (BSS) and 20 healthy subjects were enrolled. LC-Q-TOF/MS analysis determined that in comparison between CHD with BSS patients (Group A) and healthy subjects (Group C), 59 significantly differential metabolites in the positive mode and 18 significantly differential metabolites in the negative mode. The metabolite constituents in the plasma of 30 CHD with BSS patients before (group A) and after 30 days of treatment (Group B), and 20 healthy subjects (Group C) were analyzed using LC-Q-TOF/MS and GC-MS. Based on multivariate statistical analysis (PCA, PLS-DA and OPLS-DA), we determined 69 differential metabolites. The levels of hemorheology indexes were significantly down-regulated after treatment. Metabolic pathway attribution analysis showed that lipid metabolism, amino acid metabolism and bile acid metabolism pathways are involved. Our study identifies the metabolic networks of CHD and demonstrates the efficacy of this metabolomics approach to systematically study the therapeutic effect of XFZYC on CHD.
Collapse
Affiliation(s)
- Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Qiuxia Li
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Yuhang Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Shanshan Nie
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Ning Wu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| |
Collapse
|
12
|
Bashandy GM, Boules NS, Taha FM. Effects of a single preoperative dose of N(2)-L-alanyl-L-glutamine on insulin resistance and plasma glutathione levels in the early postoperative period. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2013.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ghada M.N. Bashandy
- Department of Anesthesiology and Pain Management, National Cancer Institute, Cairo University, Egypt
| | - Nermin S. Boules
- Department of Anesthesiology and Pain Management, National Cancer Institute, Cairo University, Egypt
| | - Fatma M. Taha
- Department of Medical Biochemistry, Cairo University, Egypt
| |
Collapse
|
13
|
Coqueiro AY, Raizel R, Bonvini A, Godois ADM, Hypólito TM, Pereira JRR, Rogero MM, Tirapegui J. Effects of Glutamine and Alanine Supplementation on Adiposity, Plasma Lipid Profile, and Adipokines of Rats Submitted to Resistance Training. J Diet Suppl 2018; 16:676-688. [PMID: 29985713 DOI: 10.1080/19390211.2018.1472716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glutamine and alanine are lipogenic and could prevent the effects of resistance training (RT) in reducing adiposity and modulating lipid profile. Thus, we aimed to investigate the effects of RT and glutamine and alanine supplementation, in their free or conjugated form, on relative epididymal adipose tissue (EAT) and brown adipose tissue (BAT) weight, plasma lipid profile, and adipokines in EAT. Thirty Wistar rats, aged two months, were distributed into five groups: control (CTRL), trained (TRN), trained and supplemented with alanine (ALA), glutamine and alanine in their free form (GLN+ALA), or L-alanyl-L-glutamine (DIP). Trained groups underwent a ladder-climbing exercise for eight weeks, with progressive load increase. Supplementations were offered in a solution with a concentration of 4% in the last 21 days of training. Food consumption and body weight gain were decreased in the TRN group compared with CTRL. RT also reduced relative EAT and BAT weight, while supplementations, especially with ALA, increased adipose tissue mass. RT reduced total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) (TRN vs. CTRL), whereas glutamine and alanine supplementation increased TC and LDL-c, impairing lipid profile modulation by physical exercise. RT did not affect the concentrations of adipokines in EAT, but DIP supplementation increased interleukin- (IL-) 6 and IL-10. In conclusion, RT reduced adiposity and modulated lipid profile, whereas glutamine and alanine supplementation increased adiposity and impaired lipid profile but increased the concentration of the anti-inflammatory cytokines IL-6 and IL-10 in EAT.
Collapse
Affiliation(s)
- Audrey Yule Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , SP , Brazil
| | - Raquel Raizel
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , SP , Brazil
| | - Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , SP , Brazil
| | | | - Thaís Menezes Hypólito
- Department of Nutrition, Faculty of Public Health, University of São Paulo , São Paulo , SP , Brazil
| | - Jessica Ramos Rocha Pereira
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , SP , Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo , São Paulo , SP , Brazil
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , SP , Brazil
| |
Collapse
|
14
|
Smirnov VI, Badelin VG. Influence of the composition of aqueous-alcohol solvents on enthalpic characteristics of -glutamine dissolution at T= 298.15. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Liu Y, Liu FJ, Guan ZC, Dong FT, Cheng JH, Gao YP, Li D, Yan J, Liu CH, Han DP, Ma CM, Feng JN, Shen BF, Yang G. The extracellular domain of Staphylococcus aureus LtaS binds insulin and induces insulin resistance during infection. Nat Microbiol 2018; 3:622-631. [PMID: 29662128 DOI: 10.1038/s41564-018-0146-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/09/2018] [Indexed: 12/26/2022]
Abstract
Insulin resistance is a risk factor for obesity and diabetes and predisposes individuals to Staphylococcus aureus colonization; however, the contribution of S. aureus to insulin resistance remains unclear. Here, we show that S. aureus infection causes impaired glucose tolerance via secretion of an insulin-binding protein extracellular domain of LtaS, eLtaS, which blocks insulin-mediated glucose uptake. Notably, eLtaS transgenic mice (eLtaS trans ) exhibited a metabolic syndrome similar to that observed in patients, including increased food and water consumption, impaired glucose tolerance and decreased hepatic glycogen synthesis. Furthermore, transgenic mice showed significant metabolic differences compared to their wild-type counterparts, particularly for the early insulin resistance marker α-hydroxybutyrate. We subsequently developed a full human monoclonal antibody against eLtaS that blocked the interaction between eLtaS and insulin, which effectively restored glucose tolerance in eLtaS trans and S. aureus-challenged mice. Thus, our results reveal a mechanism for S. aureus-induced insulin resistance.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Fang-Jie Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zhang-Chun Guan
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | | | | | - Ya-Ping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Di Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jun Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Cheng-Hua Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Dian-Peng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chun-Mei Ma
- Health Care Center, Hospital of Chinese People's Armed Police Force, Beijing, China
| | - Jian-Nan Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Bei-Fen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China. .,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
16
|
Coqueiro AY, Raizel R, Bonvini A, Hypólito T, Godois ADM, Pereira JRR, Garcia ABDO, Lara RDSB, Rogero MM, Tirapegui J. Effects of Glutamine and Alanine Supplementation on Central Fatigue Markers in Rats Submitted to Resistance Training. Nutrients 2018; 10:E119. [PMID: 29370091 PMCID: PMC5852695 DOI: 10.3390/nu10020119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
Recent evidence suggests that increased brain serotonin synthesis impairs performance in high-intensity intermittent exercise and specific amino acids may modulate this condition, delaying fatigue. This study investigated the effects of glutamine and alanine supplementation on central fatigue markers in rats submitted to resistance training (RT). Wistar rats were distributed in: sedentary (SED), trained (CON), trained and supplemented with alanine (ALA), glutamine and alanine in their free form (G + A), or as dipeptide (DIP). Trained groups underwent a ladder-climbing exercise for eight weeks, with progressive loads. In the last 21 days, supplementations were offered in water with a 4% concentration. Albeit without statistically significance difference, RT decreased liver glycogen, and enhanced the concentrations of plasma glucose, free fatty acids (FFA), hypothalamic serotonin, and ammonia in muscle and the liver. Amino acids affected fatigue parameters depending on the supplementation form. G + A prevented the muscle ammonia increase by RT, whereas ALA and DIP augmented ammonia and glycogen concentrations in muscle. DIP also increased liver ammonia. ALA and G + A reduced plasma FFA, whereas DIP increased this parameter, free tryptophan/total tryptophan ratio, hypothalamic serotonin, and the serotonin/dopamine ratio. The supplementations did not affect physical performance. In conclusion, glutamine and alanine may improve or impair central fatigue markers depending on their supplementation form.
Collapse
Affiliation(s)
- Audrey Yule Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, São Paulo SP 05508-000, Brazil.
| | - Raquel Raizel
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, São Paulo SP 05508-000, Brazil.
| | - Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, São Paulo SP 05508-000, Brazil.
| | - Thaís Hypólito
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo SP 01246-904, Brazil.
| | - Allan da Mata Godois
- Faculty of Nutrition, Federal University of Mato Grosso, Avenida Fernando Correa 2367, Cuiabá MT 78060-900, Brazil.
| | - Jéssica Ramos Rocha Pereira
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, São Paulo SP 05508-000, Brazil.
| | - Amanda Beatriz de Oliveira Garcia
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, São Paulo SP 05508-000, Brazil.
| | - Rafael de Souza Bittencourt Lara
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, São Paulo SP 05508-000, Brazil.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo SP 01246-904, Brazil.
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, São Paulo SP 05508-000, Brazil.
| |
Collapse
|
17
|
Soares TS, Andreolla AP, Miranda CA, Klöppel E, Rodrigues LS, Moraes-Souza RQ, Damasceno DC, Volpato GT, Campos KE. Effect of the induction of transgenerational obesity on maternal-fetal parameters. Syst Biol Reprod Med 2017; 64:51-59. [PMID: 29227690 DOI: 10.1080/19396368.2017.1410866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal obesity can cause complications for both women and their offspring for generations. Therefore, we intended to verify the repercussions of induction of transgenerational obesity on biochemical parameters, reproductive performance, and congenital anomaly frequency in Wistar rats. Female rats were used from successive generations. The female rats of parental generation (F0, n=10) were mated to obtain their offspring (F1 generation). F1 female rats received a monosodium glutamate (MSG) solution to induce obesity (n=07) or vehicle (control, n=06) during the neonatal period. These adult female rats were classified as normal or obese using the Lee Index, mated, and delivered offspring (F2 generation), which were also evaluated for obesity using the Lee Index in adult life (F2MSG, n=13, born from obese dams) or non-obesity status (F2Control, n=12, born from control dams), and were mated in adulthood. During pregnancy, glycemia and an oral glucose tolerance test (OGTT) were analyzed. At term pregnancy, the females were sacrificed for serum biochemical profile, maternal reproductive outcomes, and fetal development. In F2MSG rats, body weight gain at early pregnancy, glycemia by OGTT, total cholesterol, high-density-lipoprotein, and alanine transaminase activity were higher compared with those of F2Control rats. F2MSG rats also presented a lower implantation number and gravid uterus weight, increased pre-implantation loss and anomaly frequency in their fetuses (F3 generation) compared with those of F2Control rats. Therefore, even without significant changes in body weight gain, obesity was established at the end of pregnancy of Wistar rats using other biomarkers. Additionally, these rats showed multiple adverse reproductive outcomes, confirming the deleterious effects that lead to obesity.
Collapse
Affiliation(s)
- Thaigra Sousa Soares
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil.,b Gynecology, Obstetrics and Mastology Graduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School , Univ Estadual Paulista_Unesp , Botucatu , São Paulo State , Brazil
| | - Ana Paula Andreolla
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil
| | - Carolina Abreu Miranda
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil.,b Gynecology, Obstetrics and Mastology Graduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School , Univ Estadual Paulista_Unesp , Botucatu , São Paulo State , Brazil
| | - Eduardo Klöppel
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil.,b Gynecology, Obstetrics and Mastology Graduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School , Univ Estadual Paulista_Unesp , Botucatu , São Paulo State , Brazil
| | - Luhara Silva Rodrigues
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil
| | - Rafaianne Queiroz Moraes-Souza
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil.,b Gynecology, Obstetrics and Mastology Graduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School , Univ Estadual Paulista_Unesp , Botucatu , São Paulo State , Brazil
| | - Débora Cristina Damasceno
- b Gynecology, Obstetrics and Mastology Graduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School , Univ Estadual Paulista_Unesp , Botucatu , São Paulo State , Brazil
| | - Gustavo Tadeu Volpato
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil.,b Gynecology, Obstetrics and Mastology Graduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School , Univ Estadual Paulista_Unesp , Botucatu , São Paulo State , Brazil
| | - Kleber Eduardo Campos
- a Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) , Barra do Garças , Mato Grosso State , Brazil.,b Gynecology, Obstetrics and Mastology Graduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School , Univ Estadual Paulista_Unesp , Botucatu , São Paulo State , Brazil
| |
Collapse
|
18
|
Wang T, Feugang JM, Crenshaw MA, Regmi N, Blanton JR, Liao SF. A Systems Biology Approach Using Transcriptomic Data Reveals Genes and Pathways in Porcine Skeletal Muscle Affected by Dietary Lysine. Int J Mol Sci 2017; 18:ijms18040885. [PMID: 28430144 PMCID: PMC5412465 DOI: 10.3390/ijms18040885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Nine crossbred finishing barrows (body weight 94.4 ± 6.7 kg) randomly assigned to three dietary treatments were used to investigate the effects of dietary lysine on muscle growth related metabolic and signaling pathways. Muscle samples were collected from the longissimus dorsi of individual pigs after feeding the lysine-deficient (4.30 g/kg), lysine-adequate (7.10 g/kg), or lysine-excess (9.80 g/kg) diet for five weeks, and the total RNA was extracted afterwards. Affymetrix Porcine Gene 1.0 ST Array was used to quantify the expression levels of 19,211 genes. Statistical ANOVA analysis of the microarray data showed that 674 transcripts were differentially expressed (at p ≤ 0.05 level); 60 out of 131 transcripts (at p ≤ 0.01 level) were annotated in the NetAffx database. Ingenuity pathway analysis showed that dietary lysine deficiency may lead to: (1) increased muscle protein degradation via the ubiquitination pathway as indicated by the up-regulated DNAJA1, HSP90AB1 and UBE2B mRNA; (2) reduced muscle protein synthesis via the up-regulated RND3 and ZIC1 mRNA; (3) increased serine and glycine synthesis via the up-regulated PHGDH and PSPH mRNA; and (4) increased lipid accumulation via the up-regulated ME1, SCD, and CIDEC mRNA. Dietary lysine excess may lead to: (1) decreased muscle protein degradation via the down-regulated DNAJA1, HSP90AA1, HSPH1, and UBE2D3 mRNA; and (2) reduced lipid biosynthesis via the down-regulated CFD and ME1 mRNA. Collectively, dietary lysine may function as a signaling molecule to regulate protein turnover and lipid metabolism in the skeletal muscle of finishing pigs.
Collapse
Affiliation(s)
- Taiji Wang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Mark A Crenshaw
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Naresh Regmi
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - John R Blanton
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
19
|
Quaresma PGF, Weissmann L, Zanotto TM, Santos AC, de Matos AHB, Furigo IC, Simabuco FM, Donato J, Bittencourt JC, Lopes-Cendes I, Prada PO. Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis. Int J Obes (Lond) 2016; 41:268-278. [PMID: 27733761 DOI: 10.1038/ijo.2016.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/21/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate whether the Cdc2-like kinase 2 (CLK2) is expressed in hypothalamic neurons and if it is, whether the hypothalamic CLK2 has a role in the regulation of energy balance. SUBJECTS Swiss mice on chow or high-fat diet (HFD) and db/db mice on chow diet were used to address the role of CLK2 in the hypothalamus. RESULTS Hypothalamic CLK2Thr343 phosphorylation, which induces CLK2 activity, is regulated in vivo by refeeding, insulin and leptin, in a PI3K (phosphoinositide 3-kinase)-dependent manner. The reduction of CLK2 expression in the hypothalamus, by chronic pharmacological inhibition with TG003 or by chronic knockdown with small interfering RNA was sufficient to abolish the anorexigenic effect of insulin and leptin, to increase body weight, fat mass, food intake and to decrease energy expenditure in mice on chow. In contrast, CLK2Thr343 phosphorylation in the hypothalamus in response to insulin, leptin or refeeding was impaired in mice on HFD or in db/db mice. Chronic CLK2 inhibition in the hypothalamus was associated with a slight increase in the fasting blood glucose levels, reduction in PEPCK (phosphoenolpyruvate carboxykinase) expression in the liver and enhanced glucose production from pyruvate, suggesting a regulation of hepatic glucose production. Further, overexpressing CLK2 in the mediobasal hypothalami of mice on HFD or in db/db mice by adenovirus partially reversed the obese phenotype. CONCLUSIONS Thus, our results suggest that protein CLK2 integrates some important hypothalamic pathways, and may be a promising molecule for new therapeutic approaches for obesity and diabetes.
Collapse
Affiliation(s)
- P G F Quaresma
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - L Weissmann
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - T M Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A C Santos
- Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A H B de Matos
- Department of Medical Genetics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - I C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - F M Simabuco
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - J Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - J C Bittencourt
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - I Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - P O Prada
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
20
|
Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes? Nutrition 2016; 34:1-6. [PMID: 28063503 DOI: 10.1016/j.nut.2016.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The decline in insulin sensitivity (SI) associated with puberty increases the difficulty of achieving glycemic control in adolescents with type 1 diabetes (T1D). The aim of this study was to determine whether glutamine supplementation affects blood glucose by enhancing SI in adolescents with T1D. METHODS Thirteen adolescents with T1D (HbA1C 8.2 ± 0.1%) were admitted to perform afternoon exercise (four 15-min treadmill/5-min rest cycles of exercise) on two occasions within a 4-wk period. They were randomized to receive a drink containing either glutamine (0.25 g/kg) or placebo before exercise, at bedtime, and early morning in a double-blind, crossover design. Blood glucose was monitored overnight, and a hyperinsulinemic-euglycemic clamp was performed the following morning. RESULTS Blood glucose concentration dropped comparably during exercise on both days. However, the total number of nocturnal hypoglycemic events (17 versus 7, P = 0.045) and the cumulative probability of overnight hypoglycemia (50% versus 33%, P = 0.02) were higher on the glutamine day than on the placebo day. During clamp, glucose infusion rate was not affected by glutamine supplementation (7.7 ± 1 mg • kg-1 • min-1 versus 7.0 ± 1; glutamine versus placebo; P = 0.4). CONCLUSIONS Oral glutamine supplementation decreases blood glucose in adolescents with T1D after exercise. Insulin sensitivity, however, was unaltered during the euglycemic clamp. Although the mechanisms involved remain to be elucidated, studies to explore the potential use of glutamine to improve blood glucose control are needed.
Collapse
|
21
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
22
|
Araujo TR, Freitas IN, Vettorazzi JF, Batista TM, Santos-Silva JC, Bonfleur ML, Balbo SL, Boschero AC, Carneiro EM, Ribeiro RA. Benefits of l-alanine or l-arginine supplementation against adiposity and glucose intolerance in monosodium glutamate-induced obesity. Eur J Nutr 2016; 56:2069-2080. [PMID: 27317126 DOI: 10.1007/s00394-016-1245-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/07/2016] [Indexed: 02/03/2023]
|
23
|
Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. Br J Nutr 2016; 116:470-9. [PMID: 27215379 DOI: 10.1017/s0007114516001999] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.
Collapse
|
24
|
Leite JSM, Raizel R, Hypólito TM, Rosa TDS, Cruzat VF, Tirapegui J. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise. Appl Physiol Nutr Metab 2016; 41:842-849. [PMID: 27447686 DOI: 10.1139/apnm-2016-0049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.
Collapse
Affiliation(s)
- Jaqueline Santos Moreira Leite
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Raquel Raizel
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Thaís Menezes Hypólito
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Thiago Dos Santos Rosa
- b Graduate Program of Physical Education and Health, Catholic University of Brasília, Brasília, CEP 71966-700, Brazil
| | - Vinicius Fernandes Cruzat
- c Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, CEP 05508-000, Brazil
| | - Julio Tirapegui
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| |
Collapse
|
25
|
PAFR in adipose tissue macrophages is associated with anti-inflammatory phenotype and metabolic homoeostasis. Clin Sci (Lond) 2016; 130:601-12. [PMID: 26785675 DOI: 10.1042/cs20150538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/19/2016] [Indexed: 01/15/2023]
Abstract
Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of PAFR signalling, monocytes and macrophages acquire a pro-inflammatory phenotype, resulting in adipose tissue inflammation and metabolic dysfunction.
Collapse
|
26
|
Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance. Mol Cell Biochem 2015; 411:351-62. [PMID: 26530165 DOI: 10.1007/s11010-015-2597-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.
Collapse
|
27
|
Sellmann C, Jin CJ, Degen C, De Bandt JP, Bergheim I. Oral Glutamine Supplementation Protects Female Mice from Nonalcoholic Steatohepatitis. J Nutr 2015; 145:2280-6. [PMID: 26246326 DOI: 10.3945/jn.115.215517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genetic factors, a diet rich in fat and sugar, and an impaired intestinal barrier function are critical in the development of nonalcoholic steatohepatitis (NASH). The nonessential amino acid glutamine (Gln) has been suggested to have protective effects on intestinal barrier function but also against the development of liver diseases of various etiologies. OBJECTIVE The effect of oral Gln supplementation on the development of Western-style diet (WSD)-induced NASH in mice was assessed. METHODS Female 6- to 8-wk-old C57BL/6J mice were pair-fed a control (C) diet or a WSD alone or supplemented with 2.1 g l-Gln/kg body weight for 6 wk (C+Gln or WSD+Gln). Indexes of liver damage, lipid peroxidation, and glucose metabolism and endotoxin concentrations were measured. RESULTS Although Gln supplementation had no effect on the loss of the tight junction protein occludin, the increased portal endotoxin and fasting glucose concentrations found in WSD-fed mice, markers of liver damage (e.g., nonalcoholic fatty liver disease activity score and number of neutrophils in the liver) were significantly lower in the WSD+Gln group than in the WSD group (~47% and ~60% less, respectively; P < 0.05). Concentrations of inducible nitric oxide synthase (iNOS) protein and 3-nitrotyrosin protein adducts were significantly higher in livers of WSD-fed mice than in all other groups (~8.6- and ~1.9-fold higher, respectively, compared with the C group; P < 0.05) but did not differ between WSD+Gln-, C-, and C+Gln-fed mice. Hepatic tumor necrosis factor α and plasminogen activator inhibitor 1 concentrations were significantly higher in WSD-fed mice (~1.6- and ~1.8-fold higher, respectively; P < 0.05) but not in WSD+Gln-fed mice compared with C mice. CONCLUSION Our data suggest that the protective effects of oral Gln supplementation on the development of WSD-induced NASH in mice are associated with protection against the induction of iNOS and lipid peroxidation in the liver.
Collapse
Affiliation(s)
- Cathrin Sellmann
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany
| | - Cheng Jun Jin
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany
| | - Christian Degen
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany
| | - Jean-Pascal De Bandt
- Nutrition Biology Laboratory EA4466, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France; and Clinical Chemistry Department, Paris Center University Hospitals, Public Assistance Hospitals of Paris, Paris, France
| | - Ina Bergheim
- Institute of Nutritional Sciences, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University Jena, Jena, Germany;
| |
Collapse
|
28
|
Ayabe T, Mizushige T, Ota W, Kawabata F, Hayamizu K, Han L, Tsuji T, Kanamoto R, Ohinata K. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice. Food Funct 2015; 6:2749-2757. [PMID: 26152190 DOI: 10.1039/c5fo00401b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoshitomi H, Momoo M, Ma X, Huang Y, Suguro S, Yamagishi Y, Gao M. L-Citrulline increases hepatic sensitivity to insulin by reducing the phosphorylation of serine 1101 in insulin receptor substrate-1. Altern Ther Health Med 2015; 15:188. [PMID: 26084330 PMCID: PMC4472399 DOI: 10.1186/s12906-015-0706-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Insulin resistance is characterized by deficient responses to insulin in its target tissues. In the present study, we examined the effects of L-Citrulline (L-Cit) on insulin sensitivity and signaling cascades in rat hepatoma H4IIE cells and SHRSP.Z-Leprfa/IzmDmcr rats. METHODS H4IIE cells were pretreated in the presence or absence of 250 μM L-Cit in serum-free medium and then incubated in the presence or absence of 0.1 nM insulin. Rats were allocated into 2 groups; a control group (not treated) and L-Cit group (2 g/kg/day, L-Cit) and treated for 8 weeks. RESULTS L-Cit enhanced the insulin-induced phosphorylation of Akt in H4IIE cells. Moreover, the inhibited expression of Dex/cAMP-induced PEPCK mRNA by insulin was enhanced by the L-Cit treatment. The phosphorylation of tyrosine, which is upstream of Akt, in insulin receptor substrate-1 (IRS-1) was increased by the L-Cit treatment. The L-Cit-induced enhancement in insulin signaling was not related to the binding affinity of insulin to the insulin receptor or to the expression of the insulin receptor, but to a decrease in the phosphorylation of serine 1101 in IRS-1. These results were also confirmed in animal experiments. In the livers of L-Cit-treated rats, PI3K/Akt signaling was improved by decreases in the phosphorylation of serine 1101. CONCLUSIONS We herein demonstrated for the first time the beneficial effects of L-Cit on improved insulin resistance associated with enhanced insulin sensitivity. These results may have clinical applications for insulin resistance and the treatment of type-2 diabetes.
Collapse
|
30
|
Nemkov T, D'Alessandro A, Hansen KC. Three-minute method for amino acid analysis by UHPLC and high-resolution quadrupole orbitrap mass spectrometry. Amino Acids 2015; 47:2345-57. [PMID: 26058356 DOI: 10.1007/s00726-015-2019-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Amino acid analysis is a powerful bioanalytical technique for many biomedical research endeavors, including cancer, emergency medicine, nutrition and neuroscience research. In the present study, we present a 3 min analytical method for underivatized amino acid analysis that employs ultra high-performance liquid chromatography and high-resolution quadrupole orbitrap mass spectrometry. This method has demonstrated linearity (mM to nM range), reproducibility (intra-day <5 %, inter-day <20 %), sensitivity (low fmol) and selectivity. Here, we illustrate the rapidity and accuracy of the method through comparison with conventional liquid chromatography-mass spectrometry methods. We further demonstrate the robustness and sensitivity of this method on a diverse range of biological matrices. Using this method we were able to selectively discriminate murine pancreatic cancer cells with and without knocked down expression of hypoxia-inducible factor 1α; plasma, lymph and bronchioalveolar lavage fluid samples from control versus hemorrhaged rats; and muscle tissue samples harvested from rats subjected to both low-fat and high-fat diets. Furthermore, we were able to exploit the sensitivity of the method to detect and quantify the release of glutamate from sparsely isolated murine taste buds. Spiked in light or heavy standards ((13)C6-arginine, (13)C6-lysine, (13)C 5 (15) N2-glutamine) or xenometabolites (5-fluorouracil) were used to determine coefficients of variation, confirm linearity of relative quantitation in four different matrices, and overcome matrix effects for absolute quantitation. The presented method enables high-throughput analysis of low-abundance samples requiring only one percent of the material extracted from 100,000 cells, 10 µl of biological fluid, or 2 mg of muscle tissue.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Health Sciences Center, Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Health Sciences Center, Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, USA.,Metabolomics Core, Mass Spectrometry Shared Resource, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Health Sciences Center, Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, USA. .,Metabolomics Core, Mass Spectrometry Shared Resource, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
31
|
Yu J, Xiao F, Guo Y, Deng J, Liu B, Zhang Q, Li K, Wang C, Chen S, Guo F. Hepatic Phosphoserine Aminotransferase 1 Regulates Insulin Sensitivity in Mice via Tribbles Homolog 3. Diabetes 2015; 64:1591-602. [PMID: 25503742 DOI: 10.2337/db14-1368] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/09/2014] [Indexed: 11/13/2022]
Abstract
Phosphoserine aminotransferase 1 (PSAT1) is an enzyme participating in serine synthesis. A role of PSAT1 in the regulation of insulin sensitivity, however, is unknown. In this study, we showed that hepatic PSAT1 expression and liver serine levels are reduced in genetically engineered leptin receptor-deficient (db/db) mice and high-fat diet (HFD)-induced diabetic mice. Additionally, overexpression of PSAT1 by adenovirus expressing PSAT1 improved insulin signaling and insulin sensitivity in vitro and in vivo under normal conditions. Opposite effects were observed when PSAT1 was knocked down by adenovirus expressing small hairpin RNA specific for PSAT1 (Ad-shPSAT1). Importantly, overexpression of PSAT1 also significantly ameliorated insulin resistance in diabetic mice. In addition, PSAT1 inhibited the expression of hepatic tribbles homolog 3 (TRB3) in vitro and in vivo, and adenoviruses expressing small hairpin RNA against TRB3-mediated inhibition of TRB3 reversed the attenuated insulin sensitivity in Ad-shPSAT1 mice. Interestingly, we found that serine mediates PSAT1 regulation of TRB3 expression and insulin signaling in vitro. These results identify a novel function for hepatic PSAT1 in regulating insulin sensitivity and provide important insights in targeting PSAT1 for treating insulin resistance and type 2 diabetes. Our results also suggest that nonessential amino acid serine may play an important role in regulating insulin sensitivity.
Collapse
Affiliation(s)
- Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Bin Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Qian Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Kai Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Chunxia Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
de Souza AZZ, Zambom AZ, Abboud KY, Reis SK, Tannihão F, Guadagnini D, Saad MJA, Prada PO. Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition 2015; 31:884-9. [PMID: 25933498 DOI: 10.1016/j.nut.2015.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to determine whether oral supplementation with L-glutamine (GLN) modifies the gut microbiota composition in overweight and obese adults. METHODS Thirty-three overweight and obese adults, ages between 23 and 59 y and body mass index between 25.03 and 47.12 kg/m(2), were randomly assigned to receive either oral supplementation with 30 g of L-alanine (ALA group control) or 30 g of GLN (GLN group) daily for 14 d. We analyzed the gut microbiota composition with new-generation sequencing techniques and bioinformatics analysis. RESULTS After 14 d of supplementation, adults in the GLN group exhibited statistically significant differences in the Firmicutes and Actinobacteria phyla compared with those in the ALA group. The ratio of Firmicutes to Bacteroidetes, a good biomarker for obesity, decreased in the GLN group from 0.85 to 0.57, whereas it increased from 0.91 to 1.12 in the ALA group. At the genus level, Dialister, Dorea, Pseudobutyrivibrio, and Veillonella, belonging to the Firmicutes phylum, had statistically significant reduction. CONCLUSION Oral supplementation with GLN, for a short time, altered the composition of the gut microbiota in overweight and obese humans reducing the Firmicutes to Bacteroidetes ratio, which resembled weight loss programs already seen in the literature.
Collapse
Affiliation(s)
| | - Adriano Zanin Zambom
- Department of Statistics, State University of Campinas, Campinas, São Paulo, Brazil
| | | | - Sabrina Karen Reis
- School of Applied Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiana Tannihão
- School of Applied Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | - Patricia Oliveira Prada
- School of Applied Sciences, State University of Campinas, Campinas, São Paulo, Brazil; Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
33
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
34
|
Weissmann L, Quaresma PGF, Santos AC, de Matos AHB, Pascoal VDB, Zanotto TM, Castro G, Guadagnini D, da Silva JM, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJA, Prada PO. IKKε is key to induction of insulin resistance in the hypothalamus, and its inhibition reverses obesity. Diabetes 2014; 63:3334-45. [PMID: 24812431 DOI: 10.2337/db13-1817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.
Collapse
Affiliation(s)
- Laís Weissmann
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paula G F Quaresma
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Andressa C Santos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre H B de Matos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Tamires M Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gisele Castro
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Licio A Velloso
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patricia O Prada
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil School of Applied Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
35
|
Laviano A, Molfino A, Lacaria MT, Canelli A, De Leo S, Preziosa I, Rossi Fanelli F. Glutamine supplementation favors weight loss in nondieting obese female patients. A pilot study. Eur J Clin Nutr 2014; 68:1264-6. [PMID: 25226827 DOI: 10.1038/ejcn.2014.184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/20/2014] [Accepted: 07/28/2014] [Indexed: 11/09/2022]
Abstract
Glutamine supplementation improves insulin sensitivity in critically ill patients, and prevents obesity in animals fed a high-fat diet. We hypothesized that glutamine supplementation favors weight loss in humans. Obese and overweight female patients (n=6) were enrolled in a pilot, cross-over study. After recording anthropometric (that is, body weight, waist circumference) and metabolic (that is, glycemia, insulinemia, homeostatic model of insulin resistance (HOMA-IR)) characteristics, patients were randomly assigned to 4-week supplementation with glutamine or isonitrogenous protein supplement (0.5 g/KgBW/day). During supplementation, patients did not change their dietary habits nor lifestyle. At the end, anthropometric and metabolic features were assessed, and after 2 weeks of washout, patients were switched to the other supplement for 4 weeks. Body weight and waist circumference significantly declined only after glutamine supplementation (85.0±10.4 Kg vs 82.2±10.1 Kg, and 102.7±2.0 cm vs 98.9±2.9 cm, respectively; P=0.01). Insulinemia and HOMA-IR declined by 20% after glutamine, but not significantly so. This pilot study shows that glutamine is safe and effective in favoring weight loss and possibly enhancing glucose metabolism.
Collapse
Affiliation(s)
- A Laviano
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - A Molfino
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - M T Lacaria
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - A Canelli
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - S De Leo
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - I Preziosa
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - F Rossi Fanelli
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
36
|
Mansour A, Mohajeri-Tehrani MR, Qorbani M, Heshmat R, Larijani B, Hosseini S. Effect of glutamine supplementation on cardiovascular risk factors in patients with type 2 diabetes. Nutrition 2014; 31:119-26. [PMID: 25466655 DOI: 10.1016/j.nut.2014.05.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to assess clinical relevance of long-term oral glutamine supplementation on lipid profile and inflammatory and metabolic factors in patients with diabetes. METHOD Sixty-six patients with type 2 diabetes between the ages of 18 and 65 y were randomized to receive glutamine 30 g/d (10 g powder, three times a day) or placebo, in a double-blind, placebo-controlled trial during a 6-wk treatment period. Fifty-three patients completed the trial. Independent samples t test and analysis of covariance were used. RESULTS After a 6-wk treatment period, a significant difference was observed between the two groups in body fat mass (P = 0.01) and percentage of body fat (P = 0.008). Moreover, a significant reduction in waist circumference (P < 0.001) and a tendency for an increase in fat-free mass (P = 0.03), with no change in body weight and body mass index (BMI) was found. Enhancement in body fat-free mass was mainly attributed to trunk (P = 0.03). There was a downward trend in systolic blood pressure (P = 0.005) but not diastolic. Fasting blood glucose (mmol/L) concentration significantly decreased after the 6-wk intervention (P = 0.04). Mean hemoglobin A1c was significantly different between the groups at week 6 (P = 0.04). No significant difference was detected for fasting insulin, homeostasis model assessment for insulin resistance and quantitative insulin sensitivity index between groups (P > 0.05). No significant difference was observed between groups in total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride. No treatment effect on C-reactive protein was found (P = 0.44). CONCLUSION We demonstrated that the 6-wk supplementation with 30 g/d glutamine markedly improved some cardiovascular risk factors, as well as body composition, in patients with type 2 diabetes. Future glutamine dose-response studies are warranted in these areas.
Collapse
Affiliation(s)
- Asieh Mansour
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Department of Public Health, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Intravenous alanyl-L-glutamine balances glucose–insulin homeostasis and facilitates recovery in patients undergoing colonic resection. Eur J Anaesthesiol 2014; 31:212-8. [DOI: 10.1097/eja.0b013e328360c6b9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Prada PO, Quaresma PG, Caricilli AM, Santos AC, Guadagnini D, Morari J, Weissmann L, Ropelle ER, Carvalheira JBC, Velloso LA, Saad MJ. Tub has a key role in insulin and leptin signaling and action in vivo in hypothalamic nuclei. Diabetes 2013; 62:137-148. [PMID: 22966070 PMCID: PMC3526052 DOI: 10.2337/db11-1388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 05/07/2012] [Indexed: 01/08/2023]
Abstract
Mutation of tub gene in mice induces obesity, suggesting that tub could be an important regulator of energy balance. In the current study, we investigated whether insulin, leptin, and obesity can modulate Tub in vivo in hypothalamic nuclei, and we investigated possible consequences on energy balance, neuropeptide expression, and hepatic glucose metabolism. Food intake, metabolic characteristics, signaling proteins, and neuropeptide expression were measured in response to fasting and refeeding, intracerebroventricular insulin and leptin, and Tub antisense oligonucleotide (ASO). Tub tyrosine phosphorylation (Tub-p-tyr) is modulated by nutritional status. Tub is a substrate of insulin receptor tyrosine kinase (IRTK) and leptin receptor (LEPR)-Janus kinase 2 (JAK2) in hypothalamic nuclei. After leptin or insulin stimulation, Tub translocates to the nucleus. Inhibition of Tub expression in hypothalamus by ASO increased food intake, fasting blood glucose, and hepatic glucose output, decreased O(2) consumption, and blunted the effect of insulin or leptin on proopiomelanocortin, thyroid-releasing hormone, melanin-concentrating hormone, and orexin expression. In hypothalamus of mice administered a high-fat diet, there is a reduction in leptin and insulin-induced Tub-p-tyr and nuclear translocation, which is reversed by reducing protein tyrosine phosphatase 1B expression. These results indicate that Tub has a key role in the control of insulin and leptin effects on food intake, and the modulation of Tub may contribute to insulin and leptin resistance in DIO mice.
Collapse
Affiliation(s)
- Patrícia O. Prada
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Paula G.F. Quaresma
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andrea M. Caricilli
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andressa C. Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Laís Weissmann
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Eduardo R. Ropelle
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | | | - Lício A. Velloso
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J.A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| |
Collapse
|
39
|
Mallinson JE, Constantin-Teodosiu D, Glaves PD, Martin EA, Davies WJ, Westwood FR, Sidaway JE, Greenhaff PL. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents. J Physiol 2012; 590:6389-402. [PMID: 23045346 DOI: 10.1113/jphysiol.2012.238022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously reported that statin myopathy is associated with impaired carbohydrate (CHO) oxidation in fast-twitch rodent skeletal muscle, which we hypothesised occurred as a result of forkhead box protein O1 (FOXO1) mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) gene transcription. Upregulation of FOXO gene targets known to regulate proteasomal and lysosomal muscle protein breakdown was also evident. We hypothesised that increasing CHO oxidation in vivo, using the pyruvate dehydrogenase complex (PDC) activator, dichloroacetate (DCA), would blunt activation of FOXO gene targets and reduce statin myopathy. Female Wistar Hanover rats were dosed daily for 12 days (oral gavage) with either vehicle (control, 0.5% w/v hydroxypropyl-methylcellulose 0.1% w/v polysorbate-80; n = 9), 88 mg( )kg(-1) day(-1) simvastatin (n = 8), 88 mg( )kg(-1) day(-1) simvastatin + 30 mg kg(-1) day(-1) DCA (n = 9) or 88 mg kg(-1) day(-1) simvastatin + 40 mg kg(-1) day(-1) DCA (n = 9). Compared with control, simvastatin reduced body mass gain and food intake, increased muscle fibre necrosis, plasma creatine kinase levels, muscle PDK4, muscle atrophy F-box (MAFbx) and cathepsin-L mRNA expression, increased PDK4 protein expression, and proteasome and cathepsin-L activity, and reduced muscle PDC activity. Simvastatin with DCA maintained body mass gain and food intake, abrogated the myopathy, decreased muscle PDK4 mRNA and protein, MAFbx and cathepsin-L mRNA, increased activity of PDC and reduced proteasome activity compared with simvastatin. PDC activation abolished statin myopathy in rodent skeletal muscle, which occurred at least in part via inhibition of FOXO-mediated transcription of genes regulating muscle CHO utilisation and protein breakdown.
Collapse
Affiliation(s)
- Joanne E Mallinson
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mori MA, Sales VM, Motta FL, Fonseca RG, Alenina N, Guadagnini D, Schadock I, Silva ED, Torres HAM, dos Santos EL, Castro CH, D’Almeida V, Andreotti S, Campaña AB, Sertié RAL, Saad MJA, Lima FB, Bader M, Pesquero JB. Kinin B1 receptor in adipocytes regulates glucose tolerance and predisposition to obesity. PLoS One 2012; 7:e44782. [PMID: 23024762 PMCID: PMC3443087 DOI: 10.1371/journal.pone.0044782] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B(1) receptor knockout mice (B(1) (-/-)) are leaner and exhibit improved insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS Here we show that kinin B(1) receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B(1) receptors. In these cells, treatment with the B(1) receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B(1) (-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B(1) receptor was limited to cells of the adipose tissue (aP2-B(1)/B(1) (-/-)). Similarly to B(1) (-/-) mice, aP2-B(1)/B(1) (-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B(1) receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B(1) (-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B(1) receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B(1)/B(1) (-/-) when compared to B(1) (-/-) mice. When subjected to high fat diet, aP2-B(1)/B(1) (-/-) mice gained more weight than B(1) (-/-) littermates, becoming as obese as the wild types. CONCLUSIONS/SIGNIFICANCE Thus, kinin B(1) receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.
Collapse
Affiliation(s)
- Marcelo A. Mori
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Fabiana Louise Motta
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Raphael Gomes Fonseca
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Elton Dias Silva
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Hugo A. M. Torres
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Vânia D’Almeida
- Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Sandra Andreotti
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Mario J. A. Saad
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Fabio Bessa Lima
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
41
|
Caricilli AM, Penteado E, de Abreu LL, Quaresma PGF, Santos AC, Guadagnini D, Razolli D, Mittestainer FC, Carvalheira JB, Velloso LA, Saad MJA, Prada PO. Topiramate treatment improves hypothalamic insulin and leptin signaling and action and reduces obesity in mice. Endocrinology 2012; 153:4401-4411. [PMID: 22822160 DOI: 10.1210/en.2012-1272] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Topiramate (TPM) treatment has been shown to reduce adiposity in humans and rodents. The reduction in adiposity is related to decreased food intake and increased energy expenditure. However, the molecular mechanisms through which TPM induces weight loss are contradictory and remain to be clarified. Whether TPM treatment alters hypothalamic insulin, or leptin signaling and action, is not well established. Thus, we investigate herein whether short-term TPM treatment alters energy balance by affecting insulin and leptin signaling, action, or neuropeptide expression in the hypothalamus of mice fed with a high-fat diet. As expected, short-term treatment with TPM diminished adiposity in obese mice mainly due to reduced food intake. TPM increased anorexigenic signaling by enhancing the leptin-induced leptin receptor/Janus kinase 2/signal transducer and activator of transcription 3 pathway and the insulin-induced insulin receptor substrate/Akt/forkhead box O1 pathway in parallel to reduced phosphatase protein expression in the hypothalamus of obese mice. These effects were independent of body weight. TPM also raised anorexigenic neuropeptides such as POMC, TRH, and CRH mRNA levels in obese mice. In addition, TPM increased the activation of the hypothalamic MAPK/ERK pathway induced by leptin, accompanied by an increase in peroxisome proliferator-activated receptor-coactivator α and uncoupling protein 1 protein levels in brown adipose tissue. Furthermore, TPM increased AMP-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation in peripheral tissues, which may help improve energy metabolism in these tissues. Together, these results provide novel insights into the molecular mechanisms through which TPM treatment reduces adiposity.
Collapse
Affiliation(s)
- Andrea M Caricilli
- Departments of Internal Medicine, State University of Campinas, Rua Pedro Zaccaria, 1300 Jardim. Sta Luiza 13484-350, Limeira, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mok E, Hankard R. Glutamine supplementation in sick children: is it beneficial? J Nutr Metab 2011; 2011:617597. [PMID: 22175008 PMCID: PMC3228321 DOI: 10.1155/2011/617597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/28/2011] [Indexed: 12/14/2022] Open
Abstract
The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln) supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evidence is available on the benefits of Gln supplementation in pediatric patients. This includes premature infants, infants with gastrointestinal disease, children with Crohn's disease, short bowel syndrome, malnutrition/diarrhea, cancer, severe burns/trauma, Duchenne muscular dystrophy, sickle cell anemia, cystic fibrosis, and type 1 diabetes. Moreover, methodological issues have been noted in some studies. Further mechanistic data is needed along with large randomized controlled trials in select populations of sick children, who may eventually benefit from supplemental Gln.
Collapse
Affiliation(s)
- Elise Mok
- INSERM Centre D'Investigation Clinique 802, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers Cedex, France
| | | |
Collapse
|
43
|
May AK, Kauffmann RM, Collier BR. The place for glycemic control in the surgical patient. Surg Infect (Larchmt) 2011; 12:405-18. [PMID: 22004441 DOI: 10.1089/sur.2011.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hyperglycemia is common in surgical patients and is associated with adverse outcomes. Conflicting data exist regarding the best method and the value of glycemic control in various patient populations. The contributions to hyperglycemia and the components of its control are complex and overlapping and likely contribute to the documented variation in outcomes. We provide an overview of the physiologic contributors to hyperglycemia and its control, review the differences in the major randomized trial results, and summarize the data regarding glycemic control in surgical patients. METHODS Major reviews of the pathophysiology of hyperglycemia in surgical patients, large randomized trials in critically ill and peri-operative populations, and meta-analyses were reviewed. Summations are provided for the critically ill population and for the peri-operative group. RESULTS A substantial physiologic rationale exists for the control of hyperglycemia in surgical patients during critical illness and in the peri-operative period. Randomized, controlled studies are limited predominately to critically ill populations. The data support controlling hyperglycemia to a serum glucose concentration <200 mg/dL, but the absolute target range remains controversial and studied inadequately. The data indicate the benefit of tight glycemic control using insulin to achieve a target of 80-110 mg/dL (intensive insulin therapy [IIT]) vs. a liberal target of 180-200 mg/dL in critically ill surgical patients, although hypoglycemia is more common with IIT. Inadequate studies are available in the peri-operative period to draw conclusions about non-critically ill surgical patients, but the weight of the data suggests control to < 200 mg/dL likely is beneficial. CONCLUSIONS Surgical patients benefit from maintaining serum glucose concentrations <200 mg/dL. Intensive insulin therapy (80-110 mg/dL), which appears beneficial in critically ill surgical patients but requires frequent measurement of glucose to avoid hypoglycemia. Further studies are needed to determine the appropriate target range and the influence of nutritional provision and other factors on outcome.
Collapse
Affiliation(s)
- Addison K May
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| | | | | |
Collapse
|
44
|
Torres-Leal FL, Fonseca-Alaniz MH, Teodoro GF, de Capitani MD, Vianna D, Pantaleão LC, Matos-Neto EM, Rogero MM, Donato J, Tirapegui J. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet. Nutr Metab (Lond) 2011; 8:62. [PMID: 21899736 PMCID: PMC3184043 DOI: 10.1186/1743-7075-8-62] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/07/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Studies suggest that leucine supplementation (LS) has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET) as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD) in rats. METHODS Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10) or HFD (n = 37). After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF), LS, ET, and LS+ET (n = 7-8 rats per group). After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-α) were analyzed. RESULTS At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019). In addition, ET was more effective than LS in reducing adiposity (P = 0.019), serum insulin (P = 0.022) and TNF-α (P = 0.044). Conversely, LS increased serum adiponectin (P = 0.021) levels and reduced serum total cholesterol concentration (P = 0.042). CONCLUSIONS The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.
Collapse
Affiliation(s)
- Francisco L Torres-Leal
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Arakawa M, Masaki T, Nishimura J, Seike M, Yoshimatsu H. The effects of branched-chain amino acid granules on the accumulation of tissue triglycerides and uncoupling proteins in diet-induced obese mice. Endocr J 2011; 58:161-70. [PMID: 21372430 DOI: 10.1507/endocrj.k10e-221] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It has been demonstrated the involvement of branched-chain amino acids (BCAA) on obesity and related metabolic disorder. We investigated the effects of branched-chain amino acids (BCAA) on obesity and on glucose/fat homeostasis in mice fed on a high-fat (45%) diet. BCAA was dissolved in 0.5% methylcellulose and added to the drinking water (BCAA-treated group). A high-fat diet was provided for 6 weeks and BCAA was given for 2 weeks. The BCAA-treated group gained almost 7% less body weight and had less epididymal adipose tissue (WAT) mass than the control group (p<0.05). BCAA supplementation also reduced the hepatic and skeletal muscle triglyceride (TG) concentrations (p<0.05). The hepatic levels of PPAR-alpha and uncoupling protein (UCP) 2, and the level of PPAR-alpha and UCP3 in the skeletal muscle were greater in the BCAA-treated group than in the control mice (p<0.05). These results demonstrate that the liver and muscle TG concentration are less in BCAA-treated group. BCAA affects PPAR-alpha and UCP expression in muscle and liver tissue.
Collapse
Affiliation(s)
- Mie Arakawa
- Department of Internal Medicine1, Faculty of Medicine, Oita University, Japan
| | | | | | | | | |
Collapse
|
46
|
Mauras N, Xing D, Fox LA, Englert K, Darmaun D. Effects of glutamine on glycemic control during and after exercise in adolescents with type 1 diabetes: a pilot study. Diabetes Care 2010; 33:1951-3. [PMID: 20585005 PMCID: PMC2928340 DOI: 10.2337/dc10-0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate if oral glutamine ameliorates exercise and postexercise nighttime hypoglycemia in type 1 diabetic adolescents. RESEARCH DESIGN AND METHODS Ten adolescents (15.2 +/- 1.4 years [SD], A1C 6.9 +/- 0.9%) on insulin pumps were studied. The subjects were randomized to receive a glutamine or placebo drink pre-exercise and at bedtime (0.25 g/kg/dose). A 3:00 p.m. exercise session consisted of four 15-min treadmill/5-min rest cycles. Pre-exercise blood glucose was 140-150 mg/dl and was monitored throughout the night. Studies were randomized crossover over 3 weeks. RESULTS Blood glucose levels dropped comparably (52%) during exercise on both days. However, the overnight number of hypoglycemic events was higher on glutamine than placebo (<or=70 mg/dl, P = 0.03 and <or=60, P = 0.05). The cumulative probability of nighttime hypoglycemia was increased on glutamine days (80%) versus placebo days (50%) (P = 0.02). CONCLUSIONS Glutamine increased the cumulative probability of postexercise overnight hypoglycemia compared with placebo in adolescents with type 1 diabetes. Whether glutamine may enhance insulin sensitivity postexercise requires further study in type 1 diabetes.
Collapse
Affiliation(s)
- Nelly Mauras
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children's Clinic, Jacksonville, Florida, USA.
| | | | | | | | | |
Collapse
|
47
|
Nishimura J, Masaki T, Arakawa M, Seike M, Yoshimatsu H. Isoleucine prevents the accumulation of tissue triglycerides and upregulates the expression of PPARalpha and uncoupling protein in diet-induced obese mice. J Nutr 2010; 140:496-500. [PMID: 20089773 DOI: 10.3945/jn.109.108977] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we investigated the effects of the branched-chain amino acid l-isoleucine (Ile) on both obesity and glucose/fat homeostasis in mice that were fed a high-fat (45% energy) diet. The mice were divided into different treatment groups and given a high-fat diet for 6 wk. During the last 4 wk, Ile was dissolved and added to the drinking water to a final concentration of 2.5%. The control mice received vehicle alone. The mice in the Ile group had an almost 6% lower body weight gain and 49% less epididymal white adipose tissue (WAT) mass with the control group (P < 0.05). The hepatic and skeletal muscle triglyceride (TG) concentrations and degree of hyperinsulinemia in the Ile group mice were also lower than the control group by 38, 47, and 39%, respectively (P < 0.05). The WAT leptin concentration was also lower, whereas that of adiponectin was higher, in the Ile group compared with the control group (P < 0.05). The hepatic levels of protein CD36/fatty acid translocase, PPARalpha, and uncoupling protein (UCP) 2 and the levels of UCP3 in skeletal muscle were all greater in the Ile group than in the control mice (P < 0.05). These results demonstrate that the liver and muscle TG concentrations are both lowered by Ile treatment. In addition, the PPARalpha and UCP expression levels in the mouse tissues were greater in the Ile group compared with the controls. Our current data thus suggest that supplementation with Ile might be useful in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Junko Nishimura
- Department of Internal Medicine, Oita University, Yufu-Hasama, Oita, 879-5593 Japan
| | | | | | | | | |
Collapse
|
48
|
Kuhn KS, Muscaritoli M, Wischmeyer P, Stehle P. Glutamine as indispensable nutrient in oncology: experimental and clinical evidence. Eur J Nutr 2009; 49:197-210. [DOI: 10.1007/s00394-009-0082-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/02/2009] [Indexed: 12/20/2022]
|
49
|
|
50
|
Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 2009; 276:1826-44. [PMID: 19250320 DOI: 10.1111/j.1742-4658.2009.06920.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular data rapidly accumulating on the regulation of gene expression by amino acids in mammalian cells highlight the large variety of mechanisms that are involved. Transcription factors, such as the basic-leucine zipper factors, activating transcription factors and CCAAT/enhancer-binding protein, as well as specific regulatory sequences, such as amino acid response element and nutrient-sensing response element, have been shown to mediate the inhibitory effect of some amino acids. Moreover, amino acids exert a wide range of effects via the activation of different signalling pathways and various transcription factors, and a number of cis elements distinct from amino acid response element/nutrient-sensing response element sequences were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine, the most abundant amino acid, which at appropriate concentrations enhances a great number of cell functions via the activation of various transcription factors. The glutamine-responsive genes and the transcription factors involved correspond tightly to the specific effects of the amino acid in the inflammatory response, cell proliferation, differentiation and survival, and metabolic functions. Indeed, in addition to the major role played by nuclear factor-kappaB in the anti-inflammatory action of glutamine, the stimulatory role of activating protein-1 and the inhibitory role of C/EBP homology binding protein in growth-promotion, and the role of c-myc in cell survival, many other transcription factors are also involved in the action of glutamine to regulate apoptosis and intermediary metabolism in different cell types and tissues. The signalling pathways leading to the activation of transcription factors suggest that several kinases are involved, particularly mitogen-activated protein kinases. In most cases, however, the precise pathways from the entrance of the amino acid into the cell to the activation of gene transcription remain elusive.
Collapse
Affiliation(s)
- Carole Brasse-Lagnel
- Appareil Digestif, Environnement et Nutrition, EA 4311, Université de Rouen, France
| | | | | |
Collapse
|