1
|
Nozaki Y, Kobayashi M, Fukuoh T, Ishimatsu M, Narita T, Taki K, Hirao Y, Ayabe S, Yokoyama M, Otani Y, Mizunoe Y, Matsumoto M, Ohno N, Kaifu T, Okazaki S, Goitsuka R, Nakagawa Y, Shimano H, Iwakura Y, Higami Y. Mipep deficiency in adipocytes impairs mitochondrial protein maturation and leads to systemic inflammation and metabolic dysfunctions. Sci Rep 2025; 15:12839. [PMID: 40229443 PMCID: PMC11997187 DOI: 10.1038/s41598-025-97307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
Most mitochondrial proteins encoded in the nuclear genome are synthesized in the cytoplasm. These proteins subsequently undergo maturation through the cleavage of a signal sequence at the N-terminus by one or two mitochondrial signal peptidases, which is essential for their function within mitochondria. The present study demonstrates that adipocyte-specific knockout of one mitochondrial signal peptidase, mitochondrial intermediate peptidase (MIPEP), resulted in disordered mitochondrial proteostasis of MIPEP substrate proteins and their defective maturation. MIPEP deficiency in white and brown adipocytes suppressed the expression of adipocyte differentiation, lipid metabolism, and mitochondrial biogenesis genes. These alterations led to lipoatrophy in white adipose tissue and the whitening of brown adipose tissue. Additionally, it induced an atypical mitochondrial unfolded protein response and local inflammation in white and brown adipose tissue. Furthermore, it induced fatty liver and splenomegaly and caused systemic impairments in glucose metabolism and inflammation. These findings indicate that maturation defects of certain mitochondrial proteins and subsequent proteostasis disorders in white and brown adipocytes cause chronic and systemic inflammatory and metabolic dysfunctions.
Collapse
Affiliation(s)
- Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Tomoyoshi Fukuoh
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mamiko Ishimatsu
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takumi Narita
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kanari Taki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuto Hirao
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shota Ayabe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miku Yokoyama
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuina Otani
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shogo Okazaki
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Ryo Goitsuka
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.
| |
Collapse
|
2
|
Kim JM, Lim JY, Choung S, Kim OS, Joung KH, Lee JH, Kim HJ, Ku BJ. Role of Mig-6 in adipose tissue: Implications for glucose metabolism and insulin resistance. PLoS One 2025; 20:e0314289. [PMID: 39937764 PMCID: PMC11819470 DOI: 10.1371/journal.pone.0314289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/07/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Insulin resistance is a hallmark of type 2 diabetes mellitus (T2DM) and is associated with metabolic disorders. Adipose tissue plays a crucial role in regulating whole-body energy balance and glucose homeostasis. Mitogen-inducible gene 6 (Mig-6) is a negative feedback regulator of receptor tyrosine kinases, including epidermal growth factor receptor (EGFR). This study aims to evaluate the role of Mig-6 in white adipose tissue (WAT) and its impact on systemic glucose homeostasis using Mig-6 transgenic mice. METHODS Human visceral fat samples were obtained from four obese and three lean women undergoing hysterectomy. Adipocyte-specific Mig-6 knock-in (Mig-6AdKI) mice were generated and maintained on either a high-fat diet (HFD) or normal chow diet (NCD). Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed. We conducted histological examinations to observe tissue morphology and used quantitative PCR to assess adipokine mRNA expression. RESULTS Mig-6 expression was significantly reduced in the adipose tissue of obese mice and humans. Mig-6AdKI mice exhibited improved glucose tolerance and insulin sensitivity under both NCD and HFD conditions, without changes in body weight or fat mass. The improvement in glucose homeostasis under NCD conditions was particularly noteworthy. Increased adiponectin mRNA levels were observed in the WAT of Mig-6AdKI mice. Meanwhile, histological analysis did not observe any changes in adipose tissue morphology that could explain the improvement in systemic glucose homeostasis, although there were tendencies towards increased adipocyte size and inflammation in HFD-fed Mig-6AdKI mice. CONCLUSION Adipose-specific overexpression of Mig-6 improves systemic glucose tolerance and insulin sensitivity, suggesting its potential as a target for both the treatment and prevention of diabetes. These findings provide a reference for further research targeting EGFR or Mig-6 in adipose tissue, highlighting the metabolic role of Mig-6 in glucose homeostasis.
Collapse
Affiliation(s)
- Ji Min Kim
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Joung Youl Lim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sorim Choung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ok Soon Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyoung Hye Joung
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
3
|
Alpaslan Ağaçdiken A, Göktaş Z. Berberine-induced browning and energy metabolism: mechanisms and implications. PeerJ 2025; 13:e18924. [PMID: 39931072 PMCID: PMC11809318 DOI: 10.7717/peerj.18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Obesity has become a global pandemic. The approaches researched to prevent it include decreasing energy intake and/or enhancing energy expenditure. Therefore, research on brown adipose tissue is of great importance. Brown adipose tissue is characterized by its high mitochondrial content. Mitochondrial uncoupling protein 1 (UCP1) releases energy as heat instead of chemical energy. Thermogenesis increases energy expenditure. Berberine, a phytochemical widely used in Asian countries, has positive effects on body weight control. While the precise mechanisms behind this effect remain unclear, the adenosine monophosphate-activated protein kinase (AMPK) pathway is known to play a crucial role. Berberine activates AMPK through phosphorylation, significantly impacting brown adipose tissue by enhancing lipolytic activity and increasing the expression of UCP1, peroxisome proliferator-activated receptor γ-co-activator-1α (PGC1α), and PR domain containing 16 (PRDM16). While investigating the mechanism of action of berberine, both the AMPK pathway is being examined in more detail and alternative pathways are being explored. One such pathway is growth differentiation factor 15 (GDF15), known for its appetite-suppressing effect. Berberine's low stability and bioavailability, which are the main obstacles to its clinical use, have been improved through the development of nanotechnological methods. This review examines the potential mechanisms of berberine on browning and summarizes the methods developed to enhance its effect.
Collapse
Affiliation(s)
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Mann JP, Tábara LC, Patel S, Pushpa P, Alvarez-Guaita A, Dong L, Haider A, Lim K, Tandon P, Scurria F, Minchin JEN, O’Rahilly S. S, Fazakerley DJ, Prudent J, Semple RK, Savage DB. Loss of Mfn1 but not Mfn2 enhances adipogenesis. PLoS One 2024; 19:e0306243. [PMID: 39739772 PMCID: PMC11687706 DOI: 10.1371/journal.pone.0306243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/13/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells. METHODS We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA. RESULTS Mfn1-/- MEFs displayed striking fragmentation of the mitochondrial network, with surprisingly enhanced propensity to differentiate into adipocytes, as assessed by lipid accumulation, expression of adipocyte markers (Plin1, Fabp4, Glut4, Adipoq), and insulin-stimulated glucose uptake. RNA sequencing revealed a corresponding pro-adipogenic transcriptional profile including Pparg upregulation. Mfn2-/- MEFs also had a disrupted mitochondrial morphology, but in contrast to Mfn1-/- MEFs they showed reduced expression of adipocyte markers. Mfn1 and Mfn2 siRNA mediated knockdown studies in 3T3-L1 adipocytes generally replicated these findings. CONCLUSIONS Loss of Mfn1 but not Mfn2 in cultured pre-adipocyte models is pro-adipogenic. This suggests distinct, non-redundant roles for the two mitofusin orthologues in adipocyte differentiation.
Collapse
Affiliation(s)
- Jake P. Mann
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Luis Carlos Tábara
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Pushpa Pushpa
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Liang Dong
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Panna Tandon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Fabio Scurria
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - James E. N. Minchin
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen O’Rahilly S.
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Daniel J. Fazakerley
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Robert K. Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - David B. Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Huang Q, Monzel AS, Rausser S, Haahr R, Devine J, Liu CC, Kelly C, Thompson E, Kurade M, Michelson J, Li S, Engelstad K, Tanji K, Lauriola V, Wang T, Wang S, Marsland AL, Kaufman BA, St-Onge MP, Sloan R, Juster RP, Gouspillou G, Hirano M, Picard M, Trumpff C. The Energetic Stress Marker GDF15 is Induced by Acute Psychosocial Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590241. [PMID: 38659958 PMCID: PMC11042343 DOI: 10.1101/2024.04.19.590241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
GDF15 (growth differentiation factor 15) is a marker of cellular and mitochondrial energetic stress linked to physical-mental illness, aging, and mortality. Here, we describe the psychobiological regulation of plasma and saliva GDF15 in four human studies including 3,599 samples from 148 healthy individuals. We report two main observations establishing GDF15 as a novel tractable biomarker of psychosocial stress. 1) In two experimental laboratory studies, socio-evaluative stress rapidly elevates GDF15 and lactate, two molecular markers of energetic/reductive stress. 2) Similar to other stress-related metabolic hormones, we also find that saliva GDF15 exhibit a robust awakening response, being highest at the time of waking up and declining by ~42-92% within 30-45 minutes. These data position GDF15 as a dynamic biomarker of psychosocial stress accessible in human blood and saliva, pointing towards a shared psychobiological pathway linking mental and mitochondrial energetic stress. These foundational observations open the door to large-scale studies using GDF15 to non-invasively probe how acute psychosocial factors promote cellular and mitochondrial and energetic stress contributing to the stress-disease cascade across the lifespan.
Collapse
Affiliation(s)
- Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S. Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shannon Rausser
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Haahr
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Cynthia C. Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Catherine Kelly
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth Thompson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Mangesh Kurade
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shufang Li
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Kris Engelstad
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Kurenai Tanji
- Department of pathology and cell biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Lauriola
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Tian Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Shuang Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brett A Kaufman
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA United States
| | - Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Richard Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Gilles Gouspillou
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC, Canada
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Tian J, Moon JS, Nga HT, Lee HY, Nguyen TL, Jang HJ, Setoyama D, Shong M, Lee JH, Yi HS. Brown fat-specific mitoribosomal function is crucial for preventing cold exposure-induced bone loss. Cell Mol Life Sci 2024; 81:314. [PMID: 39066814 PMCID: PMC11335241 DOI: 10.1007/s00018-024-05347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.
Collapse
Affiliation(s)
- Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
8
|
Takahashi N, Kimura AP, Yoshizaki T, Ohmura K. Imeglimin modulates mitochondria biology and facilitates mitokine secretion in 3T3-L1 adipocytes. Life Sci 2024; 349:122735. [PMID: 38768776 DOI: 10.1016/j.lfs.2024.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
AIMS Imeglimin, a novel antidiabetic drug, has recently been reported to affect pancreatic β-cells and hepatocytes. Adipose tissue plays a crucial role in systemic metabolism. However, its effect on adipocytes remains unexplored. Herein, we investigated the effects of imeglimin on adipocytes, particularly in the mitochondria. MAIN METHODS The 3T3-L1 adipocytes were treated with imeglimin. Mitochondrial respiratory complex I activity and NAD+, NADH, and AMP levels were measured. Protein expression levels were determined by western blotting, mitochondrial DNA and mRNA expression levels were determined using quantitative polymerase chain reaction, and secreted adipocytokine and mitokine levels were determined using adipokine array and enzyme-linked immunosorbent assay. KEY FINDINGS Imeglimin inhibited complex I activity, decreased the NAD+/NADH ratio, and increased AMP levels, which were associated with the enhanced phosphorylation of AMP-activated protein kinase. In addition, imeglimin increased the mitochondrial DNA content and levels of mitochondrial transcription factor A and peroxisome proliferator-activated receptor-γ coactivator 1-α mRNA, which were abolished by Ly294002, a phosphoinositide 3-kinase inhibitor. Furthermore, imeglimin facilitated the expression levels of markers of the mitochondrial unfolded protein response, and the gene expression and secretion of two mitokines, fibroblast growth factor 21 and growth differentiation factor 15. The production of both mitokines was transcriptionally regulated and abolished by phosphoinositide 3-kinase and Akt inhibitors. SIGNIFICANCE Imeglimin modulates mitochondrial biology in adipocytes and may exert a mitohormetic effect through mitokine secretion.
Collapse
Affiliation(s)
- Nobuhiko Takahashi
- Division of Internal Medicine, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan.
| | - Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takayuki Yoshizaki
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Hiroshima 729-0292, Japan
| | - Kazumasa Ohmura
- Division of Internal Medicine, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0023, Japan
| |
Collapse
|
9
|
Berezin AE, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AA. Methods to predict heart failure in diabetes patients. Expert Rev Endocrinol Metab 2024; 19:241-256. [PMID: 38622891 DOI: 10.1080/17446651.2024.2342812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is one of the leading causes of cardiovascular disease and powerful predictor for new-onset heart failure (HF). AREAS COVERED We focus on the relevant literature covering evidence of risk stratification based on imaging predictors and circulating biomarkers to optimize approaches to preventing HF in DM patients. EXPERT OPINION Multiple diagnostic algorithms based on echocardiographic parameters of cardiac remodeling including global longitudinal strain/strain rate are likely to be promising approach to justify individuals at higher risk of incident HF. Signature of cardiometabolic status may justify HF risk among T2DM individuals with low levels of natriuretic peptides, which preserve their significance in HF with clinical presentation. However, diagnostic and predictive values of conventional guideline-directed biomarker HF strategy may be non-optimal in patients with obesity and T2DM. Alternative biomarkers affecting cardiac fibrosis, inflammation, myopathy, and adipose tissue dysfunction are plausible tools for improving accuracy natriuretic peptides among T2DM patients at higher HF risk. In summary, risk identification and management of the patients with T2DM with established HF require conventional biomarkers monitoring, while the role of alternative biomarker approach among patients with multiple CV and metabolic risk factors appears to be plausible tool for improving clinical outcomes.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Tetiana A Berezina
- VitaCenter, Department of Internal Medicine & Nephrology, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
10
|
Min SH, Kang GM, Park JW, Kim MS. Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Med J 2024; 65:55-69. [PMID: 38288646 PMCID: PMC10827639 DOI: 10.3349/ymj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Jae Woo Park
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea.
| |
Collapse
|
11
|
Delgado-Anglés A, Blasco-Roset A, Godoy-Nieto FJ, Cairó M, Villarroya F, Giralt M, Villarroya J. Parkin depletion prevents the age-related alterations in the FGF21 system and the decline in white adipose tissue thermogenic function in mice. J Physiol Biochem 2024; 80:41-51. [PMID: 37914970 PMCID: PMC10808413 DOI: 10.1007/s13105-023-00977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 11/03/2023]
Abstract
Parkin is an ubiquitin-E3 ligase that is involved in cellular mitophagy and was recently shown to contribute to controlling adipose tissue thermogenic plasticity. We found that Parkin expression is induced in brown (BAT) and white (WAT) adipose tissues of aged mice. We determined the potential role of Parkin in the aging-associated decline in the thermogenic capacity of adipose tissues by analyzing subcutaneous WAT, interscapular BAT, and systemic metabolic and physiological parameters in young (5 month-old) and aged (16 month-old) mice with targeted invalidation of the Parkin (Park2) gene, and their wild-type littermates. Our data indicate that suppression of Parkin prevented adipose accretion, increased energy expenditure and improved the systemic metabolic derangements, such as insulin resistance, seen in aged mice. This was associated with maintenance of browning and reduction of the age-associated induction of inflammation in subcutaneous WAT. BAT in aged mice was much less affected by Parkin gene invalidation. Such protection was associated with a dramatic prevention of the age-associated induction of fibroblast growth factor-21 (FGF21) levels in aged Parkin-invalidated mice. This was associated with a parallel reduction in FGF21 gene expression in adipose tissues and liver in aged Parkin-invalidated mice. Additionally, Parkin invalidation prevented the protein down-regulation of β-Klotho (a key co-receptor mediating FGF21 responsiveness in tissues) in aged adipose tissues. We conclude that Parkin down-regulation leads to improved systemic metabolism in aged mice, in association with maintenance of adipose tissue browning and FGF21 system functionality.
Collapse
Affiliation(s)
- Alejandro Delgado-Anglés
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Francisco J Godoy-Nieto
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain.
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
12
|
Nayak N, Mukherjee T, Pattnaik A. Comprehensive Role of GDF15 in Inhibiting Adipogenesis and Hyperlipidemia, Enhancing Cardiovascular Health and Alleviating Inflammation in Metabolic Disorders. Curr Pharm Des 2024; 30:2387-2399. [PMID: 38934286 DOI: 10.2174/0113816128318741240611114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Growth Differentiation Factor 15 (GDF15) has emerged as a pivotal signaling molecule implicated in diverse physiological processes, spanning metabolic regulation, inflammation, and cardiovascular health. This study provides a comprehensive exploration of GDF15's multifaceted role, primarily focusing on its association with obesity-related complications and therapeutic potential. GDF15's involvement in energy homeostasis, specifically its regulation of body weight and appetite through hindbrain neuron activation and the GFRAL-RET signaling pathway, underscores its significance as an appetite-regulating hormone. GDF15's intricate modulation within adipose tissue dynamics in response to dietary changes and obesity, coupled with its influence on insulin sensitivity, highlights its critical role in metabolic health. The manuscript delves into the intricate crosstalk between GDF15 and pathways related to insulin sensitivity, macrophage polarization, and adipose tissue function, elucidating its potential as a therapeutic target for metabolic disorders associated with obesity. GDF15's association with chronic low-grade inflammation and its impact on cardiovascular health, particularly during hyperlipidemia and ischemic events, are explored. The intricate relationship between GDF15 and cardiovascular diseases, including its effects on endothelial function, cardiac hypertrophy, and heart failure, emphasizes its multifaceted nature in maintaining overall cardiovascular well-being. Challenges regarding the therapeutic application of GDF15, such as long-term safety concerns and ongoing clinical investigations, are discussed. Lastly, future research directions exploring GDF15's potential in addressing obesity-related complications and cardiovascular risks are proposed, highlighting its promising role as a therapeutic target in reshaping treatment strategies for obesity and associated health conditions.
Collapse
Affiliation(s)
- Nikita Nayak
- Department of Pharmaceutical Sciences and Technology, Division of Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Tuhin Mukherjee
- Department of Pharmaceutical Sciences and Technology, Division of Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ashok Pattnaik
- Department of Pharmaceutical Sciences and Technology, Division of Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
13
|
Jena J, García-Peña LM, Weatherford ET, Marti A, Bjorkman SH, Kato K, Koneru J, Chen JH, Seeley RJ, Abel ED, Pereira RO. GDF15 is required for cold-induced thermogenesis and contributes to improved systemic metabolic health following loss of OPA1 in brown adipocytes. eLife 2023; 12:e86452. [PMID: 37819027 PMCID: PMC10567111 DOI: 10.7554/elife.86452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
We previously reported that mice lacking the protein optic atrophy 1 (OPA1 BKO) in brown adipose tissue (BAT) display induction of the activating transcription factor 4 (ATF4), which promotes fibroblast growth factor 21 (FGF21) secretion as a batokine. FGF21 increases metabolic rates under baseline conditions but is dispensable for the resistance to diet-induced obesity (DIO) reported in OPA1 BKO mice (Pereira et al., 2021). To determine alternative mediators of this phenotype, we performed transcriptome analysis, which revealed increased levels of growth differentiation factor 15 (GDF15), along with increased protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) levels in BAT. To investigate whether ATF4 induction was mediated by PERK and evaluate the contribution of GDF15 to the resistance to DIO, we selectively deleted PERK or GDF15 in OPA1 BKO mice. Mice with reduced OPA1 and PERK levels in BAT had preserved ISR activation. Importantly, simultaneous deletion of OPA1 and GDF15 partially reversed the resistance to DIO and abrogated the improvements in glucose tolerance. Furthermore, GDF15 was required to improve cold-induced thermogenesis in OPA1 BKO mice. Taken together, our data indicate that PERK is dispensable to induce the ISR, but GDF15 contributes to the resistance to DIO, and is required for glucose homeostasis and thermoregulation in OPA1 BKO mice by increasing energy expenditure.
Collapse
Affiliation(s)
- Jayashree Jena
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Eric T Weatherford
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Alex Marti
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Sarah H Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Kevin Kato
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Jivan Koneru
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Jason H Chen
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Randy J Seeley
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| | - Renata O Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
14
|
Wang J, Tan S, Gianotti L, Wu G. Evaluation and management of body composition changes in cancer patients. Nutrition 2023; 114:112132. [PMID: 37441827 DOI: 10.1016/j.nut.2023.112132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023]
Abstract
Wasting in cancer patients has long been recognized as a condition that adversely affects cancer patients' quality of life, treatment tolerance, and oncological outcomes. Historically, this condition was mainly evaluated by changes in body weight. However, this approach is not quite accurate because body weight is the overall change of all body compartments. Conditions such as edema and ascites can mask the severity of muscle and adipose tissue depletion. Changes in body composition assessment in cancer patients have historically been underappreciated because of the limited availability of measurement tools. As more evidence highlighting the importance of body composition has emerged, it is imperative to apply a more precise evaluation of nutritional status and a more targeted approach to provide nutritional support for cancer patients. In this review, we will discuss the modalities for evaluating body composition and how to manage body composition changes in cancer patients.
Collapse
Affiliation(s)
- Junjie Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Luca Gianotti
- School of Medicine and Surgery, University of Milano-Bicocca, and HBP Surgery Unit, and Foundation IRCCS San Gerardo, Monza, Italy.
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Jena J, García-Peña LM, Pereira RO. The roles of FGF21 and GDF15 in mediating the mitochondrial integrated stress response. Front Endocrinol (Lausanne) 2023; 14:1264530. [PMID: 37818094 PMCID: PMC10561105 DOI: 10.3389/fendo.2023.1264530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Various models of mitochondrial stress result in induction of the stress-responsive cytokines fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). This is an adaptive mechanism downstream of the mitochondrial integrated stress response frequently associated with improvements in systemic metabolic health. Both FGF21 and GDF15 have been shown to modulate energy balance and glucose homeostasis, and their pharmacological administration leads to promising beneficial effects against obesity and associated metabolic diseases in pre-clinical models. Furthermore, endogenous upregulation of FGF21 and GDF15 is associated with resistance to diet-induced obesity (DIO), improved glucose homeostasis and increased insulin sensitivity. In this review, we highlight several studies on transgenic mouse models of mitochondrial stress and will compare the specific roles played by FGF21 and GDF15 on the systemic metabolic adaptations reported in these models.
Collapse
Affiliation(s)
| | | | - Renata O. Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
16
|
Yang Y, Wang X, Wang S, Chen Q, Li M, Lu S. Identification of Potential Sex-Specific Biomarkers in Pigs with Low and High Intramuscular Fat Content Using Integrated Bioinformatics and Machine Learning. Genes (Basel) 2023; 14:1695. [PMID: 37761835 PMCID: PMC10531182 DOI: 10.3390/genes14091695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Intramuscular fat (IMF) content is a key determinant of pork quality. Controlling the genetic and physiological factors of IMF and the expression patterns of various genes is important for regulating the IMF content and improving meat quality in pig breeding. Growing evidence has suggested the role of genetic factors and breeds in IMF deposition; however, research on the sex factors of IMF deposition is still lacking. The present study aimed to identify potential sex-specific biomarkers strongly associated with IMF deposition in low- and high-IMF pig populations. The GSE144780 expression dataset of IMF deposition-related genes were obtained from the Gene Expression Omnibus. Initially, differentially expressed genes (DEGs) were detected in male and female low-IMF (162 DEGs, including 64 up- and 98 down-regulated genes) and high-IMF pigs (202 DEGs, including 147 up- and 55 down-regulated genes). Moreover, hub genes were screened via PPI network construction. Furthermore, hub genes were screened for potential sex-specific biomarkers using the least absolute shrinkage and selection operator machine learning algorithm, and sex-specific biomarkers in low-IMF (troponin I (TNNI1), myosin light chain 9(MYL9), and serpin family C member 1(SERPINC1)) and high-IMF pigs (CD4 molecule (CD4), CD2 molecule (CD2), and amine oxidase copper-containing 2(AOC2)) were identified, and then verified by quantitative real-time PCR (qRT-PCR) in semimembranosus muscles. Additionally, the gene set enrichment analysis and single-sample gene set enrichment analysis of hallmark gene sets were collectively performed on the identified biomarkers. Finally, the transcription factor-biomarker and lncRNA-miRNA-mRNA (biomarker) networks were predicted. The identified potential sex-specific biomarkers may provide new insights into the molecular mechanisms of IMF deposition and the beneficial foundation for improving meat quality in pig breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (X.W.); (S.W.); (Q.C.); (M.L.)
| |
Collapse
|
17
|
Wang J, Luo LZ, Liang DM, Guo C, Huang ZH, Jian XH, Wen J. Recent progress in understanding mitokines as diagnostic and therapeutic targets in hepatocellular carcinoma. World J Clin Cases 2023; 11:5416-5429. [PMID: 37637689 PMCID: PMC10450380 DOI: 10.12998/wjcc.v11.i23.5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent tumors worldwide and the leading contributor to cancer-related deaths. The progression and metastasis of HCC are closely associated with altered mitochondrial metabolism, including mitochondrial stress response. Mitokines, soluble proteins produced and secreted in response to mitochondrial stress, play an essential immunomodulatory role. Immunotherapy has emerged as a crucial treatment option for HCC. However, a positive response to therapy is typically dependent on the interaction of tumor cells with immune regulation within the tumor microenvironment. Therefore, exploring the specific immunomodulatory mechanisms of mitokines in HCC is essential for improving the efficacy of immunotherapy. This study provides a comprehensive overview of the association between HCC and the immune microenvironment and highlights recent progress in understanding the involvement of mitochondrial function in preserving liver function. In addition, a systematic review of mitokines-mediated immunomodulation in HCC is presented. Finally, the potential diagnostic and therapeutic roles of mitokines in HCC are prospected and summarized. Recent progress in mitokine research represents a new prospect for mitochondrial therapy. Considering the potential of mitokines to regulate immune function, investigating them as a relevant molecular target holds great promise for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Lan-Zhu Luo
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Dao-Miao Liang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Xiao-Hong Jian
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
18
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
19
|
Wu P, Wang X. Natural Drugs: A New Direction for the Prevention and Treatment of Diabetes. Molecules 2023; 28:5525. [PMID: 37513397 PMCID: PMC10385698 DOI: 10.3390/molecules28145525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance, as a common pathological process of many metabolic diseases, including diabetes and obesity, has attracted much attention due to its relevant influencing factors. To date, studies have mainly focused on the shared mechanisms between mitochondrial stress and insulin resistance, and they are now being pursued as a very attractive therapeutic target due to their extensive involvement in many human clinical settings. In view of the complex pathogenesis of diabetes, natural drugs have become new players in diabetes prevention and treatment because of their wide targets and few side effects. In particular, plant phenolics have received attention because of their close relationship with oxidative stress. In this review, we briefly review the mechanisms by which mitochondrial stress leads to insulin resistance. Moreover, we list some cytokines and genes that have recently been found to play roles in mitochondrial stress and insulin resistance. Furthermore, we describe several natural drugs that are currently widely used and give a brief overview of their therapeutic mechanisms. Finally, we suggest possible ideas for future research related to the unique role that natural drugs play in the treatment of insulin resistance through the above targets.
Collapse
Affiliation(s)
- Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| |
Collapse
|
20
|
Croft AJ, Kelly C, Chen D, Haw TJ, Sverdlov AL, Ngo DTM. Overexpression of Mitochondrial Catalase within Adipose Tissue Does Not Confer Systemic Metabolic Protection against Diet-Induced Obesity. Antioxidants (Basel) 2023; 12:antiox12051137. [PMID: 37238003 DOI: 10.3390/antiox12051137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is associated with significant metabolic co-morbidities, such as diabetes, hypertension, and dyslipidaemia, as well as a range of cardiovascular diseases, all of which lead to increased hospitalisations, morbidity, and mortality. Adipose tissue dysfunction caused by chronic nutrient stress can result in oxidative stress, mitochondrial dysfunction, inflammation, hypoxia, and insulin resistance. Thus, we hypothesised that reducing adipose tissue oxidative stress via adipose tissue-targeted overexpression of the antioxidant mitochondrial catalase (mCAT) may improve systemic metabolic function. We crossed mCAT (floxed) and Adipoq-Cre mice to generate mice overexpressing catalase with a mitochondrial targeting sequence predominantly in adipose tissue, designated AdipoQ-mCAT. Under normal diet conditions, the AdipoQ-mCAT transgenic mice demonstrated increased weight gain, adipocyte remodelling, and metabolic dysfunction compared to the wild-type mice. Under obesogenic dietary conditions (16 weeks of high fat/high sucrose feeding), the AdipoQ-mCAT mice did not result in incremental impairment of adipose structure and function but in fact, were protected from further metabolic impairment compared to the obese wild-type mice. While AdipoQ-mCAT overexpression was unable to improve systemic metabolic function per se, our results highlight the critical role of physiological H2O2 signalling in metabolism and adipose tissue function.
Collapse
Affiliation(s)
- Amanda J Croft
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Conagh Kelly
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Dongqing Chen
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Tatt Jhong Haw
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Aaron L Sverdlov
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter New England Local Health District, Newcastle, NSW 2267, Australia
| | - Doan T M Ngo
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
21
|
O’Connell F, Mylod E, Donlon NE, Heeran AB, Butler C, Bhardwaj A, Ramjit S, Durand M, Lambe G, Tansey P, Welartne I, Sheahan KP, Yin X, Donohoe CL, Ravi N, Dunne MR, Brennan L, Reynolds JV, Roche HM, O’Sullivan J. Energy Metabolism, Metabolite, and Inflammatory Profiles in Human Ex Vivo Adipose Tissue Are Influenced by Obesity Status, Metabolic Dysfunction, and Treatment Regimes in Patients with Oesophageal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15061681. [PMID: 36980567 PMCID: PMC10046380 DOI: 10.3390/cancers15061681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Oesophageal adenocarcinoma (OAC) is a poor prognosis cancer with limited response rates to current treatment modalities and has a strong link to obesity. To better elucidate the role of visceral adiposity in this disease state, a full metabolic profile combined with analysis of secreted pro-inflammatory cytokines, metabolites, and lipid profiles were assessed in human ex vivo adipose tissue explants from obese and non-obese OAC patients. These data were then related to extensive clinical data including obesity status, metabolic dysfunction, previous treatment exposure, and tumour regression grades. Real-time energy metabolism profiles were assessed using the seahorse technology. Adipose explant conditioned media was screened using multiplex ELISA to assess secreted levels of 54 pro-inflammatory mediators. Targeted secreted metabolite and lipid profiles were analysed using Ultra-High-Performance Liquid Chromatography coupled with Mass Spectrometry. Adipose tissue explants and matched clinical data were collected from OAC patients (n = 32). Compared to visceral fat from non-obese patients (n = 16), visceral fat explants from obese OAC patients (n = 16) had significantly elevated oxidative phosphorylation metabolism profiles and an increase in Eotaxin-3, IL-17A, IL-17D, IL-3, MCP-1, and MDC and altered secretions of glutamine associated metabolites. Adipose explants from patients with metabolic dysfunction correlated with increased oxidative phosphorylation metabolism, and increases in IL-5, IL-7, SAA, VEGF-C, triacylglycerides, and metabolites compared with metabolically healthy patients. Adipose explants generated from patients who had previously received neo-adjuvant chemotherapy (n = 14) showed elevated secretions of pro-inflammatory mediators, IL-12p40, IL-1α, IL-22, and TNF-β and a decreased expression of triacylglycerides. Furthermore, decreased secreted levels of triacylglycerides were also observed in the adipose secretome of patients who received the chemotherapy-only regimen FLOT compared with patients who received no neo-adjuvant treatment or chemo-radiotherapy regimen CROSS. For those patients who showed the poorest response to currently available treatments, their adipose tissue was associated with higher glycolytic metabolism compared to patients who had good treatment responses. This study demonstrates that the adipose secretome in OAC patients is enriched with mediators that could prime the tumour microenvironment to aid tumour progression and attenuate responses to conventional cancer treatments, an effect which appears to be augmented by obesity and metabolic dysfunction and exposure to different treatment regimes.
Collapse
Affiliation(s)
- Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Eimear Mylod
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Noel E. Donlon
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Aisling B. Heeran
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Christine Butler
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Anshul Bhardwaj
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Sinead Ramjit
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Michael Durand
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Gerard Lambe
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Paul Tansey
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Ivan Welartne
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Kevin P. Sheahan
- Department of Radiology, Beaumont Hospital, D02 YN77 Dublin, Ireland
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Claire L. Donohoe
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- School of Chemical & Biopharmaceutical Sciences, Technological University Dublin, Tallaght, D07 EWV4 Dublin, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 C1P1 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
- Correspondence:
| |
Collapse
|
22
|
Cikes D, Elsayad K, Sezgin E, Koitai E, Torma F, Orthofer M, Yarwood R, Heinz LX, Sedlyarov V, Miranda ND, Taylor A, Grapentine S, Al-Murshedi F, Abot A, Weidinger A, Kutchukian C, Sanchez C, Cronin SJF, Novatchkova M, Kavirayani A, Schuetz T, Haubner B, Haas L, Hagelkruys A, Jackowski S, Kozlov AV, Jacquemond V, Knauf C, Superti-Furga G, Rullman E, Gustafsson T, McDermot J, Lowe M, Radak Z, Chamberlain JS, Bakovic M, Banka S, Penninger JM. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nat Metab 2023; 5:495-515. [PMID: 36941451 DOI: 10.1038/s42255-023-00766-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/10/2023] [Indexed: 03/23/2023]
Abstract
Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.
Collapse
Affiliation(s)
- Domagoj Cikes
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Kareem Elsayad
- Division of Anatomy, Center for Anatomy and Cell Biology and Medical Imaging Cluster (MIC), Vienna, Austria.
| | - Erdinc Sezgin
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erika Koitai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michael Orthofer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Anne Abot
- Enterosys SAS, Prologue Biotech, Labège, France
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Candice Kutchukian
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Colline Sanchez
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Anoop Kavirayani
- VBCF, Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Thomas Schuetz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Haubner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisa Haas
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Vincent Jacquemond
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - John McDermot
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington, Seattle, WA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA, USA
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Siddharth Banka
- Manchester Centre for Genomics Medicine, St Mary's Hospital, Manchester University Hospital Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Li C, Leng Q, Li L, Hu F, Xu Y, Gong S, Yang Y, Zhang H, Li X. Berberine Ameliorates Obesity by Inducing GDF15 Secretion by Brown Adipocytes. Endocrinology 2023; 164:7056674. [PMID: 36825874 DOI: 10.1210/endocr/bqad035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Berberine (BBR), which is a compound derived from the Chinese medicinal plant Coptis chinensis, promotes weight loss, but the molecular mechanisms are not well understood. Here, we show that BBR increases the serum level of growth differentiation factor 15 (GDF15), which is a stress response cytokine that can reduce food intake and lower body weight in diet-induced obese (DIO) mice. The body weight and food intake of DIO mice were decreased after BBR treatment, and the weight change was negatively correlated with the serum GDF15 level. Further studies show that BBR induced GDF15 mRNA expression and secretion in the brown adipose tissue (BAT) of DIO mice and primary mouse brown adipocytes. In addition, we found that BBR upregulates GDF15 mRNA expression and secretion by activating the integrated stress response (ISR) in primary mouse brown adipocytes. Overall, our findings show that BBR lowers body weight by inducing GDF15 secretion via the activation of the ISR in BAT.
Collapse
Affiliation(s)
- Chang Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Qingyang Leng
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Lihua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Fan Hu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Yuejie Xu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Sa Gong
- Shanghai Songjiang District Fangta Hospital of Traditional Chinese Medicine, Shanghai 201600, China
| | - Ying Yang
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
24
|
Oki S, Kageyama S, Machihara K, Namba T. Kuanoniamine C Suppresses Adipogenesis and White Adipose Tissue Expansion by Modulating Mitochondrial Function. Biol Pharm Bull 2023; 46:1787-1796. [PMID: 38044097 DOI: 10.1248/bpb.b23-00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Obesity is characterized by the excessive accumulation of fat to adipose tissue, which is related to abnormal increasing white adipose tissue (WAT) in the body, and it upregulates the risk of multiple diseases. Here, kuanoniamine C, which is a pyridoacridine alkaloid, suppressed the differentiation of pre-adipose cells into white adipocytes via the modulation of mitochondrial function, and inhibited WAT expansion in the early phase of high-fat-diet-induced obesity model. Pharmacological analysis revealed that inhibition of mitochondrial respiratory complex II, which new target of kuanoniamine C, activated reactive oxygen species (ROS)-extracellular signal-regulated kinase (ERK)-β-catenin signaling, and this signaling was antagonized by insulin-, IBMX-, and dexamethasone-induced adipogenesis. Therefore, the kuanoniamine C might prevent abnormal WAT expansion even when eating a diet that is not calorie restricted.
Collapse
Affiliation(s)
- Shoma Oki
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University
| | - Sou Kageyama
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University
| | - Kayo Machihara
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University
| | - Takushi Namba
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University
| |
Collapse
|
25
|
Patel S, Haider A, Alvarez-Guaita A, Bidault G, El-Sayed Moustafa JS, Guiu-Jurado E, Tadross JA, Warner J, Harrison J, Virtue S, Scurria F, Zvetkova I, Blüher M, Small KS, O'Rahilly S, Savage DB. Combined genetic deletion of GDF15 and FGF21 has modest effects on body weight, hepatic steatosis and insulin resistance in high fat fed mice. Mol Metab 2022; 65:101589. [PMID: 36064109 PMCID: PMC9486046 DOI: 10.1016/j.molmet.2022.101589] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear. METHODS Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity. We then generated and characterized the metabolic phenotypes of GDF15/FGF21 double knockout mice. RESULTS Circulating GDF15 and FGF21 are both largely derived from the liver, rather than adipose tissue or skeletal muscle, in obese states. Combined whole body deletion of FGF21 and GDF15 does not result in any additional weight gain in response to high fat feeding but it does result in significantly greater hepatic steatosis and insulin resistance than that seen in GDF15 single knockout mice. CONCLUSIONS Collectively the data suggest that overfeeding activates a stress response in the liver which is the major source of systemic rises in GDF15 and FGF21. These hormones then activate pathways which reduce this metabolic stress.
Collapse
Affiliation(s)
- Satish Patel
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Afreen Haider
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Anna Alvarez-Guaita
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | | | - Esther Guiu-Jurado
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - John A Tadross
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; East Midlands and East of England Genomic Laboratory Hub & Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James Warner
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - James Harrison
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Fabio Scurria
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Ilona Zvetkova
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, London, SE1 7EH, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David B Savage
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK; MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Igual Gil C, Coull BM, Jonas W, Lippert RN, Klaus S, Ost M. Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior. Life Sci Alliance 2022; 5:5/11/e202201495. [PMID: 36271504 PMCID: PMC9449705 DOI: 10.26508/lsa.202201495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle–brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Department of Molecular Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
27
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Kim JT, Lim MA, Lee SE, Kim HJ, Koh HY, Lee JH, Jun SM, Kim JM, Kim KH, Shin HS, Cho SW, Kim KS, Shong M, Koo BS, Kang YE. Adrenomedullin2 stimulates progression of thyroid cancer in mice and humans under nutrient excess conditions. J Pathol 2022; 258:264-277. [PMID: 36098211 PMCID: PMC9826144 DOI: 10.1002/path.5997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023]
Abstract
Thyroid cancer is associated with genetic alterations, e.g. BRAFV600E , which may cause carcinomatous changes in hormone-secreting epithelial cells. Epidemiological studies have shown that overnutrition is related to the development and progression of cancer. In this study, we attempted to identify the cell nonautonomous factor responsible for the progression of BRAFV600E thyroid cancer under overnutrition conditions. We developed a mouse model for inducible thyrocyte-specific activation of BRAFV600E , which showed features similar to those of human papillary thyroid cancer. LSL-BrafV600E ;TgCreERT2 showed thyroid tumour development in the entire thyroid, and the tumour showed more abnormal cellular features with mitochondrial abnormalities in mice fed a high-fat diet (HFD). Transcriptomics revealed that adrenomedullin2 (Adm2) was increased in LSL-BrafV600E ;TgCreERT2 mice fed HFD. ADM2 was upregulated on the addition of a mitochondrial complex I inhibitor or palmitic acid with integrated stress response (ISR) in cancer cells. ADM2 stimulated protein kinase A and extracellular signal-regulated kinase in vitro. The knockdown of ADM2 suppressed the proliferation and migration of thyroid cancer cells. We searched The Cancer Genome Atlas and Genotype-Tissue Expression databases and found that increased ADM2 expression was associated with ISR and poor overall survival. Consistently, upregulated ADM2 expression in tumour cells and circulating ADM2 molecules were associated with aggressive clinicopathological parameters, including body mass index, in thyroid cancer patients. Collectively, we identified that ADM2 is released from cancer cells under mitochondrial stress resulting from overnutrition and acts as a secretory factor determining the progressive properties of thyroid cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jung Tae Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Department of Medical ScienceChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology‐Head and Neck SurgeryChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Hyun Yong Koh
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sang Mi Jun
- Center for Research EquipmentKorea Basic Science InstituteCheongjuRepublic of Korea,Convergent Research Center for Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea
| | - Jin Man Kim
- Department of PathologyChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Kun Ho Kim
- Department of Nuclear MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Hyo Shik Shin
- Department of Internal MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Sun Wook Cho
- Department of Internal MedicineSeoul National University College of MedicineSeoulRepublic of Korea,Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea,Cellus Inc.SeoulRepublic of Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Division of Endocrinology and Metabolism, Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Department of Medical ScienceChungnam National University School of MedicineDaejeonRepublic of Korea,Division of Endocrinology and Metabolism, Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Bon Seok Koo
- Department of Medical ScienceChungnam National University School of MedicineDaejeonRepublic of Korea,Department of Otolaryngology‐Head and Neck SurgeryChungnam National University School of MedicineDaejeonRepublic of Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonRepublic of Korea,Division of Endocrinology and Metabolism, Department of Internal MedicineChungnam National University School of MedicineDaejeonRepublic of Korea
| |
Collapse
|
29
|
Aguilar-Recarte D, Barroso E, Palomer X, Wahli W, Vázquez-Carrera M. Knocking on GDF15's door for the treatment of type 2 diabetes mellitus. Trends Endocrinol Metab 2022; 33:741-754. [PMID: 36151002 DOI: 10.1016/j.tem.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Although a large number of drugs are available for the treatment of type 2 diabetes mellitus (T2DM), many patients do not achieve adequate disease control despite adhering to medication. Recent findings indicate that the pharmacological modulation of the stress-induced cytokine growth differentiation factor 15 (GDF15) shows promise for the treatment of T2DM. GDF15 suppresses appetite and reduces inflammation, increases thermogenesis and lipid catabolism, sustains AMP-activated protein kinase (AMPK) activity, and ameliorates insulin resistance and hepatic steatosis. In addition, circulating GDF15 levels are elevated in response to several antidiabetic drugs, including metformin, with GDF15 mediating some of their effects. Here, we review the mechanistic insights into the beneficial effects of recently explored therapeutic approaches that target GDF15 for the treatment of T2DM.
Collapse
Affiliation(s)
- David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
30
|
Chen J, Peng H, Chen C, Wang Y, Sang T, Cai Z, Zhao Q, Chen S, Lin X, Eling T, Wang X. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells. Life Sci 2022; 311:121142. [DOI: 10.1016/j.lfs.2022.121142] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
|
31
|
Wang Y, Chen J, Chen C, Peng H, Lin X, Zhao Q, Chen S, Wang X. Growth differentiation factor-15 overexpression promotes cell proliferation and predicts poor prognosis in cerebral lower-grade gliomas correlated with hypoxia and glycolysis signature. Life Sci 2022; 302:120645. [PMID: 35588865 DOI: 10.1016/j.lfs.2022.120645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
AIMS Growth differentiation factor-15 (GDF15) plays complex and controversial roles in cancer. In this study, the prognostic value and the exact biological function of GDF15 in cerebral lower-grade gliomas (LGGs) and its potential molecular targets were examined. MAIN METHODS Wilcoxon signed-rank test and logistic regression were applied to analyze associations between GDF15 expression and clinical characteristics using the Cancer Genome Atlas (TCGA) database. Overall survival was analyzed using Kaplan-Meier and Cox analyses. Gene set enrichment analysis (GSEA) and the hypoxia risk model was conducted to identify the potential molecular mechanisms underlying the effects of GDF15 on LGGs tumorigenesis. The biological function of GDF15 was examined using gain- and loss-of-function experiments, and a recombinant hGDF15 protein in LGG SW1783 cells in vitro. KEY FINDINGS We found that higher GDF15 expression is associated with poor clinical features in LGG patients, and an independent risk factor for overall survival among LGG patients. GSEA results showed that the poor prognostic role of GDF15 in LGGs is related to hypoxia and glycolysis signatures, which was further validated using the hypoxia risk model. Furthermore, GDF15 overexpression facilitated cell proliferation, while GDF15 siRNA inhibits cell proliferation in LGG SW1783 cells. In addition, GDF15 was upregulated upon CoCl2 treatment which induces hypoxia, correlating with the upregulation of the expressions of HIF-1α and glycolysis-related key genes in SW1783 cells. SIGNIFICANCE GDF15 may promote LGG tumorigenesis that is associated with the hypoxia and glycolysis pathways, and thus could serve as a promising molecular target for LGG prevention and therapy.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chaojie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
32
|
PFKM inhibits doxorubicin-induced cardiotoxicity by enhancing oxidative phosphorylation and glycolysis. Sci Rep 2022; 12:11684. [PMID: 35804014 PMCID: PMC9266090 DOI: 10.1038/s41598-022-15743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Heart failure (HF) is a global pandemic which affects about 26 million people. PFKM (Phosphofructokinase, Muscle), catalyzing the phosphorylation of fructose-6-phosphate, plays a very important role in cardiovascular diseases. However, the effect of PFKM in glycolysis and HF remains to be elucidated. H9c2 rat cardiomyocyte cells were treated with doxorubicin (DOX) to establish injury models, and the cell viability, apoptosis and glycolysis were measured. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunoblotting were used for gene expression. DOX treatment significantly inhibited PFKM expression in H9c2 cells. Overexpression of PFKM inhibited DOX-induced cell apoptosis and DOX-decreased glycolysis and oxidative phosphorylation (OXPHOS), while silencing PFKM promoted cell apoptosis and inhibited glycolysis and OXPHOS in H9c2 cells. Moreover, PFKM regulated DOX-mediated cell viability and apoptosis through glycolysis pathway. Mechanism study showed that histone deacetylase 1 (HDAC1) inhibited H3K27ac-induced transcription of PFKM in DOX-treated cells and regulated glycolysis. PFKM could inhibit DOX-induced cardiotoxicity by enhancing OXPHOS and glycolysis, which might benefit us in developing novel therapeutics for prevention or treatment of HF.
Collapse
|
33
|
Wang Y, Chen J, Sang T, Chen C, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. NAG-1/GDF15 protects against streptozotocin-induced type 1 diabetes by inhibiting apoptosis, preserving beta-cell function, and suppressing inflammation in pancreatic islets. Mol Cell Endocrinol 2022; 549:111643. [PMID: 35398052 DOI: 10.1016/j.mce.2022.111643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/01/2023]
Abstract
The loss of functional insulin-producing β-cells is a hallmark of type 1 diabetes mellitus (T1DM). Previously, we reported that the non-steroidal anti-inflammatory drug activated gene-1, or growth differentiation factor-15 (NAG-1/GDF15) inhibits obesity and improves insulin sensitivity in both genetic and dietary-induced obese mice. However, the regulatory role of NAG-1/GDF15 in the structure and function of β-cells and the prevention of T1DM is largely unknown. In the current study, we reported that NAG-1/GDF15 transgenic (Tg) mice are resistant to diabetogenesis induced by multiple low-dose streptozotocin (MLD-STZ) treatment. NAG-1/GDF15 overexpression significantly reduced diabetes incidence, alleviated symptoms of T1DM, and improved MLD-STZ-induced glucose intolerance and insulin resistance. Both the mass and function of pancreatic β cells were preserved in the NAG-1/GDF15 Tg mice as evidenced by significantly increased islet area and insulin production. The mechanistic study revealed that NAG-1/GDF15 significantly inhibited STZ-induced apoptosis and preserved the reduction of proliferation in the islets of the Tg mice as compared to the wild-type (WT) mice upon MLD-STZ treatment. Additionally, NAG-1/GDF15 significantly reduced both the serum and islet levels of the inflammatory cytokines (IL-1β, IL-6, and TNFα), and reduced the expression of NF-κB expression and immune cells infiltration in the islets. Collectively, these results indicate that NAG-1/GDF15 is effective in improving STZ-induced glucose intolerance, probably was mediated via suppressing inflammation, inhibiting apoptosis, and preserving β-cell mass and function.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Tingting Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Chaojie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China
| | - Thomas Eling
- Scientist Emeritus, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| |
Collapse
|
34
|
Wang Y, Chen C, Chen J, Sang T, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biol 2022; 52:102322. [PMID: 35504134 PMCID: PMC9079118 DOI: 10.1016/j.redox.2022.102322] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress-mediated inflammasome activation play critical roles in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). Non-steroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), or growth differentiation factor-15 (GDF15), is associated with many biological processes and diseases, including NAFLD. However, the role of NAG-1/GDF15 in regulating oxidative stress and whether this process is associated with absent in melanoma 2 (AIM2) inflammasome activation in NAFLD are unknown. In this study, we revealed that NAG-1/GDF15 is significantly downregulated in liver tissues of patients with steatosis compared to normal livers using the Gene Expression Omnibus (GEO) database, and in free fatty acids (FFA, oleic acid/palmitic acid, 2:1)-induced HepG2 and Huh-7 cellular steatosis models. Overexpression of NAG-1/GDF15 in transgenic (Tg) mice significantly alleviated HFD-induced obesity and hepatic steatosis, improved lipid homeostasis, enhanced fatty acid β-oxidation and lipolysis, inhibited fatty acid synthesis and uptake, and inhibited AIM2 inflammasome activation and the secretion of IL-18 and IL-1β, as compared to their wild-type (WT) littermates without reducing food intake. Furthermore, NAG-1/GDF15 overexpression attenuated FFA-induced triglyceride (TG) accumulation, lipid metabolism deregulation, and AIM2 inflammasome activation in hepatic steatotic cells, while knockdown of NAG-1/GDF15 demonstrated opposite effects. Moreover, NAG-1/GDF15 overexpression inhibited HFD- and FFA-induced oxidative stress and mitochondrial damage which in turn reduced double-strand DNA (dsDNA) release into the cytosol, while NAG-1/GDF15 siRNA showed opposite effects. The reduced ROS production and dsDNA release may be responsible for attenuated AIM2 activation by NAG-1/GDF15 upon fatty acid overload. In conclusion, our results provide evidence that other than regulating lipid homeostasis, NAG-1/GDF15 protects against hepatic steatosis through a novel mechanism via suppressing oxidative stress, mitochondrial damage, dsDNA release, and AIM2 inflammasome activation. NAG-1/GDF15 is downregulated in human steatotic liver and FFA-induced liver cells. NAG-1/GDF15 inhibits hepatic steatosis and improves lipid homeostasis. AIM2 inflammasome is activated in steatosis models and is inhibited by NAG-1/GDF15. NAG-1/GDF15 reduces oxidative stress and mitochondrial damage in steatosis models. NAG-1/GDF15 inhibits mitochondrial dsDNA release and thus inhibits AIM2 activation.
Collapse
|
35
|
Ju SH, Yi HS. Implication of Sex Differences in Visceral Fat for the Assessment of Incidence Risk of Type 2 Diabetes Mellitus. Diabetes Metab J 2022; 46:414-416. [PMID: 35656564 PMCID: PMC9171154 DOI: 10.4093/dmj.2022.0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Corresponding author: Hyon-Seung Yi https://orcid.org/0000-0002-3767-1954 Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea E-mail:
| |
Collapse
|
36
|
Miyake M, Zhang J, Yasue A, Hisanaga S, Tsugawa K, Sakaue H, Oyadomari M, Kiyonari H, Oyadomari S. Integrated stress response regulates GDF15 secretion from adipocytes, preferentially suppresses appetite for a high-fat diet and improves obesity. iScience 2021; 24:103448. [PMID: 34877504 PMCID: PMC8633987 DOI: 10.1016/j.isci.2021.103448] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/28/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
The eIF2α phosphorylation-dependent integrated stress response (ISR) is a signaling pathway that maintains homeostasis in mammalian cells exposed to various stresses. Here, ISR activation in adipocytes improves obesity and diabetes by regulating appetite in a non-cell-autonomous manner. Adipocyte-specific ISR activation using transgenic mice decreases body weight and improves glucose tolerance and obesity induced by a high-fat diet (HFD) via preferential inhibition of HFD intake. The transcriptome analysis of ISR-activated adipose tissue reveals that growth differentiation factor 15 (GDF15) expression is induced by the ISR through the direct regulation of the transcription factors ATF4 and DDIT3. Deficiency in the GDF15 receptor GFRAL abolishes the adipocyte ISR-dependent preferential inhibition of HFD intake and the anti-obesity effects. Pharmacologically, 10(E), 12(Z)-octadecadienoic acid induces ISR-dependent GDF15 expression in adipocytes and decreases the intake of the HFD. Based on our findings the specific activation of the ISR in adipocytes controls the non-cell-autonomous regulation of appetite. Activation of ISR in adipocytes suppresses intake of high-fat diet and prevents obesity ATF4 and DDIT3 induced by ISR directly regulate GDF15 expression GDF15-GFRAL axis mediates the control of appetite for high-fat diet by ISR activation One of conjugated linoleic acids induces ISR and GDF15 expression in adipocytes
Collapse
Affiliation(s)
- Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Jun Zhang
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,ER Stress Research Institute Inc., Tokushima 770-8503, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 770-8504, Japan
| | - Satoshi Hisanaga
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazue Tsugawa
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Sakaue
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Miho Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,ER Stress Research Institute Inc., Tokushima 770-8503, Japan
| |
Collapse
|
37
|
Zhu Q, An YA, Scherer PE. Mitochondrial regulation and white adipose tissue homeostasis. Trends Cell Biol 2021; 32:351-364. [PMID: 34810062 DOI: 10.1016/j.tcb.2021.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
The important role of mitochondria in the regulation of white adipose tissue (WAT) remodeling and energy balance is increasingly appreciated. The remarkable heterogeneity of the adipose tissue stroma provides a cellular basis to enable adipose tissue plasticity in response to various metabolic stimuli. Regulating mitochondrial function at the cellular level in adipocytes, in adipose progenitor cells (APCs), and in adipose tissue macrophages (ATMs) has a profound impact on adipose homeostasis. Moreover, mitochondria facilitate the cell-to-cell communication within WAT, as well as the crosstalk with other organs, such as the liver, the heart, and the pancreas. A better understanding of mitochondrial regulation in the diverse adipose tissue cell types allows us to develop more specific and efficient approaches to improve adipose function and achieve improvements in overall metabolic health.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Keipert S, Ost M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab 2021; 32:904-915. [PMID: 34526227 DOI: 10.1016/j.tem.2021.08.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are established as stress-responsive cytokines that can modulate energy balance by increasing energy expenditure or suppressing food intake, respectively. Despite their pharmacologically induced beneficial effects on obesity and comorbidities, circulating levels of both cytokines are elevated during obesity and related metabolic complications. On the other hand, endocrine crosstalk via FGF21 and GDF15 was also reported to play a crucial role in genetically modified mouse models of mitochondrial perturbations leading to diet-induced obesity (DIO) resistance. This review aims to dissect the complexities of endogenous FGF21 and GDF15 action in obesity versus DIO resistance for the regulation of energy balance in metabolic health and disease.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Mario Ost
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
39
|
Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 2021; 17:592-607. [PMID: 34381196 DOI: 10.1038/s41574-021-00529-7] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 15 (GDF15) is a member of the TGFβ superfamily whose expression is increased in response to cellular stress and disease as well as by metformin. Elevations in GDF15 reduce food intake and body mass in animal models through binding to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) and the recruitment of the receptor tyrosine kinase RET in the hindbrain. This effect is largely independent of other appetite-regulating hormones (for example, leptin, ghrelin or glucagon-like peptide 1). Consistent with an important role for the GDF15-GFRAL signalling axis, some human genetic studies support an interrelationship with human obesity. Furthermore, findings in both mice and humans have shown that metformin and exercise increase circulating levels of GDF15. GDF15 might also exert anti-inflammatory effects through mechanisms that are not fully understood. These unique and distinct mechanisms for suppressing food intake and inflammation makes GDF15 an appealing candidate to treat many metabolic diseases, including obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, cardiovascular disease and cancer cachexia. Here, we review the mechanisms regulating GDF15 production and secretion, GDF15 signalling in different cell types, and how GDF15-targeted pharmaceutical approaches might be effective in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Logan K Townsend
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Djordje Djordjevic
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
40
|
Mig-6 is essential for glucose homeostasis and thermogenesis in brown adipose tissue. Biochem Biophys Res Commun 2021; 572:92-97. [PMID: 34358969 DOI: 10.1016/j.bbrc.2021.07.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023]
Abstract
Brown adipose tissue (BAT) is an anti-obese and anti-diabetic tissue that stimulates energy expenditure in the form of adaptive thermogenesis through uncoupling protein 1 (UCP1). Mitogen-inducible gene-6 (Mig-6) is a negative regulator of epidermal growth factor receptor (EGFR) that interacts with many cellular partners and has multiple cellular functions. We have recently reported that Mig-6 is associated with diabetes and metabolic syndrome. However, its function in BAT is unknown. We generated a brown adipocyte-specific Mig-6 knock-in mouse (BKI) to examine the role of Mig-6 in BAT. Mig-6 BKI mice had improved glucose tolerance on a normal chow diet. Mig-6 BKI mice also revealed activated thermogenesis and the size of the BAT lipid droplets was reduced. Additionally, Mig-6 regulated cAMP-PKA signaling-induced UCP1 expression in brown adipocytes. Taken together, these results demonstrate that Mig-6 affects glucose tolerance and thermogenesis in BAT.
Collapse
|
41
|
Mitochondrial Metabolic Signatures in Hepatocellular Carcinoma. Cells 2021; 10:cells10081901. [PMID: 34440674 PMCID: PMC8391498 DOI: 10.3390/cells10081901] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis.
Collapse
|
42
|
Kladnicka I, Cedikova M, Jedlicka J, Kohoutova M, Muller L, Plavinova I, Kripnerova M, Bludovska M, Kuncova J, Mullerova D. Chronic DDE Exposure Modifies Mitochondrial Respiration during Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Mature Adipocytes. Biomolecules 2021; 11:biom11081068. [PMID: 34439734 PMCID: PMC8393889 DOI: 10.3390/biom11081068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of environmental pollutants to the obesity pandemic is still not yet fully recognized. Elucidating possible cellular and molecular mechanisms of their effects is of high importance. Our study aimed to evaluate the effect of chronic, 21-day-long, 2,2-bis (4-chlorophenyl)-1,1-dichlorethylenedichlorodiphenyldichloroethylene (p,p´-DDE) exposure of human adipose-derived mesenchymal stem cells committed to adipogenesis on mitochondrial oxygen consumption on days 4, 10, and 21. In addition, the mitochondrial membrane potential (MMP), the quality of the mitochondrial network, and lipid accumulation in maturing cells were evaluated. Compared to control differentiating adipocytes, exposure to p,p´-DDE at 1 μM concentration significantly increased basal (routine) mitochondrial respiration, ATP-linked oxygen consumption and MMP of intact cells on day 21 of adipogenesis. In contrast, higher pollutant concentration seemed to slow down the gradual increase in ATP-linked oxygen consumption typical for normal adipogenesis. Organochlorine p,p´-DDE did not alter citrate synthase activity. In conclusion, in vitro 1 μM p,p´-DDE corresponding to human exposure is able to increase the mitochondrial respiration per individual mitochondrion at the end of adipocyte maturation. Our data reveal that long-lasting exposure to p,p´-DDE could interfere with the metabolic programming of mature adipocytes.
Collapse
Affiliation(s)
- Iva Kladnicka
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (I.P.); (M.B.); (D.M.)
- NTIS, European Center of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
- Correspondence: ; Tel.: +420-377-593-193
| | - Miroslava Cedikova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.C.); (J.J.); (M.K.); (J.K.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Jan Jedlicka
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.C.); (J.J.); (M.K.); (J.K.)
| | - Michaela Kohoutova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.C.); (J.J.); (M.K.); (J.K.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Ludek Muller
- NTIS, European Center of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Iveta Plavinova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (I.P.); (M.B.); (D.M.)
| | - Michaela Kripnerova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic;
| | - Monika Bludovska
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (I.P.); (M.B.); (D.M.)
- NTIS, European Center of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Jitka Kuncova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.C.); (J.J.); (M.K.); (J.K.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Dana Mullerova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (I.P.); (M.B.); (D.M.)
- NTIS, European Center of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| |
Collapse
|
43
|
Townsend LK, Weber AJ, Day EA, Shamshoum H, Shaw SJ, Perry CGR, Kemp BE, Steinberg GR, Wright DC. AMPK mediates energetic stress-induced liver GDF15. FASEB J 2021; 35:e21218. [PMID: 33337559 DOI: 10.1096/fj.202000954r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Growth differentiating factor-15 (GDF15) is an emerging target for the treatment of obesity and metabolic disease partly due to its ability to suppress food intake. GDF15 expression and secretion are thought to be regulated by a cellular integrated stress response, which involves endoplasmic reticulum (ER) stress. AMPK is another cellular stress sensor, but the relationship between AMPK, ER stress, and GDF15 has not been assessed in vivo. Wildtype (WT), AMPK β1 deficient (AMPKβ1-/- ), and CHOP-/- mice were treated with three distinct AMPK activators; AICAR, which is converted to ZMP mimicking the effects of AMP on the AMPKγ isoform, R419, which indirectly activates AMPK through inhibition of mitochondrial respiration, or A769662, a direct AMPK activator which binds the AMPKβ1 isoform ADaM site causing allosteric activation. Following treatments, liver Gdf15, markers of ER-stress, AMPK activity, adenine nucleotides, circulating GDF15, and food intake were assessed. AICAR and R419 caused ER and energetic stress, increased GDF15 expression and secretion, and suppressed food intake. Direct activation of AMPK β1 containing complexes by A769662 increased hepatic Gdf15 expression, circulating GDF15, and suppressed food intake, independent of ER stress. The effects of AICAR, R419, and A769662 on GDF15 were attenuated in AMPKβ1-/- mice. AICAR and A769662 increased GDF15 to a similar extent in WT and CHOP-/- mice. Herein, we provide evidence that AMPK plays a role in mediating the induction of GDF15 under conditions of energetic stress in mouse liver in vivo.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alyssa J Weber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Simon J Shaw
- Rigel Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Bruce E Kemp
- Department of Medicine, St. Vincent's Institute, University of Melbourne, Melbourne, Vic, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
44
|
Lee JH, Jung SB, Lee SE, Kim JE, Kim JT, Kang YE, Kang SG, Yi HS, Ko YB, Lee KH, Ku BJ, Shong M, Kim HJ. Expression of LONP1 Is High in Visceral Adipose Tissue in Obesity, and Is Associated with Glucose and Lipid Metabolism. Endocrinol Metab (Seoul) 2021; 36:661-671. [PMID: 34154043 PMCID: PMC8258340 DOI: 10.3803/enm.2021.1023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The nature and role of the mitochondrial stress response in adipose tissue in relation to obesity are not yet known. To determine whether the mitochondrial unfolded protein response (UPRmt) in adipose tissue is associated with obesity in humans and rodents. METHODS Visceral adipose tissue (VAT) was obtained from 48 normoglycemic women who underwent surgery. Expression levels of mRNA and proteins were measured for mitochondrial chaperones, intrinsic proteases, and components of electron-transport chains. Furthermore, we systematically analyzed metabolic phenotypes with a large panel of isogenic BXD inbred mouse strains and Genotype-Tissue Expression (GTEx) data. RESULTS In VAT, expression of mitochondrial chaperones and intrinsic proteases localized in inner and outer mitochondrial membranes was not associated with body mass index (BMI), except for the Lon protease homolog, mitochondrial, and the corresponding gene LONP1, which showed high-level expression in the VAT of overweight or obese individuals. Expression of LONP1 in VAT positively correlated with BMI. Analysis of the GTEx database revealed that elevation of LONP1 expression is associated with enhancement of genes involved in glucose and lipid metabolism in VAT. Mice with higher Lonp1 expression in adipose tissue had better systemic glucose metabolism than mice with lower Lonp1 expression. CONCLUSION Expression of mitochondrial LONP1, which is involved in the mitochondrial quality control stress response, was elevated in the VAT of obese individuals. In a bioinformatics analysis, high LONP1 expression in VAT was associated with enhanced glucose and lipid metabolism.
Collapse
Affiliation(s)
- Ju Hee Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Ji Eun Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Young Bok Ko
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Ki Hwan Lee
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| |
Collapse
|
45
|
Mazuecos L, Pintado C, Rubio B, Guisantes-Batán E, Andrés A, Gallardo N. Leptin, Acting at Central Level, Increases FGF21 Expression in White Adipose Tissue via PPARβ/δ. Int J Mol Sci 2021; 22:4624. [PMID: 33924880 PMCID: PMC8124190 DOI: 10.3390/ijms22094624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARβ/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARβ/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARβ/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARβ/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Pintado
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Blanca Rubio
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Eduardo Guisantes-Batán
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Antonio Andrés
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (L.M.); (C.P.); (B.R.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
46
|
Kobayashi M, Nezu Y, Tagawa R, Higami Y. Mitochondrial Unfolded Protein Responses in White Adipose Tissue: Lipoatrophy, Whole-Body Metabolism and Lifespan. Int J Mol Sci 2021; 22:ijms22062854. [PMID: 33799894 PMCID: PMC7998111 DOI: 10.3390/ijms22062854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed "mitohormesis", but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yuichiro Nezu
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-8510, Japan
- Correspondence: ; Tel.: +81-4-7121-3676
| |
Collapse
|
47
|
Kang SG, Choi MJ, Jung SB, Chung HK, Chang JY, Kim JT, Kang YE, Lee JH, Hong HJ, Jun SM, Ro HJ, Suh JM, Kim H, Auwerx J, Yi HS, Shong M. Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response. iScience 2021; 24:102181. [PMID: 33718833 PMCID: PMC7920832 DOI: 10.1016/j.isci.2021.102181] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Perturbation of mitochondrial proteostasis provokes cell autonomous and cell non-autonomous responses that contribute to homeostatic adaptation. Here, we demonstrate distinct metabolic effects of hepatic metabokines as cell non-autonomous factors in mice with mitochondrial OxPhos dysfunction. Liver-specific mitochondrial stress induced by a loss-of-function mutation in Crif1 (LKO) leads to aberrant oxidative phosphorylation and promotes the mitochondrial unfolded protein response. LKO mice are highly insulin sensitive and resistant to diet-induced obesity. The hepatocytes of LKO mice secrete large quantities of metabokines, including GDF15 and FGF21, which confer metabolic benefits. We evaluated the metabolic phenotypes of LKO mice with global deficiency of GDF15 or FGF21 and show that GDF15 regulates body and fat mass and prevents diet-induced hepatic steatosis, whereas FGF21 upregulates insulin sensitivity, energy expenditure, and thermogenesis in white adipose tissue. This study reveals that the mitochondrial integrated stress response (ISRmt) in liver mediates metabolic adaptation through hepatic metabokines.
Collapse
Affiliation(s)
- Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea
| | - Sang Mi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyun-Joo Ro
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Johan Auwerx
- Laboratory for Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| |
Collapse
|
48
|
Choi MJ, Jung SB, Chang JY, Shong M. Cellular and Intercellular Homeostasis in Adipose Tissue with Mitochondria-Specific Stress. Endocrinol Metab (Seoul) 2021; 36:1-11. [PMID: 33677920 PMCID: PMC7937835 DOI: 10.3803/enm.2021.956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/24/2022] Open
Abstract
Paracrine interactions are imperative for the maintenance of adipose tissue intercellular homeostasis, and intracellular organelle dysfunction results in local and systemic alterations in metabolic homeostasis. It is currently accepted that mitochondrial proteotoxic stress activates the mitochondrial unfolded protein response (UPRmt) in vitro and in vivo. The induction of mitochondrial chaperones and proteases during the UPRmt is a key cell-autonomous mechanism of mitochondrial quality control. The UPRmt also affects systemic metabolism through the secretion of cell non-autonomous peptides and cytokines (hereafter, metabokines). Mitochondrial function in adipose tissue plays a pivotal role in whole-body metabolism and human diseases. Despite continuing interest in the role of the UPRmt and quality control pathways of mitochondria in energy metabolism, studies on the roles of the UPRmt and metabokines in white adipose tissue are relatively sparse. Here, we describe the role of the UPRmt in adipose tissue, including adipocytes and resident macrophages, and the interactive roles of cell non-autonomous metabokines, particularly growth differentiation factor 15, in local adipose cellular homeostasis and systemic energy metabolism.
Collapse
Affiliation(s)
- Min Jeong Choi
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Saet-Byel Jung
- Center for Biomolecular & Cellular Structure, Institute for Basic Science, Daejeon, Korea
| | - Joon Young Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
49
|
Regulation of diurnal energy balance by mitokines. Cell Mol Life Sci 2021; 78:3369-3384. [PMID: 33464381 PMCID: PMC7814174 DOI: 10.1007/s00018-020-03748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease.
Collapse
|
50
|
Abstract
GDF15 is a cell activation and stress response cytokine of the glial cell line-derived neurotrophic factor family within the TGF-β superfamily. It acts through a recently identified orphan member of the GFRα family called GFRAL and signals through the Ret coreceptor. Cell stress and disease lead to elevated GDF15 serum levels, causing anorexia, weight loss, and alterations to metabolism, largely by actions on regions of the hindbrain. These changes restore homeostasis and, in the case of obesity, cause a reduction in adiposity. In some diseases, such as advanced cancer, serum GDF15 levels can rise by as much as 10-100-fold, leading to an anorexia-cachexia syndrome, which is often fatal. This review discusses how GDF15 regulates appetite and metabolism, the role it plays in resistance to obesity, and how this impacts diseases such as diabetes, nonalcoholic fatty liver disease, and anorexia-cachexia syndrome. It also discusses potential therapeutic applications of targeting the GDF15-GFRAL pathway and lastly suggests some potential unifying hypotheses for its biological role.
Collapse
Affiliation(s)
- Samuel N Breit
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; ,
| | - David A Brown
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; .,New South Wales Health Pathology, Institute of Clinical Pathology Research, and Westmead Institute for Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Vicky Wang-Wei Tsai
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; ,
| |
Collapse
|