1
|
Ohira M, Kawagoe N, Kameyama C, Kondou Y, Igarashi M, Ueshiba H. Association of serum cortisol with insulin secretion and plasma aldosterone with insulin resistance in untreated type 2 diabetes: a cross-sectional study. Diabetol Metab Syndr 2025; 17:144. [PMID: 40296149 PMCID: PMC12036189 DOI: 10.1186/s13098-025-01706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Insulin secretion and resistance are key pathophysiological factors in type 2 diabetes. However, only 55% of patients achieve long-term blood glucose treatment goals, highlighting the need to clarify the pathophysiology of type 2 diabetes. While cortisol and aldosterone levels have been linked to insulin secretion and resistance in participants without type 2 diabetes, their role in patients with type 2 diabetes remains unclear. In this study, we aimed to investigate the relationships among insulin secretion, insulin resistance, and cortisol or aldosterone levels in patients with untreated type 2 diabetes. METHODS We retrospectively reviewed 121 patients with untreated type 2 diabetes mellitus. We analyzed the relationships between various clinical parameters, including adrenal hormones, and insulin secretion (homeostatic model assessment [HOMA2-%B]) or insulin resistance (HOMA2-IR). Multiple regression analysis was performed to identify parameters associated with HOMA2-%B or HOMA2-IR. RESULTS Spearman's rank correlation coefficient revealed that body weight (BW); body mass index (BMI); estimated glomerular filtration rate; and serum creatinine, uric acid, total cholesterol, high-density lipoprotein cholesterol (HDL-C), sodium, potassium, chloride, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), serum C-peptide, and cortisol levels were significantly correlated with HOMA2-%B. Similarly, BW, BMI, aspartate transaminase levels, alanine transaminase (ALT) levels, triglyceride levels, HDL-C levels, FBG levels, serum C-peptide levels, renin activity, and plasma aldosterone concentration (PAC) were significantly correlated with HOMA2-IR. Multiple regression analysis revealed BMI, HbA1c levels, and cortisol levels as predictors of HOMA2-%B, whereas ALT levels and the PAC were predictors of HOMA2-IR. CONCLUSION Serum cortisol levels are associated with insulin secretion, and the PAC is associated with insulin resistance in patients with untreated type 2 diabetes. These findings suggest that aldosterone blockade may represent a potential therapeutic approach for reducing insulin resistance in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Masahiro Ohira
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan.
| | - Naoyuki Kawagoe
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Chisato Kameyama
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Yuko Kondou
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Madoka Igarashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| | - Hajime Ueshiba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan
| |
Collapse
|
2
|
Xu W, Cui J, Zhou F, Bai M, Deng R, Wang W. Leonurine protects against dexamethasone-induced cytotoxicity in pancreatic β-cells via PI3K/Akt signaling pathway. Biochem Biophys Res Commun 2020; 529:652-658. [DOI: 10.1016/j.bbrc.2020.05.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/27/2023]
|
3
|
Dei-Adomakoh YA, Akpalu J, Yawson AE, Ekem I, Reynolds M, Atiase Y. Steroid-induced dysglycaemia in patients with haematological disorders a ten-year review in a tertiary hospital in Ghana. Ghana Med J 2019; 53:156-162. [PMID: 31481812 PMCID: PMC6697763 DOI: 10.4314/gmj.v53i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Glucocorticoids (steroids) play a key role in the management of multiple medical conditions including haematological disorders. This study looked at the prevalence of steroid induced dysglycaemia in patients with haematological disorders receiving steroids as part of their treatment with the view of modifying its use and selection of patients where necessary. Methods A retrospective review of haematology patients on treatment regimens including steroids. Information extracted included, demographic characteristics, clinical information such as age, gender, haematological disorder, type of steroid, daily and cumulative dose of steroid, duration of therapy, family history of diabetes and alcohol use. Results The case records of 351 haematology patients were reviewed. However, eight patients with dysglycaemia before therapy were excluded. The median age of patients was 51.0 ± 26.0(IQR: Interquartile Range) years, with an age range of 13 to 87 years, and a female: male ratio of 1.2: 1 (p= 0.778). The prevalence of Steroid-Induced Dysglycaemia (SID) was 3.79% with a mean diagnosis interval of 8.8 + 2.1 months. Overall, 245 (71.4%) patients were on continuous steroids. Among the 13 patients who developed SID, 11 (84.6%) were on continuous steroids. In the majority of the patients (97.1%) there was no family history of diabetes in a first degree relative. Significant differences were found between patients with normoglycaemia and those with dysglycaemia with respect to age (p=0.049) and duration of steroid therapy (p=0.024). Conclusion The prevalence of steroid-induced dysglycaemia is relatively low among Ghanaian patients with haematological disorders on steroid based chemotherapy. Funding None declared
Collapse
Affiliation(s)
| | - Josephine Akpalu
- Korle Bu teaching hospital, Department of Medicine, Accra, Ghana
| | - Alfred E Yawson
- University of Ghana Medical School, Department of Community, Accra, Ghana.,National AIDS/STI Control Program, Clinical Care Unit, Ghana Health Service, Accra, Ghana
| | - Ivy Ekem
- University of Cape Coast, CoHAS, School of Medical Sciences, Department of Haematology, UCC SMS University of Cape Coast Cape Coast, Cape Coast
| | | | - Yacoba Atiase
- Korle Bu teaching hospital, Department of Medicine, Accra, Ghana
| |
Collapse
|
4
|
Ortiz R, Kluwe B, Odei J, Echouffo Tcheugui JB, Sims M, Kalyani RR, Bertoni AG, Golden SH, Joseph JJ. The association of morning serum cortisol with glucose metabolism and diabetes: The Jackson Heart Study. Psychoneuroendocrinology 2019; 103:25-32. [PMID: 30623794 PMCID: PMC6450778 DOI: 10.1016/j.psyneuen.2018.12.237] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Serum cortisol levels have been associated with type 2 diabetes (T2D). However, the role of cortisol in glycemia and T2D is not fully elucidated among African Americans (AAs). We hypothesized that among AAs morning serum cortisol would be positively associated with glycemic measures and prevalent T2D. METHODS We examined the cross-sectional association of baseline morning serum cortisol with fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR), β-cell function (HOMA-β), and prevalent T2D in the Jackson Heart Study. Linear regression models were used to examine the association of log-transformed cortisol with glycemic traits, stratified by T2D status. Logistic regression was used to examine the association of log-transformed cortisol with prevalent T2D. Models were adjusted for age, sex, education, occupation, systolic blood pressure, waist circumference, physical activity, smoking, beta-blocker/hormone replacement medications and cortisol collection time. RESULTS Among 4,206 AAs (mean age 55 ± 13 years, 64% female), 19% had prevalent T2D. A 100% increase in cortisol among participants without diabetes was associated with 2.7 mg/dL (95% CI: 2.0, 3.3) higher FPG and a 10.0% (95% CI: -14.0, -6.0) lower HOMA-β with no significant association with HbA1c or HOMA-IR. In participants with diabetes, a 100% increase in cortisol was associated with a 23.6 mg/dL (95% CI: 13.6, 33.7) higher FPG and a 0.6% (95% CI: 0.3, 0.9) higher HbA1c. Among all participants, quartile 4 vs. 1 of cortisol was associated with a 1.26-fold (95% CI: 1.75, 2.91) higher odds of prevalent T2D. CONCLUSION Higher morning serum cortisol was associated with higher FPG and lower β-cell function among participants without T2D and higher FPG and HbA1c in participants with diabetes. Among all participants, higher cortisol was associated with higher odds of T2D. These findings support a role for morning serum cortisol in glucose metabolism among AAs.
Collapse
Affiliation(s)
- Robin Ortiz
- Departments of Internal Medicine and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - James Odei
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, OH
| | | | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Rita R. Kalyani
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alain G. Bertoni
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston Salem, NC
| | - Sherita H. Golden
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joshua J. Joseph
- Department of Medicine, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
5
|
Xu W, Zhang Y, Bai M, Zhou F, Deng R, Ji X, Zhang J, Liu Y, Zhou L, Wang X. Glucose enhances rat islet function via stimulating CART expression. Biochem Biophys Res Commun 2016; 481:84-89. [PMID: 27823935 DOI: 10.1016/j.bbrc.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is an anorexigenic peptide widely expressed in the central and peripheral nervous systems, as well as in endocrine cells. CART is markedly upregulated in the β-cells of several rodent models of type-2 diabetes. The stimulatory effect of exogenous CART peptide on insulin secretion is cAMP dependent. Glucose is the most important regulator of islet function. However, the role of CART in glucose-potentiated insulin secretion remains unclear. Here, our results showed that glucose time- and dose-dependently elicited CART mRNA expression in rat islets. Both the glucokinase agonist GKA50 and the long-acting GLP-1 analogue exendin-4 increased CART mRNA expression. The protein kinase A (PKA) inhibitor H89 and the inactivation of cAMP response element-binding protein (CREB) suppressed forskolin-stimulated CART mRNA expression. Furthermore, CART overexpression amplified insulin secretion from rat islets in response to glucose and forskolin, and ameliorated dexamethasone-impaired insulin secretion. These findings suggest that islet-derived CART is involved, at least in part, in high glucose-potentiated pancreatic β-cell function.
Collapse
Affiliation(s)
- Wan Xu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuqing Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Mengyao Bai
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Feiye Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ruyuan Deng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xueying Ji
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Juan Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yun Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Libin Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Boortz KA, Syring KE, Dai C, Pound LD, Oeser JK, Jacobson DA, Wang JC, McGuinness OP, Powers AC, O'Brien RM. G6PC2 Modulates Fasting Blood Glucose In Male Mice in Response to Stress. Endocrinology 2016; 157:3002-8. [PMID: 27300767 PMCID: PMC4967123 DOI: 10.1210/en.2016-1245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glucose-6-phosphatase catalytic 2 (G6PC2) gene is expressed specifically in pancreatic islet beta cells. Genome-wide association studies have shown that single nucleotide polymorphisms in the G6PC2 gene are associated with variations in fasting blood glucose (FBG) but not fasting plasma insulin. Molecular analyses examining the functional effects of these single nucleotide polymorphisms demonstrate that elevated G6PC2 expression is associated with elevated FBG. Studies in mice complement these genome-wide association data and show that deletion of the G6pc2 gene lowers FBG without affecting fasting plasma insulin. This suggests that, together with glucokinase, G6PC2 forms a substrate cycle that determines the glucose sensitivity of insulin secretion. Because genome-wide association studies and mouse studies demonstrate that elevated G6PC2 expression raises FBG and because chronically elevated FBG is detrimental to human health, increasing the risk of type 2 diabetes, it is unclear why G6PC2 evolved. We show here that the synthetic glucocorticoid dexamethasone strongly induces human G6PC2 promoter activity and endogenous G6PC2 expression in isolated human islets. Acute treatment with dexamethasone selectively induces endogenous G6pc2 expression in 129SvEv but not C57BL/6J mouse pancreas and isolated islets. The difference is due to a single nucleotide polymorphism in the C57BL/6J G6pc2 promoter that abolishes glucocorticoid receptor binding. In 6-hour fasted, nonstressed 129SvEv mice, deletion of G6pc2 lowers FBG. In response to the stress of repeated physical restraint, which is associated with elevated plasma glucocorticoid levels, G6pc2 gene expression is induced and the difference in FBG between wild-type and knockout mice is enhanced. These data suggest that G6PC2 may have evolved to modulate FBG in response to stress.
Collapse
Affiliation(s)
- Kayla A Boortz
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Kristen E Syring
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Chunhua Dai
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Lynley D Pound
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - James K Oeser
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - David A Jacobson
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Jen-Chywan Wang
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Owen P McGuinness
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Alvin C Powers
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Richard M O'Brien
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| |
Collapse
|
7
|
Marmugi A, Parnis J, Chen X, Carmichael L, Hardy J, Mannan N, Marchetti P, Piemonti L, Bosco D, Johnson P, Shapiro JAM, Cruciani-Guglielmacci C, Magnan C, Ibberson M, Thorens B, Valdivia HH, Rutter GA, Leclerc I. Sorcin Links Pancreatic β-Cell Lipotoxicity to ER Ca2+ Stores. Diabetes 2016; 65:1009-21. [PMID: 26822088 PMCID: PMC4806657 DOI: 10.2337/db15-1334] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/18/2016] [Indexed: 01/02/2023]
Abstract
Preserving β-cell function during the development of obesity and insulin resistance would limit the worldwide epidemic of type 2 diabetes. Endoplasmic reticulum (ER) calcium (Ca(2+)) depletion induced by saturated free fatty acids and cytokines causes β-cell ER stress and apoptosis, but the molecular mechanisms behind these phenomena are still poorly understood. Here, we demonstrate that palmitate-induced sorcin downregulation and subsequent increases in glucose-6-phosphatase catalytic subunit-2 (G6PC2) levels contribute to lipotoxicity. Sorcin is a calcium sensor protein involved in maintaining ER Ca(2+) by inhibiting ryanodine receptor activity and playing a role in terminating Ca(2+)-induced Ca(2+) release. G6PC2, a genome-wide association study gene associated with fasting blood glucose, is a negative regulator of glucose-stimulated insulin secretion (GSIS). High-fat feeding in mice and chronic exposure of human islets to palmitate decreases endogenous sorcin expression while levels of G6PC2 mRNA increase. Sorcin-null mice are glucose intolerant, with markedly impaired GSIS and increased expression of G6pc2 Under high-fat diet, mice overexpressing sorcin in the β-cell display improved glucose tolerance, fasting blood glucose, and GSIS, whereas G6PC2 levels are decreased and cytosolic and ER Ca(2+) are increased in transgenic islets. Sorcin may thus provide a target for intervention in type 2 diabetes.
Collapse
Affiliation(s)
- Alice Marmugi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Julia Parnis
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Xi Chen
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI
| | - LeAnne Carmichael
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Julie Hardy
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Naila Mannan
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, Italy
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K
| | - James A M Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christophe Magnan
- Unit of Functional and Adaptive Biology, Paris Diderot University-Paris 7, Paris, France
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Héctor H Valdivia
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, U.K.
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, U.K.
| |
Collapse
|
8
|
Joseph JJ, Wang X, Spanakis E, Seeman T, Wand G, Needham B, Golden SH. Diurnal salivary cortisol, glycemia and insulin resistance: The multi-ethnic study of atherosclerosis. Psychoneuroendocrinology 2015; 62:327-35. [PMID: 26356041 PMCID: PMC4637243 DOI: 10.1016/j.psyneuen.2015.08.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Hypercortisolism is associated with insulin resistance (IR) and diabetes mellitus (DM); however, to our knowledge prior studies have not examined the association of diurnal cortisol curve features with measures of glycemia or IR in a population-based setting. Using log-transformed salivary cortisol data on 850 ethnically diverse men and women from the Multi-Ethnic Study of Atherosclerosis, we investigated the cross-sectional association of cortisol curve features with (1) glycemia in those with and without DM and (2) IR, in non-diabetic subjects. The log-transformed salivary cortisol curve features included wake-up cortisol, cortisol awakening response (CAR), early decline slope (30min to 2h post-awakening), late decline slope (2h post-awakening to bedtime), overall decline slope (0min to bedtime, excluding 30min cortisol), bedtime cortisol and total area under the curve (AUC). Overall, following multivariable adjustment, among those with diabetes mellitus (DM), early decline slope, overall decline slope, bedtime cortisol, and AUC were significantly and positively associated with a 5.4% (95% CI: 1.3, 9.7), 54.7% (95% CI: 12.4, 112.9), 4.0% (95% CI: 1.6,6.4), and 6.8% (95% CI: 3.3,10.4) higher HbA1c per 1 unit increase in log cortisol feature, respectively. Cortisol curve features were not associated with HbA1c among non-diabetic participants; however, wake-up cortisol and AUC were associated with a 8.2% lower (95% CI: -13.3,-2.7) and 7.9% lower (95% CI: -14.6, -0.6) log HOMA-IR, respectively. This was attenuated by adjustment for waist circumference. Among participants with DM, cortisol curve parameters suggestive of higher hypothalamic-pituitary-adrenal (HPA) axis activity and dysfunction were associated with higher HbA1c. In non-diabetic participants, greater HPA activity was paradoxically associated with lower insulin resistance.
Collapse
Affiliation(s)
- Joshua J. Joseph
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Wang
- School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Elias Spanakis
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Teresa Seeman
- Division of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary Wand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Belinda Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States
| | - Sherita Hill Golden
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|
9
|
Fransson L, Rosengren V, Saha TK, Grankvist N, Islam T, Honkanen RE, Sjöholm Å, Ortsäter H. Mitogen-activated protein kinases and protein phosphatase 5 mediate glucocorticoid-induced cytotoxicity in pancreatic islets and β-cells. Mol Cell Endocrinol 2014; 383:126-36. [PMID: 24361515 DOI: 10.1016/j.mce.2013.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/21/2022]
Abstract
Glucocorticoid excess is associated with glucose intolerance and diabetes. In addition to inducing insulin resistance, glucocorticoids impair β-cell function and cause β-cell apoptosis. In this study we show that dexamethasone activates mitogen-activated protein kinases (MAPKs) signaling in MIN6 β-cells, as evident by enhanced phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK). In contrast, the integrated stress response pathway was inhibited by dexamethasone. A p38 MAPK inhibitor attenuated dexamethasone-induced apoptosis in β-cells and isolated islets and decreased glucocorticoid receptor phosphorylation at S220. In contrast, a JNK inhibitor augmented DNA fragmentation and dexamethasone-induced formation of cleaved caspase 3. We also show that inhibition of protein phosphatase 5 (PP5) augments apoptosis in dexamethasone-exposed islets and β-cells, with a concomitant activation of p38 MAPK. In conclusion, our data provide evidence that in islets and β-cells, p38 MAPK and JNK phosphorylation work in concert with PP5 to regulate the cytotoxic effects exerted by glucocorticoids.
Collapse
Affiliation(s)
- Liselotte Fransson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Rosengren
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Titu Kumar Saha
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Nina Grankvist
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Tohidul Islam
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Richard E Honkanen
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Department of Internal Medicine, Södertälje Hospital, SE 152 86 Södertälje, Sweden
| | - Åke Sjöholm
- Department of Internal Medicine, Södertälje Hospital, SE 152 86 Södertälje, Sweden; Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, Mobile, AL, USA
| | - Henrik Ortsäter
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Research Unit, Södertälje Hospital, SE-152 86 Södertälje, Sweden.
| |
Collapse
|
10
|
Fransson L, dos Santos C, Wolbert P, Sjöholm Å, Rafacho A, Ortsäter H. Liraglutide counteracts obesity and glucose intolerance in a mouse model of glucocorticoid-induced metabolic syndrome. Diabetol Metab Syndr 2014; 6:3. [PMID: 24423471 PMCID: PMC3905931 DOI: 10.1186/1758-5996-6-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/09/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glucocorticoid excess is commonly associated with diabetogenic effects, including insulin resistance and glucose intolerance. The effects of the long-term glucagon-like peptide 1 receptor agonist treatment on the metabolic syndrome-like conditions are not yet fully elucidated. Thus, we aimed to test whether long-term liraglutide treatment could be effective as a therapy to counteract the metabolic dysfunctions induced by chronic glucocorticoid exposure. METHODS Mice were given corticosterone or vehicle via their drinking water for five consecutive weeks. In addition, mice were treated with once-daily injections of either PBS or liraglutide. RESULTS Liraglutide treatment slowed progression towards obesity and ectopic fat deposition in liver that otherwise occurred in corticosterone-treated mice. The drug reduced the increment in serum insulin caused by corticosterone, but did not affect the reduction of insulin sensitivity. Furthermore, liraglutide improved glucose control in mice exposed to corticosterone as evident by a delay in the progression towards post-prandial hyperglycemia and enhanced glucose clearance during a glucose tolerance test. Glucose-stimulated C-peptide levels were higher in those mice that had received liraglutide and corticosterone compared to mice that had been treated with corticosterone alone, indicating a positive role of liraglutide for beta-cell function. Morphometric analysis revealed increased beta- and alpha-cell masses that were associated with more Ki67-positive islet cells in corticosterone-treated mice irrespective of whether they were co-treated with liraglutide or not. Liraglutide had no discernible effect on alpha-cell mass. CONCLUSION Liraglutide can be beneficial for subjects at risk of developing metabolic complications as a result of glucocorticoid excess.
Collapse
Affiliation(s)
- Liselotte Fransson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
| | - Cristiane dos Santos
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Petra Wolbert
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
| | - Åke Sjöholm
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
- Department of Internal Medicine, Södertälje Hospital, SE-152 86, Södertälje, Sweden
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Henrik Ortsäter
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Research Center Floor 3, 118 83, Stockholm, Sweden
- Research Unit, Södertälje Hospital, SE-152 86, Södertälje, Sweden
| |
Collapse
|
11
|
Protzek AOP, Costa-Júnior JM, Rezende LF, Santos GJ, Araújo TG, Vettorazzi JF, Ortis F, Carneiro EM, Rafacho A, Boschero AC. Augmented β-Cell Function and Mass in Glucocorticoid-Treated Rodents Are Associated with Increased Islet Ir-β /AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling. Int J Endocrinol 2014; 2014:983453. [PMID: 25313308 PMCID: PMC4182854 DOI: 10.1155/2014/983453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/25/2014] [Accepted: 08/17/2014] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.
Collapse
Affiliation(s)
- André O. P. Protzek
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - José M. Costa-Júnior
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Luiz F. Rezende
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Gustavo J. Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Tiago Gomes Araújo
- School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jean F. Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Fernanda Ortis
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Everardo M. Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Antonio C. Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
- *Antonio C. Boschero:
| |
Collapse
|
12
|
Hypersomatotropism, Acromegaly, and Hyperadrenocorticism and Feline Diabetes Mellitus. Vet Clin North Am Small Anim Pract 2013; 43:319-50. [DOI: 10.1016/j.cvsm.2012.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Multiple roles of glucose-6-phosphatases in pathophysiology. Biochim Biophys Acta Gen Subj 2013; 1830:2608-18. [DOI: 10.1016/j.bbagen.2012.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
|
14
|
Gottschalk J, Einspanier A, Ungemach FR, Abraham G. Influence of topical dexamethasone applications on insulin, glucose, thyroid hormone and cortisol levels in dogs. Res Vet Sci 2011; 90:491-7. [PMID: 20667567 DOI: 10.1016/j.rvsc.2010.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 05/26/2010] [Accepted: 06/25/2010] [Indexed: 11/17/2022]
Affiliation(s)
- J Gottschalk
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, D-04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
15
|
Rafacho A, Quallio S, Ribeiro DL, Taboga SR, Paula FMM, Boschero AC, Bosqueiro JR. The adaptive compensations in endocrine pancreas from glucocorticoid-treated rats are reversible after the interruption of treatment. Acta Physiol (Oxf) 2010; 200:223-35. [PMID: 20456283 DOI: 10.1111/j.1748-1716.2010.02146.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Glucocorticoid administration induces insulin resistance (IR) and enhances islet mass and insulin secretion in rodents and humans. Here, we analysed whether these effects are still present after the interruption of dexamethasone treatment. METHODS Adult Wistar rats were distributed into CTL (daily injection of saline for five consecutive days), DEX (daily injection of 1 mg kg(-1) body wt of dexamethasone for five consecutive days) and DEX(10) (5 days of dexamethasone treatment, followed by a period of 10 days without dexamethasone). RESULTS In vivo experiments indicated that the marked hyperinsulinemia found in DEX rats during fasting and fed states was normalized in the DEX(10) group. Furthermore, the IR and glucose intolerance observed in DEX were restored in DEX(10) rats. Islets from DEX rats secreted more insulin in response to increasing concentrations of glucose and other metabolic and non-metabolic stimuli, compared with that in the CTL group. The insulin secretion for the most compounds studied returned to CTL values in DEX(10) islets. Increased insulin secretion correlated well with the augmentation in β-cell proliferation and mass in DEX rats, and these morphological alterations were normalized in islets from DEX(10) rats. In parallel, the increased levels of proteins involved in β-cell proliferation such as Cd2 and Cdk4 observed in DEX islets were also normalized in DEX(10) islets. CONCLUSION These data strongly support the view that almost all the morphophysiological alterations induced by dexamethasone in the endocrine pancreas are reverted after discontinuation of the treatment. This information is important, considering the frequent use of glucocorticoids in humans.
Collapse
Affiliation(s)
- A Rafacho
- Department of Physical Education, School of Sciences, UNESP - Univ. Estadual Paulista, Bauru, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
16
|
Viscarra JA, Vázquez-Medina JP, Crocker DE, Ortiz RM. Glut4 is upregulated despite decreased insulin signaling during prolonged fasting in northern elephant seal pups. Am J Physiol Regul Integr Comp Physiol 2010; 300:R150-4. [PMID: 20980624 DOI: 10.1152/ajpregu.00478.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postprandial cellular glucose uptake is dependent on an insulin-signaling cascade in muscle and adipose tissue, resulting in the translocation of the insulin-dependent glucose transporter 4 (Glut4) into the plasma membrane. Additionally, extended food deprivation is characterized by suppressed insulin signaling and decreased Glut4 expression. Northern elephant seals are adapted to prolonged fasts characterized by high levels of plasma glucose. To address the hypothesis that the fasting-induced decrease in insulin is associated with reduced insulin signaling in prolonged fasted seals, we compared the adipose protein levels of the cellular insulin-signaling pathway, Glut4 and plasma glucose, insulin, cortisol, and adiponectin concentrations between Early (n = 9; 2-3 wks postweaning) and Late (n = 8; 6-8 wks postweaning) fasted seals. Plasma adiponectin (230 ± 13 vs. 177 ± 11 ng/ml), insulin (2.7 ± 0.4 vs. 1.0 ± 0.1 μU/ml), and glucose (9.8 ± 0.5 vs. 8.0 ± 0.3 mM) decreased, while cortisol (124 ± 6 vs. 257 ± 30 nM) doubled with fasting. Glut4 increased (31%) with fasting despite the significant decreases in the cellular content of phosphatidylinositol 3-kinase as well as phosphorylated insulin receptor, insulin receptor substrate-1, and Akt2. Increased Glut4 may have contributed to the decrease in plasma glucose, but the decrease in insulin and insulin signaling suggests that Glut4 is not insulin-dependent in adipose tissue during prolonged fasting in elephant seals. The reduction of plasma glucose independent of insulin may make these animals an ideal model for the study of insulin resistance.
Collapse
|
17
|
Rafacho A, Marroquí L, Taboga SR, Abrantes JLF, Silveira LR, Boschero AC, Carneiro EM, Bosqueiro JR, Nadal A, Quesada I. Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology 2010; 151:85-95. [PMID: 19880808 DOI: 10.1210/en.2009-0704] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity.
Collapse
Affiliation(s)
- Alex Rafacho
- Instituto de Bioingeniería, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche 03202, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ahrén B. Evidence that autonomic mechanisms contribute to the adaptive increase in insulin secretion during dexamethasone-induced insulin resistance in humans. Diabetologia 2008; 51:1018-24. [PMID: 18437349 DOI: 10.1007/s00125-008-0995-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/11/2008] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS This study examined whether autonomic mechanisms contribute to adaptively increased insulin secretion in insulin-resistant humans, as has been proposed from studies in animals. METHODS Insulin secretion was evaluated before and after induction of insulin resistance with or without interruption of neural transmission. Insulin resistance was induced by dexamethasone (15 mg given over 3 days) in nine healthy women (age 67 years, BMI 25.2+/-3.4 kg/m(2), fasting glucose 5.1+/-0.4 mmol/l, fasting insulin 46+/-6 pmol/l). Insulin secretion was evaluated as the insulin response to intravenous arginine (5 g) injected at fasting glucose and after raising glucose to 13 to 15 mmol/l or to >28 mmol/l. Neural transmission across the ganglia was interrupted by infusion of trimethaphan (0.3-0.6 mg kg(-1) min(-1)). RESULTS As an indication of insulin resistance, dexamethasone increased fasting insulin (to 75+/-8 pmol/l, p<0.001) without significantly affecting fasting glucose. Arginine-induced insulin secretion was increased by dexamethasone at all glucose levels (by 64+/-12% at fasting glucose, by 80+/-19% at 13-15 mmol glucose and by 43+/-12% at >28 mmol glucose; p <0.001 for all). During dexamethasone-induced insulin resistance, trimethaphan reduced the insulin response to arginine at all three glucose levels. The augmentation of the arginine-induced insulin responses by dexamethasone-induced insulin resistance was reduced by trimethaphan by 48+/-6% at fasting glucose, 61+/-8% at 13-15 mmol/l glucose and 62+/-8% at >28 mmol/l glucose (p<0.001 for all). In contrast, trimethaphan did not affect insulin secretion before dexamethasone was given. CONCLUSIONS/INTERPRETATIONS Autonomic mechanisms contribute to the adaptative increase in insulin secretion in dexamethasone-induced insulin resistance in healthy participants.
Collapse
Affiliation(s)
- B Ahrén
- Department of Clinical Sciences, Lund University, B11 BMC, Sölvegatan 19, 221 84 Lund, Sweden.
| |
Collapse
|
19
|
Avram D, Ranta F, Hennige AM, Berchtold S, Hopp S, Häring HU, Lang F, Ullrich S. IGF-1 protects against dexamethasone-induced cell death in insulin secreting INS-1 cells independent of AKT/PKB phosphorylation. Cell Physiol Biochem 2008; 21:455-62. [PMID: 18453753 DOI: 10.1159/000129638] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2007] [Indexed: 12/16/2022] Open
Abstract
Appropriate insulin secretion depends on beta-cell mass that is determined by the balance between cell proliferation and death. IGF-1 stimulates proliferation and protects against apoptosis. In contrast, glucocorticoids promote cell death. In this study we examined molecular interactions of the glucocorticoid dexamethasone (dexa) with IGF-1 signalling pathways in insulin secreting INS-1 cells. IGF-1 (50 ng/ml) increased the growth rate and stimulated BrdU incorporation, while dexa (100 nmol/l) inhibited cell growth, BrdU incorporation and induced apoptosis. Dexa-induced cell death was partially antagonized by IGF-1. This protection was further increased by LY294002 (10 micromol/l), an inhibitor of PI3 kinase. In contrast, MAP kinase inhibitor PD98059 (10 micromol/l) significantly reduced the protective effect of IGF-1. The analysis of signalling pathways by Western blotting revealed that dexa increased IRS-2 protein abundance while the expression of PI3K, PKB and ERK remained unchanged. Despite increased IRS-2 protein,IRS-2 tyrosine phosphorylation stimulated by IGF-1 was inhibited by dexa. Dexa treatment reduced basal PKB phosphorylation. However, IGF-1-mediated stimulation of PKB phosphorylation was not affected by dexa, but ERK phosphorylation was reduced. LY294002 restored IGF-1-induced ERK phosphorylation. These data suggest that dexa induces apoptosis in INS-1 cells by inhibiting phosphorylation of IRS-2, PKB and ERK. IGF-1 counteracts dexa-mediated apoptosis in the presence of reduced PKB but increased ERK phosphorylation.
Collapse
Affiliation(s)
- Diana Avram
- Institute of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ribeiro DL, Rafacho A, Bosqueiro JR, Taboga SR, Góes RM. Cellular changes in the prostatic stroma of glucocorticoid-treated rats. Cell Tissue Res 2008; 332:499-508. [PMID: 18379825 DOI: 10.1007/s00441-008-0581-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 01/10/2008] [Indexed: 11/26/2022]
Abstract
Glucocorticoid hormones (GCs) have been widely used for the treatment of prostate cancer because of their inhibitory property against tumour growth. However, their mechanism of action in the prostate has received little attention. Excess GCs can lead to peripheral insulin resistance resulting in hyperglycaemia and hyperinsulinaemia. Insulin plays an important role as a cellular stimulant and high levels are related to low levels of androgens. Our objective has been to describe the effects of insulin resistance induced by dexamethasone treatment on the morphology of rat ventral prostate. Male adult Wistar rats received daily intraperitoneal injections of dexamethasone or saline for five consecutive days after which the rats were killed and the ventral prostate was removed, weighed and prepared for conventional and transmission electron microscopy (TEM). Dexamethasone treatment resulted in atrophy and decreased proliferative activity of prostatic epithelial cells. TEM analysis revealed changes in the epithelium-stroma interface, with some interruptions in the basement membrane. Fibroblasts showed a secretory phenotype with dilated endoplasmic reticulum. Smooth muscle cells exhibited a contractile pattern with 50% atrophy, an irregular membrane and twisted nuclei. Mitochondrial alterations, such as enlarged size and high electron density in the mitochondrial matrix, were also detected in smooth muscle cells. Insulin resistance induced by dexamethasone is thus associated with epithelial atrophy similar to that described for diabetic rats. However, GCs are responsible for morphological changes in the stromal cell population suggesting the activation of fibroblasts and atrophy of the smooth muscle cells.
Collapse
Affiliation(s)
- D L Ribeiro
- Department of Cell Biology, State University of Campinas, UNICAMP, Campinas, Brazil
| | | | | | | | | |
Collapse
|
21
|
Brown PD, Badal S, Morrison S, Ragoobirsingh D. Acute impairment of insulin signalling by dexamethasone in primary cultured rat skeletal myocytes. Mol Cell Biochem 2006; 297:171-7. [PMID: 17072757 DOI: 10.1007/s11010-006-9344-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
In this study, we examined the cellular content of the insulin receptor substrate (IRS)-1, the levels of phosphorylated tyrosine (pY) and serine (pS) residues in IRS-1, and the glucose transporters GLUT-1 and GLUT-4 in primary cultured rat skeletal myocytes treated with the glucocorticoid, dexamethasone. Dexamethasone markedly increased basal and insulin-stimulated IRS-1 content 4 to 5-fold (p < 0.01). A similar level of increase was observed for IRS-1 pY content. However, dexamethasone treatment had no effect on IRS-1 pS content. Further, dexamethasone reduced the cellular content of GLUT-1 when insulin and glucose were absent (p < 0.05), but did not significantly affect the expression of GLUT-4 in the presence of insulin (p > 0.05). We conclude that dexamethasone treatment impairs insulin signalling by a mechanism independent of serine-phosphorylation-mediated IRS-1 depletion, or of impairment of GLUT-1 expression. Instead, dexamethasone-induced insulin resistance may be mediated via reduced cellular content of IRS-1 accompanied by parallel reduction in tyrosine phosphorylation in IRS-1.
Collapse
Affiliation(s)
- Paul D Brown
- Department of Basic Medical Sciences (Biochemistry section), University of the West Indies, Kingston, Jamaica.
| | | | | | | |
Collapse
|
22
|
Liu Z, Braverman LE, Malabanan A. Thyrotoxic Periodic Paralysis in A Hispanic Man after the Administration Of Prednisone. Endocr Pract 2006; 12:427-31. [PMID: 16901800 DOI: 10.4158/ep.12.4.427] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To present a case of thyrotoxic periodic paralysis (TPP) in a Hispanic man and to discuss the potential precipitating mechanisms. METHODS We review the clinical and laboratory findings relative to the occurrence of TPP in a 34-year-old Hispanic man, who had been diagnosed as having Graves' disease. RESULTS TPP is a rare complication of thyrotoxicosis. The two known triggers of TPP are high carbohydrate intake and rest after strenuous physical activity. Other precipitating factors include ingestion of alcohol, infection, trauma, emotional stress, and exposure to cold. Nonselective beta-adrenergic blocking agents are used as prophylaxis for the paralytic attacks. Glucocorticoids have been used to treat nonresponsive and recurrent episodes. Nevertheless, our patient, a 34-year-old Hispanic man, had received propranolol for 7 days and one single dose of prednisone 2 hours before the onset of the paralysis. In patients with TPP, the Na+/K+-adenosinetriphosphatase (ATPase) pump activity is considerably increased by excess thyroid hormones, resulting in an increased intracellular potassium shift. Insulin activates the Na+/K+-ATPase pump as well; thus, the precipitating effect of a high carbohydrate diet is explained. Glucocorticoids have been shown to increase the number of Na+/K+-ATPase molecules in skeletal muscle. They also increase insulin secretion in the basal state and the first-phase insulin release after a glucose load. CONCLUSION In our patient with TPP, the onset of the attack was not prevented by the use of propranolol and was likely triggered by the administration of prednisone.
Collapse
Affiliation(s)
- Zhao Liu
- Section of Endocrinology, Diabetes and Nutrition, Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
23
|
Ranta F, Avram D, Berchtold S, Düfer M, Drews G, Lang F, Ullrich S. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 2006; 55:1380-90. [PMID: 16644695 DOI: 10.2337/db05-1220] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoid excess induces hyperglycemia, which may result in diabetes. The present experiments explored whether glucocorticoids trigger apoptosis in insulin-secreting cells. Treatment of mouse beta-cells or INS-1 cells with the glucocorticoid dexamethasone (0.1 micromol/l) over 4 days in cell culture increased the number of fractionated nuclei from 2 to 7 and 14%, respectively, an effect that was reversed by the glucocorticoid receptor antagonist RU486 (1 micromol/l). In INS-1 cells, dexamethasone increased the number of transferase-mediated dUTP nick-end labeling-staining positive cells, caspase-3 activity, and poly-(ADP-) ribose polymerase protein cleavage; decreased Bcl-2 transcript and protein abundance; dephosphorylated the proapoptotic protein of the Bcl-2 family (BAD) at serine155; and depolarized mitochondria. Dexamethasone increased PP-2B (calcineurin) activity, an effect abrogated by FK506. FK506 (0.1 micromol/l) and another calcineurin inhibitor, deltamethrin (1 micromol/l), attenuated dexamethasone-induced cell death. The stable glucagon-like peptide 1 analog, exendin-4 (10 nmol/l), inhibited dexamethasone-induced apoptosis in mouse beta-cells and INS-1 cells. The protective effect of exendin-4 was mimicked by forskolin (10 micromol/l) but not mimicked by guanine nucleotide exchange factor with the specific agonist 8CPT-Me-cAMP (50 micromol/l). Exendin-4 did not protect against cell death in the presence of cAMP-dependent protein kinase (PKA) inhibition by H89 (10 micromol/l) or KT5720 (5 micromol/l). In conclusion, glucocorticoid-induced apoptosis in insulin-secreting cells is accompanied by a downregulation of Bcl-2, activation of calcineurin with subsequent dephosphorylation of BAD, and mitochondrial depolarization. Exendin-4 protects against glucocorticoid-induced apoptosis, an effect mimicked by forskolin and reversed by PKA inhibitors.
Collapse
Affiliation(s)
- Felicia Ranta
- Institut für Physiologie, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Ortsäter H, Alberts P, Warpman U, Engblom LOM, Abrahmsén L, Bergsten P. Regulation of 11beta-hydroxysteroid dehydrogenase type 1 and glucose-stimulated insulin secretion in pancreatic islets of Langerhans. Diabetes Metab Res Rev 2005; 21:359-66. [PMID: 15586384 DOI: 10.1002/dmrr.525] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND In rodents, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inactive 11-dehydrocorticosterone (DHC) into active corticosterone. The mRNA and activity of 11beta-HSD1 have been shown to be present in batch-incubated pancreatic islets from the ob/ob mouse. In other tissues, 11beta-HSD1 expression has been demonstrated to be regulated by glucocorticoids. In the present study, the influence of DHC on 11beta-HSD1 levels and glucose-induced changes in insulin secretion were studied in pancreatic islets isolated from the ob/ob mouse. METHODS Western blotting with antiserum for 11beta-HSD1 verified the presence of 11beta-HSD1 in islets from obese ob/ob and normal C57BL/6J mice. Insulin secretion was determined by perifusing islets and assaying the perifusate with ELISA. RESULTS Islets from the ob/ob mouse contained almost twofold more 11beta-HSD1 protein than islets from the C57BL/6J mouse. When islets from ob/ob mice were cultured with 50 nM DHC, the 11beta-HSD1 levels doubled compared with islets cultured in the absence of DHC. Selective inhibition of 11beta-HSD1 attenuated DHC-induced increase in 11beta-HSD1 levels, as did an antagonist of the glucocorticoid receptor. In individually perifused ob/ob mouse islets, early and late phases of glucose-stimulated insulin secretion (GSIS) were dose-dependently inhibited by 5, 50 and 500 nM DHC. Whereas inclusion of 11beta-HSD1 inhibitors restored, addition of the glucocorticoid receptor antagonist attenuated the DHC-mediated inhibition of GSIS. CONCLUSIONS Levels of 11beta-HSD1 in islets from ob/ob mice are positively regulated by DHC and could be lowered by a selective 11beta-HSD1 inhibitor and a glucocorticoid receptor antagonist. Increased levels of 11beta-HSD1 were associated with impaired GSIS.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
25
|
Davani B, Portwood N, Bryzgalova G, Reimer MK, Heiden T, Ostenson CG, Okret S, Ahren B, Efendic S, Khan A. Aged transgenic mice with increased glucocorticoid sensitivity in pancreatic beta-cells develop diabetes. Diabetes 2004; 53 Suppl 1:S51-9. [PMID: 14749266 DOI: 10.2337/diabetes.53.2007.s51] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoids are diabetogenic hormones because they decrease glucose uptake, increase hepatic glucose production, and inhibit insulin release. To study the long-term effects of increased glucocorticoid sensitivity in beta-cells, we studied transgenic mice overexpressing the rat glucocorticoid receptor targeted to the beta-cells using the rat insulin I promoter. Here we report that these mice developed hyperglycemia both in the fed and the overnight-fasted states at 12-15 months of age. Progression from impaired glucose tolerance, previously observed in the same colony at the age of 3 months, to manifest diabetes was not associated with morphological changes or increased apoptosis in the beta-cells. Instead, our current results suggest that the development of diabetes is due to augmented inhibition of insulin secretion through alpha(2)-adrenergic receptors (alpha(2)-ARs). Thus, we found a significantly higher density of alpha(2)-ARs in the islets of transgenic mice compared with controls, based on binding studies with the alpha(2)-AR agonist UK 14304. Furthermore, incubation of islets with benextramine, a selective antagonist of the alpha(2)-AR, restored insulin secretion in response to glucose in isolated islets from transgenic mice, whereas it had no effect on control islets. These results indicate that the chronic enhancement of glucocorticoid signaling in pancreatic beta-cells results in hyperglycemia and impaired glucose tolerance. This effect may involve signaling pathways that participate in the regulation of insulin secretion via the alpha(2)-AR.
Collapse
Affiliation(s)
- Behrous Davani
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stulnig TM, Waldhäusl W. 11beta-Hydroxysteroid dehydrogenase Type 1 in obesity and Type 2 diabetes. Diabetologia 2004; 47:1-11. [PMID: 14652720 DOI: 10.1007/s00125-003-1284-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 10/29/2003] [Indexed: 10/26/2022]
Abstract
Obesity and Type 2 diabetes mellitus are associated with abnormal regulation of glucocorticoid metabolism that are highlighted by clinical similarities between the sequelae of insulin resistance and Cushing's syndrome, as well as glucocorticoids' functional antagonism to insulin. 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates functionally inert glucocorticoid precursors (cortisone) to active glucocorticoids (cortisol) within insulin target tissues, such as adipose tissue, thereby regulating local glucocorticoid action. Recent data, mainly from rodents, provide considerable evidence for a causal role of 11beta-HSD1 for the development of visceral obesity and Type 2 diabetes though data in humans are not unequivocal. This review summarizes current evidence on a possible role of 11beta-HSD1 for development of the metabolic syndrome, raising the possibility of novel therapeutic options for the treatment of Type 2 diabetes by inhibition or down-regulation of 11beta-HSD1 activity.
Collapse
Affiliation(s)
- T M Stulnig
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | |
Collapse
|
27
|
Goh BH, Efendić S, Khan A, Portwood N. Evidence for the expression of both the hydrolase and translocase components of hepatic glucose-6-phosphatase in murine pancreatic islets. Biochem Biophys Res Commun 2003; 307:935-41. [PMID: 12878201 DOI: 10.1016/s0006-291x(03)01242-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glucose-6-phosphatase (G6Pase) is a multicomponent enzyme system which regulates the catalysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate. G6Pase can antagonize glucose phosphorylation, a step prerequisite in the regulation of insulin secretion from pancreatic beta cells, and G6Pase activity is increased in islets isolated from animal models of type II diabetes. Using RT-PCR with hepatic G6Pase catalytic subunit primers, we demonstrate that the sizes of amplified products from ob/ob mouse islets are identical to those from liver cDNA. This was confirmed by PCR-based cloning and sequencing of the hepatic G6Pase catalytic subunit open reading frame from islet cDNA. The expression in islets of the G6P transporter, G6PT1, was also demonstrated, suggesting that all of the identified hepatic G6Pase system genes are expressed in pancreatic islets. Finally, the expression of islet-specific G6Pase-related protein (IGRP) in pancreatic islets was confirmed and its expression in liver was also observed.
Collapse
Affiliation(s)
- Bee-Hoon Goh
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Borgius LJ, Steffensen KR, Gustafsson JA, Treuter E. Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J Biol Chem 2002; 277:49761-6. [PMID: 12324453 DOI: 10.1074/jbc.m205641200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP (NROB2) is an atypical orphan nuclear receptor that lacks a DNA-binding domain but contains a putative ligand-binding domain. Previous studies have revealed that SHP interacts with a variety of nuclear receptors and inhibits their transcriptional activity, thereby acting as a corepressor. In this report we identify the glucocorticoid receptor (GR) as a novel downstream target receptor for SHP inhibition. SHP potently inhibits dexamethasone-induced transcriptional GR activity in mammalian cells, and the inhibition involves a functional second NR-box within SHP. Interestingly, this motif shows a high homology with the NR-box in the glucocorticoid and cAMP-inducible GR coactivator PGC-1, indicating similar binding specificity and shared target receptors. We show that SHP antagonizes PGC-1 coactivation and, in addition, we identify the PGC- 1-regulated phospho(enol)pyruvate carboxykinase (PEPCK) promoter as a novel target promoter for SHP inhibition. This implies a physiologically relevant role for SHP in modulating hepatic glucocorticoid action. Furthermore, when coexpressing green fluorescent protein-tagged GR together with SHP, an intranuclear redistribution of GR was observed. As inhibition-deficient SHP mutants were unable to induce this redistribution, intranuclear tethering of target receptors may represent yet another, previously uncovered, aspect of SHP inhibition.
Collapse
|
29
|
Shinozuka Y, Okada M, Oki T, Sagane K, Mizui Y, Tanaka I, Katayama K, Murakami-Murofushi K. Altered expression of HES-1, BETA2/NeuroD, and PDX-1 is involved in impaired insulin synthesis induced by glucocorticoids in HIT-T15 cells. Biochem Biophys Res Commun 2001; 287:229-35. [PMID: 11549279 DOI: 10.1006/bbrc.2001.5573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the insulin gene is highly specific to pancreatic beta cells and is upregulated mainly by PDX-1 and BETA2/NeuroD depending on the extracellular glucose concentration. However, its downregulation has not been well studied. Reporter gene analyses using pancreatic HIT-T15 cells revealed that the glucose-dependent insulin promoter activity was blocked by glucocorticoids, dexamethasone (DEX) and hydrocortisone, in a dose-dependent manner. After the addition of DEX (20 nM) to HIT-T15 cells, a decrease of insulin mRNA was observed at 12-24 h, followed by a decline of insulin protein at 48 h. Expressions of PDX-1 and BETA2/NeuroD decreased within 2 h. HES-1, a potent negative regulator of bHLH-type transcription factors, was found to be expressed in HIT-T15 cells, and its expression was increased 6 h after the addition of DEX. Overexpression of HES-1 suppressed the insulin promoter activity in a dose-dependent manner. These results suggest that glucocorticoids impair insulin synthesis in HIT-T15 cells by decreasing PDX-1 and BETA2/NeuroD and that enhancement of HES-1 expression is involved in this regulation.
Collapse
Affiliation(s)
- Y Shinozuka
- Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Khan A, Narangoda S, Ahren B, Holm C, Sundler F, Efendic S. Long-term leptin treatment of ob/ob mice improves glucose-induced insulin secretion. Int J Obes (Lond) 2001; 25:816-21. [PMID: 11439295 DOI: 10.1038/sj.ijo.0801628] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2000] [Revised: 12/06/2000] [Accepted: 01/17/2001] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Previous studies have demonstrated that leptin inhibits glucose-stimulated insulin secretion from isolated islets, although a lack of leptin effect on insulin secretion has also been reported. The effect of long term in vivo leptin treatment of insulin secretion has, however, not been established. Therefore, in the present study, we have evaluated the effect of long term in vivo treatment of leptin on glucose-induced insulin secretion in ob/ob mice. METHODS After 7 days' treatment of leptin (100 microg daily s.c.), insulin release was measured in isolated islets by batch incubation followed by radioimmunoassay. Glucose utilization and oxidation were measured by measuring the formation of (3)H(2)O and (14)CO(2) from [5-(3)H] and [U-(14)C] glucose, respectively. Glucose-6-phosphatase activity was measured by measuring the conversion of (14)C-glucose-6-P to (14)C-glucose. In addition, immunohistochemistry of pancreatic specimens was undertaken for study of expression of insulin, GLUT-2 and hormone-sensitive lipase (HSL). RESULTS Leptin treatment significantly improved insulin secretion both at 5.5 mM (by 15%; P<0.05) and 16.7 mM (by 85%; P<0.001) glucose, compared to vehicle-treated controls. Furthermore, whereas leptin treatment did not affect islet insulin or DNA contents, a significant decrease in islet triglyceride content and glucose-6-phosphatase activity was observed. Moreover, the immunocytochemical data revealed an increased immunostaining for insulin, GLUT-2 and hormone-sensitive lipase (HSL) in islets from leptin-treated ob/ob mice. CONCLUSION The results suggest that long-term leptin treatment of ob/ob mice improves glucose-stimulated insulin secretion in parallel with reduced glucose-6-phosphatase activity, increased HSL and decreased triglyceride levels in islets. These perturbations may explain the improvement of glucose-stimulated insulin secretion induced by leptin.
Collapse
Affiliation(s)
- A Khan
- Department of Molecular Medicine, Karolinska Hospital, Karolinska Institute, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
31
|
Hjelmesaeth J, Hartmann A, Kofstad J, Egeland T, Stenstrøm J, Fauchald P. Tapering off prednisolone and cyclosporin the first year after renal transplantation: the effect on glucose tolerance. Nephrol Dial Transplant 2001; 16:829-35. [PMID: 11274282 DOI: 10.1093/ndt/16.4.829] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glucose intolerance is an untoward side effect of some immunosuppressive and anti-hypertensive drugs. The primary aim of the present prospective observational study was to test the hypothesis that tapering off prednisolone and cyclosporin (CsA) the first year after transplantation may have beneficial effects on glucose tolerance in renal transplant recipients. METHODS Ninety-one non-diabetic recipients were included, and 87 patients underwent a 75 g oral glucose tolerance test both 10 weeks and 1 year after renal transplantation. The change over time in 2-h blood glucose was compared with a number of variables potentially influencing glucose tolerance. RESULTS The proportion of glucose intolerant recipients was reduced from 55 to 34% during the study. Univariate linear regression analysis showed a significant association between the reduction in daily prednisolone dose down to 5 mg and decline in blood glucose (P=0.001), whereas weight gain was associated with increasing blood glucose (P=0.031). Each 1-mg reduction of prednisolone dose leads to an estimated decline in 2-h blood glucose of 0.12 mmol/l based on the multiple linear regression model (P=0.003). Twelve out of 22 patients with post-transplant diabetes mellitus (PTDM) at baseline improved to normal or impaired glucose tolerance. Ten PTDM-subjects who remained diabetic 1 year after transplantation had lower serum insulin levels during the oral glucose challenge, and five patients treated with anti-diabetic drugs at baseline required hypoglycaemic drugs also at follow up. The decline in CsA level of 100 microg/l and the lower number of patients treated with beta-blockers at follow-up, did not alter glucose tolerance significantly. CONCLUSIONS Tapering off prednisolone, but not CsA, significantly improves glucose tolerance during the first year after renal transplantation.
Collapse
Affiliation(s)
- J Hjelmesaeth
- Department of Medicine, National Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Jeong IK, Oh SH, Kim BJ, Chung JH, Min YK, Lee MS, Lee MK, Kim KW. The effects of dexamethasone on insulin release and biosynthesis are dependent on the dose and duration of treatment. Diabetes Res Clin Pract 2001; 51:163-71. [PMID: 11269888 DOI: 10.1016/s0168-8227(00)00229-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex results concerning the effect of glucocorticoids on insulin secretion have been reported. The aim of this study is to clarify the direct effects of glucocorticoids on pancreatic islets and to determine whether the effect of glucocorticoids on insulin biosynthesis or release is dependent on the dose and duration of treatment with glucocorticoid. Studies on insulin secretion and biosynthesis were performed with different concentrations (0, 1, 10, 100 nmol/l) and durations (1 and 6 h) of treatment with dexamethasone (dexa) in rat pancreatic islets. (1) One nmol/l dexa had no inhibitory effect on insulin secretion and biosynthesis. Ten and 100 nmol/l had an inhibitory effect on insulin secretion, which was mainly due to suppression of the first phase of insulin secretion. (2) Insulin content was significantly increased regardless of the concentration in 1-h treated islets. However, insulin content was markedly diminished with 100 nmol/l dexa in 6-h treated islets. (3) The preproinsulin mRNA expression of 6-h treated islets was suppressed in a dose-dependent manner. Our data revealed that, in the condition of short-term and low-dose glucocorticoid exposure, insulin secretion and biosynthesis are not affected. The secretory process of insulin seems to be the initial step of the inhibitory action of glucocorticoid. Both insulin release and biosynthesis are inhibited by chronic exposure to high dose dexamethasone. It can be concluded that glucocorticoid might be involved in the multisteps of insulin release and biosynthesis.
Collapse
Affiliation(s)
- I K Jeong
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-230, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Davani B, Khan A, Hult M, Mårtensson E, Okret S, Efendic S, Jörnvall H, Oppermann UC. Type 1 11beta -hydroxysteroid dehydrogenase mediates glucocorticoid activation and insulin release in pancreatic islets. J Biol Chem 2000; 275:34841-4. [PMID: 10973946 DOI: 10.1074/jbc.c000600200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic transformation of glucocorticoid hormones constitutes a determinant of their cell-specific effects. The most important reaction for this class of steroids is the reversible C11 keto/beta-hydroxyl conversion between receptor-binding 11beta-OH steroids and the nonbinding 11-oxo compounds, carried out by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs). In this study, we determined the role of glucocorticoid conversion by 11beta-HSD in pancreatic islets and its function in the regulation of insulin release. Pancreatic islets isolated from ob/ob mice display type 1 11beta-hydroxysteroid dehydrogenase activity, i.e. in intact cells the reductive reaction prevails, leading from dehydrocorticosterone to corticosterone. Expression of type 1 11beta-HSD mRNA was detected by reverse transcriptase-polymerase chain reaction in islets isolated from ob/ob mice and also from human tissue. Incubation of beta-cells in the presence of 11-dehydrocorticosterone leads to a dose-dependent inhibition of insulin release, indicating cellular activation of 11-dehydrocorticosterone to the receptor ligand, further confirmed by reporter gene assays. Inhibition of 11beta-HSD activity by carbenoxolone reverses inhibition of insulin release. The presence of 11beta-HSD in islets supports the concept that reactivation of inert circulating hormone precursors in a cell-specific manner plays a major role in glucocorticoid physiology in rodents and man.
Collapse
Affiliation(s)
- B Davani
- Department of Molecular Medicine, Karolinska Hospital, S 171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Weinhaus AJ, Bhagroo NV, Brelje TC, Sorenson RL. Dexamethasone counteracts the effect of prolactin on islet function: implications for islet regulation in late pregnancy. Endocrinology 2000; 141:1384-93. [PMID: 10746642 DOI: 10.1210/endo.141.4.7409] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Islets undergo a number of up-regulatory changes to meet the increased demand for insulin during pregnancy, including increased insulin secretion and beta-cell proliferation. It has been shown that elevated lactogenic hormone is directly responsible for these changes, which occur in a phasic pattern, peaking on day 15 of pregnancy and returning to control levels by day 20 (term). As placental lactogen levels remain elevated through late gestation, it was of interest to determine whether glucocorticoids (which increase during late gestation) could counteract the effects of lactogens on insulin secretion, beta-cell proliferation, and apoptosis. We found that insulin secretion measured over 24 h in culture and acute secretion measured over 1 h in response to high glucose were increased at least 2-fold by PRL treatment after 6 days in culture. Dexamethasone (DEX) treatment had a significant inhibitory effect on secretion in a dose-dependent manner at concentrations greater than 1 nM. At 100 nM, a concentration equivalent to the plasma corticosteroid level during late pregnancy, DEX inhibited secretion to below control levels. The addition of DEX (>1 nM) inhibited secretion from PRL-treated islets to levels similar to those produced by DEX treatment alone. Bromodeoxyuridine (10 microM) staining for the final 24 h of a 6-day culture showed that PRL treatment increased cell proliferation 6-fold over the control level. DEX treatment alone (1-1000 nM) did not reduce cell division below the control level, but significantly inhibited the rate of division in PRL-treated islets. YoYo-1, an ultrasensitive fluorescent nucleic acid stain, was added (1 microM; 8 h) to the medium after 1-3 days of culture to examine cell death. Islets examined under confocal microscopy showed that DEX treatment (100 nM) increased the number of cells with apoptotic nuclear morphologies. This was quantified by counting the number of YoYo-labeled nuclei per islet under conventional epifluorescence microscopy. The numbers of YoYo-1-positive nuclei per islet in control and PRL-treated islets were not different after 3 days of culture. However, DEX treatment increased YoYo-1 labeling 7-fold over that in controls. DEX also increased YoYo-1 labeling in PRL-treated islets 3-fold over the control level. These data show that the increased plasma glucocorticoid levels found during the late stages of pregnancy could effectively reverse PRL-induced up-regulation of islet function by inhibiting insulin secretion and cell proliferation while increasing apoptosis.
Collapse
Affiliation(s)
- A J Weinhaus
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
35
|
Ohta T, Furukawa N, Komuro G, Yonemori F, Wakitani K. JTT-608 restores impaired early insulin secretion in diabetic Goto-Kakizaki rats. Br J Pharmacol 1999; 126:1674-80. [PMID: 10323602 PMCID: PMC1565945 DOI: 10.1038/sj.bjp.0702481] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We investigated the pharmacological effects of a new antidiabetic agent, JTT-608, in comparison with the sulphonylurea tolbutamide, in Goto-Kakizaki (GK) rats, a genetic model of non-obese insulin-dependent diabetes mellitus (NIDDM). 2. In isolated perfused pancreas from GK rats, JTT-608 (200 microM) enhanced 11.1 mM glucose-stimulated insulin secretion in the first and second phases, but had little effect on insulin secretion at 2.8 mM glucose. In contrast, tolbutamide (100 microM) markedly stimulated insulin secretion at 2.8 mM glucose and enhanced the second phase of insulin secretion but not the first phase at 11.1 mM glucose. 3. In vivo JTT-608 also enhanced early insulin secretion only with glucose-loading. In contrast, tolbutamide enhanced insulin secretion both with and without glucose-loading. 4. JTT-608 (10-100 mg kg(-1)) improved oral glucose tolerance with enhanced insulin secretion in a meal tolerance test (MTT). In comparison with tolbutamide, JTT-608 improved glucose tolerance more efficiently in GK rats than in Wistar rats. 5. We conclude that in diabetic GK rats JTT-608 suppressed postprandial glucose excursions with enhanced glucose-stimulated insulin secretion, especially the first phase of insulin secretion.
Collapse
Affiliation(s)
- T Ohta
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, Osaka, Japan
| | | | | | | | | |
Collapse
|
36
|
Schmoll D, Watkins SL, Wasner C, Walther R, Burchell A. Glucose induces glucose 6-phosphatase hydrolytic subunit gene transcription in an insulinoma cell line (INS-1). FEBS Lett 1999; 443:53-6. [PMID: 9928951 DOI: 10.1016/s0014-5793(98)01678-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primer extension analysis and RNase protection assays revealed the identity of glucose 6-phosphatase gene transcripts in both the insulinoma cell line INS-1 and hepatic cells. In transient transfection assays of INS-1 cells, using constructs between the human glucose 6-phosphatase gene promoter and a luciferase reporter gene, the reporter gene activity was induced by dexamethasone and dibutyryl cAMP. Furthermore, the promoter was regulated by the glucose concentration in the medium. This effect was dependent on glucose metabolism. The data indicated that glucose 6-phosphatase gene transcription is regulated in a similar way in the insulinoma cell line and in liver.
Collapse
Affiliation(s)
- D Schmoll
- Department of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Germany
| | | | | | | | | |
Collapse
|