1
|
Barbosa TWL, Lemaire L, Verdu I, Santos L, de Freitas NG, Salto MP, Chiavacci LA. Bimodal Poly(lactic-co-glycolic acid) Nanocarrier with Zinc Oxide and Iron Oxide for Fluorescence and Magnetic Resonance Imaging. Molecules 2025; 30:1818. [PMID: 40333868 PMCID: PMC12029633 DOI: 10.3390/molecules30081818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Zinc oxide (ZnO) and iron oxide (IO) nanoparticles have been identified as promising candidates for biomedical applications, based on their unique physicochemical properties. The association of these nanoparticles in a single system creates a bimodal entity, allowing the excellent luminescent properties of ZnO quantum dots to be combined with the contrast agent of IO for magnetic resonance imaging (MRI). The present study focuses on the luminescent and MRI properties of a new poly(lactic-co-glycolic acid) (PLGA) nanocarrier system formulation containing ZnO NPs and IO NPs in different nominal ratios. Microscopic analysis (TEM and SEM) reveals a circular morphology with IO and ZnO NPs. The average diameter of the particles was determined to be 220 nm, as measured by DLS. The luminescence results indicate that the PLGA system shows strong emission in the visible range, and the MRI analysis shows a high r2 relaxivity of 171 mM-1 s-1 at 7T. The optimized formulation, exhibiting a molar ratio of Fe:Zn ranging from 1:10 to 1:13 (mol:mol), demonstrates superior fluorescence and MRI performance, underscoring the significance of nanoparticle composition in bimodal imaging applications. The systems evaluated demonstrate no toxicity in the THP-1 cells for doses of up to 128 µg mL-1, with efficient labeling after 4 h of incubation, yielding images of strong luminescence and T2 contrast. The PLGA:ZnO:IO system demonstrates considerable potential as a bimodal platform for diagnostic imaging.
Collapse
Affiliation(s)
- Thúlio Wliandon Lemos Barbosa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (L.S.); (N.G.d.F.); (M.P.S.)
- National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Materials, Engineering, Nanosciences, and Technologies (MINT), Research and Training System-Interactions, Catalysis, Applications, and Technologies (SFR ICAT), University of Angers, F49000 Angers, France; (L.L.); (I.V.)
| | - Laurent Lemaire
- National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Materials, Engineering, Nanosciences, and Technologies (MINT), Research and Training System-Interactions, Catalysis, Applications, and Technologies (SFR ICAT), University of Angers, F49000 Angers, France; (L.L.); (I.V.)
- Platform for Research in Imaging and Multimodal Spectroscopy (PRISM), SFR ICAT, University of Angers, F49000 Angers, France
| | - Isabelle Verdu
- National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Materials, Engineering, Nanosciences, and Technologies (MINT), Research and Training System-Interactions, Catalysis, Applications, and Technologies (SFR ICAT), University of Angers, F49000 Angers, France; (L.L.); (I.V.)
| | - Larissa Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (L.S.); (N.G.d.F.); (M.P.S.)
| | - Natália Galvão de Freitas
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (L.S.); (N.G.d.F.); (M.P.S.)
| | - Mariana Picchi Salto
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (L.S.); (N.G.d.F.); (M.P.S.)
| | - Leila Aparecida Chiavacci
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (L.S.); (N.G.d.F.); (M.P.S.)
| |
Collapse
|
2
|
Neelamraju PM, Gundepudi K, Sanki PK, Busi KB, Mistri TK, Sangaraju S, Dalapati GK, Ghosh KK, Ghosh S, Ball WB, Chakrabortty S. Potential applications for photoacoustic imaging using functional nanoparticles: A comprehensive overview. Heliyon 2024; 10:e34654. [PMID: 39166037 PMCID: PMC11334826 DOI: 10.1016/j.heliyon.2024.e34654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
This paper presents a comprehensive overview of the potential applications for Photo-Acoustic (PA) imaging employing functional nanoparticles. The exploration begins with an introduction to nanotechnology and nanomaterials, highlighting the advancements in these fields and their crucial role in shaping the future. A detailed discussion of the various types of nanomaterials and their functional properties sets the stage for a thorough examination of the fundamentals of the PA effect. This includes a thorough chronological review of advancements, experimental methodologies, and the intricacies of the source and detection of PA signals. The utilization of amplitude and frequency modulation, design of PA cells, pressure sensor-based signal detection, and quantification methods are explored in-depth, along with additional mechanisms induced by PA signals. The paper then delves into the versatile applications of photoacoustic imaging facilitated by functional nanomaterials. It investigates the influence of nanomaterial shape, size variation, and the role of composition, alloys, and hybrid materials in harnessing the potential of PA imaging. The paper culminates with an insightful discussion on the future scope of this field, focusing specifically on the potential applications of photoacoustic (PA) effect in the domain of biomedical imaging and nanomedicine. Finally, by providing the comprehensive overview, the current work provides a valuable resource underscoring the transformative potential of PA imaging technique in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Pavan Mohan Neelamraju
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Karthikay Gundepudi
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Pradyut Kumar Sanki
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Goutam Kumar Dalapati
- Center for Nanofibers and Nanotechnology, Mechanical Engineering Department, National University of Singapore, Singapore, 117576
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921
| | - Siddhartha Ghosh
- Department of Physics, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Writoban Basu Ball
- Department of Biological Sciences, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | | |
Collapse
|
3
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
4
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Gupta T, Pawar B, Vasdev N, Pawar V, Tekade RK. Carbonaceous Nanomaterials for Phototherapy of Cancer. Technol Cancer Res Treat 2023; 22:15330338231186388. [PMID: 37461375 DOI: 10.1177/15330338231186388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Carbonaceous nanomaterials (CNMs) have drawn tremendous biomedical research interest because of their unique structural features. Recently, CNMs, namely carbon dots, fullerenes, graphene, etc, have been successful in establishing them as considerable nanotherapeutics for phototherapy applications due to their electrical, thermal, and surface properties. This review aims to crosstalk the current understanding of CNMs as multimodal compounds in photothermal and photodynamic therapies as an integrated approach to treating cancer. It also expounds on phototherapy's biomechanics and illustrates its relation to cancer biomodulation. Critical considerations related to the structural properties, fabrication approaches, surface functionalization strategies, and biosafety profiles of CNMs have been explained. This article provides an overview of the most recent developments in the study of CNMs used in phototherapy, emphasizing their usage as nanocarriers. To conquer the current challenges of CNMs, we can raise the standard of cancer therapy for patients. The review will be of interest to the researchers working in the area of photothermal and photodynamic therapies and aiming to explore CNMs and their conjugates in cancer therapy.
Collapse
Affiliation(s)
- Tanisha Gupta
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Nupur Vasdev
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Vinayak Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
7
|
ElZorkany HE, Farroh KY, El-Shorbagy HM, Elshoky HA, Youssef T, Salaheldin TA, Sabet S. Silica-coated graphene compared to Si-CdSe/ZnS quantum dots: toxicity, emission stability, and role of silica in the uptake process for imaging purposes. Photodiagnosis Photodyn Ther 2022; 39:102919. [DOI: 10.1016/j.pdpdt.2022.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
8
|
Low Temperature Step Annealing Synthesis of the Ti2AlN MAX Phase to Fabricate MXene Quantum Dots. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We present the synthesis of the Ti2AlN MAX phase using two-step annealing at temperatures of 600 °C and 1100 °C, the lowest synthesis temperatures reported so far. After the successful synthesis of the Ti2AlN MAX phase, two-dimensional Ti2N MXene was prepared through wet chemical etching and further fragmented into light emitting MXene quantum dots (MQDs) with a size of 3.2 nm by hydrothermal method. Our MQDs displayed a 6.9% quantum yield at a 310 nm wavelength of excitation, suggesting promising nanophotonic applications.
Collapse
|
9
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
10
|
Liang Y, Zhang T, Tang M. Toxicity of quantum dots on target organs and immune system. J Appl Toxicol 2021; 42:17-40. [PMID: 33973249 DOI: 10.1002/jat.4180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Quantum dots (QDs), due to their superior luminous properties, have been proven to be a very promising biological probe, which can be used as a candidate material for clinical applications. The toxicity of QDs in the environment and biological systems has caused widespread concern in the nanosphere, but their immune toxicity and their impact on the immune system are still relatively unknown. At present, the research on the toxicity of QDs is mainly focused on in vitro models, but few have systematically evaluated their adverse effects on target organs. Animal studies have shown that QDs can be accumulated in various organs due to their main exposure routes, thereby posing a potential threat to major organs. This review briefly describes general characteristics and the wide medical applications of QDs and focuses on the adverse effects of QDs on major target organs, such as liver, lung, kidney, brain, and spleen, after acute and chronic exposure. QDs mainly cause changes in the corresponding indicators of target organs, such as oxidative damage, and in severe cases cause hyperemia, tissue necrosis, and even death. In addition to causing direct damage to target organs, QDs can also cause a large number of immune cells to accumulate and cause inflammatory reactions when causing damage to other major organs. Whether it is to avoid the risk of people contacting QDs in production and life, or to realize the clinical applications of QDs, is very essential to conduct systematic in vivo toxicity assessment of QDs.
Collapse
Affiliation(s)
- Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tao Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Sarma A, Bania R, Devi JR, Deka S. Therapeutic nanostructures and nanotoxicity. J Appl Toxicol 2021; 41:1494-1517. [PMID: 33641187 DOI: 10.1002/jat.4157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/09/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Nanotechnology, with its continuous advancement, leads to the development of nanoscale-level therapeutics to mitigate many complex diseases. This results in the emergence of numerous novel nanomaterials and its composite products into the market such as liposome, polymeric nanoparticles, dendrimers, and nanostructured lipid carrier. However, their application is always determined by a high benefit to risk ratio. Very few research have been done on the toxicity assessment of nanoparticles in the biological system; therefore, the limited knowledge regarding the toxicity profile of nanotherapeutics is available leading to the ignorance of its side effects. Nanoparticles can distribute in the whole body through translocating in the bloodstream by crossing membrane barriers efficiently and shows effect in organs and tissues at cellular and molecular levels. The interaction of nanoparticle with cell may consequences into nanotoxicity. The narrow size distribution, large surface area to mass ratio and surface properties of nanoparticle are significantly associated with nanotoxicity. Nanoparticles can enter into the tissue and cell by invading the membranes and cause cellular injury as well as toxicity. Therefore, the exploration of mechanisms of nanotoxicity has prime importance now a day. The toxicity assessment should be an integral part of the development of nanotherapeutics using various toxicity evaluation models. This review has focused on the exploration of different nanostructures for therapeutic delivery system along with its physicochemical characteristics responsible for adverse effects on human biology, various toxicity evaluation models, and environmental and regulatory hurdles.
Collapse
Affiliation(s)
- Anupam Sarma
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Ratnali Bania
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Juti Rani Devi
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Satyendra Deka
- Department of Pharmaceutics, Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
12
|
Wang Z, Tang M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. ENVIRONMENTAL RESEARCH 2021; 194:110593. [PMID: 33352186 DOI: 10.1016/j.envres.2020.110593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 05/23/2023]
Abstract
Quantum dots are widely applicated into bioindustry and research owing to its superior properties such as broad excitation spectra, narrow bandwidth emission spectra and high resistance to photo-bleaching. However, the toxicity of quantum dots should not be underestimated and aroused widespread concern. The surface properties and size of quantum dots are critical relevant properties on toxicity. Then, the core/shell structure becomes one common way to affect the activity of quantum dots such as enhance biocompatibility and stability. Except those toxicity it induced, the problem it brought into the environment such as the degradation of quantum dot similarly becomes a hot issue. This review initially took a brief scan of current research on the cytotoxicity of QDs and the mechanism behind that over the past five years. Mainly discussion concentrated on the diversity of structure on quantum dots whether played a key role on the cytotoxicty of quantum dots. It also discussed the role of different shells with metal or nonmetal cores and the influence on the environment.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
13
|
Shi H, Li M, Shi J, Zhang D, Fan Z, Zhang M, Liu L. Self-Assembled Peptide Nanofibers with Voltage-Regulated Inverse Photoconductance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1057-1064. [PMID: 33378176 DOI: 10.1021/acsami.0c18893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inverse photoconductance is an uncommon phenomenon observed in selective low-dimensional materials, in which the electrical conductivity of the materials decreases under light illumination. The unique material property holds great promise for biomedical applications in photodetectors, photoelectric logic gates, and low-power nonvolatile memory, which remains a daunting challenge. Especially, tunable photoconductivity for biocompatible materials is highly desired for interfacing with biological systems but is less explored in organic materials. Here, we report nanofibers self-assembled with cyclo-tyrosine-tyrosine (cyclo-YY) having voltage-regulated inverse photoconductance and photoconductance. The peptide nanofibers can be switched back and forth by a bias voltage for imitating biological sensing in artificial vision and memory devices. A peptide optoelectronic resistive random access memory (PORRAM) device has also been fabricated using the nanofibers that can be electrically switched between long-term and short-term memory. The underlying mechanism of the reversible photoconductance is discussed in this paper. Due to the inherent biocompatibility of peptide materials, the reversible photoconductive nanofibers may have broad applications in sensing and storage for biotic and abiotic interfaces.
Collapse
Affiliation(s)
- Huiyao Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Li
- Fujian Key Laboratory of Medical Instrumentation and Pharmaceutical Technology, Fuzhou 350108, China
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Jialin Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dindong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Mingjun Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Lai W, Deng R, He T, Wong W. A Bioinspired, Sustained-Release Material in Response to Internal Signals for Biphasic Chemical Sensing in Wound Therapy. Adv Healthc Mater 2021; 10:e2001267. [PMID: 33184990 DOI: 10.1002/adhm.202001267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/12/2020] [Indexed: 12/25/2022]
Abstract
Biofluorescence in living entities is a functional process associated with information conveyance; whereas the capacity to respond to internal physiological signals is a unique property of a cell. By integrating these two biological features into materials design, a bioinspired material, namely CPS, is developed. Contrary to conventional luminescent polymeric systems whose emission comes from π-conjugated structures, this material displays clusterization-triggered emission. In the preclinical trial on a dermal punch model of tissue repair, it successfully increases the rate of wound closure, reduces inflammatory cell infiltration, and enhances collagen deposition. It can also relay changes in internal chemical signals into changes in its intrinsic luminescence for biphasic chemical sensing to prevent possible occurrence of skin hyperpigmentation caused by minocycline hydrochloride in wound therapy. Together with its ease of fabrication, high biocompatibility, high drug loading efficiency, and high release sustainability, CPS shows high potential to be developed into an intelligent solid-state device for wound treatment in the future.
Collapse
Affiliation(s)
- Wing‐Fu Lai
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong SAR P. R. China
| | - Ryan Deng
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong SAR P. R. China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Wing‐Tak Wong
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong SAR P. R. China
| |
Collapse
|
15
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
16
|
Pikula K, Chaika V, Zakharenko A, Savelyeva A, Kirsanova I, Anisimova A, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves. Animals (Basel) 2020; 10:ani10050827. [PMID: 32397595 PMCID: PMC7278372 DOI: 10.3390/ani10050827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The growing nanotechnology industry disposes of a variety of nanoparticles with different physiochemical properties in everyday life. However, the dependence of the safety and toxicity of nanoparticles on their physicochemical properties remains unclear. Bivalve molluscs represent an efficient model for the investigation of nanoparticle toxicity owing to their filtrating ability and feeding on particles suspended in the water. Moreover, the blood cells of bivalve molluscs, the hemocytes, have been suggested as a good analog test-object to mammalian immune cells, phagocytes. In this study, we used hemocytes of three marine bivalve species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate and compare the toxic effects of 10 different types of nanoparticles. We gave short-term exposure of the nanoparticles to the hemocytes and registered viability and changes in their cell membrane polarization by employing flow cytometry. Metal-based nanoparticles were the most toxic to the cells of all three tested bivalve mollusc species. However, the sensitivity to different nanoparticle types varied between species. Moreover, the registered cell membrane depolarization indicated an early toxic response and raised concern that chronic long-term exposure of nanoparticles (even if they were previously declared as safe) is a serious threat for aquatic organisms. Abstract Nanoparticles (NPs) have broad applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With increasing annual production of NPs, the risks of their harmful influence on the environment and human health are also increasing. Currently, our knowledge about the mechanisms of the interaction between NPs and living organisms is limited. The marine species and their habitat environment are under continuous stress owing to the anthropogenic activities, which result in the release of NPs in the aquatic environment. We used a bioassay model with hemocytes of three bivalve mollusc species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate the toxicity of 10 different types of NPs. Specifically, we compared the cytotoxic effects and cell-membrane polarization changes in the hemocytes exposed to carbon nanotubes, carbon nanofibers, silicon nanotubes, cadmium and zinc sulfides, Au-NPs, and TiO2 NPs. Viability and the changes in hemocyte membrane polarization were measured by the flow cytometry method. The highest aquatic toxicity was registered for metal-based NPs, which caused cytotoxicity to the hemocytes of all the studied bivalve species. Our results also highlighted different sensitivities of the used tested mollusc species to specific NPs.
Collapse
Affiliation(s)
- Konstantin Pikula
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Vladimir Chaika
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
| | - Alexander Zakharenko
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Anastasia Savelyeva
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Irina Kirsanova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Anna Anisimova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
17
|
Marcelo GA, Lodeiro C, Capelo JL, Lorenzo J, Oliveira E. Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110104. [DOI: 10.1016/j.msec.2019.110104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
|
18
|
Mengji R, Acharya C, Vangala V, Jana A. A lysosome-specific near-infrared fluorescent probe for in vitro cancer cell detection and non-invasive in vivo imaging. Chem Commun (Camb) 2019; 55:14182-14185. [PMID: 31701969 DOI: 10.1039/c9cc07322a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Near-infrared (NIR) fluorescent probes have been developed as potential bio-materials having profound applications in diagnosis and clinical practice. Herein, we wish to disclose a highly photostable ultra-bright NIR probe for the specific detection of lysosomes in numerous cell lines. Furthermore, the applicability of the developed NIR probe was evaluated for in vivo imaging.
Collapse
Affiliation(s)
- Rakesh Mengji
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chiranjit Acharya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Venugopal Vangala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avijit Jana
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India and Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
19
|
Stavitskaya AV, Novikov AA, Kotelev MS, Kopitsyn DS, Rozhina EV, Ishmukhametov IR, Fakhrullin RF, Ivanov EV, Lvov YM, Vinokurov VA. Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E391. [PMID: 29857546 PMCID: PMC6026934 DOI: 10.3390/nano8060391] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and CdxZn₁-xS nanoparticles with sizes of 6⁻8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube's surface). The halloysite⁻QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite⁻QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for CdxZn₁-xS QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite⁻QD systems allows for their promising usage as markers for biomedical applications.
Collapse
Affiliation(s)
- Anna V Stavitskaya
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Andrei A Novikov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Mikhail S Kotelev
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Dmitry S Kopitsyn
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Elvira V Rozhina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Ilnur R Ishmukhametov
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Rawil F Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Evgenii V Ivanov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Yuri M Lvov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA.
| | - Vladimir A Vinokurov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| |
Collapse
|
20
|
Buchtelova H, Strmiska V, Skubalova Z, Dostalova S, Michalek P, Krizkova S, Hynek D, Kalina L, Richtera L, Moulick A, Adam V, Heger Z. Improving cytocompatibility of CdTe quantum dots by Schiff-base-coordinated lanthanides surface doping. J Nanobiotechnology 2018; 16:43. [PMID: 29673366 PMCID: PMC5907456 DOI: 10.1186/s12951-018-0369-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background Suitable fluorophores are the core of fluorescence imaging. Among the most exciting, yet controversial, labels are quantum dots (QDs) with their unique optical and chemical properties, but also considerable toxicity. This hinders QDs applicability in living systems. Surface chemistry has a profound impact on biological behavior of QDs. This study describes a two-step synthesis of QDs formed by CdTe core doped with Schiff base ligand for lanthanides [Ln (Yb3+, Tb3+ and Gd3+)] as novel cytocompatible fluorophores. Results Microwave-assisted synthesis resulted in water-soluble nanocrystals with high colloidal and fluorescence stability with quantum yields of 40.9–58.0%. Despite induction of endocytosis and cytoplasm accumulation of Yb- and TbQDs, surface doping resulted in significant enhancement in cytocompatibility when compared to the un-doped CdTe QDs. Furthermore, only negligible antimigratory properties without triggering formation of reactive oxygen species were found, particularly for TbQDs. Ln-doped QDs did not cause observable hemolysis, adsorbed only a low degree of plasma proteins onto their surface and did not possess significant genotoxicity. To validate the applicability of Ln-doped QDs for in vitro visualization of receptor status of living cells, we performed a site-directed conjugation of antibodies towards immuno-labeling of clinically relevant target—human norepinephrine transporter (hNET), over-expressed in neuroendocrine tumors like neuroblastoma. Immuno-performance of modified TbQDs was successfully tested in distinct types of cells varying in hNET expression and also in neuroblastoma cells with hNET expression up-regulated by vorinostat. Conclusion For the first time we show that Ln-doping of CdTe QDs can significantly alleviate their cytotoxic effects. The obtained results imply great potential of Ln-doped QDs as cytocompatible and stable fluorophores for various bio-labeling applications.
Collapse
Affiliation(s)
- Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Zuzana Skubalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Lukas Kalina
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic. .,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic.
| |
Collapse
|
21
|
La Spada L, Vegni L. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. MATERIALS 2018; 11:ma11040603. [PMID: 29652853 PMCID: PMC5951487 DOI: 10.3390/ma11040603] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell's equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on "metamaterial" concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring.
Collapse
Affiliation(s)
- Luigi La Spada
- School of Computing, Electronics and Mathematics, Coventry University, Coventry CV1 5FB, UK.
| | - Lucio Vegni
- Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy.
| |
Collapse
|
22
|
Young AT, Cornwell N, Daniele MA. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1700239. [PMID: 33867903 PMCID: PMC8049593 DOI: 10.1002/adfm.201700239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural interfaces provide a window into the workings of the nervous system-enabling both biosignal recording and modulation. Traditionally, neural interfaces have been restricted to implanted electrodes to record or modulate electrical activity of the nervous system. Although these electrode systems are both mechanically and operationally robust, they have limited utility due to the resultant macroscale damage from invasive implantation. For this reason, novel nanomaterials are being investigated to enable new strategies to chronically interact with the nervous system at both the cellular and network level. In this feature article, the use of nanomaterials to improve current electrophysiological interfaces, as well as enable new nano-interfaces to modulate neural activity via alternative mechanisms, such as remote transduction of electromagnetic fields are explored. Specifically, this article will review the current use of nanoparticle coatings to enhance electrode function, then an analysis of the cutting-edge, targeted nanoparticle technologies being utilized to interface with both the electrophysiological and biochemical behavior of the nervous system will be provided. Furthermore, an emerging, specialized-use case for neural interfaces will be presented: the modulation of the blood-brain barrier.
Collapse
Affiliation(s)
- Ashlyn T Young
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Neil Cornwell
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
23
|
Keshavarz M, Tan B, Venkatakrishnan K. Multiplex Photoluminescent Silicon Nanoprobe for Diagnostic Bioimaging and Intracellular Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700548. [PMID: 29593957 PMCID: PMC5867044 DOI: 10.1002/advs.201700548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/10/2017] [Indexed: 05/29/2023]
Abstract
Herein, a label-free multiplex photoluminescent silicon nanoprobe (PLSN-probe) is introduced as a potential substitute for quantum dots (QDs) in bioimaging. An inherently non-photoluminescent silicon substrate is altered to create the PLSN-probe, to overcome the major drawbacks of presently available QDs. Additionally, crystallinity alterations of the multiplane crystalline PLSN-probes lead to broad absorption and multiplex fluorescence emissions, which are attributed to the simultaneous existence of multiple crystal planes. The PLSN-probe not only demonstrates unique optical properties that can be exploited for bioimaging but also exhibits cell-selective uptake that allows the differentiation and diagnosis of HeLa and fibroblast cells. Moreover, multiplex emissions of the PLSN-probe illuminate different organelles such as the nucleus, nucleolemma, and cytoskeleton, depending on size-based preferential uptake by the cell organs. This in vitro study reveals that cancerous HeLa cells have a higher propensity for taking up the PLSN-probe compared to fibroblast cells, allowing the diagnosis of cancerous HeLa cells. Additionally, the fluorescence intensity per unit area of the cell is found to be a reliable means for distinguishing between dead and healthy cells. It is anticipated that the multifunctionality of the PLSN-probes will lead to better insight into the use of such probes for bioimaging and diagnosis applications.
Collapse
Affiliation(s)
- Meysam Keshavarz
- Nanocharacterization LaboratoryDepartment of Aerospace EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
- Institute for Biomedical EngineeringScience and Technology (iBEST)Partnership between Ryerson University and St. Michael's HospitalTorontoONM5B 1W8Canada
- Ultrashort Laser Nanomanufacturing Research FacilityDepartment of Mechanical and Industrial EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
- NanoBioInterface FacilityDepartment of Mechanical and Industrial EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
| | - Bo Tan
- Nanocharacterization LaboratoryDepartment of Aerospace EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research FacilityDepartment of Mechanical and Industrial EngineeringRyerson University350 Victoria StreetTorontoONM5B 2K3Canada
- Keenan Research Centre for Biomedical ScienceSt. Michael's HospitalTorontoONM5B 1W8Canada
| |
Collapse
|
24
|
Chen M, Li Y, Zhou J, Yang Z, Wang Z, Yang Y, Zhang H, Li Z, Mei X. In vitro toxicity assessment of nanocrystals in tissue-type cells and macrophage cells. J Appl Toxicol 2017; 38:656-664. [DOI: 10.1002/jat.3570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/22/2017] [Accepted: 10/29/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Meiling Chen
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
- Hunan Research Center for Safety Evaluation of Drugs; Changsha China
| | - Ying Li
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Jiezhao Zhou
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Zhenbo Yang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Zhiyuan Wang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Yang Yang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Hui Zhang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Zhiping Li
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Xingguo Mei
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| |
Collapse
|
25
|
Biochemical mechanisms of dose-dependent cytotoxicity and ROS-mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications. Sci Rep 2017; 7:12896. [PMID: 29018231 PMCID: PMC5635035 DOI: 10.1038/s41598-017-13396-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Colloidal quantum dots (CQD) have attracted considerable attention for biomedical diagnosis and imaging as well as biochemical analysis and stem cell tracking. In this study, quasi core/shell lead sulfide/reduced graphene oxide CQD with near infrared emission (1100 nm) were prepared for potential bioimaging applications. The nanocrystals had an average diameter of ~4 nm, a hydrodynamic size of ~8 nm, and a high quantum efficiency of 28%. Toxicity assay of the hybrid CQD in the cultured human mononuclear blood cells does not show cytotoxicity up to 200 µg/ml. At high concentrations, damage to mitochondrial activity and mitochondrial membrane potential (MMP) due to the formation of uncontrollable amounts of intracellular oxygen radicals (ROS) was observed. Cell membrane and Lysosome damage or a transition in mitochondrial permeability were also noticed. Understanding of cell-nanoparticle interaction at the molecular level is useful for the development of new fluorophores for biomedical imaging.
Collapse
|
26
|
Chen LQ, Ding CZ, Ling J. Intensive epidermal adsorption and specific venous deposition of carboxyl quantum dots in zebrafish early-life stages. CHEMOSPHERE 2017; 184:44-52. [PMID: 28578195 DOI: 10.1016/j.chemosphere.2017.05.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
To properly assess the environmental risk of quantum dots (QDs), it is necessary to determine their fate in living organisms, including adsorption, distribution and bioaccumulation under representative environmental or physiological conditions. We comprehensively investigated the fate of QDs with carboxyl terminal functional groups (carboxyl-QDs) in zebrafish (Danio rerio) embryo and larvae subjected to either waterborne exposure or cardiovascular system microinjection. On waterborne exposure, carboxyl-QDs exhibited an intensive adsorption and accumulation in the chorion of embryos, and their predominate target organs were the gill and intestinal tract in larvae. On microinjection, carboxyl-QDs were rapidly delivered into the cardiovascular system and specifically deposited in veins and the capillary network system of zebrafish larvae, but not in the arterial system. Taken together, we found that the exact tissue condition including epidermal structures, mucus secretion and vascular microstructures strongly affected the adsorption, uptake and distribution of carboxyl-QDs in zebrafish. This work highlights the intensive tissue epidermal adsorption and accumulation of carboxyl-QDs and their specific vein and capillary deposition in the cardiovascular system in zebrafish early-life stages.
Collapse
Affiliation(s)
- Li Qiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Cheng Zhi Ding
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jian Ling
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| |
Collapse
|
27
|
Tang H, Yang ST, Ke DM, Yang YF, Liu JH, Chen X, Wang H, Liu Y. Biological behaviors and chemical fates of Ag 2Se quantum dots in vivo: the effect of surface chemistry. Toxicol Res (Camb) 2017; 6:693-704. [PMID: 30090536 PMCID: PMC6060738 DOI: 10.1039/c7tx00137a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/25/2017] [Indexed: 12/19/2022] Open
Abstract
Ag2Se quantum dots (QDs) are novel fluorescent probes in the second near-infrared window with great imaging quality and biocompatibility. Surface modification is an essential step to disperse Ag2Se QDs into biological fluids, and endow Ag2Se QDs with diverse surface chemistry. However, the effect of surface chemistry on the biological behaviors and chemical fates of Ag2Se QDs has not been studied, which hinders the design of suitable Ag2Se QDs for biomedical applications. Here, the distribution, degradation, excretion and toxicity of 2-aminoethanethiol and mercaptopropionic acid coated Ag2Se QDs (denoted as QDs-MEA and QDs-MPA, respectively) were systematically investigated in mice for a 28-day observation period after a single intravenous injection. Ag2Se QDs with different surface chemistries displayed similar trends in all observations, such as fast blood clearance, main uptake in the liver and spleen, severe biotransformation, Ag excretion through feces, and low toxicity. The major different behaviors observed were the partially pulmonary deposition, the faster transformation at the initial stage, the lower excretion percentage, and the more obvious damage to the liver by QDs-MEA compared to QDs-MPA. The surface chemistry of Ag2Se QDs regulated their biological behaviors and chemical fates in vivo, and surface chemistry should be fully regarded when designing Ag2Se QDs for biomedical applications from the biosafety perspective.
Collapse
Affiliation(s)
- Huan Tang
- Beijing National Laboratory for Molecular Sciences , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| | - Sheng-Tao Yang
- College of Chemistry and Environment Protection Engineering , Southwest Minzu University , Chengdu 610041 , China .
| | - Da-Ming Ke
- Institute of Nanochemistry and Nanobiology , Shanghai University , Shanghai 200444 , China .
| | - Yi-Fan Yang
- Institute of Nanochemistry and Nanobiology , Shanghai University , Shanghai 200444 , China .
| | - Jia-Hui Liu
- Beijing Key Laboratory of BioProcess , College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology , Shanghai University , Shanghai 200444 , China .
| | - Yuanfang Liu
- Beijing National Laboratory for Molecular Sciences , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
- Institute of Nanochemistry and Nanobiology , Shanghai University , Shanghai 200444 , China .
| |
Collapse
|
28
|
Liu F, Ye W, Wang J, Song F, Cheng Y, Zhang B. Parallel comparative studies on toxicity of quantum dots synthesized and surface engineered with different methods in vitro and in vivo. Int J Nanomedicine 2017; 12:5135-5148. [PMID: 28790821 PMCID: PMC5529378 DOI: 10.2147/ijn.s137637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Quantum dots (QDs) have been considered to be promising probes for biosensing, bioimaging, and diagnosis. However, their toxicity issues caused by heavy metals in QDs remain to be addressed, in particular for their in vivo biomedical applications. In this study, a parallel comparative investigation in vitro and in vivo is presented to disclose the impact of synthetic methods and their following surface modifications on the toxicity of QDs. Cellular assays after exposure to QDs were conducted including cell viability assessment, DNA breakage study in a single cellular level, intracellular reactive oxygen species (ROS) receptor measurement, and transmission electron microscopy to evaluate their toxicity in vitro. Mice experiments after QD administration, including analysis of hemobiological indices, pharmacokinetics, histological examination, and body weight, were further carried out to evaluate their systematic toxicity in vivo. Results show that QDs fabricated by the thermal decomposition approach in organic phase and encapsulated by an amphiphilic polymer (denoted as QDs-1) present the least toxicity in acute damage, compared with those of QDs surface engineered by glutathione-mediated ligand exchange (denoted as QDs-2), and the ones prepared by coprecipitation approach in aqueous phase with mercaptopropionic acid capped (denoted as QDs-3). With the extension of the investigation time of mice respectively injected with QDs, we found that the damage caused by QDs to the organs can be gradually recovered. This parallel comparative investigation suggests that synthetic methods and their resulting surface microenvironment play vital roles in the acute toxicity profiles of QDs. The present study provides updated insights into the fabrication and surface engineering of QDs for their translational applications in theranostics.
Collapse
Affiliation(s)
- Fengjun Liu
- Department of Radiology, Shanghai Public Health Clinical Center
| | - Wen Ye
- Department of Radiology, Shanghai Public Health Clinical Center
| | - Jun Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine
| | - Fengxiang Song
- Department of Radiology, Shanghai Public Health Clinical Center
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine
| |
Collapse
|
29
|
Meng X, Yang Y, Zhou L, Zhang L, Lv Y, Li S, Wu Y, Zheng M, Li W, Gao G, Deng G, Jiang T, Ni D, Gong P, Cai L. Dual-Responsive Molecular Probe for Tumor Targeted Imaging and Photodynamic Therapy. Am J Cancer Res 2017. [PMID: 28638467 PMCID: PMC5479268 DOI: 10.7150/thno.18437] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The precision oncology significantly relies on the development of multifunctional agents to integrate tumor targeting, imaging and therapeutics. In this study, a first small-molecule theranostic probe, RhoSSCy is constructed by conjugating 5'-carboxyrhodamines (Rho) and heptamethine cyanine IR765 (Cy) using a reducible disulfide linker and pH tunable amino-group to realize thiols/pH dual sensing. In vitro experiments verify that RhoSSCy is highly sensitive for quantitative analysis and imaging intracellular pH gradient and biothiols. Furthermore, RhoSSCy shows superb tumor targeted dual-modal imaging via near-infrared fluorescence (NIRF) and photoacoustic (PA). Importantly, RhoSSCy also induces strongly reactive oxygen species for tumor photodynamic therapy (PDT) with robust antitumor activity both in vitro and in vivo. Such versatile small-molecule theranostic probe may be promising for tumor targeted imaging and precision therapy.
Collapse
|
30
|
Huang Y, Fan CQ, Dong H, Wang SM, Yang XC, Yang SM. Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomedicine 2017; 12:1815-1825. [PMID: 28331307 PMCID: PMC5348070 DOI: 10.2147/ijn.s127349] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Chao-Qiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Su-Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiao-Chao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, People's Republic of China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604634. [PMID: 28084658 DOI: 10.1002/adma.201604634] [Citation(s) in RCA: 424] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 05/27/2023]
Abstract
The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
32
|
Cadmium-containing quantum dots: properties, applications, and toxicity. Appl Microbiol Biotechnol 2017; 101:2713-2733. [PMID: 28251268 DOI: 10.1007/s00253-017-8140-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 01/20/2023]
Abstract
The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.
Collapse
|
33
|
Dong T, Tang Q, Zhao K, Deng A, Li J. Ultrasensitive electrochemiluminescent salbutamol immunoassay with dual-signal amplification using CdSe@SiO2 as label and gold nanoparticles as substrate. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2081-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. Chembiochem 2016; 17:2103-2114. [DOI: 10.1002/cbic.201600357] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 12/12/2022]
|
35
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
36
|
Jana A, Bai L, Li X, Ågren H, Zhao Y. Morphology Tuning of Self-Assembled Perylene Monoimide from Nanoparticles to Colloidosomes with Enhanced Excimeric NIR Emission for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2336-2347. [PMID: 26728416 DOI: 10.1021/acsami.5b11411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organic near-infrared (NIR) fluorescent probes have been recognized as an emerging class of materials exhibiting a great potential in advanced bioanalytical applications. However, synthesizing such organic probes that could simultaneously work in the NIR spectral range and have large Stokes shift, high stability in biological systems, and high photostability have been proven challenging. In this work, aggregation induced excimeric NIR emission in aqueous media was observed from a suitably substituted perylene monoimide (PeIm) dye. Controlled entrapment of the dye into pluronic F127 micellar system to preserve its monomeric green emission in aqueous media was also established. The aggregation process of the PeIm dye to form organic nanoparticles (NPs) was evaluated experimentally by the means of transmission electron microscope imaging as well as theoretically by the molecular dynamics simulation studies. Tuning the morphology along with the formation of colloidosomes by the controlled self-aggregation of PeIm NPs in aqueous suspension was demonstrated successfully. Finally, both excimeric and monomeric emissive PeIm NPs as well as PeIm colloidosomes were employed for the bioimaging in vitro.
Collapse
Affiliation(s)
- Avijit Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371
- Biomaterials group, CSIR-Indian Institute of Chemical Technology , Hyderabad, India 500007
| | - Linyi Bai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , Stockholm, Sweden SE-10691
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , Stockholm, Sweden SE-10691
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| |
Collapse
|
37
|
Khalili Fard J, Jafari S, Eghbal MA. A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Adv Pharm Bull 2015; 5:447-54. [PMID: 26819915 PMCID: PMC4729339 DOI: 10.15171/apb.2015.061] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022] Open
Abstract
In recent decades, the use of nanomaterials has received much attention in industrial and medical fields. However, some reports have mentioned adverse effects of these materials on the biological systems and cellular components. There are several major mechanisms for cytotoxicity of nanoparticles (NPs) such as physicochemical properties, contamination with toxic element, fibrous structure, high surface charge and radical species generation. In this review, a brief key mechanisms involved in toxic effect of NPs are given, followed by the in vitro toxicity assays of NPs and prooxidant effects of several NPs such as carbon nanotubes, titanium dioxide NPs, quantum dots, gold NPs and silver NPs.
Collapse
Affiliation(s)
- Javad Khalili Fard
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Jafari
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
38
|
Scoville DK, White CC, Botta D, McConnachie LA, Zadworny ME, Schmuck SC, Hu X, Gao X, Yu J, Dills RL, Sheppard L, Delaney MA, Griffith WC, Beyer RP, Zangar RC, Pounds JG, Faustman EM, Kavanagh TJ. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicol Appl Pharmacol 2015; 289:240-50. [PMID: 26476918 DOI: 10.1016/j.taap.2015.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe-ZnS core-shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lisa A McConnachie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Megan E Zadworny
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaoge Hu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jianbo Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Russell L Dills
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Martha A Delaney
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard C Zangar
- Systems Toxicology Group - Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joel G Pounds
- Systems Toxicology Group - Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Wu T, Zhang T, Chen Y, Tang M. Research advances on potential neurotoxicity of quantum dots. J Appl Toxicol 2015; 36:345-51. [DOI: 10.1002/jat.3229] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| | - Yilu Chen
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing China
| |
Collapse
|
40
|
Liu Z, Chen N, Dong C, Li W, Guo W, Wang H, Wang S, Tan J, Tu Y, Chang J. Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18997-9005. [PMID: 26262596 DOI: 10.1021/acsami.5b05406] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A simple, straightforward, and reproducible strategy for the construction of a near-infrared (NIR) fluorescence nanoprobe was developed by coating CuInS2/ZnS quantum dots (CIS/ZnS QDs) with a novel amphiphilic bioconjugate. The amphiphilic bioconjugate with a tailor-designed structure of bovine serum albumin (BSA) as the hydrophilic segment and poly(ε-caprolactone) (PCL) as the hydrophobic part was fabricated by chemical coupling the hydrophobic polymer chain to BSA via the maleimide-sulfhydryl reaction. By incorporating CIS/ZnS QDs into the hydrophobic cores of the self-assembly of BSA-PCL conjugate, the constructed NIR fluorescence nanoprobe exhibited excellent fluorescent properties over a wide pH range (pH 3-10) and a good colloidal stability in PBS buffer (pH = 7.4) with or without 10% fetal bovine serum. The presence of the outer BSA shell effectively reduced the nonspecific cellular binding and imparted high biocompatibility and low-toxicity to the probe. Moreover, the NIR fluorescence nanoprobe could be functionalized by conjugating cyclic Arg-Gly-Asp (cRGD) peptide, and the decorated nanoprobe was shown to be highly selective for targeted integrin αvβ3-overexpressed tumor cell imaging. The feasibility of the constructed NIR fluorescence probe in vivo application was further investigated and the results demonstrated its great potential for in vivo imaging. This developed protocol for phase transfer of the CIS/ZnS QDs was universal and applicable to other nanoparticles stabilized with hydrophobic ligands.
Collapse
Affiliation(s)
- Zhongyun Liu
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology , Tianjin 300072, P.R. China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai, Shandong 264003, P.R. China
| | - Na Chen
- Department of Medical Radioprotection, School of Radiation Medicine and Health, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou, 200072, P. R. China
| | - Chunhong Dong
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology , Tianjin 300072, P.R. China
| | - Wei Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital , Tianjin 300052, P. R. China
| | - Weisheng Guo
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology , Tianjin 300072, P.R. China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology , Tianjin 300072, P.R. China
| | - Sheng Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology , Tianjin 300072, P.R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital , Tianjin 300052, P. R. China
| | - Yu Tu
- Department of Medical Radioprotection, School of Radiation Medicine and Health, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou, 200072, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology , Tianjin 300072, P.R. China
| |
Collapse
|
41
|
Volkov Y. Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun 2015; 468:419-27. [PMID: 26168726 DOI: 10.1016/j.bbrc.2015.07.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022]
Abstract
The review addresses the current state of progress in the use of ultra-small nanoparticles from the category of quantum dots (QDs), which presently embraces a widening range of nanomaterials of different nature, including "classical" semiconductor groups III-V and II-VI nanocrystals, along with more recently emerged carbon, silicon, gold and other types of nanoparticles falling into this class of nanomaterials due to their similar physical characteristics such as small size and associated quantum confinement effects. A diverse range of QDs applications in nanomedicine has been extensively summarised previously in numerous publications. Therefore, this review is not intended to provide an all-embracing survey of the well documented QDs uses, but is rather focused on the most recent emerging developments, concepts and outstanding unresolved problematic and sometimes controversial issues. Over 125 publications are overviewed and discussed here in the context of major nanomedicine domains, i.e. medical imaging, diagnostics, therapeutic applications and combination of them in multifunctional theranostic systems.
Collapse
Affiliation(s)
- Yuri Volkov
- Department of Clinical Medicine, School of Medicine and AMBER Centre, Trinity College, Dublin 8, Ireland.
| |
Collapse
|
42
|
Swift BJF, Baneyx F. Microbial Uptake, Toxicity, and Fate of Biofabricated ZnS:Mn Nanocrystals. PLoS One 2015; 10:e0124916. [PMID: 25902065 PMCID: PMC4406734 DOI: 10.1371/journal.pone.0124916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/12/2015] [Indexed: 01/28/2023] Open
Abstract
Despite their importance in nano-environmental health and safety, interactions between engineered nanomaterials and microbial life remain poorly characterized. Here, we used the model organism E. coli to study the penetration requirements, subcellular localization, induction of stress responses, and long-term fate of luminescent Mn-doped ZnS nanocrystals fabricated under "green" processing conditions with a minimized ZnS-binding protein. We find that such protein-coated quantum dots (QDs) are unable to penetrate the envelope of unmodified E. coli but readily translocate to the cytoplasm of cells that have been made competent by chemical treatment. The process is dose-dependent and reminiscent of bacterial transformation. Cells that have internalized up to 0.5 μg/mL of nanocrystals do not experience a significant activation of the unfolded protein or SOS responses but undergo oxidative stress when exposed to high QD doses (2.5 μg/mL). Finally, although they are stable in quiescent cells over temperatures ranging from 4 to 42°C, internalized QDs are rapidly diluted by cell division in a process that does not involve TolC-dependent efflux. Taken together, our results suggest that biomimetic QDs based on low toxicity inorganic cores capped by a protein shell are unlikely to cause significant damage to the microbial ecosystem.
Collapse
Affiliation(s)
- Brian J. F. Swift
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Franҫois Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
43
|
Bilan R, Fleury F, Nabiev I, Sukhanova A. Quantum Dot Surface Chemistry and Functionalization for Cell Targeting and Imaging. Bioconjug Chem 2015; 26:609-24. [DOI: 10.1021/acs.bioconjchem.5b00069] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Regina Bilan
- Laboratory
of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe sh., 115409 Moscow, Russian Federation
| | - Fabrice Fleury
- DNA
repair group, UFIP, CNRS UMR6286, Univertité de Nantes, 2 rue de la
Houssinière, 44322 Nantes Cedex 3, France
| | - Igor Nabiev
- Laboratory
of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe sh., 115409 Moscow, Russian Federation
- Laboratoire
de Recherche en Nanosciences, EA4682-LRN, 51 rue Cognacq Jay, UFR
de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Alyona Sukhanova
- Laboratory
of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe sh., 115409 Moscow, Russian Federation
- Laboratoire
de Recherche en Nanosciences, EA4682-LRN, 51 rue Cognacq Jay, UFR
de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
44
|
|
45
|
Bargheer D, Giemsa A, Freund B, Heine M, Waurisch C, Stachowski GM, Hickey SG, Eychmüller A, Heeren J, Nielsen P. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:111-123. [PMID: 25671156 PMCID: PMC4311637 DOI: 10.3762/bjnano.6.11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/28/2014] [Indexed: 05/24/2023]
Abstract
(51)Cr-labeled, superparamagnetic, iron oxide nanoparticles ((51)Cr-SPIOs) and (65)Zn-labeled CdSe/CdS/ZnS-quantum dots ((65)Zn-Qdots) were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the (65)Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring (51)Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, (65)Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic (65)ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots) revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC), but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our (65)Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in the liver.
Collapse
Affiliation(s)
- Denise Bargheer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Artur Giemsa
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Barbara Freund
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian Waurisch
- Institute of Physical Chemistry and Electrochemistry, Technical University of Dresden, Bergstr. 66b, 01069 Dresden, Germany
| | - Gordon M Stachowski
- Institute of Physical Chemistry and Electrochemistry, Technical University of Dresden, Bergstr. 66b, 01069 Dresden, Germany
| | - Stephen G Hickey
- Institute of Physical Chemistry and Electrochemistry, Technical University of Dresden, Bergstr. 66b, 01069 Dresden, Germany
| | - Alexander Eychmüller
- Institute of Physical Chemistry and Electrochemistry, Technical University of Dresden, Bergstr. 66b, 01069 Dresden, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Peter Nielsen
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
46
|
Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Chen Y, Tang M. Partial protection of N-acetylcysteine against MPA-capped CdTe quantum dot-induced neurotoxicity in rat primary cultured hippocampal neurons. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00127g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CdTe QD exposure caused death and apoptosis of rat primary cultured hippocampal neurons via generating reactive oxygen species and increasing intracellular calcium levels, which could be reversed by a common antioxidant NAC.
Collapse
|
47
|
Chen H, Li B, Zhang M, Sun K, Wang Y, Peng K, Ao M, Guo Y, Gu Y. Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo. NANOSCALE 2014; 6:12580-90. [PMID: 25184523 DOI: 10.1039/c4nr03613a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanomedicine platforms that have the potential to simultaneously provide the function of molecular imaging and therapeutic treatment in one system are beneficial to address the challenges of cancer heterogeneity and adaptive resistance. In this study, Cyclic RGD peptide (cRGD), a less-expensive active tumor targeting tri-peptide, and doxorubicin (DOX), a widely used chemotherapeutic drug, were covalently attached to Ag2S quantum dots (QDs) to form the nano-conjugates Ag2S-DOX-cRGD. The optical characterization of Ag2S-DOX-cRGD manifested the maintenance of QDs fluorescence, which suggested the potential of Ag2S for monitoring intracellular and systemic drug distribution. The low biotoxicity of Ag2S QDs indicated that they are promisingly safe nanoparticles for bio-applications. Furthermore, the selective imaging and favorable tumor inhibition of the nanoconjugates were demonstrated at both cell and animal levels. These results indicated a promising future for the utilization of Ag2S QDs as a kind of multi-functional nano platform to achieve imaging-visible nano-therapeutics.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhao Y, Wang X, Wu Q, Li Y, Wang D. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:480-489. [PMID: 25464286 DOI: 10.1016/j.jhazmat.2014.09.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 06/04/2023]
Abstract
We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1-1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd(2+). Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Xiong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Yiping Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
49
|
Bu L, Shen B, Cheng Z. Fluorescent imaging of cancerous tissues for targeted surgery. Adv Drug Deliv Rev 2014; 76:21-38. [PMID: 25064553 DOI: 10.1016/j.addr.2014.07.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/29/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
To maximize tumor excision and minimize collateral damage are the primary goals of cancer surgery. Emerging molecular imaging techniques have made "image-guided surgery" developed into "molecular imaging-guided surgery", which is termed as "targeted surgery" in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling "targeted surgery" to be a component of "targeted therapy". Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields.
Collapse
|
50
|
Breger J, Delehanty JB, Medintz IL. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:131-51. [PMID: 25154379 PMCID: PMC4345423 DOI: 10.1002/wnan.1281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 01/22/2023]
Abstract
The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future.
Collapse
Affiliation(s)
- Joyce Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | | |
Collapse
|