1
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Nikravesh M, Ghanbari S, Badiee M, Zarea K, Moosavi M, Matin M. Relationship Between Arsenic in Biological Media and Breast Cancer: A Systematic Review and Meta-Analysis. Biol Trace Elem Res 2025; 203:61-68. [PMID: 38619678 DOI: 10.1007/s12011-024-04157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Arsenic (As) is an environmental pollutant with carcinogenic effects and breast cancer (BC) is a prevalent malignant tumor in women. The goal of this meta-analysis was to establish a connection between biological sample As levels and the risk of developing BC. Pub Med, Web of Science, Scopus, and Elsevier were used to systematically screen the literature published between 1990 and 2023. The Newcastle-Ottawa scale was also used in assessing the quality of publications. A random-effects model was used to assess the pertinent data that was gleaned from these articles. Using the I2 index the heterogeneity of studies was performed. Egger's test and funnel plots were used to look at publication bias. We identified 16 epidemiologic studies that included 2713 women with BC and 5347 healthy individuals. The results showed that the difference between the case group and the control group was 0.72 [95% confidence interval (CI) 0.30 to 1.14]. According to subgroup analysis, the value for blood was 0.18 [95% CI 0.01 to 0.35], whereas the value for hair was 3.08 [95% CI 0.19 to 5.97]. The present meta-analysis suggested that As levels were significantly higher in BC patients than in controls. This systematic review and meta-analysis provide evidence supporting a positive relationship between arsenic levels in biological media and BC risk. These findings highlight the importance of further research to investigate the mechanisms of this association and explore potential preventive strategies to reduce the adverse effects of arsenic exposure on BC.
Collapse
Affiliation(s)
- Mehrad Nikravesh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Ghanbari
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdiehsadat Badiee
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kourosh Zarea
- Nursing Care Research Center in Chronic Diseases, School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Moosavi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoush Matin
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Cheng L, Zhang Y, Lv M, Huang W, Zhang K, Guan Z, Feng X, Yang Y, Gao Y, Liu X. Impaired learning and memory in male mice induced by sodium arsenite was associated with MMP-2/MMP-9-mediated blood-brain barrier disruption and neuronal apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117016. [PMID: 39288732 DOI: 10.1016/j.ecoenv.2024.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Arsenic is a widespread environmental contaminant known to accumulate in the brain, leading to cognitive impairment. However, the exact mechanisms by which arsenic causes cognitive deficits remain unclear. The present study aims to discover whether the destruction of the blood-brain barrier (BBB) mediated by matrix metalloproteinases 2 and matrix metalloproteinases 9 (MMP-2 and MMP-9) and subsequent neuronal apoptosis are involved in arsenic-induced cognitive impairment. Ninety male mice were given 0, 25, and 50 mg/L NaAsO2 in drinking water and 30 mg/kg doxycycline hyclate (DOX, an inhibitor of MMPs) gavage for 12 weeks to observe the alterations in learning and memory of mice, the morphology of hippocampal neurons, as well as the BBB permeability and ultrastructure, the localization and expression of tight junction proteins, MMP-2, and MMP-9. Our findings indicated that arsenic exposure induced learning and memory impairment in mice, accompanied by neuronal loss and apoptosis. Furthermore, arsenic exposure increased hematogenous IgG leakage into the brain, disrupted the tight junctions, reduced the expression of Claudin5, Occludin, and ZO1 in the endothelial cells, and increased the expression of MMP-2 and MMP-9 in the endothelial cells and astrocytes. Finally, DOX intervention preserved BBB integrity, alleviated hippocampal neuronal apoptosis, and improved cognitive impairment in mice caused by arsenic exposure. Our research demonstrates that cognitive disfunction in mice induced by arsenic exposure is associated with MMP-2 and MMP-9-mediated BBB destruction and neuronal apoptosis. The current investigation provides new insights into mechanisms of arsenic neurotoxicity and suggests that MMP-2 and MMP-9 may serve as potential therapeutic targets for treating arsenic-induced cognitive dysfunction in the future.
Collapse
Affiliation(s)
- Lin Cheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Yuhang Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Kunyu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Ziqiao Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Xirui Feng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China.
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China University, Harbin 150001, China.
| |
Collapse
|
4
|
Tomlinson MM, Pugh F, Nail AN, Newton JD, Udoh K, Abraham S, Kavalukas S, Guinn B, Tamimi RM, Laden F, Iyer HS, States JC, Ruther M, Ellis CT, DuPré NC. Heavy-metal associated breast cancer and colorectal cancer hot spots and their demographic and socioeconomic characteristics. Cancer Causes Control 2024; 35:1367-1381. [PMID: 38916703 PMCID: PMC11461597 DOI: 10.1007/s10552-024-01894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Cancer registries offer an avenue to identify cancer clusters across large populations and efficiently examine potential environmental harms affecting cancer. The role of known metal carcinogens (i.e., cadmium, arsenic, nickel, chromium(VI)) in breast and colorectal carcinogenesis is largely unknown. Historically marginalized communities are disproportionately exposed to metals, which could explain cancer disparities. We examined area-based metal exposures and odds of residing in breast and colorectal cancer hotspots utilizing state tumor registry data and described the characteristics of those living in heavy metal-associated cancer hotspots. METHODS Breast and colorectal cancer hotspots were mapped across Kentucky, and area-based ambient metal exposure to cadmium, arsenic, nickel, and chromium(VI) were extracted from the 2014 National Air Toxics Assessment for Kentucky census tracts. Among colorectal cancer (n = 56,598) and female breast cancer (n = 77,637) diagnoses in Kentucky, we used logistic regression models to estimate Odds Ratios (ORs) and 95% Confidence Intervals to examine the association between ambient metal concentrations and odds of residing in cancer hotspots, independent of individual-level and neighborhood risk factors. RESULTS Higher ambient metal exposures were associated with higher odds of residing in breast and colorectal cancer hotspots. Populations in breast and colorectal cancer hotspots were disproportionately Black and had markers of lower socioeconomic status. Furthermore, adjusting for age, race, tobacco and neighborhood factors did not significantly change cancer hotspot ORs for ambient metal exposures analyzed. CONCLUSION Ambient metal exposures contribute to higher cancer rates in certain geographic areas that are largely composed of marginalized populations. Individual-level assessments of metal exposures and cancer disparities are needed.
Collapse
Affiliation(s)
- Madeline M Tomlinson
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Felicia Pugh
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
- Louisville Metro Department of Public Health and Wellness, Center for Health Equity, Louisville, KY, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Johnnie D Newton
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Karen Udoh
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Stephie Abraham
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Sandy Kavalukas
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Brian Guinn
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medical, New York, NY, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hari S Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Matthew Ruther
- Department of Urban and Public Affairs, College of Arts and Sciences, University of Louisville, Louisville, KY, USA
| | - C Tyler Ellis
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Natalie C DuPré
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA.
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Li Y, Liu J, Yao D, Guo Z, Jiang X, Zhang C, Qu L, Liu Y, Hu Y, Gao L, Wang Y, Xu Y. Elevated aerobic glycolysis driven by p62-mTOR axis promotes arsenic-induced oncogenic phenotypes in human mammary epithelial cells. Arch Toxicol 2024; 98:1369-1381. [PMID: 38485781 DOI: 10.1007/s00204-024-03709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024]
Abstract
Chronic arsenic exposure is considered to increase the risk of breast cancer. p62 is a multifunctional adaptor protein that controls myriad cellular processes and is overexpressed in breast cancer tissues. Although previous studies have indicated the involvement of p62 accumulation in arsenic tumorigenesis, the underlying mechanism remains obscure. Here, we found that 0.1 µM or 0.5 µM arsenite exposure for 24 weeks induced oncogenic phenotypes in human mammary epithelial cells. Elevated aerobic glycolysis, cell proliferation capacity, and activation of p62-mTOR pathway, as indicated by increased protein levels of p62, phosphorylated-mTOR (p-mTOR) and hypoxia-inducible factor 1α (HIF1α), were observed in chronically arsenite-exposed cells, and of note in advance of the onset of oncogenic phenotypes. Moreover, p62 silencing inhibited acquisition of oncogenic phenotypes in arsenite-exposed cells. The protein levels of p-mTOR and HIF1α, as well as aerobic glycolysis and cell proliferation, were suppressed by p62 knockdown. In addition, re-activation of p‑mTOR reversed the inhibitory effects of p62 knockdown. Collectively, our data suggest that p62 exerts an oncogenic role via mTORC1 activation and acts as a key player in glucose metabolism during arsenite-induced malignant transformation, which provides a new mechanistic clue for the arsenite carcinogenesis.
Collapse
Affiliation(s)
- Yongfang Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Jiao Liu
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Zijun Guo
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Xuheng Jiang
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Chengwen Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Litong Qu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuyan Liu
- Department of Clinical Epidemiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Lanyue Gao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China.
- School of Public Health, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
6
|
Zimta AA, Cenariu D, Tigu AB, Moldovan C, Jurj A, Pop L, Berindan-Neagoe I. The carcinogenic capacity of arsenic in normal epithelial breast cells and double-positive breast cancer cells. Med Pharm Rep 2024; 97:184-195. [PMID: 38746032 PMCID: PMC11090272 DOI: 10.15386/mpr-2682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 05/16/2024] Open
Abstract
Background and aims The carcinogenic effect of arsenic is a subject of controversy in relation to breast cancer. In our current research, we aimed to simulate the effects of chronic low-level arsenic exposure on breast cells by intoxicating MCF-10A and MCF-7 cells with 1 μM Arsenic trioxide (As2O3) for 3 weeks (3w) and 6 weeks (6w), respectively. Methods We assessed the cellular responses to As2O3 through various assays, including confocal fluorescence microscopy, flow cytometry for cell cycle analysis, Transwell invasion assay, scratch assay, and colony assay. Additionally, we analyzed the mutation burden in all the exposed cells by using the next generation sequencing technology. Results Our findings indicate that As2O3 has a minor carcinogenic effect in normal cells, with no definitive evidence of malignant transformation observed after 6 weeks of exposure. In the case of breast cancer cells, As2O3 exhibits a dual effect, both inhibitory and stimulatory. It leads to reduced colony formation ability at 6 weeks, while enhancing the cells' ability for invasion. The mutations triggered by As2O3 exposure are distributed across genes with both tumor-suppressive and oncogenic functions. Five mutations are common to both cell lines, involving the following genes: Kinase Insert Domain Receptor (KDR) (c.798+54G>A), Colony Stimulating Factor 1 Receptor (CSF1R) (c.*37AC>C, c.*35C>TC), SWI/SNF-Related Matrix-Associated Actin-Dependent Regulator of Chromatin Subfamily B Member 1 (SMARCB1) (c.1119-41C>T), and Fms-like Tyrosine Kinase 3 (FLT3) (c.1310-3T>C). Additionally, Human Epidermal Growth Factor Receptor 4 (ERBB4/HER4) (c.421+58A>G) and Human Epidermal Growth Factor Receptor 2 (HER2/ERBB2) (c.2307+46A>G) mutations were exclusively found in MCF-10A cells exposed to As2O3. Furthermore, MCF-7 cells exhibited unique mutations in the KIT Proto-Oncogene (KIT) (c.1594G>A) and TP53 (c.215C>G). Conclusion In summary, our study reveals that a 6-weeks exposure to arsenic has a limited carcinogenic effect in normal breast cells and a dual role in breast cancer cells.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Yang Y, Zhou M, Huang Y, Ye X, Mo Y, Huang Y, Wang S. LCP1-mediated cytoskeleton alterations involve in arsenite-triggered malignant phenotype of human immortalized prostate stromal cells. Food Chem Toxicol 2024; 186:114548. [PMID: 38417537 DOI: 10.1016/j.fct.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
The connection between continuous arsenic exposure and prostate cancer is already established. However, the exact mechanisms of arsenic tumorigenesis are far from clear. Here, we employed human prostate stromal immortalized cells (WPMY-1) continuous exposure to 1 and 2 μM arsenite for 29 weeks to identify the malignant phenotype and explore the underlying molecular mechanism. As expected, continuous low-dose arsenite exposure led to the malignant phenotype of WPMY-1 cells. Quantitative proteomics identified 517 differentially expressed proteins (DEPs), of which the most remarkably changed proteins (such as LCP1 and DDX58, etc.) and the bioinformatic analysis were focused on the regulation of cytoskeleton, cell adhesion, and migration. Further, cell experiments showed that continuous arsenite exposure altered cytoskeleton structure, enhanced cell adhesive capability, and raised the levels of reactive oxygen species (ROS), ATM, p-ATM, p-ERK1/2, and LCP1 proteins. N-acetylcysteine (NAC) treatment antagonized the increase of LCP1 proteins, and LCP1 knockdown partially restored F-actin organization caused by arsenic. Overall, the results demonstrated that ROS-ATM-ERK1/2 signaling pathway was involved in the activation of LCP1, leading to cytoskeleton alterations. These alterations are believed to play a significant role in arsenite-triggered tumor microenvironment cell-acquired malignant phenotype, which could provide potential biomarkers with therapeutic implications for prostate cancer.
Collapse
Affiliation(s)
- Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Menghan Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yurun Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xiaotong Ye
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yi Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| |
Collapse
|
8
|
Breast Cancer and Arsenic Anticancer Effects: Systematic Review of the Experimental Data from In Vitro Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8030931. [PMID: 36619302 PMCID: PMC9815927 DOI: 10.1155/2022/8030931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022]
Abstract
Arsenic is a known environmental carcinogenic agent. However, under certain circumstances, it may exert anticancer effects. In this systematic review, we aim to provide information on recent developments in studies on arsenic antitumor effects in breast cancer. Research included in the review refers to experimental data from in vitro studies. The data was collected using search terms "breast cancer," "arsenic," and "anticancer" (25.05.2021). Only studies in English and published in the last 10 years were included. The search identified 123 studies from the EBSCOhost, PubMed, and Scopus databases. In the selection process, thirty full-texts were evaluated as eligible for the review. The literature of the last decade provides a lot of information on mechanisms behind anticancer effects of arsenic on breast cancer. Similar to arsenic-induced carcinogenesis, these mechanisms include the activation of the redox system and the increased production of free radicals. Targets of arsenic action are systems of cell membranes, mitochondria, pathways of intracellular transmission, and the genetic apparatus of the cell. Beneficial effects of arsenic use are possible due to significant metabolic differences between cancer and healthy cells. Further efforts are needed in order to establish modes and doses of treatment with arsenic that would provide anticancer activity with minimal toxicity.
Collapse
|
9
|
Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, Chen F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol 2022; 12:971288. [PMID: 36185256 PMCID: PMC9520778 DOI: 10.3389/fonc.2022.971288] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Delayed presentation of the disease, late stage at diagnosis, limited therapeutic options, metastasis, and relapse are the major factors contributing to breast cancer mortality. The development and progression of breast cancer is a complex and multi-step process that incorporates an accumulation of several genetic and epigenetic alterations. External environmental factors and internal cellular microenvironmental cues influence the occurrence of these alterations that drives tumorigenesis. Here, we discuss state-of-the-art information on the epigenetics of breast cancer and how environmental risk factors orchestrate major epigenetic events, emphasizing the necessity for a multidisciplinary approach toward a better understanding of the gene-environment interactions implicated in breast cancer. Since epigenetic modifications are reversible and are susceptible to extrinsic and intrinsic stimuli, they offer potential avenues that can be targeted for designing robust breast cancer therapies.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yiran Qiu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yao Fu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Zhuoyue Bi
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Wenxuan Zhang
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Haoyan Ji
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Fei Chen
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
10
|
Barguilla I, Domenech J, Rubio L, Marcos R, Hernández A. Nanoplastics and Arsenic Co-Exposures Exacerbate Oncogenic Biomarkers under an In Vitro Long-Term Exposure Scenario. Int J Mol Sci 2022; 23:ijms23062958. [PMID: 35328376 PMCID: PMC8955425 DOI: 10.3390/ijms23062958] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
The increasing accumulation of plastic waste and the widespread presence of its derivatives, micro- and nanoplastics (MNPLs), call for an urgent evaluation of their potential health risks. In the environment, MNPLs coexist with other known hazardous contaminants and, thus, an interesting question arises as to whether MNPLs can act as carriers of such pollutants, modulating their uptake and their harmful effects. In this context, we have examined the interaction and joint effects of two relevant water contaminants: arsenic and polystyrene nanoplastics (PSNPLs), the latter being a model of nanoplastics. Since both agents are persistent pollutants, their potential effects have been evaluated under a chronic exposure scenario and measuring different effect biomarkers involved in the cell transformation process. Mouse embryonic fibroblasts deficient for oxidative DNA damage repair mechanisms, and showing a cell transformation status, were used as a sensitive cell model. Such cells were exposed to PSNPLs, arsenic, and a combination PSNPLs/arsenic for 12 weeks. Interestingly, a physical interaction between both pollutants was demonstrated by using TEM/EDX methodologies. Results also indicate that the continuous co-exposure enhances the DNA damage and the aggressive features of the initially transformed phenotype. Remarkably, co-exposed cells present a higher proportion of spindle-like cells within the population, an increased capacity to grow independently of anchorage, as well as enhanced migrating and invading potential when compared to cells exposed to arsenic or PSNPLs alone. This study highlights the need for further studies exploring the long-term effects of contaminants of emerging concern, such as MNPLs, and the importance of considering the behavior of mixtures as part of the hazard and human risk assessment approaches.
Collapse
Affiliation(s)
- Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
| | - Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Santiago de los Caballeros 51000, Dominican Republic;
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
- Correspondence: (R.M.); (A.H.)
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (I.B.); (J.D.)
- Correspondence: (R.M.); (A.H.)
| |
Collapse
|
11
|
Li Y, Sun R, Fang X, Ruan Y, Hu Y, Wang K, Liu J, Wang H, Pi J, Chen Y, Xu Y. Long-isoform NFE2L1 silencing inhibits acquisition of malignant phenotypes induced by arsenite in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113268. [PMID: 35124418 DOI: 10.1016/j.ecoenv.2022.113268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Chronic arsenic exposure is associated with the increased risk of several types of cancer, among which, lung cancer is the most deadly one. Nuclear factor erythroid 2 like 1 (NFE2L1), a transcription factor belonging to CNC-bZIP family, regulates multiple important cellular functions in response to acute arsenite exposure. However, the role of NFE2L1 in lung cancer induced by chronic arsenite exposure is unknown. In this study, we firstly showed that chronic arsenite exposure (36 weeks) led to epithelial-mesenchymal transition (EMT) and malignant transformation in human bronchial epithelial cells (BEAS-2B). During the process of malignant transformation, the expression of long isoforms of NFE2L1 (NFE2L1-L) was elevated. Thereafter, BEAS-2B cells with NFE2L1-L stable knockdown (NFE2L1-L-KD) was chronically exposed to arsenite. As expected, silencing of NFE2L1-L gene strikingly inhibited the arsenite-induced EMT and the subsequent malignant transformation. Additionally, NFE2L1-L silencing suppressed the transcription of EMT-inducer SNAIL1 and increased the expression of E-cadherin. Conversely, NFE2L1-L overexpression increased SNAIL1 transcription but decreased E-cadherin expression. Collectively, our data suggest that NFE2L1-L promotes EMT by positively regulating SNAIL1 transcription, and is involved in malignant transformation induced by arsenite.
Collapse
Affiliation(s)
- Yongfang Li
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ru Sun
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Xin Fang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yihui Ruan
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuxin Hu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Kemu Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Jiao Liu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Huihui Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
12
|
Prichystalova R, Caron-Beaudoin E, Richardson L, Dirkx E, Amadou A, Zavodna T, Cihak R, Cogliano V, Hynes J, Pelland-St-Pierre L, Verner MA, van Tongeren M, Ho V. An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:753-768. [PMID: 32704083 DOI: 10.1038/s41370-020-0253-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and cause adverse effects. We aimed to classify the effects of 24 known EDCs, prevalent in certain occupations, according to four modes of action (estrogenic, antiestrogenic, androgenic, and/or antiandrogenic). A literature search, stratified into four types of literature was conducted (namely: national and international agency reports; review articles; primary studies; ToxCastTM). The state of the evidence of each EDC on sex hormone function was summarized and reviewed by an expert panel. For each mode of action, the experts evaluated the likelihood of endocrine disruption in five categories: "No", "Unlikely", "Possibly", "Probably", and "Yes". Seven agents were categorized as "Yes," or having strong evidence for their effects on sex hormone function (antiandrogenic: lead, arsenic, butylbenzyl phthalate, dibutyl phthalate, dicyclohexyl phthalate; estrogenic: nonylphenol, bisphenol A). Nine agents were categorized as "Probable," or having probable evidence (antiandrogenic: bis(2-ethylhexyl)phthalate, nonylphenol, toluene, bisphenol A, diisononyl phthalate; androgenic: cadmium; estrogenic: copper, cadmium and; anti-estrogenic: lead). Two agents (arsenic, polychlorinated biphenyls) had opposing conclusions supporting both "probably" estrogenic and antiestrogenic effects. This synthesis will allow researchers to evaluate the health effects of selected EDCs with an added level of precision related to the mode of action.
Collapse
Affiliation(s)
- R Prichystalova
- Faculty of Safety Engineering, Technical University of Ostrava, Ostrava, Czech Republic
| | - E Caron-Beaudoin
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
| | - L Richardson
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - E Dirkx
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - A Amadou
- Département Prévention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environement, Lyon, France
| | - T Zavodna
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - R Cihak
- Výzkumný ústav organických syntéz a.s., Centre for Ecology, Toxicology and Analytics, Rybitví, Czech Republic
| | - V Cogliano
- National Center for Environmental Health Hazard Assessment, US Environmental Protection Agency, Washington, DC, USA
| | - J Hynes
- JH Tox Consulting, Maastricht, Netherlands
| | - L Pelland-St-Pierre
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - M A Verner
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montréal, QC, Canada
| | - M van Tongeren
- Faculty of Science and Engineering, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| | - V Ho
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada.
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
13
|
Abuawad A, Bozack AK, Saxena R, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation. Toxicology 2021; 457:152803. [PMID: 33905762 PMCID: PMC8349595 DOI: 10.1016/j.tox.2021.152803] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic (As) is a major public health concern globally. Inorganic As (InAs) undergoes hepatic methylation to form monomethyl (MMAs)- and dimethyl (DMAs)-arsenical species, facilitating urinary As elimination. MMAsIII is considerably more toxic than either InAsIII or DMAsV, and a higher proportion of MMAs in urine has been associated with risk for a wide range of adverse health outcomes. Efficiency of As methylation differs substantially between species, between individuals, and across populations. One-carbon metabolism (OCM) is a biochemical pathway that provides methyl groups for the methylation of As, and is influenced by folate and other micronutrients, such as vitamin B12, choline, betaine and creatine. A growing body of evidence has demonstrated that OCM-related micronutrients play a critical role in As methylation. This review will summarize observational epidemiological studies, interventions, and relevant experimental evidence examining the role that OCM-related micronutrients have on As methylation, toxicity of As, and risk for associated adverse health-related outcomes. There is fairly robust evidence supporting the impact of folate on As methylation, and some evidence from case-control studies indicating that folate nutritional status influences risk for As-induced skin lesions and bladder cancer. However, the potential for folate to be protective for other As-related health outcomes, and the potential beneficial effects of other OCM-related micronutrients on As methylation and risk for health outcomes are less well studied and warrant additional research.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
The endocrine disrupting effects of sodium arsenite in the rat testis is not mediated through macrophage activation. Reprod Toxicol 2021; 102:1-9. [PMID: 33766721 DOI: 10.1016/j.reprotox.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Arsenic (As) is an endocrine disrupting chemical that can disturb the male reproductive system. In a previous study, it was suggested that testicular macrophages could display a role in endocrine disruption induced by As exposure. This work aimed to evaluate the effects of chronic As exposure in the testis function of Wistar rats and examine the participation of macrophage activation and inflammatory response in these processes. We examined gene expression of steroidogenic machinery and immunological markers by RT-QPCR, plasma testosterone concentrations, sperm count and morphology, and histomorphometrical parameters after 60-days exposure to 1 or 5 mg.kg-1.day-1 of sodium arsenite, combined or not with 50 μg.kg-1 of LPS administered one day before euthanasia. We have demonstrated that As exposure reduced the weight of androgen-dependent organs and induced changes in spermatogenesis, in particular at the highest dose. LPS and As co-exposure promoted a decrease in testosterone synthesis, but did not increase the overexpression of markers of macrophage activation seen in LPS-only rats. Our results suggest that As does not alter the testicular macrophage function, but under immunological challenges LPS and As can display a complex interaction, which could lead to endocrine disruption.
Collapse
|
15
|
Barguilla I, Peremartí J, Bach J, Marcos R, Hernández A. Role of As3mt and Mth1 in the genotoxic and carcinogenic effects induced by long-term exposures to arsenic in MEF cells. Toxicol Appl Pharmacol 2020; 409:115303. [DOI: 10.1016/j.taap.2020.115303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
|
16
|
Danes JM, de Abreu ALP, Kerketta R, Huang Y, Palma FR, Gantner BN, Mathison AJ, Urrutia RA, Bonini MG. Inorganic arsenic promotes luminal to basal transition and metastasis of breast cancer. FASEB J 2020; 34:16034-16048. [PMID: 33047385 DOI: 10.1096/fj.202001192r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Inorganic arsenic (iAs/As2 O3 2- ) is an environmental toxicant found in watersheds around the world including in densely populated areas. iAs is a class I carcinogen known to target the skin, lungs, bladder, and digestive organs, but its role as a primary breast carcinogen remains controversial. Here, we examined a different possibility: that exposure to iAs promotes the transition of well-differentiated epithelial breast cancer cells characterized by estrogen and progesterone receptor expression (ER+/PR+), to more basal phenotypes characterized by active proliferation, and propensity to metastasis in vivo. Our results indicate two clear phenotypic responses to low-level iAs that depend on the duration of the exposure. Short-term pulses of iAs activate ER signaling, consistent with its reported pseudo-estrogen activity, but longer-term, chronic treatments for over 6 months suppresses both ER and PR expression and signaling. In fact, washout of these chronically exposed cells for up to 1 month failed to fully reverse the transcriptional and phenotypic effects of prolonged treatments, indicating durable changes in cellular physiologic identity. RNA-seq studies found that chronic iAs drives the transition toward more basal phenotypes characterized by impaired hormone receptor signaling despite the conservation of estrogen receptor expression. Because treatments for breast cancer patients are largely designed based on the detection of hormone receptor expression, our results suggest greater scrutiny of ER+ cancers in patients exposed to iAs, because these tumors may spawn more aggressive phenotypes than unexposed ER+ tumors, in particular, basal subtypes that tend to develop therapy resistance and metastasis.
Collapse
Affiliation(s)
- Jeanne M Danes
- Division of Hematology Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andre L P de Abreu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Romica Kerketta
- Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yunping Huang
- Division of Hematology Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Flavio R Palma
- Division of Hematology Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul A Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcelo G Bonini
- Division of Hematology Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Lou B, Hu Y, Lu X, Zhang X, Li Y, Pi J, Xu Y. Long-isoform NRF1 protects against arsenic cytotoxicity in mouse bone marrow-derived mesenchymal stem cells by suppressing mitochondrial ROS and facilitating arsenic efflux. Toxicol Appl Pharmacol 2020; 407:115251. [PMID: 32980394 DOI: 10.1016/j.taap.2020.115251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Acute exposure to arsenic is known to cause bone marrow depression and result in anemia, in which the dusfunction of cells in the bone marrow niche such as mesenchymal stem cells (MSCs) is vital. However, the mechanism underlying response of MSCs to arsenic challange is not fully understood. In the present study, we investigated the role of nuclear factor erythroid 2-related factor (NRF) 1 (NRF1), a sister member of the well-known master regulator in antioxidative response NRF2, in arsenite-induced cytotoxicity in mouse bone marrow-derived MSCs (mBM-MSCs). We found that arsenite exposure induced significant increase in the protein level of long-isoform NRF1 (L-NRF1). Though short-isoform NRF1 (S-NRF1) was induced by arsenite at mRNA level, its protein level was not obviously altered. Silencing L-Nrf1 sensitized the cells to arsenite-induced cytotoxicity. L-Nrf1-silenced mBM-MSCs showed decreased arsenic efflux with reduced expression of arsenic transporter ATP-binding cassette subfamily C member 4 (ABCC4), as well as compromised NRF2-mediated antioxidative defense with elevated level of mitochondrial reactive oxygen species (mtROS) under arsenite-exposed conditions. A specific mtROS scavenger (Mito-quinone) alleviated cell apoptosis induced by arsenite in L-Nrf1-silenced mBM-MSCs. Taken together, these findings suggest that L-NRF1 protects mBM-MSCs from arsenite-induced cytotoxicity via suppressing mtROS in addition to facilitating cellular arsenic efflux.
Collapse
Affiliation(s)
- Bin Lou
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xiaoyu Lu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xinyu Zhang
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Research Center of Environment and Non-Communicable Diseases, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jingbo Pi
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
18
|
López-Carrillo L, Gamboa-Loira B, Gandolfi AJ, Cebrián ME. Inorganic arsenic methylation capacity and breast cancer by immunohistochemical subtypes in northern Mexican women. ENVIRONMENTAL RESEARCH 2020; 184:109361. [PMID: 32209496 DOI: 10.1016/j.envres.2020.109361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previously we reported that inorganic arsenic (iAs) methylation capacity was associated with breast cancer (BC). BC risk factors may vary according to immunohistochemical subtype. Here we explored the relationships between the capacity to methylate iAs and the risk of BC by subtype. METHODS A population-based case-control study was performed in northern Mexico. Patients with available information about BC subtypes (n = 499) were age-matched with healthy controls. Sociodemographic, reproductive, and lifestyle characteristics were obtained. Tumor marker information was obtained from medical records. Cases were classified as HR+ [estrogen receptor (ER+) and/or progesterone (PR+), and human epidermal growth factor receptor 2 (HER2-)], HER2+, or triple negative (TN). Urinary arsenic species were determined by high performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and methylation capacity parameters calculated. Conditional logistic regression models were used to estimate BC risk by subtypes. RESULTS Urinary total arsenic varied from 0.60 to 303.29 μg/L. A significant positive association was found between % monomethylarsonic acid (%MMA) and HR + BC: one percent increase resulted in OR%MMA continuous = 2.73, 95% CI: 1.48, 5.05), and this association remained even when %iAs or % dimethylarsinic acid (%DMA) were added to the models with %MMA. MMA/iAs was positively associated with HR + BC (ORMMA/iAs continuous = 2.03, 95% CI: 1.33-3.10). A significant negative association was observed between DMA/MMA and HR + BC (ORDMA/MMA continuous = 0.43, 95% CI: 0.26, 0.71). MMA/iAs was positively associated with TN BC (OR MMA/iAs continuous = 4.05; 95% CI: 1.63, 10.04). CONCLUSION Altered iAs methylation capacity resulting in higher %MMA was associated with HR+ and TN BC but not with HER2+. MMA is the iAs metabolite more likely to be related to BC. Further research is needed to confirm these results and elucidate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Lizbeth López-Carrillo
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P, 62100, Cuernavaca, Morelos, Mexico.
| | - Brenda Gamboa-Loira
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P, 62100, Cuernavaca, Morelos, Mexico.
| | - A Jay Gandolfi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ave. Instituto Politécnico Nacional 2508, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Chen YT, Ou Yang WT, Juang HH, Chen CL, Chen HW, Tsui KH, Chang YH, Tsai CH, Hsueh C, Liao WC. Proteomic characterization of arsenic and cadmium exposure in bladder cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8578. [PMID: 31499585 DOI: 10.1002/rcm.8578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/22/2023]
Abstract
RATIONALE Accumulating evidence has linked prolonged exposure to heavy metals to cancer occurrence in the urinary system. However, the specific biological mechanisms responsible for the association of heavy metals with the unusually high incidence of upper tract urothelial carcinoma in Taiwan are complex and incompletely understood. METHODS To elucidate the specific biological mechanism and identify molecular indicators of the unusually high association of upper tract urothelial carcinoma with heavy metal exposure, protein expression following the treatment of T24 human bladder carcinoma and RT4 human bladder papilloma cell line models with arsenic (As) and cadmium (Cd) was studied. Proteomic changes in these cell models were integrated with data from a human bladder cancer (BLCA) tissue proteome to identify possible protein indicators of heavy metal exposure. RESULTS After mass spectrometry based proteomic analysis and verification by Western blotting procedures, we identified 66 proteins that were up-regulated and 92 proteins that were down-regulated in RT4 cell extracts after treatment with As or Cd. Some 52 proteins were up-regulated and 136 proteins were down-regulated in T24 cell extracts after treatment with Cd. We further confirmed that down-expression of the PML (promyelocytic leukemia) protein was sustained for at least 75 days after exposure of bladder cells to As. Dysregulation of these cellular proteins by As was associated with three biological pathways. Immunohistochemical analyses of paraffin-embedded BLCA tissue slides confirmed that PML protein expression was decreased in BLCA tumor cells compared with adjacent noncancerous epithelial cells. CONCLUSIONS These data suggest that PML may play an important role in the pathogenesis of BLCA and may be an indicator of heavy metal exposure in bladder cells.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wei-Ting Ou Yang
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Wei Chen
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Han Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuen Hsueh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Reyes-Vázquez L, Hernández AJA, Calderón-Aranda ES. Role of aromatase activation on sodium arsenite-induced proliferation, migration, and invasion of MDA-MB-231 and MDA-MB-453 breast cancer cell lines. Toxicology 2020; 437:152440. [PMID: 32197950 DOI: 10.1016/j.tox.2020.152440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
Arsenic is an endocrine disruptor that promotes breast cancer (BCa) development. Estrogen synthesis, through aromatase activation, is essential for BCa promotion and progression through activating the G-coupled estrogen receptor 1 (GPER1), regulating rapid nongenomic effects involved in cell proliferation and migration of BCa cells. Herein, was studied the role of aromatase activation and the GPER1 pathway on sodium arsenite-induced promotion and progression of MDA-MB-231 and MDA-MB-453 BCa cell lines. Our results demonstrated that 0.1 μM of sodium arsenite induces cell proliferation, migration, invasion, and stimulates aromatase activity of BCa cell lines MDA-MB-231, MDA-MB-453, MCF-7, but not in a nontumorigenic breast epithelial cell line (MCF-12A). Using letrozole (an aromatase inhibitor) and G-15 (a GPER1-selective antagonist), we demonstrated that sodium arsenite-induced proliferation and migration is mediated by induction of aromatase enzyme and, at least in part, by GPER1 activation in MDA-MB-231 and MDA-MB-453 cells. Sodium arsenite induced phosphorylation of Src that participated in sodium arsenite-induced aromatase activity, and -cell proliferation of MDA-MB-231 cell line. Overall, data suggests that sodium arsenite induces a positive-feedback loop, resulting in the promotion and progression of BCa cells, through induction of aromatase activity, E2 production, GPER1 stimulation, and Src activation.
Collapse
Affiliation(s)
- Liliana Reyes-Vázquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados, Cinvestav, IPN, Ciudad de México, Mexico
| | - A José Alberto Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados, Cinvestav, IPN, Ciudad de México, Mexico
| | - Emma S Calderón-Aranda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados, Cinvestav, IPN, Ciudad de México, Mexico..
| |
Collapse
|
21
|
Khatik R, Wang Z, Zhi D, Kiran S, Dwivedi P, Liang G, Qiu B, Yang Q. Integrin α vβ 3 Receptor Overexpressing on Tumor-Targeted Positive MRI-Guided Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:163-176. [PMID: 31805767 DOI: 10.1021/acsami.9b16648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Multifunctional nanomaterials with targeted imaging and chemotherapy have high demand with great challenge. Herein, we rationally aimed to design multifunctional drug delivery systems by RGD-modified chitosan (CH)-coated nanoneedles (NDs) of gadolinium arsenate (RGD-CH-Gd-AsNDs). These NDs have multifunctionality for imaging and targeted therapy. NDs on intravenous administration demonstrated significant accumulation of As ions/species in tumor tissues, which was monitored by the change in T1-weighted magnetic resonance (MR) imaging. Moreover, NDs were well opsonized in cells with high specificity, subsequently inducing apoptosis to the HepG2 cells. Consequent to this, the in vivo results demonstrated biosafety, enhanced tumor targeting, and tumor regression in a subcutaneously transplanted xenograft model in nude mice. These RGD-CH-Gd-AsNDs have great potential, and we anticipate that they could serve as a novel platform for real-time T1-weighted MR diagnosis and chemotherapy.
Collapse
|
22
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Ahangarpour A, Oroojan AA, Alboghobeish S, Khorsandi L, Moradi M. Toxic Effects of Chronic Exposure to High-Fat Diet and Arsenic on the Reproductive System of the Male Mouse. J Family Reprod Health 2019; 13:181-190. [PMID: 32518568 PMCID: PMC7264864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: Obesity is associated with reproductive disorders. Arsenic disrupts male reproduction by direct effects on the male gonads or androgens secretion. So, the present study was conducted to evaluate the toxic effects of chronic concomitant administration of high-fat diet (HF) and arsenic on the reproductive system of the male mouse. Materials and methods: In this experimental study, 72 adult male mice were randomly divided into 6 groups: low-fat diet (LF0), LF+arsenic 25 ppm, LF+arsenic 50ppm, HF0, HF+arsenic 25 ppm and, HF+arsenic 50 ppm. 24 hours after the last experimental day, plasma samples, the cauda of epididymis and testis were prepared and removed for hormonal, sperm count and histopathological assessments. Results: Testis weight and volume increased in HF0 than other groups except for LF0. Plasma LH and testosterone levels decreased in LF50, HF0, HF25, and HF50 compared to LF0. A similar effect was observed in plasma FSH levels of HF0, HF25 and HF50 groups compared with LF0. Plasma level of estradiol increased in LF50 versus to other groups. Testosterone to estradiol ratio and sperm count decreased in all groups compared to LF0. Reduced interstitial cells and large numbers of vacuoles were observed in germinal epithelium of HF0 group, that these changes were more intense in both concentrations of arsenic-treated mice. Conclusion: Present study indicated that chronic exposure to HF and arsenic-induced hypogonadotropic hypogonadism concomitant with sperm count reduction and testicular damage.
Collapse
Affiliation(s)
- Akram Ahangarpour
- Diabetes Research Center, Health Research Institute, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Oroojan
- Department of Physiology, Faculty of Medicine, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Physiology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, Faculty of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Moradi
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Zimta AA, Schitcu V, Gurzau E, Stavaru C, Manda G, Szedlacsek S, Berindan-Neagoe I. Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. ENVIRONMENTAL RESEARCH 2019; 178:108700. [PMID: 31520827 DOI: 10.1016/j.envres.2019.108700] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Breast and prostate cancer are two of the most common malignancies worldwide. Both cancers can develop into hormone -dependent or -independent subtypes and are associated to environmental exposure in the context of an inherited predisposition. As and Cd have been linked to the onset of both cancers, with the exception of As, which lacks a definitive association with breast carcinogenesis. The two elements exert an opposite effect dependent on acute versus chronic exposure. High doses of As or Cd were shown to induce cell death in acute experimental exposure, while chronic exposure triggers cell proliferation and viability, which is no longer limited by telomere shortening and apoptosis. The chronically exposed cells also increase their invasion capacity and tumorigenic potential. At molecular level, malignant transformation is evidenced mainly by up-regulation of BCL-2, MMP-2, MMP-9, VIM, Snail, Twist, MT, MLH and down-regulation of Casp-3, PTEN, E-CAD, and BAX. The signaling pathways most commonly activated are KRAS, p53, TGF-β, TNF-α, WNT, NRF2 and AKT. This knowledge could potentially raise public awareness over the health risks faced by the human population living or working in a polluted environment and smokers. Human exposure to As and Cd should be minimize as much as possible. Healthcare policies targeting people belonging to these risk categories should include analysis of: DNA damage, oxidative stress, molecular alterations, and systemic level of heavy metals and of essential minerals. In this review, we present the literature regarding cellular and molecular alterations caused by exposure to As or Cd, focusing on the malignant transformation of normal epithelial cells after long-term intoxication with these two carcinogens.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Vlad Schitcu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, 400015, Cluj-Napoca, Romania; "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
| | - Eugen Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania; Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, Cluj- Napoca, Romania
| | - Crina Stavaru
- Cantacuzino National Institute of Research and Development for Microbiology, 103 Splaiul Independentei Street, Bucharest, 050096, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei Street, 050096, Bucharest, Romania
| | - Stefan Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei Street, Bucharest, 060031, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, Cluj-Napoca, Romania.
| |
Collapse
|
25
|
Michel-Ramirez G, Recio-Vega R, Lantz RC, Gandolfi AJ, Olivas-Calderon E, Chau BT, Amistadi MK. Assessment of YAP gene polymorphisms and arsenic interaction in Mexican women with breast cancer. J Appl Toxicol 2019; 40:342-351. [PMID: 31631368 DOI: 10.1002/jat.3907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Gladis Michel-Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - R Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA.,Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - A Jay Gandolfi
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Edgar Olivas-Calderon
- School of Chemical Sciences, University Juarez of Durango State, Gomez Palacio, Durango, Mexico
| | - Binh T Chau
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Mary Kay Amistadi
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
26
|
Fang X, Sun R, Hu Y, Wang H, Guo Y, Yang B, Pi J, Xu Y. miRNA-182-5p, via HIF2α, contributes to arsenic carcinogenesis: evidence from human renal epithelial cells. Metallomics 2019; 10:1607-1617. [PMID: 30334557 DOI: 10.1039/c8mt00251g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic exposure to high levels of arsenic has been associated with high risks for many cancers, including renal cell carcinoma (RCC). However the underlying mechanisms are not clear. In the present study, chronic arsenite exposure (2 μM or 5 μM, 30 weeks) induced malignant transformation of HK-2 human renal epithelial cells as indicated by elevated colony formation (6.2- and 5.4-fold increase, respectively), secreted MMP-9 activity (10.1- and 11.3-fold increase, respectively) and proliferation rate (1.2- and 1.3-fold increase in 72 h, respectively). Lipid accumulation, typical of clear cell RCC, was observed in arsenic-transformed (As-TM) cells. Overexpression of hypoxia-inducible factor 2α (HIF2α) and suppression of carnitine palmitoyltransferase 1A (CPT1A) were found at the level of mRNA (1.5- and 0.49-fold of control, respectively) and protein (4.0- and 0.28-fold of control, respectively) after exposure to 2 μM arsenite for 20 weeks. Silencing of HIF2α significantly attenuated arsenite-induced malignant phenotypes and lipid accumulation. Inactivation of Von Hippel-Lindau (VHL) and impaired protein degradation of HIF2α were not found in As-TM cells. Expression of miR-182-5p and miR-802 in As-TM cells was 42.4% and 54.0% of control, respectively (p < 0.05). The levels of mRNA and protein of HIF2α were increased 2.4 folds and 1.6 folds of negative control in response to the miR-182-5p inhibitor, respectively, but decreased to 58.1% and 50.1% of negative control in response to miR-182-5p mimics, respectively. No significant alteration was observed in HIF2α expression when miR-802 was silenced. Our data provide further evidence for the carcinogenic role of arsenic in the kidney. Moreover, the miR-182-5p/HIF2α pathway is indicated to be involved in malignant transformation of human renal epithelial cells under arsenite exposure.
Collapse
Affiliation(s)
- Xin Fang
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, Liaoning, P. R. China110122.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
28
|
Selmin OI, Donovan MG, Skovan B, Paine-Murieta GD, Romagnolo DF. Arsenic‑induced BRCA1 CpG promoter methylation is associated with the downregulation of ERα and resistance to tamoxifen in MCF7 breast cancer cells and mouse mammary tumor xenografts. Int J Oncol 2019; 54:869-878. [PMID: 30664189 PMCID: PMC6365020 DOI: 10.3892/ijo.2019.4687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
A significant percentage (~30%) of estrogen receptor-α (ERα)-positive tumors become refractory to endocrine therapies; however, the mechanisms responsible for this resistance remain largely unknown. Chronic exposure to arsenic through foods and contaminated water has been linked to an increased incidence of several tumors and long-term health complications. Preclinical and population studies have indicated that arsenic exposure may interfere with endocrine regulation and increase the risk of breast tumorigenesis. In this study, we examined the effects of sodium arsenite (NaAsIII) exposure in ERα-positive breast cancer cells in vitro and in mammary tumor xenografts. The results revealed that acute (within 4 days) and long-term (10 days to 7 weeks) in vitro exposure to environmentally relevant doses reduced breast cancer 1 (BRCA1) and ERα expression associated with the gain of cyclin D1 (CCND1) and folate receptor 1 (FOLR1), and the loss of methylenetetrahydrofolate reductase (MTHFR) expression. Furthermore, long-term exposure to NaAsIII induced the proliferation and compromised the response of MCF7 cells to tamoxifen (TAM). The in vitro exposure to NaAsIII induced BRCA1 CpG methylation associated with the increased recruitment of DNA methyltransferase 1 (DNMT1) and the loss of RNA polymerase II (PolII) at the BRCA1 gene. Xenografts of NaAsIII-preconditioned MCF7 cells (MCF7NaAsIII) into the mammary fat pads of nude mice produced a larger tumor volume compared to tumors from control MCF7 cells and were more refractory to TAM in association with the reduced expression of BRCA1 and ERα, CpG hypermethylation of estrogen receptor 1 (ESR1) and BRCA1, and the increased expression of FOLR1. These cumulative data support the hypothesis that exposure to AsIII may contribute to reducing the efficacy of endocrine therapy against ERα-positive breast tumors by hampering the expression of ERα and BRCA1 via CpG methylation, respectively of ESR1 and BRCA1.
Collapse
Affiliation(s)
- Ornella I Selmin
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Micah G Donovan
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Bethany Skovan
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
| | | | - Donato F Romagnolo
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
29
|
Lu JH, Liao WT, Lee CH, Chang KL, Ke HL, Yu HS. ΔNp63 promotes abnormal epidermal proliferation in arsenical skin cancers. Toxicol In Vitro 2018; 53:57-66. [PMID: 30026126 DOI: 10.1016/j.tiv.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/19/2018] [Accepted: 07/15/2018] [Indexed: 01/03/2023]
Abstract
Arsenic is known to perturb epidermal homeostasis and induce abnormal keratinocyte proliferation, leading to skin carcinogenesis. P63 and its isoforms are essential to regulate epidermal homeostasis. This study aimed to investigate the role of p63 isoforms in abnormal epidermal proliferation induced by arsenic. Using arsenic-induced Bowen's disease (As-BD; an intraepidermal carcinoma) as a disease model, we found that in As-BD, the expression of proliferating basal keratinocytes marker cytokeratin 14 (CK14) and N-terminal truncated p63 isoform (ΔNp63; proliferation regulator) was increased, however, that of the differentiation marker cytokeratin 10 (CK10) and full-length p63 isoform (TAp63; differentiation regulator) was decreased in squamous cells as compared with healthy subjects. These observations were recapitulated in the arsenic-treated skin equivalents (SEs). The SEs showed that arsenic increased epidermal thickness, induced abnormal proliferation, and increased ΔNp63 expression in squamous cells as compared with the control. Treatment of cultured normal human epidermal keratinocytes (HKCs) with arsenic increased CK14 and △Np63 expressions, but decreased TAp63 and CK10 expressions. Furthermore, knockdown of ΔNp63 by RNA interference abrogated arsenic-induced CK14 expression and recovered the reduction of TAp63 and CK10 caused by arsenic. These findings indicated that ΔNp63 is a pivotal regulator in the abnormal cell proliferation in arsenical cancers.
Collapse
Affiliation(s)
- Jian-He Lu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kee-Lung Chang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Wu SY, Phan NN, Ho SH, Lai YH, Tsai CH, Yang CH, Yu HG, Wang JC, Huang PL, Lin YC. Metabolomic assessment of arsenite toxicity and novel biomarker discovery in early development of zebrafish embryos. Toxicol Lett 2018; 290:116-122. [DOI: 10.1016/j.toxlet.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
|
31
|
Mondal B, Chen H, Wen W, Cavalieri EL, Rogan EG, Zahid M. Modulation of Cellular Response to Arsenic Trioxide Toxicity by Resveratrol. ACS OMEGA 2018; 3:5511-5515. [PMID: 29876539 PMCID: PMC5981766 DOI: 10.1021/acsomega.7b01727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/10/2018] [Indexed: 05/07/2023]
Abstract
Arsenic trioxide (As2O3) is an environmental carcinogen and a putative endocrine disruptor. Resveratrol has been shown to reverse As2O3-induced oxidative damage. In immortalized but nontransformed estrogen receptor α-negative human breast cells (MCF10A), we observed that 25 μM resveratrol ameliorated As2O3-induced cytotoxicity. As2O3, in the presence or absence of 25 μM resveratrol, induced quinone reductase (NAD(P)H quinone dehydrogenase 1), via the induction of NFE2-related factor 2. As2O3 caused a repression of cytochrome P450 (CYP)1B1, but the addition of 25 μM resveratrol rescued the expression of cytochrome P450 1B1 and kept it at a constant level. Therefore, 25 μM resveratrol can modulate the effects of As2O3 on enzymes involved in estrogen metabolism.
Collapse
Affiliation(s)
- Bodhisattwa Mondal
- Department
of Environmental, Agricultural, and Occupational Health,
College of Public Health, and the Eppley Institute for Research in Cancer
and Allied Diseases, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United
States
| | - Hongxia Chen
- Department
of Environmental, Agricultural, and Occupational Health,
College of Public Health, and the Eppley Institute for Research in Cancer
and Allied Diseases, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United
States
| | - Weihua Wen
- Department
of Environmental, Agricultural, and Occupational Health,
College of Public Health, and the Eppley Institute for Research in Cancer
and Allied Diseases, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United
States
| | - Ercole L. Cavalieri
- Department
of Environmental, Agricultural, and Occupational Health,
College of Public Health, and the Eppley Institute for Research in Cancer
and Allied Diseases, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United
States
| | - Eleanor G. Rogan
- Department
of Environmental, Agricultural, and Occupational Health,
College of Public Health, and the Eppley Institute for Research in Cancer
and Allied Diseases, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United
States
| | - Muhammad Zahid
- Department
of Environmental, Agricultural, and Occupational Health,
College of Public Health, and the Eppley Institute for Research in Cancer
and Allied Diseases, University of Nebraska
Medical Center, Omaha, Nebraska 68198, United
States
- E-mail: . Phone: 1-402-559-8912. Fax: 1-402-559-7259
| |
Collapse
|
32
|
Bozack AK, Saxena R, Gamble MV. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu Rev Nutr 2018; 38:401-429. [PMID: 29799766 DOI: 10.1146/annurev-nutr-082117-051757] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exposure to inorganic arsenic (InAs) via drinking water and/or food is a considerable worldwide problem. Methylation of InAs generates monomethyl (MMAsIII+V)- and dimethyl (DMAsIII+V)-arsenical species in a process that facilitates urinary As elimination; however, MMAs is considerably more toxic than either InAs or DMAs. Emerging evidence suggests that incomplete methylation of As to DMAs, resulting in increased MMAs, is associated with increased risk for a host of As-related health outcomes. The biochemical pathway that provides methyl groups for As methylation, one-carbon metabolism (OCM), is influenced by folate and other micronutrients, including choline and betaine. Individuals and species differ widely in their ability to methylate As. A growing body of research, including cell-culture, animal-model, and epidemiological studies, has demonstrated the role of OCM-related micronutrients in As methylation. This review examines the evidence that nutritional status and nutritional interventions can influence the metabolism and toxicity of As, with a primary focus on folate.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
33
|
Pituitary, Gonadal, Thyroid Hormones and Endocrine Disruptors in Pre and Postmenopausal Nigerian Women with ER-, PR- and HER-2-Positive and Negative Breast Cancers. Med Sci (Basel) 2018; 6:medsci6020037. [PMID: 29783652 PMCID: PMC6024786 DOI: 10.3390/medsci6020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is broadly sub-divided into hormone responsive and non-hormone responsive subtypes. Estradiol has been associated with hormone responsive breast cancers. There is, however, a paucity of information on the role of sex hormones, gonadotropins, and thyroid hormone in non-hormone responsive breast cancer. This study aimed to determine differences in the serum levels of sex hormones, gonadotropins, thyroid hormones, and endocrine disruptors (lead, cadmium, and arsenic) in Nigerian women with hormone responsive and non-hormone responsive breast cancers. Seventy-nine non-pregnant women aged 28–80 years with histologically confirmed breast cancer were recruited, pre-therapy, into this cross-sectional study. They comprised 52 premenopausal women and 27 postmenopausal women recruited from the Surgical Oncology Clinic of the Department of Surgery, University College Hospital, Ibadan. Comparison of biochemical parameters were based on the positivity (+) and negativity (−) of estrogen receptor (ER), progesterone receptor (PR) and human epithelial receptor-2 (HER-2). Estradiol, progesterone, follicle stimulating hormone (FSH), luteinizing hormone (LH), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) were determined using enzyme immunoassay (EIA). Serum lead, cadmium and arsenic were determined using atomic absorption spectrophotometry (AAS). Expression of ER, PR and HER2 were determined using immunohistochemistry. Data was analyzed using Mann-Whitney U-test and multiple regression, with p < 0.05 considered as being statistically significant. Estradiol and progesterone were significantly higher in breast cancer participants with ER− and PR− compared with those with ER+ and PR+ breast cancer (p < 0.05). Follicle stimulating hormone and LH levels were significantly higher in participants with ER+ and PR+ breast cancer compared with participants with ER− and PR− breast cancer (p < 0.05). Arsenic was inversely related with TSH in premenopausal participants with ER− and PR− (β = −0.305; β = −0.304, respectively). Sex hormones and gonadotropins appear to be involved in the pathogenesis of triple negative and luminal breast cancer, respectively.
Collapse
|
34
|
Lappano R, Malaguarnera R, Belfiore A, Maggiolini M. Recent advances on the stimulatory effects of metals in breast cancer. Mol Cell Endocrinol 2017; 457:49-56. [PMID: 27765682 DOI: 10.1016/j.mce.2016.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/08/2023]
Abstract
Certain environmental chemicals may accumulate in human serum and tissues eliciting estrogenic and/or carcinogenic effects. Therefore, there is heightened interest in determining whether environmental chemicals may increase the risk for endocrine-related tumors like breast cancer. For instance, metals as cadmium, zinc, copper, iron, nickel and aluminum have been shown to mimic estrogen action. Moreover, the exposure to these chemicals has been reported to stimulate diverse malignancies including breast cancer, which is the most common tumor in women worldwide. In this review, we summarize the epidemiologic and experimental evidence regarding the association between the exposure to some trace elements and breast cancer risk. We also address recent insights on the molecular mechanisms involved by metals in breast tumorigenesis.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
35
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
36
|
Ponomarenko O, La Porte PF, Singh SP, Langan G, Fleming DEB, Spallholz JE, Alauddin M, Ahsan H, Ahmed S, Gailer J, George GN, Pickering IJ. Selenium-mediated arsenic excretion in mammals: a synchrotron-based study of whole-body distribution and tissue-specific chemistry. Metallomics 2017; 9:1585-1595. [PMID: 29058732 DOI: 10.1039/c7mt00201g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Arsenicosis, a syndrome caused by ingestion of arsenic contaminated drinking water, currently affects millions of people in South-East Asia and elsewhere. Previous animal studies revealed that the toxicity of arsenite essentially can be abolished if selenium is co-administered as selenite. Although subsequent studies have provided some insight into the biomolecular basis of this striking antagonism, many details of the biochemical pathways that ultimately result in the detoxification and excretion of arsenic using selenium supplements have yet to be thoroughly studied. To this end and in conjunction with the recent Phase III clinical trial "Selenium in the Treatment of Arsenic Toxicity and Cancers", we have applied synchrotron X-ray techniques to elucidate the mechanisms of this arsenic-selenium antagonism at the tissue and organ levels using an animal model. X-ray fluorescence imaging (XFI) of cryo-dried whole-body sections of laboratory hamsters that had been injected with arsenite, selenite, or both chemical species, provided insight into the distribution of both metalloids 30 minutes after treatment. Co-treated animals showed strong co-localization of arsenic and selenium in the liver, gall bladder and small intestine. X-ray absorption spectroscopy (XAS) of freshly frozen organs of co-treated animals revealed the presence in liver tissues of the seleno bis-(S-glutathionyl) arsinium ion, which was rapidly excreted via bile into the intestinal tract. These results firmly support the previously postulated hepatobiliary excretion of the seleno bis-(S-glutathionyl) arsinium ion by providing the first data pertaining to organs of whole animals.
Collapse
Affiliation(s)
- Olena Ponomarenko
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen QY, Costa M. A comprehensive review of metal-induced cellular transformation studies. Toxicol Appl Pharmacol 2017; 331:33-40. [DOI: 10.1016/j.taap.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
|
38
|
Michel-Ramirez G, Recio-Vega R, Ocampo-Gomez G, Palacios-Sanchez E, Delgado-Macias M, Delgado-Gaona M, Lantz RC, Gandolfi J, Gonzalez-Cortes T. Association between YAP expression in neoplastic and non-neoplastic breast tissue with arsenic urinary levels. J Appl Toxicol 2017; 37:1195-1202. [PMID: 28524356 DOI: 10.1002/jat.3481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/30/2017] [Indexed: 11/11/2022]
Abstract
The Hippo pathway regulates cell proliferation and apoptosis and it has been noted that loss of critical components of this pathway can lead to uncontrolled cell growth. Yes-associated protein (YAP) is an important component of this Hippo pathway because YAP is the nuclear effector of the Hippo tumor suppressor pathway and it is crucial for the response to oxidative stress induced by cellular process and by different xenobiotics, including arsenic. It has been proposed that YAP dysregulation can contribute to a malignant cellular phenotype acting as both a tumor suppressor and an oncogene. The aim of the study was to assess and compare the expression of YAP in neoplastic and non-neoplastic breast tissue of women chronically exposed to arsenic through drinking water. YAP expression was assessed by immunohistochemistry in 120 breast biopsies from women with breast cancer and from women with other non-neoplastic breast pathologies. Arsenic concentration was quantified in urine. The results disclosed a significant lower percentage of cytoplasm YAP expression in cases and that YAP high-intensity staining in the cytoplasm but not in the nucleus decreases the risk for breast cancer. In conclusion, our overall data suggest that YAP may act as a tumor suppressor protein because their reduced expression in cases, which can induce an environment favorable for inhibition of apoptosis and promoting cellular proliferation by increasing genetic instability of cells, which might contribute to the pathogenesis of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gladis Michel-Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Guadalupe Ocampo-Gomez
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Eduardo Palacios-Sanchez
- Department of Gynecologic Oncology, Mexican Institute of Social Security, Torreon, Coahuila, México
| | - Manuel Delgado-Macias
- Department of Medical Education, School of Medicine, University of Coahuila, Torreon, Coahuila, México
| | | | - Robert Clark Lantz
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jay Gandolfi
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Tania Gonzalez-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| |
Collapse
|
39
|
Holcomb N, Goswami M, Han SG, Scott T, D'Orazio J, Orren DK, Gairola CG, Mellon I. Inorganic arsenic inhibits the nucleotide excision repair pathway and reduces the expression of XPC. DNA Repair (Amst) 2017; 52:70-80. [PMID: 28237621 DOI: 10.1016/j.dnarep.2017.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/11/2017] [Accepted: 02/12/2017] [Indexed: 11/17/2022]
Abstract
Chronic exposure to arsenic, most often through contaminated drinking water, has been linked to several types of cancer in humans, including skin and lung cancer. However, the mechanisms underlying its role in causing cancer are not well understood. There is evidence that exposure to arsenic can enhance the carcinogenicity of UV light in inducing skin cancers and may enhance the carcinogenicity of tobacco smoke in inducing lung cancers. The nucleotide excision repair (NER) pathway removes different types of DNA damage including those produced by UV light and components of tobacco smoke. The aim of the present study was to investigate the effect of sodium arsenite on the NER pathway in human lung fibroblasts (IMR-90 cells) and primary mouse keratinocytes. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts (6-4 PP) and cyclobutane pyrimidine dimers (CPDs). We find a concentration-dependent inhibition of the removal of 6-4 PPs and CPDs in both cell types treated with arsenite. Treatment of both cell types with arsenite resulted in a significant reduction in the abundance of XPC, a protein that is critical for DNA damage recognition in NER. The abundance of RNA expressed from several key NER genes was also significantly reduced by treatment of IMR-90 cells with arsenite. Finally, treatment of IMR-90 cells with MG-132 abrogated the reduction in XPC protein, suggesting an involvement of the proteasome in the reduction of XPC protein produced by treatment of cells with arsenic. The inhibition of NER by arsenic may reflect one mechanism underlying the role of arsenic exposure in enhancing cigarette smoke-induced lung carcinogenesis and UV light-induced skin cancer, and it may provide some insights into the emergence of arsenic trioxide as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Nathaniel Holcomb
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Mamta Goswami
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Tim Scott
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - John D'Orazio
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - David K Orren
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - C Gary Gairola
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Isabel Mellon
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
40
|
Nakareangrit W, Thiantanawat A, Visitnonthachai D, Watcharasit P, Satayavivad J. Sodium arsenite inhibited genomic estrogen signaling but induced pERα (Ser118) via MAPK pathway in breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1133-1146. [PMID: 25728338 DOI: 10.1002/tox.22122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 01/12/2015] [Accepted: 01/24/2015] [Indexed: 06/04/2023]
Abstract
Arsenic (As) is considered a major environmental health threat worldwide due to its widespread contamination in drinking water. Recent studies reported that arsenic is a potential xenoestrogen as it interfered with the action of estrogen (E2) and estrogen receptor (ER) signaling. The present study investigated the effects of sodium arsenite (NaAsO2 ) on estrogen signaling in human breast cancer cells. The results demonstrated that NaAsO2 dose-dependently increased viability of hormone-dependent breast cancer MCF-7 and T47D cells expressing both ERα and ERβ but not hormone-independent MDA-MB-231 cells expressing ERβ. These suggested ERα contribution to NaAsO2 -stimulated breast cancer cells growth. NaAsO2 induced down-regulation of ERα but up-regulation of ERβ protein expressions in T47D cells. Moreover, NaAsO2 dose-dependently inhibited E2-induced ER transcriptional activity as it decreased E2-mediated ERE-luciferase transcription activation and PgR mRNA transcription but increased pS2 mRNA transcription. However, NaAsO2 induced both rapid and sustained activation of ERK1/2 and increased in phosphorylation of ERα at serine 118 residue, c-fos and c-myc protein expressions. These results indicated that NaAsO2 interferes the genomic estrogen-signaling pathway but induces activation of a rapid nongenomic signal transduction through ERK1/2 pathway which may contribute to its proliferative effect on hormone-dependent breast cancer cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1133-1146, 2016.
Collapse
Affiliation(s)
- Watanyoo Nakareangrit
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Apinya Thiantanawat
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| | - Daranee Visitnonthachai
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| |
Collapse
|
41
|
Islam MS, Mohanto NC, Karim MR, Aktar S, Hoque MM, Rahman A, Jahan M, Khatun R, Aziz A, Salam KA, Saud ZA, Hossain M, Rahman A, Mandal A, Haque A, Miyataka H, Himeno S, Hossain K. Elevated concentrations of serum matrix metalloproteinase-2 and -9 and their associations with circulating markers of cardiovascular diseases in chronic arsenic-exposed individuals. Environ Health 2015; 14:92. [PMID: 26637202 PMCID: PMC4670511 DOI: 10.1186/s12940-015-0079-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/26/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) and cancers are the major causes of chronic arsenic exposure-related morbidity and mortality. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) are deeply involved in the pathogenesis of CVDs and cancers. This study has been designed to evaluate the interactions of arsenic exposure with serum MMP-2 and MMP-9 concentrations especially in relation to the circulating biomarkers of CVDs. METHODS A total of 373 human subjects, 265 from arsenic-endemic and 108 from non-endemic areas in Bangladesh were recruited for this study. Arsenic concentrations in the specimens were measured by inductively coupled plasma mass spectroscopy (ICP-MS) and serum MMPs were quantified by immunoassay kits. RESULTS Serum MMP-2 and MMP-9 concentrations in arsenic-endemic population were significantly (p < 0.001) higher than those in non-endemic population. Both MMPs showed significant positive interactions with drinking water (r s = 0.208, p < 0.001 for MMP-2; r s = 0.163, p < 0.01 for MMP-9), hair (r s = 0.163, p < 0.01 for MMP-2; r s = 0.173, p < 0.01 for MMP-9) and nail (r s = 0.160, p < 0.01 for MMP-2; r s = 0.182, p < 0.001 for MMP-9) arsenic of the study subjects. MMP-2 concentrations were 1.02, 1.03 and 1.05 times, and MMP-9 concentrations were 1.03, 1.06 and 1.07 times greater for 1 unit increase in log-transformed water, hair and nail arsenic concentrations, respectively, after adjusting for covariates (age, sex, BMI, smoking habit and hypertension). Furthermore, both MMPs were increased dose-dependently when the study subjects were split into three (≤10, 10.1-50 and > 50 μg/L) groups based on the regulatory upper limit of water arsenic concentration set by WHO and Bangladesh Government. MMPs were also found to be significantly (p < 0.05) associated with each other. Finally, the concentrations of both MMPs were correlated with several circulating markers related to CVDs. CONCLUSIONS This study showed the significant positive associations and dose-response relationships of arsenic exposure with serum MMP-2 and MMP-9 concentrations. This study also showed the interactions of MMP-2 and MMP-9 concentrations with the circulating markers of CVDs suggesting the MMP-2 and MMP-9 -mediated mechanism of arsenic-induced CVDs.
Collapse
Affiliation(s)
- Md Shofikul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Nayan Chandra Mohanto
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Rezaul Karim
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Sharmin Aktar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Mominul Hoque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Momotaj Jahan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Rabeya Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Abdul Aziz
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Kazi Abdus Salam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | | | - Aminur Rahman
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Abul Mandal
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh.
| |
Collapse
|
42
|
Highlight report: critical evaluation of key evidence on health hazards of the general European population by exposure to arsenic. Arch Toxicol 2015; 89:2455-7. [DOI: 10.1007/s00204-015-1640-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Persano L, Zagoura D, Louisse J, Pistollato F. Role of Environmental Chemicals, Processed Food Derivatives, and Nutrients in the Induction of Carcinogenesis. Stem Cells Dev 2015; 24:2337-52. [DOI: 10.1089/scd.2015.0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Persano
- Istituto di Riceca Pediatrica Città della Speranza—IRP, Padova, Italy
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Dimitra Zagoura
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Francesca Pistollato
- Center for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander, Spain
| |
Collapse
|
44
|
Niedzwiecki MM, Liu X, Hall MN, Thomas T, Slavkovich V, Ilievski V, Levy D, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV. Sex-specific associations of arsenic exposure with global DNA methylation and hydroxymethylation in leukocytes: results from two studies in Bangladesh. Cancer Epidemiol Biomarkers Prev 2015; 24:1748-57. [PMID: 26364164 DOI: 10.1158/1055-9965.epi-15-0432] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Depletion of global 5-hydroxymethylcytosine (5-hmC) is observed in human cancers and is strongly implicated in skin cancer development. Although arsenic (As)-a class I human carcinogen linked to skin lesion and cancer risk-is known to be associated with changes in global %5-methylcytosine (%5-mC), its influence on 5-hmC has not been widely studied. METHODS We evaluated associations of As in drinking water, urine, and blood with global %5-mC and %5-hmC in two studies of Bangladeshi adults: (i) leukocyte DNA in the Nutritional Influences on Arsenic Toxicity study (n = 196; 49% male, 19-66 years); and (ii) peripheral blood mononuclear cell DNA in the Folate and Oxidative Stress study (n = 375; 49% male, 30-63 years). RESULTS Overall, As was not associated with global %5-mC or %5-hmC. Sex-specific analyses showed that associations of As exposure with global %5-hmC were positive in males and negative in females (P for interaction < 0.01). Analyses examining interactions by elevated plasma total homocysteine (tHcys), an indicator of B-vitamin deficiency, found that tHcys also modified the association between As and global %5-hmC (P for interaction < 0.10). CONCLUSION In two samples, we observed associations between As exposure and global %5-hmC in blood DNA that were modified by sex and tHcys. IMPACT Our findings suggest that As induces sex-specific changes in 5-hmC, an epigenetic mark that has been associated with cancer. Future research should explore whether altered %5-hmC is a mechanism underlying the sex-specific influences of As on skin lesion and cancer outcomes.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Shafiul Alam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York.
| |
Collapse
|
45
|
Person RJ, Ngalame NNO, Makia NL, Bell MW, Waalkes MP, Tokar EJ. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells. Toxicol Appl Pharmacol 2015; 286:36-43. [PMID: 25804888 PMCID: PMC4444387 DOI: 10.1016/j.taap.2015.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer.
Collapse
Affiliation(s)
- Rachel J Person
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ntube N Olive Ngalame
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ngome L Makia
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew W Bell
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael P Waalkes
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
46
|
Liu R, Nelson D, Hurley S, Hertz A, Reynolds P. Residential exposure to estrogen disrupting hazardous air pollutants and breast cancer risk: the California Teachers Study. Epidemiology 2015; 26:365-73. [PMID: 25760782 PMCID: PMC5101045 DOI: 10.1097/ede.0000000000000277] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Some studies show increased breast cancer risk from exposure to xenoestrogens, but few have explored exposures via ambient air, which could impact large populations. OBJECTIVES This study explored the association between breast cancer risk and residential exposures to ambient estrogen disruptors among participants in a large cohort study, the California Teachers Study. METHODS Participants consisted of 112,379 women free of breast cancer and living at a California address in 1995/1996. Eleven hazardous air pollutants from the US Environmental Protection Agency 2002 list were identified as estrogen disruptors based on published endocrine disrupting chemical lists and literature review. Census-tract estrogen disruptor air concentrations modeled by the US Environmental Protection Agency in 2002 were assigned to participants' baseline addresses. Cox proportional hazards models were used to estimate hazard ratios associated with exposure to each estrogen disruptor and a summary measure of nine estrogenic hazardous air pollutants among all participants and selected subgroups, adjusting for age, race/birthplace, socioeconomic status, and known breast cancer risk factors. RESULTS Five thousand three hundred sixty-one invasive breast cancer cases were identified between 1995 and 2010. No associations were found between residential exposure to ambient estrogen disruptors and overall breast cancer risk or hormone receptor-positive breast cancer risk, nor among targeted subgroups of participants (pre-/peri-menopausal women, post-menopausal women, never-smokers, non-movers, and never-smoking non-movers). However, elevated risks for hormone receptor-negative tumors were observed for higher exposure to cadmium compounds and possibly inorganic arsenic among never-smoking non-movers. CONCLUSION Long-term, low-dose exposure to ambient cadmium compounds or possibly inorganic arsenic may be a risk factor for breast cancer.
Collapse
Affiliation(s)
- Ruiling Liu
- Cancer Prevention Institute of California, Berkeley, CA, USA
| | - David Nelson
- Cancer Prevention Institute of California, Berkeley, CA, USA
| | - Susan Hurley
- Cancer Prevention Institute of California, Berkeley, CA, USA
| | - Andrew Hertz
- Cancer Prevention Institute of California, Berkeley, CA, USA
| | - Peggy Reynolds
- Cancer Prevention Institute of California, Berkeley, CA, USA
- Stanford University, School of Medicine, Department of Health Research and Policy, Stanford, CA, USA
| |
Collapse
|
47
|
Hou Y, Wang Y, Wang H, Xu Y. Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: differential roles of mitogen-activated protein kinases. Toxicology 2014; 325:96-106. [PMID: 25201354 DOI: 10.1016/j.tox.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
Glutathione (GSH) is a vital component of antioxidant defense which protects cells from toxic insults. Previously we found intracellular GSH was involved in cell resistance against arsenic-induced cytotoxicity. However, molecular mechanisms of GSH homeostasis during arsenic exposure are largely undefined. Here, we investigated roles of mitogen-activated protein kinases (MAPKs) in GSH synthesis pathway with two arsenic exposure strategies by using Chang human hepatocytes. In one strategy, acute arsenic exposure (20 μM, 24 h) was applied, as MAPK signaling is generally considered to be transient. In the other one, chronic arsenic exposure (500 nM, 20 weeks) was applied, which mimicked the general human exposure to arsenic. We found that acute arsenic exposure activated extracellular signal-regulated 1/2 kinases (ERK1/2) and c-Jun N-terminal kinase (JNK) in parallel with increased transcription and nuclear translocation of factor-erythroid 2-related factor 2 (NRF2) and enhanced expression of γ-glutamyl cysteine ligase catalytic subunit (GCLC), resulting in elevated intracellular GSH levels. Specific ERK inhibitor abolished arsenic-induced NRF2 nuclear translocation and GSH synthesis. During chronic arsenic exposure which induced a malignant cellular phenotype, continuous p38 activation and NRF2 nuclear translocation were observed with enhanced GSH synthesis. Specific p38 inhibitor attenuated arsenic-enhanced GSH synthesis without changing NRF2 nuclear translocation. Taken together, our results indicate MAPK pathways play an important role in cellular GSH homeostasis in response to arsenic. However, the specific activation of certain MAPK is different between acute and chronic arsenic exposure. Furthermore, it appears that during chronic arsenic exposure, GSH synthesis is regulated by p38 at least in part independent of NRF2.
Collapse
Affiliation(s)
- Yongyong Hou
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China.
| | - Yi Wang
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China.
| | - Huihui Wang
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China
| | - Yuanyuan Xu
- Environmental Toxicology Program, School of Public Health, China Medical University, No. 92 North 2nd Road, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
48
|
López-Carrillo L, Hernández-Ramírez RU, Gandolfi AJ, Ornelas-Aguirre JM, Torres-Sánchez L, Cebrian ME. Arsenic methylation capacity is associated with breast cancer in northern Mexico. Toxicol Appl Pharmacol 2014; 280:53-9. [PMID: 25062773 DOI: 10.1016/j.taap.2014.07.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case-control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined by HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA ORQ5vs.Q1=2.63; 95%CI 1.89,3.66; p for trend <0.001; PMI ORQ5vs.Q1=1.90; 95%CI 1.39,2.59, p for trend <0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA ORQ5vs.Q1=0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI ORQ5vsQ1=0.42, 95%CI 0.31,0.59, p for trend <0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk.
Collapse
Affiliation(s)
| | | | - A Jay Gandolfi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - José Manuel Ornelas-Aguirre
- Unidad de Investigación en Epidemiología Clínica del Hospital de Especialidades No. 2, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Ciudad Obregón, Sonora, México
| | | | - Mariano E Cebrian
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México City, México.
| |
Collapse
|