1
|
Vandeputte MM, Bilel S, Tirri M, Corli G, Bassi M, Layle NK, Fantinati A, Walther D, Iula DM, Baumann MH, Stove CP, Marti M. Elucidating the harm potential of brorphine analogues as new synthetic opioids: Synthesis, in vitro, and in vivo characterization. Neuropharmacology 2024; 260:110113. [PMID: 39154855 DOI: 10.1016/j.neuropharm.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The emergence of new synthetic opioids (NSOs) has added complexity to recreational opioid markets worldwide. While NSOs with diverse chemical structures have emerged, brorphine currently remains the only NSO with a piperidine benzimidazolone scaffold. However, the emergence of new generations of NSOs, including brorphine analogues, can be anticipated. This study explored the pharmaco-toxicological, opioid-like effect profile of brorphine alongside its non-brominated analogue (orphine) and three other halogenated analogues (fluorphine, chlorphine, iodorphine). In vitro, radioligand binding assays in rat brain tissue indicated that all analogues bind to the μ-opioid receptor (MOR) with nM affinity. While analogues with smaller-sized substituents showed the highest MOR affinity, further in vitro characterization via two cell-based (HEK 293T) MOR activation (β-arrestin 2 and mini-Gαi recruitment) assays indicated that chlorphine, brorphine, and iodorphine were generally the most active MOR agonists. None of the compounds showed significant in vitro biased agonism compared to hydromorphone. In vivo, we investigated the effects of intraperitoneal (IP) administration of the benzimidazolones (0.01-15 mg/kg) on mechanical and thermal antinociception in male CD-1 mice. Chlorphine and brorphine overall induced the highest levels of antinociception. Furthermore, the effects on respiratory changes induced by a fixed dose (15 mg/kg IP) of the compounds were investigated using non-invasive plethysmography. Fluorphine-, chlorphine-, and brorphine-induced respiratory depressant effects were the most pronounced. For some compounds, pretreatment with naloxone (6 mg/kg IP) could not reverse respiratory depression. Taken together, brorphine-like piperidine benzimidazolones are opioid agonists that have the potential to cause substantial harm to users should they emerge as NSOs. This article is part of the Special Issue on "Novel Synthetic Opioids (NSOs)".
Collapse
Affiliation(s)
- Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Nathan K Layle
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, 48108, USA
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Donna Walther
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Donna M Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, 48108, USA
| | - Michael H Baumann
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
2
|
Pajonczyk D, Sternschulte MF, Soehnlein O, Bermudez M, Raabe CA, Rescher U. Comparative analysis of formyl peptide receptor 1 and formyl peptide receptor 2 reveals shared and preserved signalling profiles. Br J Pharmacol 2024. [PMID: 39294930 DOI: 10.1111/bph.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The pattern recognition receptors, formyl peptide receptors, FPR1 and FPR2, are G protein-coupled receptors that recognize many different pathogen- and host-derived ligands. While FPR1 conveys pro-inflammatory signals, FPR2 is linked with pro-resolving outcomes. To analyse how the two very similar FPRs exert opposite effects in modulating inflammatory responses despite their high homology, a shared expression profile on immune cells and an overlapping ligand repertoire, we questioned whether the signalling profile differs between these two receptors. EXPERIMENTAL APPROACH We deduced EC50 and Emax values for synthetic, pathogen-derived and host-derived peptide agonists for both FPR1 and FPR2 and analysed them within the framework of biased signalling. We furthermore investigated whether FPR isoform-specific agonists affect the ex vivo lifespan of human neutrophils. KEY RESULTS The FPRs share a core signature across signalling pathways. Whereas the synthetic WKYMVm and formylated peptides acted as potent agonists at FPR1, and at FPR2, only WKYMVm was a full agonist. Natural FPR2 agonists, irrespective of N-terminal formylation, displayed lower activity ratios, suggesting an underutilized signalling potential of this receptor. FPR2 agonism did not counteract LPS-induced neutrophil survival, indicating that FPR2 activation per se is not linked with a pro-resolving function. CONCLUSION AND IMPLICATIONS Activation of FPR1 and FPR2 by a representative agonist panel revealed a lack of a receptor-specific signalling texture, challenging assumptions about distinct inflammatory profiles linked to specific receptor isoforms, signalling patterns or agonist classes. These conclusions are restricted to the specific agonists and signalling pathways examined.
Collapse
Affiliation(s)
- Denise Pajonczyk
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Merle F Sternschulte
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Marcel Bermudez
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Muenster, Germany
| | - Carsten A Raabe
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Ursula Rescher
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
3
|
Semeano A, Garland R, Bonifazi A, Lee KH, Famiglietti J, Zhang W, Jo YJ, Battiti FO, Shi L, Newman AH, Yano H. Linkers in Bitopic Agonists Shape Bias Profile among Transducers for the Dopamine D2 and D3 Receptors. ACS Pharmacol Transl Sci 2024; 7:2333-2349. [PMID: 39144557 PMCID: PMC11320723 DOI: 10.1021/acsptsci.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/16/2024]
Abstract
Bitopic ligands bind both orthosteric and allosteric or secondary binding sites within the same receptor, often resulting in an improvement of receptor selectivity, potency, and efficacy. In particular, for both agonists and antagonists of the dopamine D2 and D3 receptors (D2R and D3R), the primary therapeutic targets for several neurological and neuropsychiatric disorders, bitopic ligand design has proved advantageous in achieving better pharmacological profiles in vitro. Although the two pharmacophores within a bitopic ligand are typically considered the main drivers of conformational change for a receptor, the role of the linker that connects the two has not yet been systematically studied for its relevance in receptor activity profiles. Here, we present a comprehensive analysis of sumanirole and PF592,379-based indole-containing bitopic compounds in agonist activity at D2R and D3R, with a focus on linker chemical space and stereochemistry through testing six distinct chirally resolved linkers and a simple aliphatic linker. The structure activity relationships (SARs) of these linkers are examined extensively, beyond the conventional level, by characterizing the activation of all putative transducers over a 44 min time course. Our multiparametric analysis reveals previously unappreciated specific linker-dependent effects on primary pharmacophores, receptors, transducer activation kinetics, and bias, highlighting the utility of this comprehensive approach and the significance of the linker type in shaping transducer bias profiles.
Collapse
Affiliation(s)
- Ana Semeano
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Rian Garland
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Alessandro Bonifazi
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Kuo Hao Lee
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse −
Intramural Research Program, National Institutes
of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - John Famiglietti
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Wenqi Zhang
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Yoon Jae Jo
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Francisco O. Battiti
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse −
Intramural Research Program, National Institutes
of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse − Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Hideaki Yano
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Center for Drug
Discovery, Northeastern University, 140 The Fenway, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Tosh D, Pavan M, Cronin C, Pottie E, Wan TC, Chen E, Lewicki SA, Campbell RG, Gao ZG, Auchampach JA, Stove CP, Liang BT, Jacobson KA. 2-Substituted (N)-Methanocarba A 3 Adenosine Receptor Agonists: In Silico, In Vitro, and In Vivo Characterization. ACS Pharmacol Transl Sci 2024; 7:2154-2173. [PMID: 39022354 PMCID: PMC11249627 DOI: 10.1021/acsptsci.4c00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
2-Arylethynyl (N)-methanocarba adenosine 5'-methylamides are selective A3 adenosine receptor (AR) agonists containing a preestablished receptor-preferred pseudoribose conformation. Here, we compare analogues having bulky 2-substitution, either containing or lacking an ethynyl spacer between adenine and a cyclic group. 2-Aryl compounds 9-11, 13, 14, 19, 22, 23, 27, 29, 31, and 34, lacking a spacer, had human (h) A3AR K i values of 2-30 nM, and others displayed lower affinity. Mouse (m) A3AR affinity varied, with 2-arylethynyl having a higher affinity than 2-aryl analogues (7, 8 > 3c, 3d > 3b). However, 2-aryl-4'-truncated derivatives had greatly reduced hA3AR affinity, even containing affinity-enhancing N 6-dopamine-derived substituents. Molecular modeling, including molecular dynamics simulation, predicted stable poses in the canonical A3AR agonist binding site, but 2-aryl (ECL2 interactions) and 2-arylethynyl (TM2 interactions) substituents have different conformations and environments. In a hA3AR miniGαi recruitment assay, 31 (MRS8062) was (slightly) more potent compared to a β-arrestin2 recruitment assay, both in engineered HEK293T cells, and its maximal efficacy (E max) was much higher (165%) than reference agonist NECA's. Thus, in the 2-aryl series, A3AR affinity and selectivity were variable and generally reduced compared to the 2-arylethynyl series, with a greater dependence on the specific aryl group present. Selected compounds were studied in vivo in an ischemic model of peripheral artery disease (PAD). Rigidified 2-arylethynyl analogues 3a-3c were protective in this model of skeletal muscle ischemia-reperfusion injury/claudication, as previously shown only for moderately A3AR-selective ribosides or (N)-methanocarba derivatives. Thus, we have expanded the A3AR agonist SAR for (N)-methanocarba adenosines.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Matteo Pavan
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Chunxia Cronin
- Pat
and Jim Calhoun Cardiology Center, University
of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Tina C. Wan
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Eric Chen
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Sarah A. Lewicki
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Ryan G. Campbell
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Bruce T. Liang
- Pat
and Jim Calhoun Cardiology Center, University
of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Braga Emidio N, Small BM, Keller AR, Cheloha RW, Wingler LM. Nanobody-Mediated Dualsteric Engagement of the Angiotensin Receptor Broadens Biased Ligand Pharmacology. Mol Pharmacol 2024; 105:260-271. [PMID: 38164609 PMCID: PMC10877709 DOI: 10.1124/molpharm.123.000797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Dualsteric G protein-coupled receptor (GPCR) ligands are a class of bitopic ligands that consist of an orthosteric pharmacophore, which binds to the pocket occupied by the receptor's endogenous agonist, and an allosteric pharmacophore, which binds to a distinct site. These ligands have the potential to display characteristics of both orthosteric and allosteric ligands. To explore the signaling profiles that dualsteric ligands of the angiotensin II type 1 receptor (AT1R) can access, we ligated a 6e epitope tag-specific nanobody (single-domain antibody fragment) to angiotensin II (AngII) and analogs that show preferential allosteric coupling to Gq (TRV055, TRV056) or β-arrestin (TRV027). While the nanobody itself acts as a probe-specific neutral or negative allosteric ligand of N-terminally 6e-tagged AT1R, nanobody conjugation to orthosteric ligands had varying effects on Gq dissociation and β-arrestin plasma membrane recruitment. The potency of certain AngII analogs was enhanced up to 100-fold, and some conjugates behaved as partial agonists, with up to a 5-fold decrease in maximal efficacy. Nanobody conjugation also biased the signaling of TRV055 and TRV056 toward Gq, suggesting that Gq bias at AT1R can be modulated through molecular mechanisms distinct from those previously elucidated. Both competition radioligand binding experiments and functional assays demonstrated that orthosteric antagonists (angiotensin receptor blockers) act as non-competitive inhibitors of all these nanobody-peptide conjugates. This proof-of-principle study illustrates the array of pharmacological patterns that can be achieved by incorporating neutral or negative allosteric pharmacophores into dualsteric ligands. Nanobodies directed toward linear epitopes could provide a rich source of allosteric reagents for this purpose. SIGNIFICANCE STATEMENT: Here we engineer bitopic (dualsteric) ligands for epitope-tagged angiotensin II type 1 receptor by conjugating angiotensin II or its biased analogs to an epitope-specific nanobody (antibody fragment). Our data demonstrate that nanobody-mediated interactions with the receptor N-terminus endow angiotensin analogs with properties of allosteric modulators and provide a novel mechanism to increase the potency, modulate the maximal effect, or alter the bias of ligands.
Collapse
Affiliation(s)
- Nayara Braga Emidio
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Brandi M Small
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Amanda R Keller
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Ross W Cheloha
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| | - Laura M Wingler
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (N.B.E., R.W.C.) and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (B.M.S., A.R.K., L.M.W.)
| |
Collapse
|
6
|
Addis P, Bali U, Baron F, Campbell A, Harborne S, Jagger L, Milne G, Pearce M, Rosethorne EM, Satchell R, Swift D, Young B, Unitt JF. Key aspects of modern GPCR drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:1-22. [PMID: 37625784 DOI: 10.1016/j.slasd.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most versatile cell surface receptor family with a broad repertoire of ligands and functions. We've learned an enormous amount about discovering drugs of this receptor class since the first GPCR was cloned and expressed in 1986, such that it's now well-recognized that GPCRs are the most successful target class for approved drugs. Here we take the reader through a GPCR drug discovery journey from target to the clinic, highlighting the key learnings, best practices, challenges, trends and insights on discovering drugs that ultimately modulate GPCR function therapeutically in patients. The future of GPCR drug discovery is inspiring, with more desirable drug mechanisms and new technologies enabling the delivery of better and more successful drugs.
Collapse
Affiliation(s)
- Phil Addis
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Utsav Bali
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Frank Baron
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Adrian Campbell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Steven Harborne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Liz Jagger
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Gavin Milne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Martin Pearce
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Elizabeth M Rosethorne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Rupert Satchell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Denise Swift
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Barbara Young
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - John F Unitt
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK.
| |
Collapse
|
7
|
Pottie E, Poulie CBM, Simon IA, Harpsøe K, D’Andrea L, Komarov IV, Gloriam DE, Jensen AA, Kristensen JL, Stove CP. Structure-Activity Assessment and In-Depth Analysis of Biased Agonism in a Set of Phenylalkylamine 5-HT 2A Receptor Agonists. ACS Chem Neurosci 2023; 14:2727-2742. [PMID: 37474114 PMCID: PMC10401645 DOI: 10.1021/acschemneuro.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of β-arrestin2 (βarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the βarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Icaro A. Simon
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laura D’Andrea
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - David E. Gloriam
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
9
|
Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules 2022; 27:molecules27207065. [PMID: 36296658 PMCID: PMC9611050 DOI: 10.3390/molecules27207065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.
Collapse
|
10
|
Poulie CM, Pottie E, Simon IA, Harpsøe K, D’Andrea L, Komarov IV, Gloriam DE, Jensen AA, Stove CP, Kristensen JL. Discovery of β-Arrestin-Biased 25CN-NBOH-Derived 5-HT 2A Receptor Agonists. J Med Chem 2022; 65:12031-12043. [PMID: 36099411 PMCID: PMC9511481 DOI: 10.1021/acs.jmedchem.2c00702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/29/2022]
Abstract
The serotonin 2A receptor (5-HT2AR) is the mediator of the psychedelic effects of serotonergic psychedelics, which have shown promising results in clinical studies for several neuropsychiatric indications. The 5-HT2AR is able to signal through the Gαq and β-arrestin effector proteins, but it is currently not known how the different signaling pathways contribute to the therapeutic effects mediated by serotonergic psychedelics. In the present work, we have evaluated the subtype-selective 5-HT2AR agonist 25CN-NBOH and a series of close analogues for biased signaling at this receptor. These ligands were designed to evaluate the role of interactions with Ser1593×36. The lack of interaction between this hydroxyl moiety and Ser1593×36 resulted in detrimental effects on potency and efficacy in both βarr2 and miniGαq recruitment assays. Remarkably, Gαq-mediated signaling was considerably more affected. This led to the development of the first efficacious βarr2-biased 5-HT2AR agonists 4a-b and 6e-f, βarr2 preferring, relative to lysergic acid diethylamide (LSD).
Collapse
Affiliation(s)
- Christian
B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK—2100 Copenhagen, Denmark
| | - Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Icaro A. Simon
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK—2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK—2100 Copenhagen, Denmark
| | - Laura D’Andrea
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK—2100 Copenhagen, Denmark
| | | | - David E. Gloriam
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK—2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK—2100 Copenhagen, Denmark
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK—2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME, Gloriam DE. Community Guidelines for GPCR Ligand Bias: IUPHAR Review XX. Br J Pharmacol 2022; 179:3651-3674. [PMID: 35106752 PMCID: PMC7612872 DOI: 10.1111/bph.15811] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signaling' paradigm requires that we now characterize physiological signaling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signaling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.
Collapse
Affiliation(s)
- Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | | | - Marcel Bermudez
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christian S Breinholt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Stephen J Hill
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Rick R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - H Ongun Onaran
- Molecular Biology and Technology Development Unit, Department of Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics, Hospital Del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Current affiliation: ISAR Bioscience Institute, Munich-Planegg, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Characterization of recent non-fentanyl synthetic opioids via three different in vitro µ-opioid receptor activation assays. Arch Toxicol 2022; 96:877-897. [DOI: 10.1007/s00204-021-03207-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
|
13
|
Grafinger KE, Vandeputte MM, Cannaert A, Ametovski A, Sparkes E, Cairns E, Juchli PO, Haschimi B, Pulver B, Banister SD, Stove CP, Auwärter V. Systematic evaluation of a panel of 30 synthetic cannabinoid receptor agonists structurally related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA using a combination of binding and different CB1 receptor activation assays. Part III: The G protein pathway and critical comparison of different assays. Drug Test Anal 2021; 13:1412-1429. [PMID: 33908179 DOI: 10.1002/dta.3054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The present work is the last of a three-part study investigating a panel of 30 systematically designed synthetic cannabinoid receptor agonists (SCRAs) including features such as the 4-pentenyl tail and varying head groups including amides and esters of l-valine (MMB, AB), l-tert-leucine (ADB), and l-phenylalanine (APP), as well as adamantyl (A) and cumyl moieties (CUMYL). Here, we evaluated these SCRAs for their capacity to activate the human cannabinoid receptor 1 (CB1 ) via indirect measurement of G protein recruitment. Furthermore, we comparatively evaluated the results obtained from three in vitro assays, based on the recruitment of β-arrestin 2 (βarr2 assay) or Gαi protein (mini-Gαi assay), or binding of [35 S]-GTPγS. The observed efficacies (Emax ) varied depending on the conducted assay. Statistical analysis suggests that the population means of the relative intrinsic activity (RAi ) significantly differ for the [35 S]-GTPγS assay and the other two assays, but the population means of the βarr2 and mini-Gαi assays were not statistically different. Our data suggest that differences observed between the βarr2 and mini-Gαi assays are the best predictor for 'biased agonism' towards βarr or G protein recruitment in our study. SCRAs carrying an ADB or MPP moiety as a head group tended to produce elevated Emax values in the βarr2 assay, which might result in a tendency of these compounds to cause pronounced tolerance in users-a hypothesis that should be evaluated further by future studies. In general, a comparison of efficacies derived from different assays is difficult and should only be conducted very cautiously.
Collapse
Affiliation(s)
- Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | - Belal Haschimi
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Benedikt Pulver
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Vandeputte MM, Van Uytfanghe K, Layle NK, St. Germaine DM, Iula DM, Stove CP. Synthesis, Chemical Characterization, and μ-Opioid Receptor Activity Assessment of the Emerging Group of "Nitazene" 2-Benzylbenzimidazole Synthetic Opioids. ACS Chem Neurosci 2021; 12:1241-1251. [PMID: 33759494 DOI: 10.1021/acschemneuro.1c00064] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several 2-benzylbenzimidazole opioids (also referred to as "nitazenes") recently emerged on the illicit market. The most frequently encountered member, isotonitazene, has been identified in multiple fatalities since its appearance in 2019. Although recent scheduling efforts targeted isotonitazene, many other analogues remain unregulated. Being structurally unrelated to fentanyl, little is known about the harm potential of these compounds. In this study, ten nitazenes and four metabolites were synthesized, analytically characterized via four different techniques, and pharmacologically evaluated using two cell-based β-arrestin2/mini-Gi recruitment assays monitoring μ-opioid receptor (MOR) activation. On the basis of absorption spectra and retention times, high-performance liquid chromatography coupled to diode-array detection (HPLC-DAD) allowed differentiation between most analogues. Time-of-flight mass spectrometry (LC-QTOF-MS) identified a fragment with m/z 100.11 for 12/14 compounds, which could serve as a basis for MS-based nitazene screening. MOR activity determination confirmed that nitazenes are generally highly active, with potencies and efficacies of several analogues exceeding that of fentanyl. Particularly relevant is the unexpected very high potency of the N-desethylisotonitazene metabolite, rivaling the potency of etonitazene and exceeding that of isotonitazene itself. Supported by its identification in fatalities, this likely has in vivo consequences. These results improve our understanding of this emerging group of opioids by laying out an analytical framework for their detection, as well as providing important new insights into their MOR activation potential.
Collapse
Affiliation(s)
- Marthe M. Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Nathan K. Layle
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, Michigan 48108, United States
| | | | - Donna M. Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, Michigan 48108, United States
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
15
|
van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol 2021; 11:606656. [PMID: 33584282 PMCID: PMC7878563 DOI: 10.3389/fphar.2020.606656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - K. H. Christopher Choy
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Simon McKenzie-Nickson
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Sophie J. Bradley
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| |
Collapse
|
16
|
Pottie E, Dedecker P, Stove CP. Identification of psychedelic new psychoactive substances (NPS) showing biased agonism at the 5-HT2AR through simultaneous use of β-arrestin 2 and miniGαq bioassays. Biochem Pharmacol 2020; 182:114251. [DOI: 10.1016/j.bcp.2020.114251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022]
|
17
|
Kenakin T. Biased signaling as allosteric probe dependence. Cell Signal 2020; 79:109844. [PMID: 33242565 DOI: 10.1016/j.cellsig.2020.109844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023]
Abstract
Signaling 'bias' is a phenomenon whereby the natural allosteric probe dependence of seven transmembrane receptors allows different receptor conformations (stabilized by different agonists) to activate some signaling pathways (coupled to pleiotropically coupled receptors) more than others at the expense of those other pathways. There are a number of relevant scenarios where such an activity could be therapeutically beneficial therefore there are practical reasons why this property of receptors should be exploited. This paper discusses recent ideas around attempts to harness this potentially useful idea and also the limitations around the current methods available to do so. Specifically, the determination of a quantitative value for the receptor bias of a given agonist that may translate to useful in vivo has been particularly elusive and studies need to be directed to solving this problem.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Gillis A, Sreenivasan V, Christie MJ. Intrinsic Efficacy of Opioid Ligands and Its Importance for Apparent Bias, Operational Analysis, and Therapeutic Window. Mol Pharmacol 2020; 98:410-424. [PMID: 32665252 DOI: 10.1124/mol.119.119214] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
Evidence from several novel opioid agonists and knockout animals suggests that improved opioid therapeutic window, notably for analgesia versus respiratory depression, is a result of ligand bias downstream of activation of the µ-opioid receptor (MOR) toward G protein signaling and away from other pathways, such as arrestin recruitment. Here, we argue that published claims of opioid bias based on application of the operational model of agonism are frequently confounded by failure to consider the assumptions of the model. These include failure to account for intrinsic efficacy and ceiling effects in different pathways, distortions introduced by analysis of amplified (G protein) versus linear (arrestin) signaling mechanisms, and nonequilibrium effects in a dynamic signaling cascade. We show on both theoretical and experimental grounds that reduced intrinsic efficacy that is unbiased across different downstream pathways, when analyzed without due considerations, does produce apparent but erroneous MOR ligand bias toward G protein signaling, and the weaker the G protein partial agonism is the greater the apparent bias. Experimentally, such apparently G protein-biased opioids have been shown to exhibit low intrinsic efficacy for G protein signaling when ceiling effects are properly accounted for. Nevertheless, such agonists do display an improved therapeutic window for analgesia versus respiratory depression. Reduced intrinsic efficacy for G proteins rather than any supposed G protein bias provides a more plausible, sufficient explanation for the improved safety. Moreover, genetic models of G protein-biased opioid receptors and replication of previous knockout experiments suggest that reduced or abolished arrestin recruitment does not improve therapeutic window for MOR-induced analgesia versus respiratory depression. SIGNIFICANCE STATEMENT: Efforts to improve safety of µ-opioid analgesics have focused on agonists that show signaling bias for the G protein pathway versus other signaling pathways. This review provides theoretical and experimental evidence showing that failure to consider the assumptions of the operational model can lead to large distortions and overestimation of actual bias. We show that low intrinsic efficacy is a major determinant of these distortions, and pursuit of appropriately reduced intrinsic efficacy should guide development of safer opioids.
Collapse
Affiliation(s)
- Alexander Gillis
- Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia (A.G., M.J.C.) and EMBL Australia Node in Single Molecule Science, University of New South Wales, New South Wales, Australia (V.S.)
| | - Varun Sreenivasan
- Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia (A.G., M.J.C.) and EMBL Australia Node in Single Molecule Science, University of New South Wales, New South Wales, Australia (V.S.)
| | - Macdonald J Christie
- Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia (A.G., M.J.C.) and EMBL Australia Node in Single Molecule Science, University of New South Wales, New South Wales, Australia (V.S.)
| |
Collapse
|
19
|
Sniecikowska J, Gluch-Lutwin M, Bucki A, Więckowska A, Siwek A, Jastrzebska-Wiesek M, Partyka A, Wilczyńska D, Pytka K, Latacz G, Przejczowska-Pomierny K, Wyska E, Wesołowska A, Pawłowski M, Newman-Tancredi A, Kolaczkowski M. Discovery of Novel pERK1/2- or β-Arrestin-Preferring 5-HT 1A Receptor-Biased Agonists: Diversified Therapeutic-like versus Side Effect Profile. J Med Chem 2020; 63:10946-10971. [PMID: 32883072 PMCID: PMC7586344 DOI: 10.1021/acs.jmedchem.0c00814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Novel 1-(1-benzoylpiperidin-4-yl)methanamine derivatives with high
affinity and selectivity for serotonin 5-HT1A receptors
were obtained and tested in four functional assays: ERK1/2 phosphorylation,
adenylyl cyclase inhibition, calcium mobilization, and β-arrestin
recruitment. Compounds 44 and 56 (2-methylaminophenoxyethyl
and 2-(1H-indol-4-yloxy)ethyl derivatives, respectively)
were selected as biased agonists with highly differential “signaling
fingerprints” that translated into distinct in vivo profiles. In vitro, 44 showed biased
agonism for ERK1/2 phosphorylation and, in vivo,
it preferentially exerted an antidepressant-like effect in the Porsolt
forced swimming test in rats. In contrast, compound 56 exhibited a first-in-class profile: it preferentially and potently
activated β-arrestin recruitment in vitro and
potently elicited lower lip retraction in vivo, a
component of “serotonergic syndrome”. Both compounds
showed promising developability properties. The presented 5-HT1A receptor-biased agonists, preferentially targeting various
signaling pathways, have the potential to become drug candidates for
distinct central nervous system pathologies and possessing accentuated
therapeutic activity and reduced side effects.
Collapse
Affiliation(s)
- Joanna Sniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Gluch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Daria Wilczyńska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Karolina Pytka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Elżbieta Wyska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Marcin Kolaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
20
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM, Latorraca NR, Dror RO, Lefkowitz RJ, Kruse AC. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 2020; 367:888-892. [PMID: 32079768 DOI: 10.1126/science.aay9813] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Biased agonists of G protein-coupled receptors (GPCRs) preferentially activate a subset of downstream signaling pathways. In this work, we present crystal structures of angiotensin II type 1 receptor (AT1R) (2.7 to 2.9 angstroms) bound to three ligands with divergent bias profiles: the balanced endogenous agonist angiotensin II (AngII) and two strongly β-arrestin-biased analogs. Compared with other ligands, AngII promotes more-substantial rearrangements not only at the bottom of the ligand-binding pocket but also in a key polar network in the receptor core, which forms a sodium-binding site in most GPCRs. Divergences from the family consensus in this region, which appears to act as a biased signaling switch, may predispose the AT1R and certain other GPCRs (such as chemokine receptors) to adopt conformations that are capable of activating β-arrestin but not heterotrimeric Gq protein signaling.
Collapse
Affiliation(s)
- Laura M Wingler
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dean P Staus
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alissa L W Kleinhenz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Robert J Lefkowitz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Pottie E, Tosh DK, Gao ZG, Jacobson KA, Stove CP. Assessment of biased agonism at the A 3 adenosine receptor using β-arrestin and miniGα i recruitment assays. Biochem Pharmacol 2020; 177:113934. [PMID: 32224136 DOI: 10.1016/j.bcp.2020.113934] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The A3 adenosine receptor (A3AR) is a G protein-coupled receptor that is involved in a wide variety of physiological and pathological processes, such as cancer. However, the use of compounds pharmacologically targeting this receptor remains limited in clinical practice, despite extensive efforts for compound synthesis. Moreover, the possible occurrence of biased agonism further complicates the interpretation of the functional characteristics of compounds. Hence the need for simple assays, which are comparable in terms of the used cell lines and read-out technique. We previously established a stable β-arrestin 2 (βarr2) bioassay, employing a simple, luminescent read-out via functional complementation of a split nanoluciferase enzyme. Here, we developed a complementary, new bioassay in which coupling of an engineered miniGαi protein to activated A3AR is monitored using a similar approach. Application of both bioassays for the concurrent determination of the potencies and efficacies of a set of 19 N6-substituted adenosine analogues not only allowed for the characterization of structure-activity relationships, but also for the quantification of biased agonism. Although a broad distribution in potency and efficacy values was obtained within the test panel, no significant bias was observed toward either the βarr2 or miniGαi pathway.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dilip K Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20802, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20802, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20802, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
23
|
Hoare SRJ, Tewson PH, Quinn AM, Hughes TE. A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. Sci Rep 2020; 10:1766. [PMID: 32019973 PMCID: PMC7000712 DOI: 10.1038/s41598-020-58421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The kinetics/dynamics of signaling are of increasing value for G-protein-coupled receptor therapeutic development, including spatiotemporal signaling and the kinetic context of biased agonism. Effective application of signaling kinetics to developing new therapeutics requires reliable kinetic assays and an analysis framework to extract kinetic pharmacological parameters. Here we describe a platform for measuring arrestin recruitment kinetics to GPCRs using a high quantum yield, genetically encoded fluorescent biosensor, and a data analysis framework to quantify the recruitment kinetics. The sensor enabled high temporal resolution measurement of arrestin recruitment to the angiotensin AT1 and vasopressin V2 receptors. The analysis quantified the initial rate of arrestin recruitment (kτ), a biologically-meaningful kinetic drug efficacy parameter, by fitting time course data using routine curve-fitting methods. Biased agonism was assessed by comparing kτ values for arrestin recruitment with those for Gq signaling via the AT1 receptor. The kτ ratio values were in good agreement with bias estimates from existing methods. This platform potentially improves and simplifies assessment of biased agonism because the same assay modality is used to compare pathways (potentially in the same cells), the analysis method is parsimonious and intuitive, and kinetic context is factored into the bias measurement.
Collapse
Affiliation(s)
- Sam R J Hoare
- Pharmechanics LLC, 14 Sunnyside Drive South, Owego, NY, 13827, USA.
| | - Paul H Tewson
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Anne Marie Quinn
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Thomas E Hughes
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA.
| |
Collapse
|
24
|
Brust TF. Biased Ligands at the Kappa Opioid Receptor: Fine-Tuning Receptor Pharmacology. Handb Exp Pharmacol 2020; 271:115-135. [PMID: 33140224 DOI: 10.1007/164_2020_395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kappa opioid receptor (KOR) is a G protein-coupled receptor (GPCR) that can signal through multiple signaling pathways. KOR agonists are known to relieve pain and itch, as well as induce dysphoria, sedation, hallucinations, and diuresis. As is the case with many other GPCRs, specific signaling pathways downstream of the KOR have been linked to certain physiological responses induced by the receptor. Those studies motivated the search and discovery of a number of KOR ligands that preferentially activate one signaling pathway over another. Such compounds are termed functionally selective or biased ligands, and may present a way of inducing desired receptor effects with reduced adverse reactions. In this chapter, I review the molecular intricacies of KOR signaling and discuss the studies that have used biased signaling through the KOR as a way to selectively modulate in vivo physiology.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA.
| |
Collapse
|
25
|
Sniecikowska J, Newman-Tancredi A, Kolaczkowski M. From Receptor Selectivity to Functional Selectivity: The Rise of Biased Agonism in 5-HT1A Receptor Drug Discovery. Curr Top Med Chem 2019; 19:2393-2420. [PMID: 31544717 DOI: 10.2174/1568026619666190911122040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
Despite extensive efforts to design serotonin 5-HT1A receptor compounds, there are currently no clinically available selective agonists to explore the therapeutic potential of activating this receptor. Commonly used drugs targeting 5-HT1A receptors, such as buspirone or other azapirone compounds, possess only limited selectivity over cross-reacting sites, act as partial agonists for 5-HT1A receptor activation, and are metabolically labile, generating active metabolites. In addition, drug discovery has been hampered by the multiplicity of 5-HT1A receptor subpopulations, expressed in different brain regions, that are coupled to distinct molecular signaling mechanisms and mediate a wide variety of physiological responses, both desired and undesired. In this context, advances in 5-HT1A receptor drug discovery have attracted attention of novel 'biased agonists' that are selective, efficacious and preferentially target the brain regions that mediate therapeutic activity without triggering side effects. The prototypical first-in-class compound NLX-101 (a.k.a. F15599; 3-chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin- 1-yl]methanone), preferentially activates 5-HT1A receptors in cortical regions and exhibits potent, rapidacting and sustained antidepressant-like and procognitive properties in animal models. Here the background has been reviewed that led to the discovery of the class of 1-(1-benzoylpiperidin-4- yl)methanamine derivatives, including NLX-101, as well as recent advances in discovery of novel 5-HT1A receptor biased agonists, notably aryloxyethyl derivatives of 1‑(1-benzoylpiperidin-4yl)methanamine which show promising pharmacological activity both in vitro and in vivo. Overall, the results suggest that opportunities exist for innovative drug discovery of selective 5-HT1A receptor biased agonists that may open new avenues for the treatment of CNS disorders involving dysfunction of serotonergic neurotransmission.
Collapse
Affiliation(s)
- Joanna Sniecikowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Chair of Pharmaceutical Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | | | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Chair of Pharmaceutical Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
26
|
Sachdev S, Vemuri K, Banister SD, Longworth M, Kassiou M, Santiago M, Makriyannis A, Connor M. In vitro determination of the efficacy of illicit synthetic cannabinoids at CB 1 receptors. Br J Pharmacol 2019; 176:4653-4665. [PMID: 31412133 DOI: 10.1111/bph.14829] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The morbidity and mortality associated with recreational use of synthetic cannabinoid receptor agonists (SCRAs) may reflect strong activation of CB1 receptors and is a major health concern. The properties of SCRA at CB1 receptors are not well defined. Here we have developed an assay to determine acute CB1 receptor efficacy using receptor depletion with the irreversible CB1 receptor antagonist AM6544, with application of the Black and Leff operational model to calculate efficacy. EXPERIMENTAL APPROACH Receptor depletion in mouse AtT-20 pituitary adenoma cells stably expressing human CB1 receptors was achieved by pretreatment of cells with AM6544 (10 μM, 60 min). The CB1 receptor-mediated hyperpolarisation of AtT-20 cells was measured using fluorescence-based membrane potential dye. From data fit to the operational model, the efficacy (τ) and affinity (KA ) parameters were obtained for each drug. KEY RESULTS AM6544 did not affect the potency or maximal effect of native somatostatin receptor-induced hyperpolarization. The τ value of ∆9 -THC was 80-fold less than the reference CB receptor agonist CP55940 and 260-fold less than the highest efficacy SCRA, 5F-MDMB-PICA. The operational efficacy of SCRAs ranged from 233 (5F-MDMB-PICA) to 28 (AB-PINACA), with CP55940 in the middle of the efficacy rank order. There was no correlation between the τ and KA values. CONCLUSIONS AND IMPLICATIONS All SCRAs tested showed substantially higher efficacy at CB1 receptors than ∆9 -THC, which may contribute to the adverse effects seen with these drugs but not ∆9 -THC.
Collapse
Affiliation(s)
- Shivani Sachdev
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kiran Vemuri
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Chemistry, The University of Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Conibear AE, Kelly E. A Biased View of μ-Opioid Receptors? Mol Pharmacol 2019; 96:542-549. [PMID: 31175184 PMCID: PMC6784500 DOI: 10.1124/mol.119.115956] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
The field of biased agonism has grown substantially in recent years and the μ-opioid receptor has been one of the most intensively studied receptor targets for developing biased agonists. Yet, despite extensive research efforts, the development of analgesics with reduced adverse effects remains a significant challenge. In this review we discuss the evidence to support the prevailing hypothesis that a G protein-biased agonist at the μ-opioid receptor would be an effective analgesic without the accompanying adverse effects associated with conventional μ-opioid agonists. We also assess the current status of established and novel μ-opioid-receptor ligands that are proposed to be biased ligands. SIGNIFICANCE STATEMENT: The idea that biased agonists at the μ-opioid receptor might provide a therapeutic advantage in terms of producing effective analgesia with fewer adverse effects has driven the design of novel G protein-biased agonists. However, is the desirability of G protein-biased agonists at μ-opioid receptor substantiated by what we know of the physiology and pharmacology of the receptor? Also, do any of the novel biased agonists live up to their initial promise? Here we address these issues by critically examining the evidence that G protein bias really is desirable and also by discussing whether the ligands so far developed are clearly biased in vitro and whether this produces responses in vivo that might be commensurate with such bias.
Collapse
Affiliation(s)
- Alexandra E Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Dunn AD, Reed B, Erazo J, Ben-Ezra A, Kreek MJ. Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands: Toward in Vitro Models of in Vivo Responses. ACS Chem Neurosci 2019; 10:3590-3600. [PMID: 31313902 DOI: 10.1021/acschemneuro.9b00195] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biased ligands preferentially activate certain signaling pathways downstream of their target receptor, leading to differential physiological or behavioral responses downstream. The kappa opioid receptor (KOR) is a drug target for diseases involving mood and reward, such as depression and addiction. Biased KOR ligands offer the potential to overcome negative side effects that have previously hampered the therapeutic development of KOR agonists by preferentially activating certain signaling pathways. Understanding relationships between ligand bias and behavior is difficult, however, because differences in cellular context and bias quantification methods lead to variation between studies. Here, a set of 21 structurally diverse KOR ligands were tested in parallel, to systematically quantify ligand bias at the KOR. Compounds included the endogenous peptide ligand Dynorphin A(1-17), two novel compounds synthesized for our research, and 18 additional compounds of different structural classes, including morphinans and the natural product Salvinorin A. Compounds were tested for their activity in early KOR signaling pathways (G-protein and β-arrestin recruitment) in KOR-expressing U2OS cells, and ligand bias was calculated. A subset of compounds was tested for sedative properties in the rotarod assay in mice. We found that rotarod sedation significantly correlated with β-arrestin signaling in this system, indicating that this in vitro system can be used to accurately describe this in vivo behavior caused by KOR agonists. Additionally, downstream signaling pathways ERK1/2 and mTOR were evaluated, and we determined that signaling via both of these pathways could diverge from KOR-mediated G-protein and arrestin signaling in this system.
Collapse
Affiliation(s)
- Amelia D. Dunn
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Brian Reed
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Jose Erazo
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Ariel Ben-Ezra
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Mary Jeanne Kreek
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
29
|
Abstract
A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs. Although this is a fairly newly discovered phenomenon, theoretical and experimental data suggest that it is a ubiquitous behavior of ligands and receptors and to be expected. Biased signaling is simple to detect in vitro and there are numerous methods to quantify the effect with scales that can be used to optimize this activity in structure-activity medicinal chemistry studies. At present, the major hurdle in the application of this mechanism to therapeutics is the translation of in vitro bias to in vivo effect; this is because of the numerous factors that can modify measures of bias in natural physiologic systems. In spite of this, biased signaling still has the potential to justify revisiting of receptor targets previously thought to be intractable and also furnishes the means to pursue targets previously thought to be forbidden due to deleterious physiology (as these may be eliminated through biased signaling).
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Quantitating Ligand Bias Using the Competitive Model of Ligand Activity. Methods Mol Biol 2019. [PMID: 30919358 DOI: 10.1007/978-1-4939-9158-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
G protein-coupled receptors (GPCRs) can interact with both G proteins and β-arrestin proteins to propagate different signaling outputs. In some contexts, agonists may drive the receptor to preferentially engage one of these effectors over the other. Such "ligand bias" may present a means to impart pathway-selective signaling downstream of this class of receptors. In cases where physiological responses are mediated by diverse pathways, this could, in part, provide a means to refine GPCR therapeutics. Cell-based signaling assays are used to measure the potential for signaling bias in vitro, and these measures take into account potency, efficacy, and the overall capacity of the assay. However, narrow assay windows sometimes limit the confidence in estimating agonist activity, if a compound performs as a very weakly efficacious partial agonist. This lack of response in an assay hampers the ability to measure and compare potencies, and the degree of separation of an agonist's performance, between two assays. In this chapter, we describe in detail a method for the estimation of the relative activity of a partial agonist and provide a stepwise protocol for calculating bias when this case arises.
Collapse
|
31
|
Sniecikowska J, Gluch-Lutwin M, Bucki A, Więckowska A, Siwek A, Jastrzebska-Wiesek M, Partyka A, Wilczyńska D, Pytka K, Pociecha K, Cios A, Wyska E, Wesołowska A, Pawłowski M, Varney MA, Newman-Tancredi A, Kolaczkowski M. Novel Aryloxyethyl Derivatives of 1-(1-Benzoylpiperidin-4-yl)methanamine as the Extracellular Regulated Kinases 1/2 (ERK1/2) Phosphorylation-Preferring Serotonin 5-HT 1A Receptor-Biased Agonists with Robust Antidepressant-like Activity. J Med Chem 2019; 62:2750-2771. [PMID: 30721053 DOI: 10.1021/acs.jmedchem.9b00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel 1-(1-benzoylpiperidin-4-yl)methanamine derivatives were designed as "biased agonists" of serotonin 5-HT1A receptors. The compounds were tested in signal transduction assays (ERK1/2 phosphorylation, cAMP inhibition, Ca2+ mobilization, and β-arrestin recruitment) which identified ERK1/2 phosphorylation-preferring aryloxyethyl derivatives. The novel series showed high 5-HT1A receptor affinity, >1000-fold selectivity versus noradrenergic α1, dopamine D2, serotonin 5-HT2A, histamine H1, and muscarinic M1 receptors, and favorable druglike properties (CNS-MPO, Fsp3, LELP). The lead structure, (3-chloro-4-fluorophenyl)(4-fluoro-4-(((2-(pyridin-2-yloxy)ethyl)amino)methyl)piperidin-1-yl)methanone (17, NLX-204), displayed high selectivity in the SafetyScreen44 panel (including hERG channel), high solubility, metabolic stability, and Caco-2 penetration and did not block CYP3A4, CYP2D6 isoenzymes, or P-glycoprotein. Preliminary in vivo studies confirmed its promising pharmacokinetic profile. 17 also robustly stimulated ERK1/2 phosphorylation in rat cortex and showed highly potent (MED = 0.16 mg/kg) and efficacious antidepressant-like activity, totally eliminating immobility in the rat Porsolt test. These data suggest that the present 5-HT1A receptor-biased agonists could constitute promising antidepressant drug candidates.
Collapse
Affiliation(s)
- Joanna Sniecikowska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Monika Gluch-Lutwin
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Adam Bucki
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Anna Więckowska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Agata Siwek
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | | | - Anna Partyka
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Daria Wilczyńska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Karolina Pytka
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Krzysztof Pociecha
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Agnieszka Cios
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Elżbieta Wyska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Anna Wesołowska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Mark A Varney
- Neurolixis Inc. , 34145 Pacific Coast Highway #504 , Dana Point , 92629 California , United States
| | - Adrian Newman-Tancredi
- Neurolixis Inc. , 34145 Pacific Coast Highway #504 , Dana Point , 92629 California , United States
| | - Marcin Kolaczkowski
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| |
Collapse
|
32
|
Abstract
Agonists and most natural ligands bind to receptors in their inactive state and quickly induce an active receptor conformation that initiates cell signaling. The active receptor state initiates signaling because of its structural complementariness with coupling proteins that activate signaling pathways, such as G proteins and G protein-coupled receptor kinases. Agonist bias refers to the propensity of an agonist to direct receptor signaling through one pathway relative to another. Thus, if the agonist exhibits much higher affinity for active state 1 compared to active state 2, it will cause a robust activation of receptor coupling protein 1 but not 2, and ultimately, a preferential stimulation of signaling pathway 1. Biased agonists are potentially more selective therapeutic agents because there are numerous cases where the therapeutic and adverse effects of an agonist are mediated by distinct pathways involving G proteins and β-arrestin. Given the mechanism for agonist bias, the most straightforward approach for quantifying bias involves the estimation of agonist affinity for the inactive receptor state and the active receptor states involved in signaling through different pathways. The approach provides quantitative estimates of the sensitivities of different signaling pathways, enabling one to determine to what extent the observed selectivity is caused by agonist or system bias. In addition, the approach is a powerful adjunct to in silico docking studies and can be applied to in vivo assays, structure-activity relationships, and the analysis of published agonist concentration-response curves.
Collapse
|
33
|
Zhu X, Finlay DB, Glass M, Duffull SB. An evaluation of the operational model when applied to quantify functional selectivity. Br J Pharmacol 2018; 175:1654-1668. [PMID: 29457969 PMCID: PMC5913411 DOI: 10.1111/bph.14171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/06/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Functional selectivity describes the ability of ligands to differentially regulate multiple signalling pathways when coupled to a single receptor, and the operational model is commonly used to analyse these data. Here, we assess the mathematical properties of the operational model and evaluate the outcomes of fixing parameters on model performance. EXPERIMENTAL APPROACH The operational model was evaluated using both a mathematical identifiability analysis and simulation. KEY RESULTS Mathematical analysis revealed that the parameters R0 and KE were not independently identifiable which can be solved by considering their ratio, τ. The ratio parameter, τ, was often imprecisely estimated when only functional assay data were available and generally only the transduction coefficient R ( τKA) could be estimated precisely. The general operational model (that includes baseline and the Hill coefficient) required either the parameters Em or KA to be fixed. The normalization process largely cancelled out the mean error of the calculated Δlog (R) caused by fixing these parameters. From this analysis, it was determined that we can avoid the need for a full agonist ligand to be included in an experiment to determine Δlog (R). CONCLUSION AND IMPLICATIONS This analysis has provided a ready-to-use understanding of current methods for quantifying functional selectivity. It showed that current methods are generally tolerant to fixing parameters. A new method was proposed that removes the need for including a high efficacy ligand in any given experiment, which allows application to large-scale screening to identify compounds with desirable features of functional selectivity.
Collapse
Affiliation(s)
- Xiao Zhu
- Otago Pharmacometrics Group, National School of PharmacyUniversity of OtagoDunedinNew Zealand
| | - David B Finlay
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Stephen B Duffull
- Otago Pharmacometrics Group, National School of PharmacyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
34
|
Hall DA, Giraldo J. A method for the quantification of biased signalling at constitutively active receptors. Br J Pharmacol 2018; 175:2046-2062. [PMID: 29498414 DOI: 10.1111/bph.14190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Biased agonism, the ability of an agonist to differentially activate one of several signal transduction pathways when acting at a given receptor, is an increasingly recognized phenomenon at many receptors. The Black and Leff operational model lacks a way to describe constitutive receptor activity and hence inverse agonism. Thus, it is impossible to analyse the biased signalling of inverse agonists using this model. In this theoretical work, we develop and illustrate methods for the analysis of biased inverse agonism. EXPERIMENTAL APPROACH Methods were derived for quantifying biased signalling in systems that demonstrate constitutive activity using the modified operational model proposed by Slack and Hall. The methods were illustrated using Monte Carlo simulations. KEY RESULTS The Monte Carlo simulations demonstrated that, with an appropriate experimental design, the model parameters are 'identifiable'. The method is consistent with methods based on the measurement of intrinsic relative activity (RAi ) (ΔΔlogR or ΔΔlog(τ/Ka )) proposed by Ehlert and Kenakin and their co-workers but has some advantages. In particular, it allows the quantification of ligand bias independently of 'system bias' removing the requirement to normalize to a standard ligand. CONCLUSIONS AND IMPLICATIONS In systems with constitutive activity, the Slack and Hall model provides methods for quantifying the absolute bias of agonists and inverse agonists. This provides an alternative to methods based on RAi and is complementary to the ΔΔlog(τ/Ka ) method of Kenakin et al. in systems where use of that method is inappropriate due to the presence of constitutive activity.
Collapse
Affiliation(s)
- David A Hall
- Fibrosis and Lung Injury DPU, GlaxoSmithKline, Stevenage, UK
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Bellaterra, Spain
| |
Collapse
|
35
|
Bridge LJ, Mead J, Frattini E, Winfield I, Ladds G. Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor. J Theor Biol 2018; 442:44-65. [PMID: 29337260 PMCID: PMC5811930 DOI: 10.1016/j.jtbi.2018.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Abstract
Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (αGTP), towards the analysis of dynamic functional responses. The model is generally applicable to systems with NG G proteins and N* active receptor states. Numerical simulations for NG=N*=2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (Gi and Gs) that become activated upon stimulation of the adenosine A1 receptor with adenosine derivative compounds. Finally, we show that our model can qualitatively describe the temporal dynamics of this competing G protein activation.
Collapse
Affiliation(s)
- L J Bridge
- Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK; Department of Engineering Design and Mathematics, University of the West of England, Frenchay Campus, Bristol BS16 1QY, UK.
| | - J Mead
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - E Frattini
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - I Winfield
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - G Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
36
|
Dunn AD, Reed B, Guariglia C, Dunn AM, Hillman JM, Kreek MJ. Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice. Int J Neuropsychopharmacol 2018; 21:847-857. [PMID: 29635340 PMCID: PMC6119295 DOI: 10.1093/ijnp/pyy034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/30/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The kappa opioid receptor system has been revealed as a potential pharmacotherapeutic target for the treatment of addictions to substances of abuse. Kappa opioid receptor agonists have been shown to block the rewarding and dopamine-releasing effects of psychostimulants. Recent investigations have profiled the in vivo effects of compounds biased towards G-protein-mediated signaling, with less potent arrestin-mediated signaling. The compounds studied here derive from a series of trialkylamines: N-substituted-N- phenylethyl-N-3-hydroxyphenylethyl-amine, with N-substituents including n-butyl (BPHA), methylcyclobutyl (MCBPHA), and methylcyclopentyl (MCPPHA). METHODS BPHA, MCBPHA, and MCPPHA were characterized in vitro in a kappa opioid receptor-expressing cell line in binding assays and functional assays. We also tested the compounds in C57BL6 mice, assaying incoordination with rotarod, as well as circulating levels of the neuroendocrine kappa opioid receptor biomarker, prolactin. RESULTS BPHA, MCBPHA, and MCPPHA showed full kappa opioid receptor agonism for G-protein coupling compared with the reference compound U69,593. BPHA showed no measurable β-arrestin-2 recruitment, indicating that it is extremely G-protein biased. MCBPHA and MCPPHA, however, showed submaximal efficacy for recruiting β-arrestin-2. Studies in C57BL6 mice reveal that all compounds stimulate release of prolactin, consistent with dependence on G-protein signaling. MCBPHA and MCPPHA result in rotarod incoordination, whereas BPHA does not, consistent with the reported requirement of intact kappa opioid receptor/β-arrestin-2 mediated coupling for kappa opioid receptor agonist-induced rotarod incoordination. CONCLUSIONS BPHA, MCBPHA, and MCPPHA are thus novel differentially G-protein-biased kappa opioid receptor agonists. They can be used to investigate how signaling pathways mediate kappa opioid receptor effects in vitro and in vivo and to explore the effects of candidate kappa opioid receptor-targeted pharmacotherapeutics.
Collapse
Affiliation(s)
- Amelia D Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York,Correspondence: Amelia Dunn, BS, BA, 1230 York Ave, Box 243, New York, NY 10065 ()
| | - Brian Reed
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Catherine Guariglia
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Alexandra M Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Joshua M Hillman
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|
37
|
Burgueño J, Pujol M, Monroy X, Roche D, Varela MJ, Merlos M, Giraldo J. A Complementary Scale of Biased Agonism for Agonists with Differing Maximal Responses. Sci Rep 2017; 7:15389. [PMID: 29133887 PMCID: PMC5684405 DOI: 10.1038/s41598-017-15258-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Compelling data in the literature from the recent years leave no doubt about the pluridimensional nature of G protein-coupled receptor function and the fact that some ligands can couple with different efficacies to the multiple pathways that a receptor can signal through, a phenomenon most commonly known as functional selectivity or biased agonism. Nowadays, transduction coefficients (log(τ/KA)), based on the Black and Leff operational model of agonism, are widely used to calculate bias. Nevertheless, combining both affinity and efficacy in a single parameter can result in compounds showing a defined calculated bias of one pathway over other though displaying varying experimental bias preferences. In this paper, we present a novel scale (log(τ)), that attempts to give extra substance to different compound profiles in order to better classify compounds and quantify their bias. The efficacy-driven log(τ) scale is not proposed as an alternative to the affinity&efficacy-driven log(τ/KA) scale but as a complement in those situations where partial agonism is present. Both theoretical and practical approaches using μ-opioid receptor agonists are presented.
Collapse
Affiliation(s)
- Javier Burgueño
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Marta Pujol
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Xavier Monroy
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - David Roche
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.,Universitat Internacional de Catalunya, Faculty of Economics and Social Sciences, 08017, Barcelona, Spain
| | - Maria Jose Varela
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidad de Santiago de Compostela, La Coruña, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
38
|
Clark SD, Kenakin TP, Gertz S, Hassler C, Gay EA, Langston TL, Reinscheid RK, Runyon SP. Identification of the first biased NPS receptor agonist that retains anxiolytic and memory promoting effects with reduced levels of locomotor stimulation. Neuropharmacology 2017; 118:69-78. [PMID: 28267583 DOI: 10.1016/j.neuropharm.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 01/26/2023]
Abstract
The neuropeptide S system has been implicated in a number of centrally mediated behaviors including memory consolidation, anxiolysis, and increased locomotor activity. Characterization of these behaviors has been primarily accomplished using the endogenous 20AA peptide (NPS) that demonstrates relatively equal potency for the calcium mobilization and cAMP second messenger pathways at human and rodent NPS receptors. This study is the first to demonstrate that truncations of the NPS peptide provides small fragments that retain significant potency only at one of two single polymorphism variants known to alter NPSR function (NPSR-107I), yet demonstrate a strong level of bias for the calcium mobilization pathway over the cAMP pathway. We have also determined that the length of the truncated peptide correlates with the degree of bias for the calcium mobilization pathway. A modified tetrapeptide analog (4) has greatly attenuated hyperlocomotor stimulation in vivo but retains activity in assays that correlate with memory consolidation and anxiolytic activity. Analog 4 also has a bias for the calcium mobilization pathway, at the human and mouse receptor. This suggests that future agonist ligands for the NPS receptor having a bias for calcium mobilization over cAMP production will function as non-stimulatory anxiolytics that augment memory formation.
Collapse
Affiliation(s)
- Stewart D Clark
- University at Buffalo, Department of Pharmacology and Toxicology, Buffalo, NY 14214, United States
| | - Terrence P Kenakin
- University of North Carolina, Department of Pharmacology, Chapel Hill, NC 27599, United States
| | - Steven Gertz
- University at Buffalo, Department of Pharmacology and Toxicology, Buffalo, NY 14214, United States
| | - Carla Hassler
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Elaine A Gay
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States
| | - Rainer K Reinscheid
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States; Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Scott P Runyon
- Research Triangle Institute, Center for Drug Discovery, RTP, NC 27709, United States.
| |
Collapse
|
39
|
Svensson KA, Heinz BA, Schaus JM, Beck JP, Hao J, Krushinski JH, Reinhard MR, Cohen MP, Hellman SL, Getman BG, Wang X, Menezes MM, Maren DL, Falcone JF, Anderson WH, Wright RA, Morin SM, Knopp KL, Adams BL, Rogovoy B, Okun I, Suter TM, Statnick MA, Gehlert DR, Nelson DL, Lucaites VL, Emkey R, DeLapp NW, Wiernicki TR, Cramer JW, Yang CR, Bruns RF. An Allosteric Potentiator of the Dopamine D1 Receptor Increases Locomotor Activity in Human D1 Knock-In Mice without Causing Stereotypy or Tachyphylaxis. J Pharmacol Exp Ther 2017; 360:117-128. [PMID: 27811173 PMCID: PMC5193077 DOI: 10.1124/jpet.116.236372] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/27/2016] [Indexed: 01/11/2023] Open
Abstract
Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a Kb of 26 nM. The maximum response to DETQ alone was ∼12% of the maximum response to dopamine, suggesting weak allosteric agonist activity. DETQ was ∼30-fold less potent at rat and mouse D1 receptors and was inactive at the human D5 receptor. To enable studies in rodents, an hD1 knock-in mouse was generated. DETQ (3-20 mg/kg orally) caused a robust (∼10-fold) increase in locomotor activity (LMA) in habituated hD1 mice but was inactive in wild-type mice. The LMA response to DETQ was blocked by the D1 antagonist SCH39166 and was dependent on endogenous dopamine. LMA reached a plateau at higher doses (30-240 mg/kg) even though free brain levels of DETQ continued to increase over the entire dose range. In contrast, the D1 agonists SKF 82958, A-77636, and dihydrexidine showed bell-shaped dose-response curves with a profound reduction in LMA at higher doses; video-tracking confirmed that the reduction in LMA caused by SKF 82958 was due to competing stereotyped behaviors. When dosed daily for 4 days, DETQ continued to elicit an increase in LMA, whereas the D1 agonist A-77636 showed complete tachyphylaxis by day 2. These results confirm that allosteric potentiators may have advantages compared with direct-acting agonists.
Collapse
Affiliation(s)
- Kjell A Svensson
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Beverly A Heinz
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - John M Schaus
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - James P Beck
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Junliang Hao
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Joseph H Krushinski
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Matthew R Reinhard
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Michael P Cohen
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Sarah L Hellman
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Brian G Getman
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Xushan Wang
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Michelle M Menezes
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Deanna L Maren
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Julie F Falcone
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Wesley H Anderson
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Rebecca A Wright
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - S Michelle Morin
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Kelly L Knopp
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Benjamin L Adams
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Borys Rogovoy
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Ilya Okun
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Todd M Suter
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Michael A Statnick
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Donald R Gehlert
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - David L Nelson
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Virginia L Lucaites
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Renee Emkey
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Neil W DeLapp
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Todd R Wiernicki
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Jeffrey W Cramer
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Charles R Yang
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| | - Robert F Bruns
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana (K.A.S., B.A.H., J.M.S., J.P.B., J.H., J.H.K., M.R.R., M.P.C., S.L.H., B.G.G., X.W., M.M.M., D.L.M., J.F.F., W.H.A., R.A.W., S.M.M., K.L.K., B.L.A., T.M.S., M.A.S., D.R.G., D.L.N., V.L.L., R.E., N.W.D., T.R.W., J.W.C., C.R.Y., R.F.B.); Chemical Diversity, Inc., San Diego, California (B.R., I.O.)
| |
Collapse
|
40
|
Siuda ER, Carr R, Rominger DH, Violin JD. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr Opin Pharmacol 2016; 32:77-84. [PMID: 27936408 DOI: 10.1016/j.coph.2016.11.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/14/2023]
Abstract
Opioid chemistry and biology occupy a pivotal place in the history of pharmacology and medicine. Morphine offers unmatched efficacy in alleviating acute pain, but is also associated with a host of adverse side effects. The advent of biased agonism at G protein-coupled receptors has expanded our understanding of intracellular signaling and highlighted the concept that certain ligands are able to differentially modulate downstream pathways. The ability to target one pathway over another has allowed for the development of biased ligands with robust clinical efficacy and fewer adverse events. In this review we summarize these concepts with an emphasis on biased mu opioid receptor pharmacology and highlight how far opioid pharmacology has evolved.
Collapse
Affiliation(s)
- Edward R Siuda
- Trevena Inc., 1018 West 8th Avenue, Suite A, King of Prussia, PA 19406, USA
| | - Richard Carr
- Trevena Inc., 1018 West 8th Avenue, Suite A, King of Prussia, PA 19406, USA
| | - David H Rominger
- Trevena Inc., 1018 West 8th Avenue, Suite A, King of Prussia, PA 19406, USA
| | - Jonathan D Violin
- Trevena Inc., 1018 West 8th Avenue, Suite A, King of Prussia, PA 19406, USA.
| |
Collapse
|
41
|
Ehlert FJ, Stein RSL. Estimation of the receptor-state affinity constants of ligands in functional studies using wild type and constitutively active mutant receptors: Implications for estimation of agonist bias. J Pharmacol Toxicol Methods 2016; 83:94-106. [PMID: 27725245 DOI: 10.1016/j.vascn.2016.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/17/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
We describe a method for estimating the affinities of ligands for active and inactive states of a G protein-coupled receptor (GPCR). Our protocol involves measuring agonist-induced signaling responses of a wild type GPCR and a constitutively active mutant of it under control conditions and after partial receptor inactivation or reduced receptor expression. Our subsequent analysis is based on the assumption that the activating mutation increases receptor isomerization into the active state without affecting the affinities of ligands for receptor states. A means of confirming this assumption is provided. Global nonlinear regression analysis yields estimates of 1) the active (Kact) and inactive (Kinact) receptor-state affinity constants, 2) the isomerization constant of the unoccupied receptor (Kq-obs), and 3) the sensitivity constant of the signaling pathway (KE-obs). The latter two parameters define the output response of the receptor, and hence, their ratio (Kq-obs/KE) is a useful measure of system bias. If the cellular system is reasonably stable and the Kq-obs and KE-obs values of the signaling pathway are known, the Kact and Kinact values of additional agonists can be estimated in subsequent experiments on cells expressing the wild type receptor. We validated our method through computer simulation, an analytical proof, and analysis of previously published data. Our approach provides 1) a more meaningful analysis of structure-activity relationships, 2) a means of validating in silico docking experiments on active and inactive receptor structures and 3) an absolute, in contrast to relative, measure of agonist bias.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4625, United States; Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4625, United States.
| | - Richard S L Stein
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4625, United States
| |
Collapse
|
42
|
Ehlert FJ. Cooperativity Has Empirical and Ultimate Levels of Explanation. Trends Pharmacol Sci 2016; 37:620-623. [PMID: 27364140 DOI: 10.1016/j.tips.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022]
Abstract
Controversy over the meaning of pharmacological parameters often arises because of a lack of appreciation of different hierarchical levels of analysis. In a recent letter in Trends in Pharmacological Sciences, Zhang and Kavana [1] concluded that my two-state model for allosterism lacks cooperativity, even though Figures 5 and 6 in my review [2] illustrate examples of how the two-state model yields specific cooperativity values. Here, I explain how the two-state model (receptor-state analysis) gives rise to the cooperativity parameter (α) of the allosteric ternary complex model (receptor-population analysis).
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4625, USA.
| |
Collapse
|
43
|
Wootten D, Miller LJ, Koole C, Christopoulos A, Sexton PM. Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. Chem Rev 2016; 117:111-138. [PMID: 27040440 DOI: 10.1021/acs.chemrev.6b00049] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Class B G protein-coupled receptors (GPCRs) respond to paracrine or endocrine peptide hormones involved in control of bone homeostasis, glucose regulation, satiety, and gastro-intestinal function, as well as pain transmission. These receptors are targets for existing drugs that treat osteoporosis, hypercalcaemia, Paget's disease, type II diabetes, and obesity and are being actively pursued as targets for numerous other diseases. Exploitation of class B receptors has been limited by difficulties with small molecule drug discovery and development and an under appreciation of factors governing optimal therapeutic efficacy. Recently, there has been increasing awareness of novel attributes of GPCR function that offer new opportunity for drug development. These include the presence of allosteric binding sites on the receptor that can be exploited as drug binding pockets and the ability of individual drugs to enrich subpopulations of receptor conformations to selectively control signaling, a phenomenon termed biased agonism. In this review, current knowledge of biased signaling and small molecule allostery within class B GPCRs is discussed, highlighting areas that have progressed significantly over the past decade, in addition to those that remain largely unexplored with respect to these phenomena.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | - Cassandra Koole
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia.,Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , New York, New York 10065, United States
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| |
Collapse
|
44
|
Rosethorne EM, Bradley ME, Gherbi K, Sykes DA, Sattikar A, Wright JD, Renard E, Trifilieff A, Fairhurst RA, Charlton SJ. Long Receptor Residence Time of C26 Contributes to Super Agonist Activity at the Human β2 Adrenoceptor. Mol Pharmacol 2016; 89:467-75. [PMID: 26772612 DOI: 10.1124/mol.115.101253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 02/14/2025] Open
Abstract
Super agonists produce greater functional responses than endogenous agonists in the same assay, and their unique pharmacology is the subject of increasing interest and debate. We propose that receptor residence time and the duration of receptor signaling contribute to the pharmacology of super agonism. We have further characterized the novel β2 adrenoceptor agonist C26 (7-[(R)-2-((1R,2R)-2-benzyloxycyclopentylamino)-1-hydroxyethyl]-4-hydroxybenzothiazolone), which displays higher intrinsic activity than the endogenous ligand adrenaline in cAMP accumulation, β-arrestin-2 recruitment, and receptor internalization assays. C26 recruited β-arrestin-2, and internalized the Green Fluorescent Protein (GFP)-taggedβ2 adrenoceptor at a slow rate, with half-life (t1/2) values of 0.78 ± 0.1 and 0.78 ± 0.04 hours, respectively. This was compared with 0.31 ± 0.04 and 0.34 ± 0.01 hours for adrenaline-mediated β-arrestin-2 recruitment and GFP-β2 internalization, respectively. The slower rate for C26 resulted in levels of β-arrestin-2 recruitment increasing up to 4-hour agonist incubation, at which point the intrinsic activity was determined to be 124.3 ± 0.77% of the adrenaline response. In addition to slow functional kinetics, C26 displayed high affinity with extremely slow receptor dissociation kinetics, giving a receptor residence half-life of 32.7 minutes at 37°C, which represents the slowest dissociation rate we have observed for any β2 adrenoceptor agonist tested to date. In conclusion, we propose that the gradual accumulation of long-lived active receptor complexes contributes to the increased intrinsic activity of C26 over time. This highlights the need to consider the temporal aspects of agonist binding and signaling when characterizing ligands as super agonists.
Collapse
Affiliation(s)
- Elizabeth M Rosethorne
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - Michelle E Bradley
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - Karolina Gherbi
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - David A Sykes
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - Afrah Sattikar
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - John D Wright
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - Emilie Renard
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - Alex Trifilieff
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - Robin A Fairhurst
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| | - Steven J Charlton
- Novartis Institutes for Biomedical Research, Horsham, West Sussex, United Kingdom (E.M.R., M.E.B., K.G., D.A.S., A.S., J.D.W., S.J.C.); Novartis Institutes for Biomedical Research, Basel, Switzerland (E.R., A.T., R.A.F.); and School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (E.M.R., K.G., D.A.S., S.J.C.)
| |
Collapse
|
45
|
Pupo AS, Duarte DA, Lima V, Teixeira LB, Parreiras-E-Silva LT, Costa-Neto CM. Recent updates on GPCR biased agonism. Pharmacol Res 2016; 112:49-57. [PMID: 26836887 DOI: 10.1016/j.phrs.2016.01.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most important targets for drug discovery and not surprisingly ∼40% of all drugs currently in the market act on these receptors. Currently, one of the most active areas in GPCRs signaling is biased agonism, a phenomenon that occurs when a given ligand is able to preferentially activate one (or some) of the possible signaling pathways. In this review, we highlight the most recent findings about biased agonism, including an extension of this concept to intracellular signaling, allosterism, strategies for assessment and interpretation, and perspectives of therapeutic applications for biased agonists.
Collapse
Affiliation(s)
- André S Pupo
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP, Brazil.
| | - Diego A Duarte
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Vanessa Lima
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP, Brazil; Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Larissa B Teixeira
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
46
|
Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data. Biochem Pharmacol 2016; 101:1-12. [DOI: 10.1016/j.bcp.2015.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023]
|
47
|
Rankovic Z, Brust TF, Bohn LM. Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 2016; 26:241-250. [PMID: 26707396 PMCID: PMC5595354 DOI: 10.1016/j.bmcl.2015.12.024] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023]
Abstract
G protein coupled receptors have historically been one of the most druggable classes of cellular proteins. The members of this large receptor gene family couple to primary effectors, G proteins, that have built in mechanisms for regeneration and amplification of signaling with each engagement of receptor and ligand, a kinetic event in itself. In recent years GPCRs, have been found to interact with arrestin proteins to initiate signal propagation in the absence of G protein interactions. This pinnacle observation has changed a previously held notion of the linear spectrum of GPCR efficacy and uncovered a new paradigm in GPCR research and drug discovery that relies on multidimensionality of GPCR signaling. Ligands were found that selectively confer activity in one pathway over another, and this phenomenon has been referred to as 'biased agonism' or 'functional selectivity'. While great strides in the understanding of this phenomenon have been made in recent years, two critical questions still dominate the field: How can we rationally design biased GPCR ligands, and ultimately, which physiological responses are due to G protein versus arrestin interactions? This review will discuss the current understanding of some of the key aspects of biased signaling that are related to these questions, including mechanistic insights in the nature of biased signaling and methods for measuring ligand bias, as well as relevant examples of drug discovery applications and medicinal chemistry strategies that highlight the challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Zoran Rankovic
- Discovery Chemistry and Research Technologies, Eli Lilly and Company, 893 South Delaware Street, Indianapolis, IN 46285, USA.
| | - Tarsis F Brust
- Department of Molecular Therapeutics, and Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, and Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
48
|
Luttrell LM, Maudsley S, Bohn LM. Fulfilling the Promise of "Biased" G Protein-Coupled Receptor Agonism. Mol Pharmacol 2015; 88:579-88. [PMID: 26134495 PMCID: PMC4551052 DOI: 10.1124/mol.115.099630] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022] Open
Abstract
The fact that over 30% of current pharmaceuticals target heptahelical G protein-coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non-G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics.
Collapse
Affiliation(s)
- Louis M Luttrell
- Departments of Medicine and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina (L.M.L.); Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.); Translational Neurobiology Group, VIB Department of Molecular Genetics, Laboratory of Neurogenetics-Institute Born-Bunge, University of Antwerp, Belgium (S.M.); and Department of Molecular Therapeutics and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (L.M.B.)
| | - Stuart Maudsley
- Departments of Medicine and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina (L.M.L.); Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.); Translational Neurobiology Group, VIB Department of Molecular Genetics, Laboratory of Neurogenetics-Institute Born-Bunge, University of Antwerp, Belgium (S.M.); and Department of Molecular Therapeutics and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (L.M.B.)
| | - Laura M Bohn
- Departments of Medicine and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina (L.M.L.); Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.); Translational Neurobiology Group, VIB Department of Molecular Genetics, Laboratory of Neurogenetics-Institute Born-Bunge, University of Antwerp, Belgium (S.M.); and Department of Molecular Therapeutics and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (L.M.B.)
| |
Collapse
|
49
|
Ehlert FJ. Functional studies cast light on receptor states. Trends Pharmacol Sci 2015; 36:596-604. [PMID: 26123416 DOI: 10.1016/j.tips.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Contemporary analysis of the functional responses of G-protein-coupled receptors (GPCRs) usually addresses drug-receptor interactions from the perspective of the average behavior of the receptor population. This behavior is characterized in terms of observed affinity and efficacy. Efficacy is a measure of how well a drug activates the receptor population and observed affinity a measure of how potently a drug occupies the receptor population. The latter is quantified in terms of the dissociation constant of the ligand-receptor complex. At a deeper level of analysis, drug-receptor interactions are described in terms of ligand affinity constants for active and inactive receptor states. Unlike observed affinity and efficacy, estimates of receptor state affinity constants are unperturbed by G proteins, guanine nucleotides, or other signaling proteins that interact with the receptor. Recent advances in the analysis of the functional responses of GPCRs have enabled the estimation of receptor state affinity constants. These constants provide a more fundamental measure of drug-receptor interactions and are useful in analyzing structure-activity relationships and in quantifying allosterism, biased signaling, and receptor-subtype selectivity.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA 92697-4625, USA.
| |
Collapse
|
50
|
DiMattio KM, Ehlert FJ, Liu-Chen LY. Intrinsic relative activities of κ opioid agonists in activating Gα proteins and internalizing receptor: Differences between human and mouse receptors. Eur J Pharmacol 2015; 761:235-44. [PMID: 26057692 DOI: 10.1016/j.ejphar.2015.05.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/17/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.
Collapse
Affiliation(s)
- Kelly M DiMattio
- Center for Substance Abuse Research and Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| | - Frederick J Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|