1
|
McCormack A, Stone V, McQuat J, Johnston H. Investigating the impact of the dispersion protocol on the physico-chemical identity and toxicity of nanomaterials: a review of the literature with focus on TiO 2 particles. Part Fibre Toxicol 2025; 22:11. [PMID: 40361208 PMCID: PMC12070512 DOI: 10.1186/s12989-025-00627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Particles often require dispersion in aqueous media to allow assessment of their hazard profile. The approach used to disperse particles is not consistent in the published literature, with approaches including stirring, vortexing, shaking or sonication, and the use of biological or chemical stabilisers. Such variations in the dispersion protocol can influence the physico-chemical (PC) identity and toxicity of particles. To better understand the protocol variations and their impacts on human health, this work identified and critically reviewed publications with a specific focus on titanium dioxide (TiO2), which was dominated by nanomaterials (NMs). This review included consideration of both in vitro and in vivo studies, as well as other NMs to help address knowledge gaps and identify any lessons that can be learnt and applied to TiO2. Overall, the evidence gathered showed that variations in the dispersion protocol, specifically the method and parameters of sonication (e.g. power and duration), as well as the dispersion medium choice (and inclusion of biological and chemical stabilisers), were impactful on NM agglomerate size. There is no consensus as to whether a reduction or increase in NM agglomeration enhances or reduces NM toxicity with the outcome of the study dependent on the experimental design (e.g. PC properties of the NM being tested, test model used, time point, and concentrations/doses assessed). Whilst standard protocols for NM dispersion have been generated, they have not been widely adopted and there is unlikely to be one protocol that can be applied to all NMs and test models. Instead, more guidance is needed to inform the considerations that should guide preparation of NM suspensions for hazard testing. These include a recommendation that pilot studies are performed to identify the most suitable dispersion protocol before embarking on a toxicology study. Improved knowledge of the impact of dispersion protocols on PC identity and toxicity of TiO2 will assist in the interpretation of existing toxicology data and feed into the design of future studies which assess TiO2 toxicity.
Collapse
Affiliation(s)
- Andrew McCormack
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | | | - Helinor Johnston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
2
|
Stem AD, Gibb M, Roncal-Jimenez CA, Johnson RJ, Brown JM. Health burden of sugarcane burning on agricultural workers and nearby communities. Inhal Toxicol 2024; 36:327-342. [PMID: 38349733 PMCID: PMC11260540 DOI: 10.1080/08958378.2024.2316875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
Sugarcane is the most widely cultivated crop in the world, with equatorial developing nations performing most of this agriculture. Burning sugarcane is a common practice to facilitate harvest, producing extremely high volumes of respirable particulate matter in the process. These emissions are known to have deleterious effects on agricultural workers and nearby communities, but the extent of this exposure and potential toxicity remain poorly characterized. As the epidemicof chronic kidney disease of an unknown etiology (CKDu) and its associated mortality continue to increase along with respiratory distress, there is an urgent need to investigate the causes, determine viable interventions to mitigate disease andimprove outcomes for groups experiencing disproportionate impact. The goal of this review is to establish the state of available literature, summarize what is known in terms of human health risk, and provide recommendations for what areas should be prioritized in research.
Collapse
Affiliation(s)
- Arthur D. Stem
- Department of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Matthew Gibb
- Department of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Carlos A. Roncal-Jimenez
- Division of Renal Diseases and Hypertension,University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension,University of
Colorado Anschutz Medical Campus, Aurora, CO
| | - Jared M. Brown
- Department of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Burgum MJ, Ulrich C, Partosa N, Evans SJ, Gomes C, Seiffert SB, Landsiedel R, Honarvar N, Doak SH. Adapting the in vitro micronucleus assay (OECD Test Guideline No. 487) for testing of manufactured nanomaterials: recommendations for best practices. Mutagenesis 2024; 39:205-217. [PMID: 38502821 DOI: 10.1093/mutage/geae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.
Collapse
Affiliation(s)
- Michael J Burgum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Clarissa Ulrich
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Natascha Partosa
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Stephen J Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Caroline Gomes
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
- Free University of Berlin, Pharmacy - Pharmacology and Toxicology, 14195 Berlin, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| |
Collapse
|
4
|
Meesaragandla B, Blessing DO, Karanth S, Rong A, Geist N, Delcea M. Interaction of Polystyrene Nanoparticles with Supported Lipid Bilayers: Impact of Nanoparticle Size and Protein Corona. Macromol Biosci 2023; 23:e2200464. [PMID: 36707930 DOI: 10.1002/mabi.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Indexed: 01/29/2023]
Abstract
Polystyrene is one of the most widely used plastics. This article reports on the interaction of 50 and 210 nm polystyrene nanoparticles (PSNPs) with human serum albumin (HSA) and transferrin (Tf), as well as their effect on supported lipid bilayers (SLBs), using experimental and theoretical approaches. Dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements show that the increase in diameter for the PSNP-protein bioconjugates depends on nanoparticle size and type of proteins. The circular dichroism (CD) spectroscopy results demonstrate that the proteins preserve their structures when they interact with PSNPs at physiological temperatures. The quartz crystal microbalance (QCM) technique reveals that PSNPs and their bioconjugates show no strong interactions with SLBs. On the contrary, the molecular dynamics simulations (MDS) show that both proteins bind strongly to the lipid bilayer (SLBs) when compared to their binding to a polystyrene surface model. The interaction is strongly dependent on the protein and lipid bilayer composition. Both the PSNPs and their bioconjugates show no toxicity in human umbilical vein endothelial (HUVEC) cells; however, bare 210 nm PSNPs and 50 nm PSNP-Tf bioconjugates show an increase in reactive oxygen species production. This study may be relevant for assessing the impact of plastics on health.
Collapse
Affiliation(s)
- Brahmaiah Meesaragandla
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
| | - Dennis Oliver Blessing
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
| | - Sanjai Karanth
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
| | - Alena Rong
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), partner site Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
5
|
Bellomo C, Pavan C, Fiore G, Escolano-Casado G, Mino L, Turci F. Top-Down Preparation of Nanoquartz for Toxicological Investigations. Int J Mol Sci 2022; 23:15425. [PMID: 36499757 PMCID: PMC9738116 DOI: 10.3390/ijms232315425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to quartz dust is associated with fatal diseases. Quartz dusts generated by mechanical fracturing are characterized by a broad range of micrometric to nanometric particles. The contribution of this nanometric fraction to the overall toxicity of quartz is still largely unexplored, primarily because of the strong electrostatic adhesion forces that prevent isolation of the nanofraction. Furthermore, fractured silica dust exhibits special surface features, namely nearly free silanols (NFS), which impart a membranolytic activity to quartz. Nanoquartz can be synthetized via bottom-up methods, but the surface chemistry of such crystals strongly differs from that of nanoparticles resulting from fracturing. Here, we report a top-down milling procedure to obtain a nanometric quartz that shares the key surface properties relevant to toxicity with fractured quartz. The ball milling was optimized by coupling the dry and wet milling steps, using water as a dispersing agent, and varying the milling times and rotational speeds. Nanoquartz with a strong tendency to form submicrometric agglomerates was obtained. The deagglomeration with surfactants or simulated body fluids was negligible. Partial lattice amorphization and a bimodal crystallite domain size were observed. A moderate membranolytic activity, which correlated with the number of NFS, signaled coherence with the previous toxicological data. A membranolytic nanoquartz for toxicological investigations was obtained.
Collapse
Affiliation(s)
- Chiara Bellomo
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
| | - Cristina Pavan
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Gianluca Fiore
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| | - Francesco Turci
- Department of Chemistry, University of Turin, 10125 Turin, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, 10125 Turin, Italy
- Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, 10125 Turin, Italy
| |
Collapse
|
6
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
7
|
Sabapathy M, Md KZ, Kumar H, Ramamirtham S, Mani E, Basavaraj MG. Exploiting Heteroaggregation to Quantify the Contact Angle of Charged Colloids at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7433-7441. [PMID: 35678741 DOI: 10.1021/acs.langmuir.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We exploit the aggregation between oppositely charged particles to visualize and quantify the equilibrium position of charged colloidal particles at the fluid-water interface. A dispersion of commercially available charge-stabilized nanoparticles was used as the aqueous phase to create oil-water and air-water interfaces. The colloidal particles whose charge was opposite that of the nanoparticles in the aqueous phase were deposited at the chosen fluid-water interface. Heteroaggregation, i.e., aggregation between oppositely charged particles, leads to the deposition of nanoparticles onto the larger particle located at the interface; however, this only occurs on the surface of the particle in contact with the aqueous phase. This selective deposition of nanoparticles on the surfaces of the particles exposed to water enables the distinct visualization of the circular three-phase contact line around the particles positioned at the fluid-water interface. Since the electrostatic association between the nanoparticles and the colloids at interfaces is strong, the nanoparticle assembly on the larger particles is preserved even after being transferred to solid substrates via dip-coating. This facilitates the easy visualization of the contact line by electron microscopy and the determination of the equilibrium contact angle of colloidal particles (θ) at the fluid-water interface. The suitability of the method is demonstrated by the measurement of the three-phase contact angle of positively and negatively charged polystyrene particles located at fluid-water interfaces by considering particles with sizes varying from 220 nm to 8.71 μm. The study highlights the effect of the size ratio between the nanoparticles in the aqueous phase and the colloidal particles on the accuracy of the measurement of θ.
Collapse
Affiliation(s)
- Manigandan Sabapathy
- Advanced Colloid and Interfacial Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Khalid Zubair Md
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Hemant Kumar
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sashikumar Ramamirtham
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
8
|
Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23126412. [PMID: 35742856 PMCID: PMC9224477 DOI: 10.3390/ijms23126412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.
Collapse
|
9
|
O’Connell RC, Dodd TM, Clingerman SM, Fluharty KL, Coyle J, Stueckle TA, Porter DW, Bowers L, Stefaniak AB, Knepp AK, Derk R, Wolfarth M, Mercer RR, Boots TE, Sriram K, Hubbs AF. Developing a Solution for Nasal and Olfactory Transport of Nanomaterials. Toxicol Pathol 2022; 50:329-343. [PMID: 35416103 PMCID: PMC9872725 DOI: 10.1177/01926233221089209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With advances in nanotechnology, engineered nanomaterial applications are a rapidly growing sector of the economy. Some nanomaterials can reach the brain through nose-to-brain transport. This transport creates concern for potential neurotoxicity of insoluble nanomaterials and a need for toxicity screening tests that detect nose-to-brain transport. Such tests can involve intranasal instillation of aqueous suspensions of nanomaterials in dispersion media that limit particle agglomeration. Unfortunately, protein and some elements in existing dispersion media are suboptimal for potential nose-to-brain transport of nanomaterials because olfactory transport has size- and ion-composition requirements. Therefore, we designed a protein-free dispersion media containing phospholipids and amino acids in an isotonic balanced electrolyte solution, a solution for nasal and olfactory transport (SNOT). SNOT disperses hexagonal boron nitride nanomaterials with a peak particle diameter below 100 nm. In addition, multiwalled carbon nanotubes (MWCNTs) in an established dispersion medium, when diluted with SNOT, maintain dispersion with reduced albumin concentration. Using stereomicroscopy and microscopic examination of plastic sections, dextran dyes dispersed in SNOT are demonstrated in the neuroepithelium of the nose and olfactory bulb of B6;129P2-Omptm3Mom/MomJ mice after intranasal instillation in SNOT. These findings support the potential for SNOT to disperse nanomaterials in a manner permitting nose-to-brain transport for neurotoxicity studies.
Collapse
Affiliation(s)
- Ryan C. O’Connell
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA,West Virginia University, Morgantown, West Virginia, USA
| | - Tiana M. Dodd
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Kara L. Fluharty
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Jayme Coyle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Todd A. Stueckle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Dale W. Porter
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Lauren Bowers
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Alycia K. Knepp
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Raymond Derk
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Michael Wolfarth
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Theresa E. Boots
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Krishnan Sriram
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Ann F. Hubbs
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| |
Collapse
|
10
|
Testing Strategies of the In Vitro Micronucleus Assay for the Genotoxicity Assessment of Nanomaterials in BEAS-2B Cells. NANOMATERIALS 2021; 11:nano11081929. [PMID: 34443765 PMCID: PMC8399994 DOI: 10.3390/nano11081929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.
Collapse
|
11
|
Bone targeting nanocarrier-assisted delivery of adenosine to combat osteoporotic bone loss. Biomaterials 2021; 273:120819. [PMID: 33892345 PMCID: PMC10108099 DOI: 10.1016/j.biomaterials.2021.120819] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
Extracellular adenosine has been shown to play a key role in maintaining bone health and could potentially be used to treat bone loss. However, systemic administration of exogenous adenosine to treat bone disorders remains a challenge due to the ubiquitous presence of adenosine receptors in different organs and the short half-life of adenosine in circulation. Towards this, we have developed a bone-targeting nanocarrier and determined its potential for systemic administration of adenosine. The nanocarrier, synthesized via emulsion suspension photopolymerization, is comprised of hyaluronic acid (HA) copolymerized with phenylboronic acid (PBA), a moiety that can form reversible bonds with adenosine. The bone binding affinity of the nanocarrier was achieved by alendronate (Aln) conjugation. Nanocarriers functionalized with the alendronate (Aln-NC) showed a 45% higher accumulation in the mice vertebrae in vivo compared to those lacking alendronate molecules (NCs). Systemic administration of adenosine via bone-targeting nanocarriers (Aln-NC) attenuated bone loss in ovariectomized (OVX) mice. Furthermore, bone tissue of mice treated with adenosine-loaded Aln-NC displayed trabecular bone characteristics comparable to healthy controls as shown by microcomputed tomography, histochemical staining, bone labeling, and mechanical strength. Overall, our results demonstrate the use of a bone-targeting nanocarrier towards systemic administration of adenosine and its application in treating bone degenerative diseases such as osteoporosis.
Collapse
|
12
|
Hsiao TC, Chuang HC, Lin JC, Cheng TJ, Chou LT. Effect of particle morphology on performance of an electrostatic air-liquid interface cell exposure system for nanotoxicology studies. Nanotoxicology 2020; 15:433-445. [PMID: 33378224 DOI: 10.1080/17435390.2020.1863499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Particle morphology can affect the performance of an electrostatic precipitator air-liquid interface (ESP-ALI) cell exposure system and the resulting cell toxicity. In this study, three types of monodisperse aerosols - spherical sucrose particles, nonspherical align soot aggregates, and nanosilver aggregates/agglomerates - were selected to evaluate the collection efficiency at flow rates ranging from 0.3 to 1.5 lpm. To quantify the particle morphology, the fractal dimensions (Df) of the tested aerosols were characterized. The penetration of fine particles (dp = 100-250 nm) under different operating conditions was correlated with a characteristic exponential curve using the dimensionless drift velocity (Vc/Vavg,r) as the scaling parameter. For nanoparticles (NPs, dp <100 nm) with different particle morphologies, the particle penetrations in the ESP-ALI were similar, but their diffusion losses were not negligible. In contrast, for fine particles, the collection efficiency of soot nanoaggregates (Df = 2.29) was higher than that of spherical sucrose particles. This difference might be due to the simultaneous influences of the electric field-induced and flow field-induced alignment. Furthermore, based on Zhibin and Guoquan's Deutsch model, a quadratic equation was applied to fit the experimental data and to predict the performance of the ESP-ALI.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Chi Lin
- Graduate Institute of Environmental Engineering, National Central University, Jhongli, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Li-Ti Chou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Nelissen I, Haase A, Anguissola S, Rocks L, Jacobs A, Willems H, Riebeling C, Luch A, Piret JP, Toussaint O, Trouiller B, Lacroix G, Gutleb AC, Contal S, Diabaté S, Weiss C, Lozano-Fernández T, González-Fernández Á, Dusinska M, Huk A, Stone V, Kanase N, Nocuń M, Stępnik M, Meschini S, Ammendolia MG, Lewinski N, Riediker M, Venturini M, Benetti F, Topinka J, Brzicova T, Milani S, Rädler J, Salvati A, Dawson KA. Improving Quality in Nanoparticle-Induced Cytotoxicity Testing by a Tiered Inter-Laboratory Comparison Study. NANOMATERIALS 2020; 10:nano10081430. [PMID: 32707981 PMCID: PMC7466672 DOI: 10.3390/nano10081430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.
Collapse
Affiliation(s)
- Inge Nelissen
- Health Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.J.); (H.W.)
- Correspondence: ; Tel.: +32-14-335107
| | - Andrea Haase
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (A.H.); (C.R.); (A.L.)
| | - Sergio Anguissola
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
- Charles River Laboratories, Carrowntreila, Ballina, Co. Mayo, Ireland
| | - Louise Rocks
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
- Science Foundation Ireland, Three Park Place, Hatch Street Upper, Dublin 2, Ireland
| | - An Jacobs
- Health Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.J.); (H.W.)
| | - Hanny Willems
- Health Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (A.J.); (H.W.)
| | - Christian Riebeling
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (A.H.); (C.R.); (A.L.)
| | - Andreas Luch
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (A.H.); (C.R.); (A.L.)
| | - Jean-Pascal Piret
- Research Unit in Cellular Biology (URBC), Namur Nanosafety Center (NNC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Olivier Toussaint
- Research Unit in Cellular Biology (URBC), Namur Nanosafety Center (NNC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Bénédicte Trouiller
- Experimental Toxicology Unit, Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Alata, BP2, 60550 Verneuil-en-Halatte, France; (B.T.); (G.L.)
| | - Ghislaine Lacroix
- Experimental Toxicology Unit, Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Alata, BP2, 60550 Verneuil-en-Halatte, France; (B.T.); (G.L.)
| | - Arno C. Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg; (A.C.G.); (S.C.)
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg; (A.C.G.); (S.C.)
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.D.); (C.W.)
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.D.); (C.W.)
| | - Tamara Lozano-Fernández
- Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain; (T.L.-F.); (Ã.G.-F.)
- Nanoimmunotech SL, Edificio CITEXVI Fonte das Abelleiras s/n, Campus Universitario de Vigo, 36310 Vigo, Pontevedra, Spain
| | - África González-Fernández
- Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain; (T.L.-F.); (Ã.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Hospital Álvaro Cunqueiro, Estrada Clara Campoamor 341, Babio – Beade, 36312 Vigo, Spain
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Instituttveien 18, 2007 Kjeller, Norway; (M.D.); (A.H.)
| | - Anna Huk
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Instituttveien 18, 2007 Kjeller, Norway; (M.D.); (A.H.)
- Gentian Diagnostics AS, Bjørnåsveien 5, 1596 Moss, Norway
| | - Vicki Stone
- School of Life Sciences, Heriot-Watt University (HWU), Riccarton Campus, Edinburgh EH14 4AS, UK; (V.S.); (N.K.)
| | - Nilesh Kanase
- School of Life Sciences, Heriot-Watt University (HWU), Riccarton Campus, Edinburgh EH14 4AS, UK; (V.S.); (N.K.)
| | - Marek Nocuń
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine (NIOM), 91-348 Łódź, Poland; (M.N.); (M.S.)
- SEQme s.r.o., Dlouha 176, 26301 Dobris, Czech Republic
| | - Maciej Stępnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine (NIOM), 91-348 Łódź, Poland; (M.N.); (M.S.)
| | - Stefania Meschini
- National Center for Drug Research and Evaluation and National Center of Innovative Technologies for Public Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena, 299 Rome, Italy; (S.M.); (M.G.A.)
| | - Maria Grazia Ammendolia
- National Center for Drug Research and Evaluation and National Center of Innovative Technologies for Public Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena, 299 Rome, Italy; (S.M.); (M.G.A.)
| | - Nastassja Lewinski
- Institute for Work and Health (IST), University of Lausanne and University of Geneva, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland; (N.L.); (M.R.)
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael Riediker
- Institute for Work and Health (IST), University of Lausanne and University of Geneva, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland; (N.L.); (M.R.)
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, 8404 Winterthur, Switzerland
- School of Materials Science & Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798, Singapore
| | - Marco Venturini
- ECAMRICERT SRL, European Center for the Sustainable Impact of Nanotechnology (ECSIN), Corso Stati Uniti 4, 35127 Padova, Italy; (M.V.); (F.B.)
| | - Federico Benetti
- ECAMRICERT SRL, European Center for the Sustainable Impact of Nanotechnology (ECSIN), Corso Stati Uniti 4, 35127 Padova, Italy; (M.V.); (F.B.)
| | - Jan Topinka
- Institute of Experimental Medicine (IEM), Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (J.T.); (T.B.)
| | - Tana Brzicova
- Institute of Experimental Medicine (IEM), Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (J.T.); (T.B.)
- Faculty of Safety Engineering, VSB-Technical University of Ostrava, Lumirova 13, 70030 Ostrava-Vyskovice, Czech Republic
| | - Silvia Milani
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Geshwister-Scholl-Platz 1, 80539 Munich, Germany; (S.M.); (J.R.)
| | - Joachim Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Geshwister-Scholl-Platz 1, 80539 Munich, Germany; (S.M.); (J.R.)
| | - Anna Salvati
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Kenneth A. Dawson
- Centre for BioNano Interactions, University College Dublin (UCD), Belfield, Dublin 4, Ireland; (S.A.); (L.R.); (A.S.); (K.A.D.)
| |
Collapse
|
14
|
Leonenko N, Leonenko O. Factors Influencing the Manifestation of Toxicity and Danger of Nanomaterials. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.2.192810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
15
|
Marucco A, Aldieri E, Leinardi R, Bergamaschi E, Riganti C, Fenoglio I. Applicability and Limitations in the Characterization of Poly-Dispersed Engineered Nanomaterials in Cell Media by Dynamic Light Scattering (DLS). MATERIALS 2019; 12:ma12233833. [PMID: 31766412 PMCID: PMC6926523 DOI: 10.3390/ma12233833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
The dispersion protocol used to administer nanomaterials (NMs) in in vitro cellular tests might affect their toxicity. For this reason, several dispersion procedures have been proposed to harmonize the toxicological methods, allowing for the comparison of the data that were obtained by different laboratories. At the same time, several techniques and methods are available to monitor the identity of the NMs in the cell media. However, while the characterization of suspensions of engineered NMs having narrow size distribution may be easily performed, the description of aggregated NMs forming polydispersions is still challenging. In the present study, sub-micrometric/nanometric TiO2, SiO2, and CeO2 were dispersed in cell media by using two different dispersion protocols, with and without albumin (0.5%) and with different sonication procedures. Dynamic Light Scattering (DLS) was used to characterize NMs in stock solutions and culture media. Pitfalls that affect DLS measurements were identified and, guidance on a critical analysis of the results provided. The NMs were then tested for their cytotoxicity (LDH leakage) toward murine macrophages (RAW 264.7) and PMA-activated human monocytes (THP-1). As markers of pro-inflammatory response, nitric oxide (NO) and cytokine IL-1β production were measured on RAW 264.7 and THP-1 cells, respectively. The pre-treatment with albumin added to a strong sonication treatment increases the stability and homogeneity of the suspensions of nanometric samples, but not of the submicrometric-samples. Nevertheless, while TiO2 and CeO2 were non-cytotoxic in any conditions, differences in cytotoxicity, NO, and IL-1β releases were found for the SiO2, depending upon the protocol. Overall, the results suggest that there is no one-fits-all method valid for all NMs, since each class of NMs respond differently. The definition of validated procedures and parameters for the selection of the most appropriate method of dispersion for each class of NM appears to be a more efficacious strategy for the harmonization of the dispersion protocols.
Collapse
Affiliation(s)
- Arianna Marucco
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (A.M.); (R.L.)
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy;
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy; (E.A.); (C.R.)
| | - Riccardo Leinardi
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (A.M.); (R.L.)
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy;
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; (E.A.); (C.R.)
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (A.M.); (R.L.)
- Correspondence: ; Tel.: +39-6707506
| |
Collapse
|
16
|
Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2019; 14:21-58. [PMID: 31502904 DOI: 10.1080/17435390.2019.1661043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle(NP)-based materials have breakthrough applications in many fields of life, such as in engineering, communications and textiles industries; food and bioenvironmental applications; medicines and cosmetics, etc. Biomedical applications of NPs are very active areas of research with successful translation to pharmaceutical and clinical uses overcoming both pharmaceutical and clinical challenges. Although the attractiveness and enhanced applications of these NPs stem from their exceptional properties at the nanoscale size, i.e. 1-1000 nm, they exhibit completely different physicochemical profiles and, subsequently, toxicological profiles from their parent bulk materials. Hence, the clinical evaluation and toxicological assessment of NPs interactions within biological systems are continuously evolving to ensure their safety at the nanoscale. The pulmonary system is one of the primary routes of exposure to airborne NPs either intentionally, via aerosolized nanomedicines targeting pulmonary pathologies such as cancer or asthma, or unintentionally, via natural NPs and anthropogenic (man-made) NPs. This review presents the state-of-the-art, contemporary challenges, and knowledge gaps in the toxicological assessment of NPs interactions with the pulmonary system. It highlights the main mechanisms of NP toxicity, factors influencing their toxicity, the different toxicological assessment methods and their drawbacks, and the recent NP regulatory guidelines based on literature collected from the research pool of NPs interactions with lung cell lines, in vivo inhalation studies, and clinical trials.
Collapse
Affiliation(s)
- Nashwa M Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Y Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
17
|
The effect of salts in aqueous media on the formation of the BSA corona on SiO2 nanoparticles. Colloids Surf B Biointerfaces 2019; 179:374-381. [DOI: 10.1016/j.colsurfb.2019.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
|
18
|
Fichera O, Alpan L, Laloy J, Tabarrant T, Uhrner U, Ye Q, Mejia J, Dogné JM, Lucas S. Characterization of water-based paints containing titanium dioxide or carbon black as manufactured nanomaterials before and after atomization. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01030-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Lee K, Lee J, Kwak M, Cho YL, Hwang B, Cho MJ, Lee NG, Park J, Lee SH, Park JG, Kim YG, Kim JS, Han TS, Cho HS, Park YJ, Lee SJ, Lee HG, Kim WK, Jeung IC, Song NW, Bae KH, Min JK. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. J Nanobiotechnology 2019; 17:24. [PMID: 30722792 PMCID: PMC6362579 DOI: 10.1186/s12951-019-0456-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background Silica nanoparticles (SiNPs) are widely used for biosensing and diagnostics, and for the targeted delivery of therapeutic agents. Safety concerns about the biomedical and clinical applications of SiNPs have been raised, necessitating analysis of the effects of their intrinsic properties, such as sizes, shapes, and surface physicochemical characteristics, on human health to minimize risk in biomedical applications. In particular, SiNP size-associated toxicological effects, and the underlying molecular mechanisms in the vascular endothelium remain unclear. This study aimed to elucidate the detailed mechanisms underlying the cellular response to exposure to trace amounts of SiNPs and to determine applicable size criteria for biomedical application. Methods To clarify whether these SiNP-mediated cytotoxicity due to induction of apoptosis or necrosis, human ECs were treated with SiNPs of four different non-overlapping sizes under low serum-containing condition, stained with annexin V and propidium iodide (PI), and subjected to flow cytometric analysis (FACS). Two types of cell death mechanisms were assessed in terms of production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress induction, and autophagy activity. Results Spherical SiNPs had a diameter of 21.8 nm; this was further increased to 31.4, 42.9, and 56.7 nm. Hence, we investigated these effects in human endothelial cells (ECs) treated with these nanoparticles under overlap- or agglomerate-free conditions. The 20-nm SiNPs, but not SiNPs of other sizes, significantly induced apoptosis and necrosis. Surprisingly, the two types of cell death occurred independently and through different mechanisms. Apoptotic cell death resulted from ROS-mediated ER stress. Furthermore, autophagy-mediated necrotic cell death was induced through the PI3K/AKT/eNOS signaling axis. Together, the present results indicate that SiNPs within a diameter of < 20-nm pose greater risks to cells in terms of cytotoxic effects. Conclusion These data provide novel insights into the size-dependence of the cytotoxic effects of silica nanoparticles and the underlying molecular mechanisms. The findings are expected to inform the applicable size range of SiNPs to ensure their safety in biomedical and clinical applications. Electronic supplementary material The online version of this article (10.1186/s12951-019-0456-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyungmin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minjeong Kwak
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Jun Park
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won Kon Kim
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Cheul Jeung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul, 06591, Republic of Korea
| | - Nam Woong Song
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
20
|
Yazdimamaghani M, Moos PJ, Dobrovolskaia MA, Ghandehari H. Genotoxicity of amorphous silica nanoparticles: Status and prospects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 16:106-125. [PMID: 30529789 PMCID: PMC6455809 DOI: 10.1016/j.nano.2018.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Amorphous silica nanoparticles (SNPs) are widely used in biomedical applications and consumer products. Little is known, however, about their genotoxicity and potential to induce gene expression regulation. Despite recent efforts to study the underlying mechanisms of genotoxicity of SNPs, inconsistent results create a challenge. A variety of factors determine particle-cell interactions and underlying mechanisms. Further, high-throughput studies are required to carefully assess the impact of silica nanoparticle physicochemical properties on induction of genotoxic response in different cell lines and animal models. In this article, we review the strategies available for evaluation of genotoxicity of nanoparticles (NPs), survey current status of silica nanoparticle gene alteration and genotoxicity, discuss particle-mediated inflammation as a contributing factor to genotoxicity, identify existing gaps and suggest future directions for this research.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States
| | - Philip J Moos
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States.
| |
Collapse
|
21
|
Bohmer N, Rippl A, May S, Walter A, Heo MB, Kwak M, Roesslein M, Song NW, Wick P, Hirsch C. Interference of engineered nanomaterials in flow cytometry: A case study. Colloids Surf B Biointerfaces 2018; 172:635-645. [PMID: 30243217 DOI: 10.1016/j.colsurfb.2018.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 01/28/2023]
Abstract
Nanotechnology is regarded as the enabling technology of the 21st century. However, only a relatively small number of nano-enabled medical and healthcare products finally made their way to the market. There are several reasons why such innovative approaches fail in translation, with one key factor being the uncertainty surrounding their safety assessment. Although well described, interference reactions of engineered nanomaterials (ENM) with classical cytotoxicity assays remain a major source of uncertainty. Flow cytometry is a powerful, widely used, in vitro technique. Its readout is based on the detection of refracted laser light and fluorescence signals. It is therefore susceptible to ENM interference. Here we investigated possible interferences of ENM in the Annexin V/propidium iodide (PI) assay, which quantifies apoptotic and necrotic cell populations by flow cytometry. Two case studies were conducted using either silica or gold nanoparticles differing in size, specific surface area and surface chemistry. Both ENM types were found to cause distinct interference reactions at realistic concentrations. Silica particles induced false-positive signals; however only in the absence of a protein corona and in conjunction with a particular fluorophore combination (FITC/PI). In contrast, gold particles led to complex quenching effects which were only marginally influenced by the presence of proteins and occurred for both fluorophore combinations analyzed. We present a versatile spike-in approach which is applicable to all ENM and cell types. It further allows for the identification of a broad range of different interference phenomena, thereby increasing the reliability and quality of flow cytometry and ENM hazard assessment.
Collapse
Affiliation(s)
- Nils Bohmer
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Alexandra Rippl
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Sarah May
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Aurélie Walter
- Institute of Materials, Powder Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Min Beom Heo
- Korea Research Institute of Standards and Science (KRISS), Yuseong-Gu, Daejeon 305-340, Republic of Korea
| | - Minjeong Kwak
- Korea Research Institute of Standards and Science (KRISS), Yuseong-Gu, Daejeon 305-340, Republic of Korea
| | - Matthias Roesslein
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Nam Woong Song
- Korea Research Institute of Standards and Science (KRISS), Yuseong-Gu, Daejeon 305-340, Republic of Korea
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
22
|
Basu P, De K, Das S, Mandal AK, Kumar A, Jana TK, Chatterjee K. Silica-Coated Metal Oxide Nanoparticles: Magnetic and Cytotoxicity Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201801254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Parbati Basu
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 INDIA
| | | | - Soma Das
- Department of Electronics and Communication Engineering; Guru Ghasidas Central University; Bilaspur (C.G.) 495 009 INDIA
| | - Amit K. Mandal
- Chemical Biology Laboratory; Dept. of Sericulture; Raiganj University; Raiganj-733134 INDIA
| | - Anoop Kumar
- Department of Biotechnology; North Bengal University, Siliguri; Darjeeling-734013 INDIA
| | - Tushar K. Jana
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 INDIA
| | - Kuntal Chatterjee
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 INDIA
| |
Collapse
|
23
|
Shu F, Shi Y. Systematic Overview of Solid Particles and Their Host Responses. Front Immunol 2018; 9:1157. [PMID: 29892295 PMCID: PMC5985299 DOI: 10.3389/fimmu.2018.01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Crystalline/particulate substances trigger a plethora of signaling events in host cells. The most prominent consequence is the inflammatory reactions that underlie crystal arthropathies, such as gout and pseudogout. However, their impact on our health was underestimated. Recent work on the role of cholesterol crystal in the development of atherosclerosis and the harm of environmental particulates has set up new frontiers in our defense against their detrimental effects. On the other hand, in the last 100 years, crystalline/particulate substances have been used with increasing frequencies in our daily lives as a part of new industrial manufacturing and engineering. Importantly, they have become a tool in modern medicine, used as vaccine adjuvants and drug delivery vehicles. Their biological effects are also being dissected in great detail, particularly with regard to their inflammatory signaling pathways. Solid structure interaction with host cells is far from being uniform, with outcomes dependent on cell types and chemical/physical properties of the particles involved. In this review, we offer a systematic and broad outlook of this landscape and a sage analysis of the complex nature of this topic.
Collapse
Affiliation(s)
- Fei Shu
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Shi Y, Hélary C, Haye B, Coradin T. Extracellular versus Intracellular Degradation of Nanostructured Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:406-415. [PMID: 29224358 DOI: 10.1021/acs.langmuir.7b03980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silica nanoparticles appear as promising drug carriers for intracellular delivery. However, the mechanisms by which they are degraded within cells remain largely unknown. In this context, we have prepared three types of PEGylated fluorescent silica nanoparticles with various internal structures (core-shell biocomposite, multilayered, and hollow mesoporous) and studied their degradation in a buffer, in a culture medium, and in contact with human dermal fibroblasts. All particles were prone to dissolve in solution, leading to an increase of porosity and/or the precipitation of new colloids and eventually fragmentation, with a faster rate in the medium compared to that in the buffer. All particles were also uptaken by the cells without significant cytotoxic effect. Their intracellular degradation occurred faster than in suspension, but following almost similar dissolution mechanisms. These results strongly suggest that in these conditions, silica nanoparticles must be primarily considered as hydrolytically degraded and not biodegraded, a point of importance for their future applications in drug delivery.
Collapse
Affiliation(s)
- Yupeng Shi
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7574 , Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Christophe Hélary
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7574 , Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Bernard Haye
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7574 , Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7574 , Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| |
Collapse
|
25
|
Yan J, Lai CH, Lung SCC, Wang WC, Huang CC, Chen GW, Suo G, Choug CT, Lin CH. Carbon black aggregates cause endothelial dysfunction by activating ROCK. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:66-75. [PMID: 28531660 DOI: 10.1016/j.jhazmat.2017.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/18/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Carbon black nanoparticles (CBNs) have been associated with the progression of atherosclerosis. CBNs normally enter the bloodstream and crosslink together to form agglomerates. However, most studies have used nano-sized CB particles to clarify the involvement of CBN exposure in CBN-induced endothelial dysfunction. Herein, we studied endothelial toxicity of CBN aggregates (CBA) to human EA.hy926 vascular cells. Cell viability, lactate dehydrogenase leakage, and oxidative stress were affected by the highest concentration of CBA. Moreover, transmission electron microscopic results showed that CBA entered cells through membrane enclosed vesicles. Rho-associated kinase (ROCK) is involved in regulating vascular diseases. Thus, we co-treated with the of ROCK inhibitor Y-27632 to study whether other adverse effects caused by CBA are related to activating ROCK. As expected, co-treatment with Y-27632 attenuated CBA-induced cytoskeletal damage, dysfunction of the endothelial barrier, and expression of inflammatory factors. Taken together, these results demonstrate that aggregated CBNs can cause endothelial dysfunction possibly by activating ROCK.
Collapse
Affiliation(s)
- Junyan Yan
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chia-Hsiang Lai
- Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | | | - Wen-Cheng Wang
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Guangli Suo
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cheng-Tai Choug
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| |
Collapse
|
26
|
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017; 91:2967-3010. [PMID: 28573455 PMCID: PMC5562771 DOI: 10.1007/s00204-017-1993-y] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Lode Godderis
- Department of Occupational, Environmental and Insurance Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 35 block d, box 7001, 3000 Louvain, Belgium
| | - Sybille Van Den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Jan Mast
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Frederic Brassinne
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Noham Sebaihi
- General Quality and Safety, Metrology Department, National Standards, North Gate-Office 2A29, Bd du Roi Albert II, 16, 1000 Brussels, Belgium
| | - Peter H. Hoet
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| |
Collapse
|
27
|
Drescher D, Traub H, Büchner T, Jakubowski N, Kneipp J. Properties of in situ generated gold nanoparticles in the cellular context. NANOSCALE 2017; 9:11647-11656. [PMID: 28770918 DOI: 10.1039/c7nr04620k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gold nanostructures that serve as probes for nanospectroscopic analysis of eukaryotic cell cultures can be obtained by the in situ reduction of tetrachloroauric acid (HAuCl4). To understand the formation process of such intracellularly grown particles depending on the incubation medium, the reaction was carried out with 3T3 fibroblast cells in three different incubation media, phosphate buffer, Dulbecco's Modified Eagle Medium (DMEM), and standard cell culture medium (DMEM with fetal calf serum). The size, the optical properties, the biomolecular corona, and the localization of the gold nanoparticles formed in situ vary for the different conditions. The combination of surface-enhanced Raman scattering (SERS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) microscopic mapping and transmission electron microscopy (TEM) provides complementary perspectives on plasmonic nanoparticles and non-plasmonic gold compounds inside the cells. While for the incubation with HAuCl4 in PBS, gold particles provide optical signals from the nucleus, the incubation in standard cell culture medium leads to scavenging of the toxic molecules and the formation of spots of high gold concentration in the cytoplasm without formation of SERS-active particles inside the cells. The biomolecular corona of nanoparticles formed in situ after incubation in buffer and DMEM differs, suggesting that different intracellular molecular species serve for reduction and stabilization. Comparison with data obtained from ready-made gold nanoparticles suggests complementary application of in situ and ex situ generated nanostructures for optical probing.
Collapse
Affiliation(s)
- D Drescher
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany. and Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - H Traub
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - T Büchner
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - N Jakubowski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - J Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany. and Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| |
Collapse
|
28
|
Fruijtier-Pölloth C. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551). Arch Toxicol 2016; 90:2885-2916. [PMID: 27699444 PMCID: PMC5104814 DOI: 10.1007/s00204-016-1850-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 11/30/2022]
Abstract
KEY MESSAGES Particle sizes of E 551 products are in the micrometre range. The typical external diameters of the constituent particles (aggregates) are greater than 100 nm. E 551 does not break down under acidic conditions such as in the stomach, but may release dissolved silica in environments with higher pH such as the intestinal tract. E 551 is one of the toxicologically most intensively studied substances and has not shown any relevant systemic or local toxicity after oral exposure. Synthetic amorphous silica (SAS) meeting the specifications for use as a food additive (E 551) is and has always been produced by the same two production methods: the thermal and the wet processes, resulting in E 551 products consisting of particles typically in the micrometre size range. The constituent particles (aggregates) are typically larger than 100 nm and do not contain discernible primary particles. Particle sizes above 100 nm are necessary for E 551 to fulfil its technical function as spacer between food particles, thus avoiding the caking of food particles. Based on an in-depth review of the available toxicological information and intake data, it is concluded that the SAS products specified for use as food additive E 551 do not cause adverse effects in oral repeated-dose studies including doses that exceed current OECD guideline recommendations. In particular, there is no evidence for liver toxicity after oral intake. No adverse effects have been found in oral fertility and developmental toxicity studies, nor are there any indications from in vivo studies for an immunotoxic or neurotoxic effect. SAS is neither mutagenic nor genotoxic in vivo. In intact cells, a direct interaction of unlabelled and unmodified SAS with DNA was never found. Differences in the magnitude of biological responses between pyrogenic and precipitated silica described in some in vitro studies with murine macrophages at exaggerated exposure levels seem to be related to interactions with cell culture proteins and cell membranes. The in vivo studies do not indicate that there is a toxicologically relevant difference between SAS products after oral exposure. It is noted that any silicon dioxide product not meeting established specifications, and/or produced to provide new functionality in food, requires its own specific safety and risk assessment.
Collapse
|
29
|
Zachanowicz E, Zięcina A, Mikołajczyk PA, Rogacki K, Małecka M, Marycz K, Marędziak M, Poźniak B, Nowakowska M, Tikhomirov M, Miller J, Wiglusz RJ, Pązik R. Cytotoxic Effects of Co1-xMnxFe2O4Ferrite Nanoparticles Synthesized under Non-Hydrolytic Conditions (Bradley's Reaction) - In Vitro. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emilia Zachanowicz
- Polymer Engineering and Technology Division; Wroclaw University of Technology; 50-370 Wrocław Poland
| | - Aleksander Zięcina
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
| | - Paulina A. Mikołajczyk
- Polymer Engineering and Technology Division; Wroclaw University of Technology; 50-370 Wrocław Poland
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
| | - Krzysztof Rogacki
- International Laboratory of High Magnetic Fields and Low Temperatures; 53-421 Wroclaw Poland
- Centre for Advanced Materials and Smart Structures; Polish Academy of Sciences; Okolna 2 50-950 Wroclaw Poland
| | - Małgorzata Małecka
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
| | - Krzysztof Marycz
- Wroclaw Research Centre EIT+; Stablowicka 147 54-066 Wroclaw Poland
- University of Environmental and Life Sciences Wroclaw; Faculty of Biology; Kożuchowska 5b 50-631 Wroclaw Poland
| | - Monika Marędziak
- Department of Animal Physiology and Biostructure; Faculty of Veterinary Medicine; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Błazej Poźniak
- Department of Biochemistry, Pharmacology and Toxicology; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Marta Nowakowska
- Department of Biochemistry, Pharmacology and Toxicology; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Marta Tikhomirov
- Department of Biochemistry, Pharmacology and Toxicology; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Julia Miller
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine; Faculty of Veterinary Medicine; Wrocław University of Environmental and Life Sciences; C. K. Norwida 31 50-375 Wrocław Poland
| | - Rafał J. Wiglusz
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
- Centre for Advanced Materials and Smart Structures; Polish Academy of Sciences; Okolna 2 50-950 Wroclaw Poland
| | - Robert Pązik
- Institute of Low Temperature and Structure Research; PAS; Okólna 2 50-422 Wrocław Poland
- Centre for Advanced Materials and Smart Structures; Polish Academy of Sciences; Okolna 2 50-950 Wroclaw Poland
| |
Collapse
|
30
|
Gonzalez L, Kirsch-Volders M. Reprint of “Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead”. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:204-216. [DOI: 10.1016/j.mrrev.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
|
31
|
Spyrogianni A, Herrmann IK, Lucas MS, Leroux JC, Sotiriou GA. Quantitative analysis of the deposited nanoparticle dose on cell cultures by optical absorption spectroscopy. Nanomedicine (Lond) 2016; 11:2483-96. [PMID: 27622851 DOI: 10.2217/nnm-2016-0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The delivered nanoparticle dose to cells in vitro may depend on nanoparticle sedimentation rate. Here, the conditions under which optical absorption spectroscopy can be used to quantify the deposited nanoparticle dose in vitro are investigated. MATERIALS & METHODS Nanoparticle cytotoxicity in both upright and inverted cell culture orientations is studied in the presence and absence of serum. RESULTS Dissolvable nanoparticles, such as ZnO, exhibit no difference in upright and inverted cultures due to dissolved Zn(2+) ions that dominate cytotoxicity. Insoluble nanoparticles, however, exhibit different sedimentation rates and deposited doses that are linked to the observed cytotoxicity. CONCLUSION The combined use of upright-inverted cell orientations and optical absorption spectroscopy can provide a simple experimental approach to interpret in vitro nano-biointeractions.
Collapse
Affiliation(s)
- Anastasia Spyrogianni
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical & Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Inge K Herrmann
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St Gallen, Switzerland
| | - Miriam S Lucas
- Scientific Center for Optical & Electron Microscopy (ScopeM), ETH Zurich, Auguste-Piccard-Hof 1, CH-8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Drug Formulation & Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry & Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Georgios A Sotiriou
- Drug Formulation & Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry & Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland.,Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
32
|
Büchner T, Drescher D, Merk V, Traub H, Guttmann P, Werner S, Jakubowski N, Schneider G, Kneipp J. Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes. Analyst 2016; 141:5096-106. [PMID: 27353290 PMCID: PMC5038462 DOI: 10.1039/c6an00890a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022]
Abstract
Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag-Magnetite and Au-Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surface-enhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag-Magnetite and Au-Magnetite nanostructures that is very similar to that of other composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles.
Collapse
Affiliation(s)
- Tina Büchner
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Daniela Drescher
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Virginia Merk
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany. and Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA), Albert-Einstein-Str. 5-9, 12489 Berlin, Germany
| | - Heike Traub
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Stephan Werner
- Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Norbert Jakubowski
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Gerd Schneider
- Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Janina Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
33
|
Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:14-26. [DOI: 10.1016/j.mrrev.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022]
|
34
|
Wang Q, Lim M, Liu X, Wang Z, Chen KL. Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2301-2309. [PMID: 26812241 DOI: 10.1021/acs.est.5b04694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The influence of solution chemistry and soft protein coronas on the interactions between citrate-coated silver nanoparticles (AgNPs) and model biological membranes was investigated by assembling supported lipid bilayers (SLBs) composed of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) on silica crystal sensors in a quartz crystal microbalance with dissipation monitoring (QCM-D). Our results show that the deposition rates of AgNPs on unmodified silica surfaces increased with increasing electrolyte concentrations under neutral pH conditions. Similar trends were observed when AgNPs were deposited on SLBs, hence indicating that the deposition of AgNPs on model cell membranes was controlled by electrostatic interactions. In the presence of human serum albumin (HSA) proteins at both pH 7 and pH 2, the colloidal stability of AgNPs was considerably enhanced due to the formation of HSA soft coronas surrounding the nanoparticles. At pH 7, the deposition of AgNPs on SLBs was suppressed in the presence of HSA due to steric repulsion between HSA-modified AgNPs and SLBs. In contrast, pronounced deposition of HSA-modified AgNPs on SLBs was observed at pH 2. This observation was attributed to the reduction of electrostatic repulsion as well as conformation changes of adsorbed HSA under low pH conditions, resulting in the decrease of steric repulsion between AgNPs and SLBs.
Collapse
Affiliation(s)
- Qiaoying Wang
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , 1239 Siping Road, Shanghai 200092, PR China
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686, United States
| | - Myunghee Lim
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686, United States
| | - Xitong Liu
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686, United States
| | - Zhiwei Wang
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University , 1239 Siping Road, Shanghai 200092, PR China
| | - Kai Loon Chen
- Department of Geography and Environmental Engineering, Johns Hopkins University , Baltimore, Maryland 21218-2686, United States
| |
Collapse
|
35
|
Oosterwijk MTT, Feber ML, Burello E. Proposal for a risk banding framework for inhaled low aspect ratio nanoparticles based on physicochemical properties. Nanotoxicology 2016; 10:780-93. [DOI: 10.3109/17435390.2015.1132344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Messerschmidt C, Hofmann D, Kroeger A, Landfester K, Mailänder V, Lieberwirth I. On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1296-1311. [PMID: 27826504 PMCID: PMC5082453 DOI: 10.3762/bjnano.7.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/26/2016] [Indexed: 05/04/2023]
Abstract
For any living cell the exchange with its environment is vital. Therefore, many different kinds of cargo are able to enter cells via energy-dependent or -independent routes. Nanoparticles are no exemption. It is known that small silica nanoparticles with a diameter below 50 nm are taken up by cells and that their uptake exerts pronounced toxic effects beyond a certain concentration threshold. However, neither the exact uptake mechanism of these particles nor the actual reason for their toxicity has yet been elucidated. In this study we examined the uptake of silica nanoparticles with a diameter of 7, 12 and 22 nm by means of transmission electron microscopy, accompanied by toxicological assays. We show that for every particle diameter tested a different membrane morphology during uptake can be observed and that the amount of particles entering in one event is different for the three sizes. Silica particles with a diameter of 22 nm show single-particle internalization with a membrane wrapped around the particles in the cytosol, whereas 12 nm particles display row-like multi-particle uptake into elongated membrane structures and those with a diameter of 7 nm or less end up in tubular endocytic structures containing many particles. These membrane morphologies proved to be highly reproducible as we found them in five different cell lines. Additionally, we performed ATP and LDH assays to determine particle toxicity. Exceeding a certain concentration threshold the nanoparticles showed a high toxic potential both in the biochemical assay measurements and from morphological findings. We could not find any hint at the induction of apoptosis, neither morphologically nor biochemically. In this regard we discuss membrane damage and consumption as one possible mechanism of toxicity, linking morphological observations to toxicological findings to bridge the gap in understanding the mechanism of toxicity of small nanoparticles.
Collapse
Affiliation(s)
| | - Daniel Hofmann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anja Kroeger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Ostwestfalen-Lippe University of Applied Sciences, Liebigstr. 87, 32657 Lemgo, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Dept. of Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
37
|
Kodlekere P, Cartelle AL, Lyon LA. Design of functional cationic microgels as conjugation scaffolds. RSC Adv 2016. [DOI: 10.1039/c6ra00809g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We describe the development of primary amine functionalized microgels with the potential as dye scaffolds for bioimaging.
Collapse
Affiliation(s)
- Purva Kodlekere
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | | | - L. Andrew Lyon
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Schmid College of Science and Technology
| |
Collapse
|
38
|
Zhou M, Xie L, Fang CJ, Yang H, Wang YJ, Zhen XY, Yan CH, Wang Y, Zhao M, Peng S. Implications for blood-brain-barrier permeability, in vitro oxidative stress and neurotoxicity potential induced by mesoporous silica nanoparticles: effects of surface modification. RSC Adv 2016. [DOI: 10.1039/c5ra17517h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MSNs are shown to have the potential to overcome the BBB and cause neuronal damage. However, the neurotoxicity potential could be mediated with surface modification.
Collapse
|
39
|
Markus MA, Napp J, Behnke T, Mitkovski M, Monecke S, Dullin C, Kilfeather S, Dressel R, Resch-Genger U, Alves F. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation. ACS NANO 2015; 9:11642-11657. [PMID: 26513457 DOI: 10.1021/acsnano.5b04026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Thomas Behnke
- Biophotonics Division, BAM Federal Institute for Materials Research and Testing , 12205 Berlin, Germany
| | | | | | | | | | | | - Ute Resch-Genger
- Biophotonics Division, BAM Federal Institute for Materials Research and Testing , 12205 Berlin, Germany
| | | |
Collapse
|
40
|
Ferreira G, Hernandez-Martinez AR, Pool H, Molina G, Cruz-Soto M, Luna-Barcenas G, Estevez M. Synthesis and functionalization of silica-based nanoparticles with fluorescent biocompounds extracted from Eysenhardtia polystachya for biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:49-57. [DOI: 10.1016/j.msec.2015.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/19/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
|
41
|
Cheng SH, Yu D, Tsai HM, Morshed RA, Kanojia D, Lo LW, Leoni L, Govind Y, Zhang L, Aboody KS, Lesniak MS, Chen CT, Balyasnikova IV. Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. J Nucl Med 2015; 57:279-84. [PMID: 26564318 DOI: 10.2967/jnumed.115.163006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED There is strong clinical interest in using neural stem cells (NSCs) as carriers for targeted delivery of therapeutics to glioblastoma. Multimodal dynamic in vivo imaging of NSC behaviors in the brain is necessary for developing such tailored therapies; however, such technology is lacking. Here we report a novel strategy for mesoporous silica nanoparticle (MSN)-facilitated NSC tracking in the brain via SPECT. METHODS (111)In was conjugated to MSNs, taking advantage of the large surface area of their unique porous feature. A series of nanomaterial characterization assays was performed to assess the modified MSN. Loading efficiency and viability of NSCs with (111)In-MSN complex were optimized. Radiolabeled NSCs were administered to glioma-bearing mice via either intracranial or systemic injection. SPECT imaging and bioluminescence imaging were performed daily up to 48 h after NSC injection. Histology and immunocytochemistry were used to confirm the findings. RESULTS (111)In-MSN complexes show minimal toxicity to NSCs and robust in vitro and in vivo stability. Phantom studies demonstrate feasibility of this platform for NSC imaging. Of significance, we discovered that decayed (111)In-MSN complexes exhibit strong fluorescent profiles in preloaded NSCs, allowing for ex vivo validation of the in vivo data. In vivo, SPECT visualizes actively migrating NSCs toward glioma xenografts in real time after both intracranial and systemic administrations. This is in agreement with bioluminescence live imaging, confocal microscopy, and histology. CONCLUSION These advancements warrant further development and integration of this technology with MRI for multimodal noninvasive tracking of therapeutic NSCs toward various brain malignancies.
Collapse
Affiliation(s)
- Shih-Hsun Cheng
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Dou Yu
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Hsiu-Ming Tsai
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Ramin A Morshed
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Leu-Wei Lo
- Department of Radiology, The University of Chicago, Chicago, Illinois Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute(s), Taiwan; and
| | - Lara Leoni
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Yureve Govind
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Karen S Aboody
- Department of Neuroscience, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
42
|
Halamoda-Kenzaoui B, Ceridono M, Colpo P, Valsesia A, Urbán P, Ojea-Jiménez I, Gioria S, Gilliland D, Rossi F, Kinsner-Ovaskainen A. Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake. PLoS One 2015; 10:e0141593. [PMID: 26517371 PMCID: PMC4627765 DOI: 10.1371/journal.pone.0141593] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/09/2015] [Indexed: 11/19/2022] Open
Abstract
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.
Collapse
Affiliation(s)
- Blanka Halamoda-Kenzaoui
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Mara Ceridono
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Pascal Colpo
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Andrea Valsesia
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Patricia Urbán
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Isaac Ojea-Jiménez
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Sabrina Gioria
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Douglas Gilliland
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - François Rossi
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
| | - Agnieszka Kinsner-Ovaskainen
- Nanobiosciences Unit, Institute for Health and Consumer Protection, European Commission Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, (VA), Italy
- * E-mail:
| |
Collapse
|
43
|
Catalano F, Accomasso L, Alberto G, Gallina C, Raimondo S, Geuna S, Giachino C, Martra G. Factors Ruling the Uptake of Silica Nanoparticles by Mesenchymal Stem Cells: Agglomeration Versus Dispersions, Absence Versus Presence of Serum Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2919-2928. [PMID: 25689227 DOI: 10.1002/smll.201400698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/29/2014] [Indexed: 06/04/2023]
Abstract
The results of a systematic investigation of the role of serum proteins on the interaction of silica nanoparticles (NP) doped in their bulk with fluorescent molecules (IRIS Dots, 50 nm in size), with human mesenchymal stem cells (hMSCs) are reported. The suspension of IRIS Dots in bare Dulbecco-modified Eagle's medium results in the formation of large agglomerates (≈1.5 μm, by dynamic light scattering), which become progressively smaller, down to ≈300 nm in size, by progressively increasing the fetal bovine serum (FBS) content of the solutions along the series 1.0%, 2.5%, 6.0%, and 10.0% v/v. Such difference in NP dispersion is maintained in the external cellular microenvironment, as observed by confocal microscopy and transmission electron microscopy. As a consequence of the limited diffusion of proteins in the inter-NP spaces, the surface of NP agglomerates is coated by a protein corona independently of the agglomerate size/FBS concentration conditions (ζ-potential and UV circular dichroism measurements). The protein corona appears not to be particularly relevant for the uptake of IRIS Dots by hMSCs, whereas the main role in determining the internalization rate is played by the absence/presence of serum proteins in the extracellular media.
Collapse
Affiliation(s)
- Federico Catalano
- Department of Chemistry and Interdepartmental Centre of Excellence "Nanostructured Interfaces and Surfaces - NIS," University of Turin, Via P. Giuria 7, 10125, Torino, Italy
| | - Lisa Accomasso
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Gabriele Alberto
- Department of Chemistry and Interdepartmental Centre of Excellence "Nanostructured Interfaces and Surfaces - NIS," University of Turin, Via P. Giuria 7, 10125, Torino, Italy
| | - Clara Gallina
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Gianmario Martra
- Department of Chemistry and Interdepartmental Centre of Excellence "Nanostructured Interfaces and Surfaces - NIS," University of Turin, Via P. Giuria 7, 10125, Torino, Italy
| |
Collapse
|
44
|
Guichard Y, Fontana C, Chavinier E, Terzetti F, Gaté L, Binet S, Darne C. Cytotoxic and genotoxic evaluation of different synthetic amorphous silica nanomaterials in the V79 cell line. Toxicol Ind Health 2015; 32:1639-50. [PMID: 25757481 DOI: 10.1177/0748233715572562] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nature of occupational risks and hazards in industries that produce or use synthetic amorphous silica (SAS) nanoparticles is still under discussion. Manufactured SAS occur in amorphous form and can be divided into two main types according to the production process, namely, pyrogenic silica (powder) and precipitated silica (powder, gel or colloid). The physical and chemical properties of SAS may vary in terms of particle size, surface area, agglomeration state or purity, and differences in their toxicity potential might therefore be expected. The aim of this study was to compare the cytotoxicity and genotoxicity of representative manufactured SAS samples in Chinese hamster lung fibroblasts (V79 cells). Five samples from industrial SAS producers were evaluated, that is, two pyrogenic SAS powders (with primary particle sizes of 20 nm and 25/70 nm), one precipitated SAS powder (20 nm) and two precipitated SAS colloids (15 and 40/80 nm). V79 cell cultures were treated with different concentrations of SAS pre-dispersed in bovine serum albumin -water medium. Pyr (pyrogenic) 20, Pre (precipitated) 20 and Col (colloid) 15 significantly decreased the cell viability after 24 h of exposure, whilst Pyr 25/70 and Col 40/80 had negligible effects. The cytotoxicity of Pyr 20, Pre 20 and Col 15 was revealed by the induction of apoptosis, and Pyr 20 and Col 15 also produced DNA damage. However, none of the SAS samples generated intracellular reactive oxidative species, micronuclei or genomic mutations in V79 cells after 24 h of exposure. Overall, the results of this study show that pyrogenic, precipitated and colloidal manufactured SAS of around 20 nm primary particle size can produce significant cytotoxic and genotoxic effects in V79 cells. In contrast, the coarser-grained pyrogenic and colloid SAS (approximately 50 nm) yielded negligible toxicity, despite having been manufactured by same processes as their finer-grained equivalents. To explain these differences, the influence of particle agglomeration and oxidative species formation is discussed.
Collapse
Affiliation(s)
- Y Guichard
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - C Fontana
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - E Chavinier
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - F Terzetti
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - L Gaté
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - S Binet
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| | - C Darne
- Institut National de Recherche et de Sécurité (INRS), Vandoeuvre Cedex, France
| |
Collapse
|
45
|
Zeng B, Shi H, Liu Y. A versatile pH-responsive platform for intracellular protein delivery using calcium phosphate nanoparticles. J Mater Chem B 2015; 3:9115-9121. [DOI: 10.1039/c5tb01760b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly biocompatible nanoplatform for the intracellular delivery of different proteins, exhibiting pH-responsive release and efficient endosomal escape.
Collapse
Affiliation(s)
- Bingru Zeng
- CAS Key Laboratory of Soft Matter Chemistry
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei
| | - Hongdong Shi
- CAS Key Laboratory of Soft Matter Chemistry
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei
| |
Collapse
|
46
|
Kennedy DC, Orts-Gil G, Lai CH, Müller L, Haase A, Luch A, Seeberger PH. Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. J Nanobiotechnology 2014; 12:59. [PMID: 25524171 PMCID: PMC4275941 DOI: 10.1186/s12951-014-0059-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing use of silver nanoparticles (Ag-NPs) in various products is resulting in a greater likelihood of human exposure to these materials. Nevertheless, little is still known about the influence of carbohydrates on the toxicity and cellular uptake of nanoparticles. METHODS Ag-NPs functionalized with three different monosaccharides and ethylene glycol were synthesized and characterised. Oxidative stress and toxicity was evaluated by protein carbonylation and MTT assay, respectively. Cellular uptake was evaluated by confocal microscopy and ICP-MS. RESULTS Ag-NPs coated with galactose and mannose were considerably less toxic to neuronal-like cells and hepatocytes compared to particles functionalized by glucose, ethylene glycol or citrate. Toxicity correlated to oxidative stress but not to cellular uptake. CONCLUSIONS Carbohydrate coating on silver nanoparticles modulates both oxidative stress and cellular uptake, but mainly the first has an impact on toxicity. These findings provide new perspectives on modulating the bioactivity of Ag-NPs by using carbohydrates.
Collapse
Affiliation(s)
- David C Kennedy
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476, Potsdam, Germany.
- National Research Council Canada (CNRC), 100 Sussex Drive, Ottawa, Ontario, Canada.
| | - Guillermo Orts-Gil
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476, Potsdam, Germany.
| | - Chian-Hui Lai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476, Potsdam, Germany.
| | - Larissa Müller
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
| | - Andrea Haase
- Departments Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany.
| | - Andreas Luch
- Departments Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476, Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Free University Berlin, Arnimallee 22, 14195, Berlin, Germany.
| |
Collapse
|
47
|
Deshpande S, Venugopal E, Ramagiri S, Bellare JR, Kumaraswamy G, Singh N. Enhancing cubosome functionality by coating with a single layer of poly-ε-lysine. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17126-17133. [PMID: 25184793 DOI: 10.1021/am5047872] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the preparation and characterization of monoolein cubosomes that can be easily surface modified through adsorption of a single layer of cationic poly-ε-lysine. Poly-ε-lysine coated cubosomes show remarkable stability in serum solution, are nontoxic and, are readily internalized by HeLa cells. The poly-ε-lysine coating provides chemical handles for further bioconjugation of the cubosome surface. We also demonstrate that the initial release rate of a hydrophilic drug, Naproxen sodium, from the cubosomes is retarded with just a single layer of polymer. Interestingly, cubosomes loaded with Naproxen sodium, recently shown to have anticancer properties, cause more apoptosis in HeLa cells when compared to free unencapsulated drug.
Collapse
Affiliation(s)
- Sonal Deshpande
- Division of Polymer Science and Engineering, National Chemical Laboratory , Dr. Homi Bhabha Road, Pune-411008, India
| | | | | | | | | | | |
Collapse
|
48
|
Lison D, Vietti G, van den Brule S. Paracelsus in nanotoxicology. Part Fibre Toxicol 2014; 11:35. [PMID: 25138533 PMCID: PMC4354280 DOI: 10.1186/s12989-014-0035-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 02/06/2023] Open
Affiliation(s)
- Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium.
| | - Giulia Vietti
- Louvain Centre for Toxicology and Applied Pharmacology, Brussels, Belgium.
| | | |
Collapse
|
49
|
PEGylation of ORMOSIL nanoparticles differently modulates the in vitro toxicity toward human lung cells. Arch Toxicol 2014; 89:607-20. [DOI: 10.1007/s00204-014-1273-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
|
50
|
Kah JCY, Grabinski C, Untener E, Garrett C, Chen J, Zhu D, Hussain SM, Hamad-Schifferli K. Protein coronas on gold nanorods passivated with amphiphilic ligands affect cytotoxicity and cellular response to penicillin/streptomycin. ACS NANO 2014; 8:4608-4620. [PMID: 24758495 DOI: 10.1021/nn5002886] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We probe how amphiphilic ligands (ALs) of four different types affect the formation of protein coronas on gold nanorods (NRs) and their impact on cellular response. NRs coated with cetyltrimethylammonium bromide were ligand exchanged with polyoxyethylene[10]cetyl ether, oligofectamine, and phosphatidylserine (PS). Protein coronas from equine serum (ES) were formed on these NR-ALs, and their colloidal stability, as well as cell uptake, proliferation, oxidative stress, and gene expression, were examined. We find that the protein corona that forms and its colloidal stability are affected by AL type and that the cellular response to these NR-AL-coronas (NR-AL-ES) is both ligand and corona dependent. We also find that the presence of common cell culture supplement penicillin/streptomycin can impact the colloidal stability and cellular response of NR-AL and NR-AL-ES, showing that the cell response is not necessarily inert to pen/strep when in the presence of nanoparticles. Although the protein corona is what the cells see, the underlying surface ligands evidently play an important role in shaping and defining the physical characteristics of the corona, which ultimately impacts the cellular response. Further, the results of this study suggest that the cellular behavior toward NR-AL is mediated by not only the type of AL and the protein corona it forms but also its resulting colloidal stability and interaction with cell culture supplements.
Collapse
Affiliation(s)
- James Chen Yong Kah
- Department of Biological Engineering and ‡Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | |
Collapse
|