1
|
Feng J, Tang S, Yang X, Zhang M, Li Z, Zhang S, Han Y, Li Y, Monnier PP, Yu G, Zheng P, Zhang C, Xu K, Qin X. Landscapes of gut microbiome and blood metabolomic signatures in relapsing remitting multiple sclerosis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1042-1056. [PMID: 39821830 DOI: 10.1007/s11427-024-2653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/17/2024] [Indexed: 01/19/2025]
Abstract
Although disturbances in the gut microbiome have been implicated in multiple sclerosis (MS), little is known about the changes and interactions between the gut microbiome and blood metabolome, and how these changes affect disease-modifying therapy (DMT) in preventing the progression of MS. In this study, the structure and composition of the gut microbiota were evaluated using 16S rRNA gene sequencing and an untargeted metabolomics approach was used to compare the serum metabolite profiles from patients with relapsing-remitting MS (RRMS) and healthy controls (HCs). Results indicated that RRMS was characterized by phase-dependent α-phylogenetic diversity and significant disturbances in serum glycerophospholipid metabolism. Notably, α-phylogenetic diversity was significantly decreased in RRMS patients during the chronic phase (CMS) compared with those in the acute phase (AMS). A distinctive combination of two elevated genera (Slackia, Lactobacillus) and five glycerophospholipid metabolism-associated metabolites (four increased: GPCho(22:5/20:3), PC(18:2(9Z,12Z)/16:0), PE(16:0/18:2(9Z,12Z)), PE(18:1(11Z)/18:2(9Z,12Z)); one decreased: PS(15:0/22:1(13Z))) in RRMS patients when comparing to HCs. Moreover, a biomarker panel consisting of four microbial genera (three decreased: Lysinibacillus, Parabacteroides, UBA1819; one increased: Lachnoanaerobaculum) and two glycerophospholipid metabolism-associated metabolites (one increased: PE(P-16:0/22:6); one decreased: CL(i-12:0/i-16:0/i-17:0/i-12:0)) effectively discriminated CMS patients from AMS patients, which indicate correlation with higher disability. Additionally, DMTs appeared to attenuate MS progression by reducing UBA1819 and upregulating CL(i-12:0/i-16:0/i-17:0/i-12:0). These findings expand our understanding of the microbiome and metabolome roles in RRMS and may contribute to identifying novel diagnostic biomarkers and promising therapeutic targets.
Collapse
Affiliation(s)
- Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shi Tang
- Department of Neurology, The People's Hospital of Tongliang District, Chongqing, 402560, China
| | - Xiaolin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengjie Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhizhong Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shaoru Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Gang Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cunjin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Gong X, Liu D, Liu L, Yang G, Lei Y, Li N, Chen Y, Yu H, Li X, Xiang D. Plasma bile acid profile analysis by liquid chromatography-tandem mass spectrometry and its application in healthy subjects and IBD patients. J Pharm Biomed Anal 2025; 255:116639. [PMID: 39709683 DOI: 10.1016/j.jpba.2024.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Bile acids (BAs), not only promote the absorption of fat-soluble nutrients and regulate the metabolism of multiple substances but also have a potential role as diagnostic and prognostic indicators in a variety of diseases such as cholestasis, hepatocellular carcinoma, and diabetes mellitus. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of 50 BAs was developed and validated. Sample preparation included internal standard spiking, followed by protein precipitation, centrifugation, solvent evaporation, and reconstitution. Baseline separation of all isobaric BA species was achieved on an Ultimate XS-C18 column (5 μm, 150 mm × 4.6 mm). The method showed good linearity with high regression coefficients (>0.990) with acceptable accuracy and precision for intra-day and inter-day analyses and achieved good recovery rates for representative analytes. No apparent carryover or matrix effect was observed. The analytical method was successfully applied to the determination of the plasma BA profile in healthy subjects and patients with inflammatory bowel disease (IBD). The routine instrumentation, low sample volume, simple pretreatment, wide range of BAs, and good separation make this LC-MS/MS method suitable for use as a BA profile assay in clinical and basic research studies. This method could be poised to identify possible BA biomarkers for non-invasive early diagnosis and therapeutic evaluation of IBD.
Collapse
Affiliation(s)
- Xuepeng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangjie Yang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - NingHong Li
- Department of Pharmacy, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Yufei Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiping Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Hermeling S, Plagge J, Krautbauer S, Ecker J, Burkhardt R, Liebisch G. Rapid quantification of murine bile acids using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2025; 417:687-696. [PMID: 39621039 PMCID: PMC11772536 DOI: 10.1007/s00216-024-05668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Abstract
Interest in bile acids (BAs) is growing due to their emerging role as signaling molecules and their association with various diseases such as colon cancer and metabolic syndrome. Analyzing BAs requires chromatographic separation of isomers, often with long run times, which hinders BA analysis in large studies. Here, we present a high-throughput method based on liquid chromatography-tandem mass spectrometry to quantify BAs in mouse samples. After acidic protein precipitation in the presence of a comprehensive mixture of stable isotope-labeled internal standards (SIL-ISs), BAs are separated on a biphenyl column by gradient elution at basic pH. Quantification is performed using a six-point calibration curve. Except for the separation of β- and ω-muricholic acid (MCA) species, a rapid separation of 27 BA species was achieved in a run time of 6.5 min. Plasma quality controls (QCs) were used to evaluate intra- and inter-day precision. The CV was less than 10% for most BA species and exceeded 20% only for glycohyodeoxycholic (GHDCA) and taurohyodeoxycholic acid (THDCA) due to the lack of a corresponding SIL-IS. The limit of quantification (LoQ) was tested using diluted QCs and was found to be compromised for some BA species as a result of insufficient isotopic purity of the SIL-IS, leading to significant interference with the respective analyte. Finally, we tested the mouse sample material requirements for plasma, bile, and liver samples and determined BA concentrations in C57/BL6N wild-type mice. In conclusion, the LC-MS/MS method presented here permits a rapid and reproducible quantification of the major murine BAs.
Collapse
Affiliation(s)
- Sven Hermeling
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johannes Plagge
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University Munich, Munich, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Lucas LN, Mallikarjun J, Cattaneo LE, Gangwar B, Zhang Q, Kerby RL, Stevenson D, Rey FE, Amador-Noguez D. Investigation of Bile Salt Hydrolase Activity in Human Gut Bacteria Reveals Production of Conjugated Secondary Bile Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633392. [PMID: 39868271 PMCID: PMC11760432 DOI: 10.1101/2025.01.16.633392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Through biochemical transformation of host-derived bile acids (BAs), gut bacteria mediate host-microbe crosstalk and sit at the interface of nutrition, the microbiome, and disease. BAs play a crucial role in human health by facilitating the absorption of dietary lipophilic nutrients, interacting with hormone receptors to regulate host physiology, and shaping gut microbiota composition through antimicrobial activity. Bile acid deconjugation by bacterial bile salt hydrolase (BSH) has long been recognized as the first necessary BA modification required before further transformations can occur. Here, we show that BSH activity is common among human gut bacterial isolates spanning seven major phyla. We observed variation in both the extent and the specificity of deconjugation of BAs among the tested taxa. Unexpectedly, we discovered that certain strains were capable of directly dehydrogenating conjugated BAs via hydroxysteroid dehydrogenases (HSD) to produce conjugated secondary BAs. These results challenge the prevailing notion that deconjugation is a prerequisite for further BA modifications and lay a foundation for new hypotheses regarding how bacteria act individually or in concert to diversify the BA pool and influence host physiology.
Collapse
Affiliation(s)
- Lauren N. Lucas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jillella Mallikarjun
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lea E. Cattaneo
- Doctoral Training Program, University of Wisconsin-Madison, Wisconsin, USA
| | - Bhavana Gangwar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert L. Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Varanasi SK, Chen D, Liu Y, Johnson MA, Miller CM, Ganguly S, Lande K, LaPorta MA, Hoffmann FA, Mann TH, Teneche MG, Casillas E, Mangalhara KC, Mathew V, Sun M, Jensen IJ, Farsakoglu Y, Chen T, Parisi B, Deota S, Havas A, Lee J, Chung HK, Schietinger A, Panda S, Williams AE, Farber DL, Dhar D, Adams PD, Feng GS, Shadel GS, Sundrud MS, Kaech SM. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science 2025; 387:192-201. [PMID: 39787217 DOI: 10.1126/science.adl4100] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/26/2024] [Accepted: 10/30/2024] [Indexed: 01/12/2025]
Abstract
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. Furthermore, different BAs regulated CD8+ T cells differently; primary BAs induced oxidative stress, whereas the secondary BA lithocholic acid inhibited T cell function through endoplasmic reticulum stress, which was countered by ursodeoxycholic acid. We demonstrate that modifying BA synthesis or dietary intake of ursodeoxycholic acid could improve tumor immunotherapy in liver cancer model systems.
Collapse
Affiliation(s)
- Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yingluo Liu
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Melissa A Johnson
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cayla M Miller
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Souradipta Ganguly
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Kathryn Lande
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael A LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Filipe Araujo Hoffmann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas H Mann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eduardo Casillas
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kailash C Mangalhara
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Varsha Mathew
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ming Sun
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Yagmur Farsakoglu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Timothy Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bianca Parisi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron Havas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - H Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Debanjan Dhar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gerald S Shadel
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark S Sundrud
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Center for Digestive Health, Dartmouth Health, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
6
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjørn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates lactate production without impacting growth rate in mammalian cells. Nat Metab 2025; 7:212-227. [PMID: 39809975 DOI: 10.1038/s42255-024-01193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. These cells, which we refer to as Warburg-null cells, maintain wild-type growth rates while producing negligible lactate, show a compensatory increase in oxygen consumption, near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. Warburg-null cells remain amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titres and maintaining product glycosylation. The ability to eliminate lactate production may be useful for biotherapeutic production and provides a tool for investigating a common metabolic phenomenon.
Collapse
Affiliation(s)
- Hooman Hefzi
- Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Iván Martínez-Monge
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Igor Marin de Mas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nicholas Luke Cowie
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro Gomez Toledo
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Soo Min Noh
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | | | - Marianne Decker
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Johnny Arnsdorf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Jose Manuel Camacho-Zaragoza
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Stefan Kol
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sanne Schoffelen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nuša Pristovšek
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anders Holmgaard Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Antonio A Miguez
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Sara Petersen Bjørn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Karen Kathrine Brøndum
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Elham Maria Javidi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kristian Lund Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Laura Stangl
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Emanuel Kreidl
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | | | - Daniel Ley
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Patrice Ménard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Helle Munck Petersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Zulfiya Sukhova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Anton Bauer
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Niall Barron
- National Institute for Bioprocessing Research and Training (NIBRT), Blackrock, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars K Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | | | - Bjørn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Center for Molecular Medicine, Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Chen B, Silvaraju S, Almunawar SNA, Heng YC, Lee JKY, Kittelmann S. Limosilactobacillus allomucosae sp. nov., a novel species isolated from wild boar faecal samples as a potential probiotic for domestic pigs. Syst Appl Microbiol 2024; 47:126556. [PMID: 39467427 DOI: 10.1016/j.syapm.2024.126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Six strains, WILCCON 0050, WILCCON 0051, WILCCON 0052, WILCCON 0053, WILCCON 0054, WILCCON 0055T, were isolated from four different faecal samples of wild boars on Pulau Ubin, Singapore, Singapore. Based on core genome phylogenetic analysis, the six strains formed a distinct clade within the genus Limosilactobacillus (Lm.), with the most closely related type strain being Lm. mucosae DSM 13345T. The minimum ANI, dDDH, and AAI values within these six strains were 97.8%, 78.8%, and 98.6%, respectively. In contrast, the ANI, dDDH, and AAI values with Lm. mucosae DSM 13345T were lower, ranging between 94.8-95.1%, 57.1-59.0%, and 95.9-97.0%, respectively. While ANI and AAI were close to the thresholds of 95% and 97% for bacterial species delineation, respectively, dDDH was significantly lower than the threshold value of 70%. Based on our phylogenomic, phenotypic and chemotaxonomic analyses, we propose a novel species with the name Limosilactobacillus allomucosae sp. nov., with WILCCON 0055T (DSM 117632T = LMG 33563T) as the designated type strain. In vitro investigations revealed the strains' ability to break down raffinose-family oligosaccharides, and to utilize prebiotics such as xylo-oligosaccharides and galacturonic acid, thereby enhancing fibre digestion and nutrient absorption. Moreover, strong auto-aggregation properties, as well as resistance to low pH and porcine bile were observed, suggesting their potential survival and persistence during passage through the gut. The high bile tolerance of these strains appears to be attributed to their ability to deconjugate a wide range of conjugated bile compounds. In silico analysis indicated a strong potential for mucin-binding activity, which aids their colonization in the gut. These characteristics indicate the potential suitability of strains of Lm. allomucosae as probiotics for domestic pigs.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | | | | | - Yu Chyuan Heng
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore.
| |
Collapse
|
8
|
Efremova I, Alieva A, Maslennikov R, Poluektova E, Zharkova M, Kudryavtseva A, Krasnov G, Zharikov Y, Nerestyuk Y, Karchevskaya A, Ivashkin V. Akkermansia muciniphila is associated with normal muscle mass and Eggerthella is related with sarcopenia in cirrhosis. Front Nutr 2024; 11:1438897. [PMID: 39539377 PMCID: PMC11557486 DOI: 10.3389/fnut.2024.1438897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sarcopenia and gut dysbiosis are common in cirrhosis. The aim is to study the correlations between the gut microbiota taxa and muscle mass level in cirrhosis. METHODS The study included 40 cirrhosis patients including 18 patients with sarcopenia. The gut microbiota composition was assessed using amplicon sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene. The skeletal muscle mass, subcutaneous and visceral fat levels were assessed with abdominal computed tomography as skeletal muscle, subcutaneous and visceral fat indices (SMI, SFI and VFI). RESULTS Patients with sarcopenia had more relative abundance (RA) of Agathobacter, Anaerostipes, Butyricicoccus, Dorea, Eggerthella, Microbacteriaceae, Veillonella and less RA of Akkermansiaceae, Akkermansia muciniphila, Verrucomicrobiae and Bilophila compared to patients with normal muscle mass. SMI directly correlated with RA of Akkermansia, Alistipes indistinctus, Anaerotruncus, Atopobiaceae, Bacteroides clarus, Bacteroides salyersiae, Barnesiellaceae, Bilophila wadsworthia, Pseudomonadota, Olsenella, and Parabacteroides distasonis, and negatively correlated with RA of Anaerostipes and Eggerthella. Sarcopenia was detected in 20.0% patients whose gut microbiota had Akkermansia but not Eggerthella, and in all the patients, whose gut microbiota had Eggerthella but not Akkermansia. The Akkermansia and Eggerthella abundances were independent determinants of SMI. RA of Akkermansia, Akkermansia muciniphila, Akkermansiaceae, Bacteroides salyersiae, Barnesiella, Bilophila, Desulfobacterota, Verrucomicrobiota and other taxa correlated positively and RA of Anaerovoracaceae, Elusimicrobiaceae, Elusimicrobium, Kiritimatiellae, Spirochaetota, and other taxa correlated negatively with the SFI. RA of Alistripes, Romboutsia, Succinivibrio, and Succinivibrionaceae correlated positively and RA of Bacteroides thetaiotaomicron correlated negatively with VFI. CONCLUSION The muscle mass level in cirrhosis correlates with the abundance of several gut microbiota taxa, of which Akkermansia and Eggerthella seems to be the most important.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Yury Zharikov
- Department of Anatomy, Sechenov University, Moscow, Russia
| | | | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| |
Collapse
|
9
|
Li C, Zhang X, Zhao L, Liu S. Multi-omics profiling reveals the molecular mechanisms of H 2O 2-induced detrimental effects on Thamnaconus septentrionalis. BMC Genomics 2024; 25:984. [PMID: 39434036 PMCID: PMC11492787 DOI: 10.1186/s12864-024-10903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2), a novel water treatment agent, can be used for disinfection, water quality adjustment, and disease prevention, while excessive H2O2 can injure farm animals, even leading to death. Hydrogen peroxide is a recommended disinfectant and bactericide for treating gill diseases and vibriosis in the greenfin horse-faced filefish Thamnaconus septentrionalis. However, its cumulative effect, toxic molecular mechanism and relevant signal transduction/metabolic networks in marine fishes are largely unknown. RESULTS We employed a multi-omics approach to investigate the detrimental effects of 50 mg/L H2O2 exposure (2 h/d) on filefish for 2 d, 4 d, and 6 d. Transcriptome sequencing showed that differentially expressed genes (DEGs) were mainly classified into functions such as signal transduction, nervous system, liver and bile acid metabolism, energy metabolism, cell adhesion and communication, inflammation and immune response. Metabolomic analysis found that the significantly changed metabolites (SCMs) were involved in phenylalanine metabolism, inflammatory mediator regulation, linoleic acid metabolism, and necroptosis. The main SCMs were cholic acid, carnitine C12:1, dimethylmalonic acid, glutamic acid, L-lactic acid, shikimic acid, 2-methylsuccinic acid, and others. Moreover, H2O2-induced oxidative stress also disturbs the balance of the gut microbiota, altering the microbial composition and affecting digestive processes. CONCLUSIONS Integrated multiomics analysis revealed that H2O2-induced detrimental impacts include mucosal damage, inflammatory and immune responses, altered energy metabolism, and gut microbiota disorders. These findings offer novel insights into the harmful effects and signal transduction/metabolic pathways triggered by H2O2 exposure in marine fishes.
Collapse
Affiliation(s)
- Chengcheng Li
- Observation and Research Station of Bohai Strait Eco-Corridor, Ministry of Natural Resources, First Institute of Oceanography, Qingdao, 266061, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xuanxuan Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Linlin Zhao
- Observation and Research Station of Bohai Strait Eco-Corridor, Ministry of Natural Resources, First Institute of Oceanography, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China.
| | - Shenghao Liu
- Observation and Research Station of Bohai Strait Eco-Corridor, Ministry of Natural Resources, First Institute of Oceanography, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China.
| |
Collapse
|
10
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjorn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates the Warburg Effect without impacting growth rate in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606284. [PMID: 39211256 PMCID: PMC11361052 DOI: 10.1101/2024.08.02.606284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. In contrast to long-standing assumptions about the role of aerobic glycolysis, Warburg-null cells maintain wildtype growth rate while producing negligible lactate. Further characterization of Warburg-null CHO cells showed a compensatory increase in oxygen consumption, a near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. These cells remained amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titers and maintaining product glycosylation. Thus, the ability to eliminate the Warburg effect is an important development for biotherapeutic production and provides a tool for investigating a near-universal metabolic phenomenon.
Collapse
|
11
|
Han S, Guiberson ER, Li Y, Sonnenburg JL. High-throughput identification of gut microbiome-dependent metabolites. Nat Protoc 2024; 19:2180-2205. [PMID: 38740909 DOI: 10.1038/s41596-024-00980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2024] [Indexed: 05/16/2024]
Abstract
A significant hurdle that has limited progress in microbiome science has been identifying and studying the diverse set of metabolites produced by gut microbes. Gut microbial metabolism produces thousands of difficult-to-identify metabolites, which present a challenge to study their roles in host biology. In recent years, mass spectrometry-based metabolomics has become one of the core technologies for identifying small metabolites. However, metabolomics expertise, ranging from sample preparation to instrument use and data analysis, is often lacking in academic labs. Most targeted metabolomics methods provide high levels of sensitivity and quantification, while they are limited to a panel of predefined molecules that may not be informative to microbiome-focused studies. Here we have developed a gut microbe-focused and wide-spectrum metabolomic protocol using liquid chromatography-mass spectrometry and bioinformatic analysis. This protocol enables users to carry out experiments from sample collection to data analysis, only requiring access to a liquid chromatography-mass spectrometry instrument, which is often available at local core facilities. By applying this protocol to samples containing human gut microbial metabolites, spanning from culture supernatant to human biospecimens, our approach enables high-confidence identification of >800 metabolites that can serve as candidate mediators of microbe-host interactions. We expect this protocol will lower the barrier to tracking gut bacterial metabolism in vitro and in mammalian hosts, propelling hypothesis-driven mechanistic studies and accelerating our understanding of the gut microbiome at the chemical level.
Collapse
Affiliation(s)
- Shuo Han
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Emma R Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuxin Li
- Biochemistry Graduate Program, Duke University School of Medicine, Durham, NC, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- Center for Human Microbiome Studies, Stanford, CA, USA.
| |
Collapse
|
12
|
Bay B, Fuh MM, Rohde J, Worthmann A, Goßling A, Arnold N, Koester L, Lorenz T, Blaum C, Kirchhof P, Blankenberg S, Seiffert M, Brunner FJ, Waldeyer C, Heeren J. Sex differences in lipidomic and bile acid plasma profiles in patients with and without coronary artery disease. Lipids Health Dis 2024; 23:197. [PMID: 38926753 PMCID: PMC11201360 DOI: 10.1186/s12944-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Lipids, including phospholipids and bile acids, exert various signaling effects and are thought to contribute to the development of coronary artery disease (CAD). Here, we aimed to compare lipidomic and bile acid profiles in the blood of patients with and without CAD stratified by sex. METHODS From 2015 to 2022, 3,012 patients who underwent coronary angiography were recruited in the INTERCATH cohort. From the overall cohort, subgroups were defined using patient characteristics such as CAD vs. no CAD, 1st vs. 3rd tertile of LDL-c, and female vs. male sex. Hereafter, a matching algorithm based on age, BMI, hypertension status, diabetes mellitus status, smoking status, the Mediterranean diet score, and the intake of statins, triglycerides, HDL-c and hs-CRP in a 1:1 ratio was implemented. Lipidomic analyses of stored blood samples using the Lipidyzer platform (SCIEX) and bile acid analysis using liquid chromatography with tandem mass spectrometry (LC‒MS/MS) were carried out. RESULTS A total of 177 matched individuals were analyzed; the median ages were 73.5 years (25th and 75th percentile: 64.1, 78.2) and 71.9 years (65.7, 77.2) for females and males with CAD, respectively, and 67.6 years (58.3, 75.3) and 69.2 years (59.8, 76.8) for females and males without CAD, respectively. Further baseline characteristics, including cardiovascular risk factors, were balanced between the groups. Women with CAD had decreased levels of phosphatidylcholine and diacylglycerol, while no differences in bile acid profiles were detected in comparison to those of female patients without CAD. In contrast, in male patients with CAD, decreased concentrations of the secondary bile acid species glycolithocholic and lithocholic acid, as well as altered levels of specific lipids, were detected compared to those in males without CAD. Notably, male patients with low LDL-c and CAD had significantly greater concentrations of various phospholipid species, particularly plasmalogens, compared to those in high LDL-c subgroup. CONCLUSIONS We present hypothesis-generating data on sex-specific lipidomic patterns and bile acid profiles in CAD patients. The data suggest that altered lipid and bile acid composition might contribute to CAD development and/or progression, helping to understand the different disease trajectories of CAD in women and men. REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04936438 , Unique identifier: NCT04936438.
Collapse
Affiliation(s)
- Benjamin Bay
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Rohde
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alina Goßling
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Arnold
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Lukas Koester
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thiess Lorenz
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Blaum
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Moritz Seiffert
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Department of Cardiology and Angiology, BG University Hospital Bergmannsheil, Ruhr- University Bochum, Bochum, Germany
| | - Fabian J Brunner
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Christoph Waldeyer
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
13
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
14
|
Chang L, Wang C, Peng J, Song Y, Zhang W, Chen Y, Peng Q, Li X, Liu X, Lan Y. Rattan Pepper Polysaccharide Regulates DSS-Induced Intestinal Inflammation and Depressive Behavior through Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:437-448. [PMID: 38164789 DOI: 10.1021/acs.jafc.3c08462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease. Increasing evidence suggests a higher incidence of depression in IBD patients compared with the general population, but the underlying mechanism remains uncertain. Rattan pepper polysaccharide (RPP) is an important active ingredient of rattan pepper, yet its effects and mechanisms on intestinal inflammation and depression-like behavior remain largely unknown. This study aims to investigate the ameliorating effect of RPP on dextran sulfate sodium salt (DSS)-induced intestinal inflammation and depression-like behavior as well as to reveal its mechanism. Our results indicate that RPP effectively ameliorated intestinal microbiota imbalance and metabolic disorders of short-chain fatty acids (SCFAs) and bile acids in mice with DSS-induced inflammation, contributing to the recovery of intestinal Th17/Treg homeostasis. Importantly, RPP effectively alleviated brain inflammation caused by intestinal inflammatory factors entering the brain through the blood-brain barrier. This effect may be attributed to the inhibition of the TLR4/NF-κB signaling pathway, which alleviates neuroinflammation, and the activation of the CREB/BDNF signaling pathway, which improves synaptic dysfunction. Therefore, our findings suggest that RPP may play a role in alleviating DSS-induced gut inflammation and depression-like behavior through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Lili Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chendi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wanting Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yurui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
15
|
Lee SM, Jun DW, Yoon EL, Oh JH, Roh YJ, Lee EJ, Shin JH, Nam YD, Kim HS. Discovery biomarker to optimize obeticholic acid treatment for non-alcoholic fatty liver disease. Biol Direct 2023; 18:50. [PMID: 37626369 PMCID: PMC10463927 DOI: 10.1186/s13062-023-00407-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The response rate to obeticholic acid (OCA), a potential therapeutic agent for non-alcoholic fatty liver disease, is limited. This study demonstrated that upregulation of the alternative bile acid synthesis pathway increases the OCA treatment response rate. The hepatic transcriptome and bile acid metabolite profile analyses revealed that the alternative bile acid synthesis pathway (Cyp7b1 and muricholic acid) in the OCA-responder group were upregulated compared with those in the OCA-non-responder group. Intestinal microbiome analysis also revealed that the abundances of Bacteroidaceae, Parabacteroides, and Bacteroides, which were positively correlated with the alternative bile acid synthesis pathway, were higher in the OCA-responder group than in the non-responder group. Pre-study hepatic mRNA levels of Cyp8b1 (classic pathway) were downregulated in the OCA-responder group. The OCA response rate increased up to 80% in cases with a hepatic Cyp7b1/Cyp8b1 ratio ≥ 5.0. Therefore, the OCA therapeutic response can be evaluated based on the Cyp7b1/Cyp8b1 ratio or the alternative/classic bile acid synthesis pathway activity.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea.
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-792, Republic of Korea.
| | - Eileen Laurel Yoon
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-792, Republic of Korea.
| | - Ju Hee Oh
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Eun Jeoung Lee
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Hyun Sung Kim
- Pathology, Medical genetic, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Jacky D, Bibi C, Meng LMC, Jason F, Gwendoline T, Jeremy L, Wie CC. Effects of OsomeFood Clean Label plant-based meals on the gut microbiome. BMC Microbiol 2023; 23:88. [PMID: 36997838 PMCID: PMC10061721 DOI: 10.1186/s12866-023-02822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Plant-based diets offer more beneficial microbes and can modulate gut microbiomes to improve human health. We evaluated the effects of the plant-based OsomeFood Clean Label meal range ('AWE' diet), on the human gut microbiome. METHODS Over 21 days, ten healthy participants consumed OsomeFood meals for five consecutive weekday lunches and dinners and resumed their regular diets for other days/meals. On follow-up days, participants completed questionnaires to record satiety, energy and health, and provided stool samples. To document microbiome variations and identify associations, species and functional pathway annotations were analyzed by shotgun sequencing. Shannon diversity and regular diet calorie intake subsets were also assessed. RESULTS Overweight participants gained more species and functional pathway diversity than normal BMI participants. Nineteen disease-associated species were suppressed in moderate-responders without gaining diversity, and in strong-responders with diversity gains along with health-associated species. All participants reported improved short-chain fatty acids production, insulin and γ-aminobutyric acid signaling. Moreover, fullness correlated positively with Bacteroides eggerthii; energetic status with B. uniformis, B. longum, Phascolarctobacterium succinatutens, and Eubacterium eligens; healthy status with Faecalibacterium prausnitzii, Prevotella CAG 5226, Roseburia hominis, and Roseburia sp. CAG 182; and overall response with E. eligens and Corprococcus eutactus. Fiber consumption was negatively associated with pathogenic species. CONCLUSION Although the AWE diet was consumed for only five days a week, all participants, especially overweight ones, experienced improved fullness, health status, energy and overall responses. The AWE diet benefits all individuals, especially those of higher BMI or low-fiber consumption.
Collapse
Affiliation(s)
- Dwiyanto Jacky
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | - Chong Chun Wie
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| |
Collapse
|
17
|
A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry. Anal Chim Acta 2023; 1239:340691. [PMID: 36628759 DOI: 10.1016/j.aca.2022.340691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Bile acids (BAs) are a class of vital gut microbiota-host cometabolites, and they play an important role in maintaining gut microbiota-host metabolic homeostasis. Very recently, a new mechanism of BA anabolic metabolism mediated by gut microbiota (BA-amino acid conjugation) has been revealed, which provides a perspective for the research on BA metabolism and gut metabolome. In this study, we established a polarity-switching multiple reaction monitoring mass spectrometry-based screening method to mine amino acid-conjugated bile acids (AA-BAs) derived from host-gut microbiota co-metabolism. In addition, a retention time-based annotation strategy was further proposed to identify the AA-BA isomers and epimers. Using the developed methods, we successfully screened 118 AA-BA conjugates from mouse and human feces, 28 of them were confirmed by standards, and 62 putatively identified based on their predicted retention times. Moreover, we observed that the levels of most AA-BAs were significantly downregulated in the feces of chronic sleep deprivation mice, suggesting that the AA-BA metabolism was closely related to the physiological state of the host.
Collapse
|
18
|
Human Fecal Bile Acid Analysis after Investigational Microbiota-Based Live Biotherapeutic Delivery for Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:microorganisms11010135. [PMID: 36677428 PMCID: PMC9865816 DOI: 10.3390/microorganisms11010135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Microbiome-based therapeutics are increasingly evaluated as a strategy to reduce recurrent Clostridioides difficile infection (rCDI), with proposed mechanisms including restoration of the microbiota and microbiota-mediated functions, such as bile acid (BA) metabolism. This study reports a quantitative and sensitive assay for targeted metabolomic assessment, and the application of the assay to profile BA composition in a Phase 2 trial of the investigational microbiota-based live biotherapeutic RBX2660 for reduction of rCDI. A liquid chromatography tandem mass spectrometry method was developed to extract and quantify 35 BAs from 113 participant stool samples from 27 RBX2660-treated rCDI participants in the double-blinded, placebo-controlled clinical trial. The results demonstrate a high-confidence assay as represented by sensitivity, linearity, accuracy, and precision. Furthermore, the assay enabled the observation of primary BAs as the dominant BA species at baseline in stool samples from clinical trial participants, consistent with the expected loss of commensals after broad-spectrum antibiotic treatment. After RBX2660 administration, there was a significant drop in primary BAs concurrent with increased secondary BAs that sustained through 24 months post-RBX2660. Taken together, we describe a robust assay that demonstrates altered BA metabolism in rCDI patients treated with RBX2660 administration.
Collapse
|
19
|
Kozhina E, Bedin S, Martynov A, Andreev S, Piryazev A, Grigoriev Y, Gorbunova Y, Naumov A. Ultrasensitive Optical Fingerprinting of Biorelevant Molecules by Means of SERS-Mapping on Nanostructured Metasurfaces. BIOSENSORS 2022; 13:46. [PMID: 36671881 PMCID: PMC9855407 DOI: 10.3390/bios13010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The most relevant technique for portable (on-chip) sensors is Surface Enhanced Raman Scattering (SERS). This strategy crashes in the case of large (biorelevant) molecules and nano-objects, whose SERS spectra are irreproducible for "homeopathic" concentrations. We suggested solving this problem by SERS-mapping. We analyzed the distributions of SERS parameters for relatively "small" (malachite green (MG)) and "large" (phthalocyanine, H2Pc*) molecules. While fluctuations of spectra for "small" MG were negligible, noticeable distribution of spectra was observed for "large" H2Pc*. We show that the latter is due to a random arrangement of molecules with respect to "hot spot" areas, which have limited sizes, thus amplifying the lines corresponding to vibrations of different molecule parts. We have developed a method for engineering low-cost SERS substrates optimized for the best enhancement efficiency and a measurement protocol to obtain a reliable Raman spectrum, even for a countable number of large molecules randomly distributed over the substrate.
Collapse
Affiliation(s)
- Elizaveta Kozhina
- Laboratory of Plasmonics, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
| | - Sergey Bedin
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Laboratory for the Growth of Thin Films and Inorganic Nanostructures Center of Crystallography and Photonics of RAS, Leninskiy Prosp. 59, 119333 Moscow, Russia
| | - Alexander Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy Prosp., 31 Building 4, 119071 Moscow, Russia
| | - Stepan Andreev
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
| | - Alexey Piryazev
- Department of Chemistry, Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
- Research Center of Genetics and Life Sciences, Research Direction–Biomaterials, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Yuri Grigoriev
- Laboratory for the Growth of Thin Films and Inorganic Nanostructures Center of Crystallography and Photonics of RAS, Leninskiy Prosp. 59, 119333 Moscow, Russia
| | - Yulia Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy Prosp., 31 Building 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy Prosp., 31, 119991 Moscow, Russia
| | - Andrey Naumov
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Laboratory for Spectroscopy of Electronic Spectra of Molecules, Institute for Spectroscopy RAS, Fizicheskaya Str. 5, 108840 Moscow, Troitsk, Russia
| |
Collapse
|
20
|
Bai X, Wei H, Liu W, Coker OO, Gou H, Liu C, Zhao L, Li C, Zhou Y, Wang G, Kang W, Ng EKW, Yu J. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut 2022; 71:2439-2450. [PMID: 35387878 PMCID: PMC9664112 DOI: 10.1136/gutjnl-2021-325021] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cigarette smoking is a major risk factor for colorectal cancer (CRC). We aimed to investigate whether cigarette smoke promotes CRC by altering the gut microbiota and related metabolites. DESIGN Azoxymethane-treated C57BL/6 mice were exposed to cigarette smoke or clean air 2 hours per day for 28 weeks. Shotgun metagenomic sequencing and liquid chromatography mass spectrometry were parallelly performed on mice stools to investigate alterations in microbiota and metabolites. Germ-free mice were transplanted with stools from smoke-exposed and smoke-free control mice. RESULTS Mice exposed to cigarette smoke had significantly increased tumour incidence and cellular proliferation compared with smoke-free control mice. Gut microbial dysbiosis was observed in smoke-exposed mice with significant differential abundance of bacterial species including the enrichment of Eggerthella lenta and depletion of Parabacteroides distasonis and Lactobacillus spp. Metabolomic analysis showed increased bile acid metabolites, especially taurodeoxycholic acid (TDCA) in the colon of smoke-exposed mice. We found that E. lenta had the most positive correlation with TDCA in smoke-exposed mice. Moreover, smoke-exposed mice manifested enhanced oncogenic MAPK/ERK (mitogen-activated protein kinase/extracellular signal‑regulated protein kinase 1/2) signalling (a downstream target of TDCA) and impaired gut barrier function. Furthermore, germ-free mice transplanted with stools from smoke-exposed mice (GF-AOMS) had increased colonocyte proliferation. Similarly, GF-AOMS showed increased abundances of gut E. lenta and TDCA, activated MAPK/ERK pathway and impaired gut barrier in colonic epithelium. CONCLUSION The gut microbiota dysbiosis induced by cigarette smoke plays a protumourigenic role in CRC. The smoke-induced gut microbiota dysbiosis altered gut metabolites and impaired gut barrier function, which could activate oncogenic MAPK/ERK signalling in colonic epithelium.
Collapse
Affiliation(s)
- Xiaowu Bai
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Wei
- Department of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weixin Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Gou
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Changan Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Liuyang Zhao
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuangen Li
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yunfei Zhou
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoping Wang
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Enders Kwok-wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
The Hypolipidemic Effect of Hawthorn Leaf Flavonoids through Modulating Lipid Metabolism and Gut Microbiota in Hyperlipidemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3033311. [PMID: 36425260 PMCID: PMC9681556 DOI: 10.1155/2022/3033311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Objective. The purpose of this study was to explore the potential mechanisms of the lipid-regulating effects and the effect on modulating the gut microbiota of hawthorn leaf flavonoids (HLF) in the high-fat diet-induced hyperlipidemic rats. Methods. The hypolipidemic effect of HLF was investigated in the high-fat diet-induced hyperlipidemic rats. The action targets of HLF in the treatment of hyperlipidemia were predicted by network pharmacology and KEGG enrichment bubble diagram, which were verified by the test of western blotting. Meanwhile, we used 16S rRNA sequencing to evaluate the effects of HLF on the microbes. Results. The results of animal experiments showed that HLF could reduce the body weight and regulate the levels of serum lipid in high-fat diet (HFD) rats. Meanwhile, for the related targets of cholesterol metabolism, HLF could significantly upregulate the expression of LDLR, NR1H3, and ABCG5/ABCG8; reduce the expression of PCSK9; and increase the level of CYP7A1 in the intestinal tissue, whereas cholesterol biosynthetic protein expressions including HMGCR and SCAP were lowered by HLF. In addition, HLF increased the activities of plasma SOD, CAT, and GSH-Px and decreased the levels of Casp 1, NLRP3, IL-1β, IL-18, and TNF-α, improving the degree of hepatocyte steatosis and inflammatory infiltration of rats. Notably, HLF significantly regulated the relative abundance of major bacteria such as g_Lactobacillus, g_Anaerostipes, g_[Eubacterium]_hallii_group, g_Fusicatenibacter, g_Akkermansia, and g_Collinsella. Synchronously, we found that HLF could regulate the disorder of plasma HEPC and TFR levels caused by HFD. Conclusion. This study demonstrates that HLF can regulate metabolic hyperlipidemia syndromes and modulate the relative abundance of major bacteria, which illustrated that it might be associated with the modulation of gut microbiota composition and metabolites.
Collapse
|
22
|
Hammond TC, Powell E, Green SJ, Chlipala G, Frank J, Yackzan AT, Yanckello LM, Chang YH, Xing X, Heil S, Springer JE, Pennypacker K, Stromberg A, Sawaki L, Lin AL. Functional recovery outcomes following acute stroke is associated with abundance of gut microbiota related to inflammation, butyrate and secondary bile acid. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1017180. [PMID: 36386777 PMCID: PMC9644110 DOI: 10.3389/fresc.2022.1017180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that gut microbes modulate brain plasticity via the bidirectional gut-brain axis and play a role in stroke rehabilitation. However, the microbial species alterations associated with stroke and their correlation with functional outcome measures following acute stroke remain unknown. Here we measure post-stroke gut dysbiosis and how it correlates with gut permeability and cognitive functions in 12 stroke participants, 18 controls with risk factors for stroke, and 12 controls without risk factors. Stool samples were used to measure the microbiome with whole genome shotgun sequencing and leaky gut markers. We genotyped APOE status and measured diet composition and motor, cognitive, and emotional status using NIH Toolbox. We used linear regression methods to identify gut microbial associations with cognitive and emotional assessments. We did not find significance differences between the two control groups. In contrast, the bacteria populations of the Stroke group were statistically dissimilar from the control groups. Relative abundance analysis revealed notable decreases in butyrate-producing microbial taxa, secondary bile acid-producing taxa, and equol-producing taxa. The Stroke group had higher levels of the leaky gut marker alpha-1-antitrypsin in the stool than either of the groups and several taxa including Roseburia species (a butyrate producer) were negatively correlated with alpha-1-antitrypsin. Stroke participants scored lower on memory testing than those in the two control groups. Stroke participants with more Roseburia performed better on the picture vocabulary task; more Bacteroides uniformis (a butyrate producer) and less Escherichia coli (a pro-inflammatory species) reported higher levels of self-efficacy. Intakes of fiber, fruit and vegetable were lower, but sweetened beverages were higher, in the Stroke group compared with controls. Vegetable consumption was correlated with many bacterial changes among the participants, but only the species Clostridium bolteae, a pro-inflammatory species, was significantly associated with stroke. Our findings indicate that stroke is associated with a higher abundance of proinflammatory species and a lower abundance of butyrate producers and secondary bile acid producers. These altered microbial communities are associated with poorer functional performances. Future studies targeting the gut microbiome should be developed to elucidate whether its manipulation could optimize rehabilitation and boost recovery.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Elizabeth Powell
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | - George Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, United States
| | - Jacqueline Frank
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Andrew T. Yackzan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Lucille M. Yanckello
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ya-Hsuan Chang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Xin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Sally Heil
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Joe E. Springer
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Keith Pennypacker
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Lumy Sawaki
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Department of Radiology, University of Missouri, Columbia, MO, United States
- Institute for Data Science & Informatics, University of Missouri, Columbia, MOUnited States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
23
|
Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022; 30:1630-1645.e25. [DOI: 10.1016/j.chom.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
|
24
|
Characterization and quantification of representative bile acids in ileal contents and feces of diet-induced obese mice by UPLC-MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Mi W, Hu Z, Xu L, Bian X, Lian W, Yin S, Zhao S, Gao W, Guo C, Shi T. Quercetin positively affects gene expression profiles and metabolic pathway of antibiotic-treated mouse gut microbiota. Front Microbiol 2022; 13:983358. [PMID: 36090094 PMCID: PMC9453598 DOI: 10.3389/fmicb.2022.983358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin has a wide range of biological properties that can be used to prevent or decrease particular inflammatory diseases. In this study, we aimed to investigate the gene expression profile and metabolic pathway of the gut microbiota of an antibiotic-treated mouse model administered quercetin. Blood, feces, and intestinal tissue samples were collected and metagenomic sequencing, enzyme-linked immunosorbent assay, and western blot analysis were used to detect variations. The results showed that the quercetin-treated group exhibited increased levels of health beneficial bacterial species, including Faecalibaculum rodentium (103.13%), Enterorhabdus caecimuris (4.13%), Eggerthella lenta (4%), Roseburia hominis (1.33%), and Enterorhabdus mucosicola (1.79%), compared with the model group. These bacterial species were positively related to butyrate, propionate, and intestinal tight junction proteins (zonula occludens-1 and occludin) expression, but negatively related to serum lipopolysaccharide and tumor necrosis factor-α level. In addition, the metabolic pathway analysis showed that dietary quercetin significantly enhanced spliceosomes (111.11%), tight junctions (62.96%), the citrate cycle (10.41%), pyruvate metabolism (6.95%), and lysine biosynthesis (5.06%), but decreasing fatty acid biosynthesis (23.91%) and N-glycan (7.37%) biosynthesis. Furthermore, these metabolic pathway changes were related to relative changes in the abundance of 10 Kyoto Encyclopedia of Genes and Genomes genes (K00244, K00341, K02946, K03737, K01885, k10352, k11717, k10532, K02078, K01191). In conclusion, dietary quercetin increased butyrate-producing bacterial species, and the acetyl-CoA-mediated increased butyrate accelerated carbohydrate, energy metabolism, reduced cell motility and endotoxemia, and increased the gut barrier function, thereby leading to healthy colonic conditions for the host.
Collapse
Affiliation(s)
- Wei Mi
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Zhiyong Hu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Lanlan Xu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wu Lian
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Yin
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- *Correspondence: Weina Gao,
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Changjiang Guo,
| | - Tala Shi
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
- Tala Shi,
| |
Collapse
|
26
|
Wang Z, Li H, Yun Y, Wang H, Meng B, Mu Y, Gao S, Tao X, Chen W. A dynamic multiple reaction monitoring strategy to develop and optimize targeted metabolomics methods: Analyzing bile acids in capecitabine-induced diarrhea. J Pharm Biomed Anal 2022; 219:114938. [PMID: 35850015 DOI: 10.1016/j.jpba.2022.114938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We sought to develop and optimize a targeted bile acids (BAs) metabolomics method based on a dynamic multiple reaction monitoring (dMRM) strategy and explored the dynamic alterations of BAs in diarrhea induced by capecitabine in a mouse model. METHOD The targeted metabolomics method was developed using an Agilent 6460A triple quadrupole mass spectrometer, and 41 types of BAs were monitored in negative ionization mode. The mass spectrometer detection was optimized using dMRM to enhance the responses, separation, and peak shape and to shorten the analysis time. A mouse model of diarrhea was established by multiple administration of capecitabine, and plasma samples were collected at baseline and the end of drug administration for subsequent BAs analysis. RESULTS The targeted BA metabolomics method achieved shorter chromatographic separation time (10 min) for 41 BAs, with good peak shapes and response increases of 3- to 10-fold after application of dMRM. The mouse model of capecitabine-induced diarrhea was established, and the three BAs 23-norcholic acid, isolithocholic acid, and isodeoxycholic acid in the baseline samples contributed the most to differentiating mice with diarrhea from those without diarrhea. For mice that ultimately developed diarrhea, apocholic acid, isodeoxycholic acid, and 7-ketodeoxycholic acid exhibited the largest change in concentrations compared with their baseline concentrations. CONCLUSION The dMRM strategy has obvious advantages compared with common MRM. The results in model mice showed that a differentiated profile of BAs in the baseline may indicate biomarkers of diarrhea induced by capecitabine, and disturbed homeostasis may explain the metabolomic mechanism of diarrhea occurrence.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hanglin Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Yunlei Yun
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hongsen Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Chemistry and Biological Engineering College, Yichun University, Yichun 336000, China
| | - Bosu Meng
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yuhui Mu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
27
|
Sharon I, Quijada NM, Pasolli E, Fabbrini M, Vitali F, Agamennone V, Dötsch A, Selberherr E, Grau JH, Meixner M, Liere K, Ercolini D, de Filippo C, Caderni G, Brigidi P, Turroni S. The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients 2022; 14:2872. [PMID: 35889831 PMCID: PMC9323970 DOI: 10.3390/nu14142872] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.
Collapse
Affiliation(s)
- Itai Sharon
- Migal-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Narciso Martín Quijada
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (N.M.Q.); (E.S.)
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, A-3430 Tulln an der Donau, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, 80055 Portici, Italy; (E.P.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Marco Fabbrini
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.F.); (S.T.)
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.d.F.)
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (N.M.Q.); (E.S.)
| | - José Horacio Grau
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
- Center for Species Survival, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Martin Meixner
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
| | - Karsten Liere
- Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany; (J.H.G.); (M.M.); (K.L.)
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, 80055 Portici, Italy; (E.P.); (D.E.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Carlotta de Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; (F.V.); (C.d.F.)
| | - Giovanna Caderni
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.F.); (S.T.)
| |
Collapse
|
28
|
Dantas Machado AC, Brown SD, Lingaraju A, Sivaganesh V, Martino C, Chaix A, Zhao P, Pinto AFM, Chang MW, Richter RA, Saghatelian A, Saltiel AR, Knight R, Panda S, Zarrinpar A. Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome. Cell Rep 2022; 40:111008. [PMID: 35793637 PMCID: PMC9296000 DOI: 10.1016/j.celrep.2022.111008] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022] Open
Abstract
Compositional oscillations of the gut microbiome are essential for normal peripheral circadian rhythms, both of which are disrupted in diet-induced obesity (DIO). Although time-restricted feeding (TRF) maintains circadian synchrony and protects against DIO, its impact on the dynamics of the cecal gut microbiome is modest. Thus, other regions of the gut, particularly the ileum, the nexus for incretin and bile acid signaling, may play an important role in entraining peripheral circadian rhythms. We demonstrate the effect of diet and feeding rhythms on the ileal microbiome composition and transcriptome in mice. The dynamic rhythms of ileal microbiome composition and transcriptome are dampened in DIO. TRF partially restores diurnal rhythms of the ileal microbiome and transcriptome, increases GLP-1 release, and alters the ileal bile acid pool and farnesoid X receptor (FXR) signaling, which could explain how TRF exerts its metabolic benefits. Finally, we provide a web resource for exploration of ileal microbiome and transcriptome circadian data.
Collapse
Affiliation(s)
- Ana Carolina Dantas Machado
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Steven D Brown
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Vignesh Sivaganesh
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Peng Zhao
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, the Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, the Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Institute of Diabetes and Metabolic Health, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; Institute of Diabetes and Metabolic Health, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, USA; VA Health Sciences, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Lin Z, Ma X. Dietary nutrients mediate crosstalk between bile acids and gut microbes in animal host metabolism. Crit Rev Food Sci Nutr 2022; 63:9315-9329. [PMID: 35507502 DOI: 10.1080/10408398.2022.2067118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bile acids (BAs) are synthesized by liver, then gut microbes embellish primary BAs into secondary BAs with diverse and biological functions. Over the past few decades, amounts of evidences demonstrated the importance of gut microbes in BA metabolism. There is also significant evidence that BAs are regarded as cell signals in gut-liver, gut-brain, and gut-testis axis. Moreover, the interaction between BAs and gut microbes plays a key role not only in the absorption and metabolism of nutrients, but the regulation of immune function. Herein, we collected the major information of the BA metabolism-related bacteria, nutrients, and cell signals, focused on the possible molecular mechanisms by "Microbes-Bile acids" crosstalk, highlighted the gut-liver, gut-brain, and gut-testis axis, and discussed the possibility and application of the regulation of BA metabolism by nutrients.
Collapse
Affiliation(s)
- Zishen Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Lebrun A, Fortin H, Fontaine N, Fillion D, Barbier O, Boudreau D. Pushing the Limits of Surface-Enhanced Raman Spectroscopy (SERS) with Deep Learning: Identification of Multiple Species with Closely Related Molecular Structures. APPLIED SPECTROSCOPY 2022; 76:609-619. [PMID: 35081756 PMCID: PMC9082968 DOI: 10.1177/00037028221077119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy is a non-destructive and label-free molecular identification technique capable of producing highly specific spectra with various bands correlated to molecular structure. Moreover, the enhanced detection sensitivity offered by surface-enhanced Raman spectroscopy (SERS) allows analyzing mixtures of related chemical species in a relatively short measurement time. Combining SERS with deep learning algorithms allows in some cases to increase detection and classification capabilities even further. The present study evaluates the potential of applying deep learning algorithms to SERS spectroscopy to differentiate and classify different species of bile acids, a large family of molecules with low Raman cross sections and molecular structures that often differ by a single hydroxyl group. Moreover, the study of these molecules is of interest for the medical community since they have distinct pathological roles and are currently viewed as potential markers of gut microbiome imbalances. A convolutional neural network model was developed and used to classify SERS spectra from five bile acid species. The model succeeded in identifying the five analytes despite very similar molecular structures and was found to be reliable even at low analyte concentrations.
Collapse
Affiliation(s)
- Alexis Lebrun
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Hubert Fortin
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Nicolas Fontaine
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Daniel Fillion
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Olivier Barbier
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Denis Boudreau
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| |
Collapse
|
31
|
Zhang Q, Wu ZH, Zhao SS, Yang J, Chen L, Wang XY, Wang ZY, Liu HX. Identification and Spatial Visualization of Dysregulated Bile Acid Metabolism in High-Fat Diet-Fed Mice by Mass Spectral Imaging. Front Nutr 2022; 9:858603. [PMID: 35433798 PMCID: PMC9007086 DOI: 10.3389/fnut.2022.858603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Changes in overall bile acid (BA) levels and specific BA metabolites are involved in metabolic diseases, gastrointestinal, and liver cancer. BAs have become established as important signaling molecules that enable fine-tuned inter-tissue communication within the enterohepatic circulation. The liver, BAs site of production, displayed physiological and functional zonal differences in the periportal zone versus the centrilobular zone. In addition, BA metabolism shows regional differences in the intestinal tract. However, there is no available method to detect the spatial distribution and molecular profiling of BAs within the enterohepatic circulation. Herein, we demonstrated the application in mass spectrometry imaging (MSI) with a high spatial resolution (3 μm) plus mass accuracy matrix-assisted laser desorption ionization (MALDI) to imaging BAs and N-1-naphthylphthalamic acid (NPA). Our results could clearly determine the zonation patterns and regional difference characteristics of BAs on mouse liver, ileum, and colon tissue sections, and the relative content of BAs based on NPA could also be ascertained. In conclusion, our method promoted the accessibility of spatial localization and quantitative study of BAs on gastrointestinal tissue sections and demonstrated that MALDI-MSI was a valuable tool to investigate and locate several BA molecules in different tissue types leading to a better understanding of the role of BAs behind the gastrointestinal diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China
| | - Zhen-Hua Wu
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Shan-Shan Zhao
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Jing Yang
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Lei Chen
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Xiao-Yu Wang
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Health Sciences Institute, China Medical University, Shenyang, China.,Institute of Life Sciences, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Evangelakos I, Kuhl A, Baguhl M, Schlein C, John C, Rohde JK, Heine M, Heeren J, Worthmann A. Cold-Induced Lipoprotein Clearance in Cyp7b1-Deficient Mice. Front Cell Dev Biol 2022; 10:836741. [PMID: 35478959 PMCID: PMC9038073 DOI: 10.3389/fcell.2022.836741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Brown adipose tissue (BAT) has emerged as an appealing therapeutic target for cardio metabolic diseases. BAT is a heat-producing organ and upon activation substantially lowers hyperlipidemia. In response to cold exposure, not only the uptake of lipids into BAT is increased but also the Cyp7b1-mediated synthesis of bile acids (BA) from cholesterol in the liver is triggered. In addition to their role for intestinal lipid digestion, BA act as endocrine signals that can activate thermogenesis in BAT. When exposed to cold temperatures, Cyp7b1−/− mice have compromised BAT function along with reduced fecal bile acid levels. Here, we aim to evaluate the role of Cyp7b1 for BAT-dependent lipid clearance. Using metabolic studies with radioactive tracers, we show that in response to a cold stimulus, BAT-mediated clearance of fatty acids derived from triglyceride-rich lipoproteins (TRL), and their remnants are reduced in Cyp7b1−/− mice. The impaired lipid uptake can be explained by reduced BAT lipoprotein lipase (LPL) levels and compromised organ activity in Cyp7b1−/− mice, which may be linked to impaired insulin signaling. Overall, our findings reveal that alterations of systemic lipoprotein metabolism mediated by cold-activated BAT are dependent, at least in part, on CYP7Β1.
Collapse
Affiliation(s)
- Ioannis Evangelakos
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kuhl
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Baguhl
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara John
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia K. Rohde
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Anna Worthmann,
| |
Collapse
|
33
|
Zhao X, Liu Z, Sun F, Yao L, Yang G, Wang K. Bile Acid Detection Techniques and Bile Acid-Related Diseases. Front Physiol 2022; 13:826740. [PMID: 35370774 PMCID: PMC8967486 DOI: 10.3389/fphys.2022.826740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Bile acid is a derivative of cholinergic acid (steroidal parent nucleus) that plays an important role in digestion, absorption, and metabolism. In recent years, bile acids have been identified as signaling molecules that regulate self-metabolism, lipid metabolism, energy balance, and glucose metabolism. The detection of fine changes in bile acids caused by metabolism, disease, or individual differences has become a research hotspot. At present, there are many related techniques, such as enzyme analysis, immunoassays, and chromatography, that are used for bile acid detection. These methods have been applied in clinical practice and laboratory research to varying degrees. However, mainstream detection technology is constantly updated and replaced with the passage of time, proffering new detection technologies. Previously, gas chromatography (GS) and gas chromatography-mass spectrometry (GC-MS) were the most commonly used for bile acid detection. In recent years, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has developed rapidly and has gradually become the mainstream bile acid sample separation and detection technology. In this review, the basic principles, development and progress of technology, applicability, advantages, and disadvantages of various detection techniques are discussed and the changes in bile acids caused by related diseases are summarized.
Collapse
Affiliation(s)
- Xiang Zhao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zitian Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuyun Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lunjin Yao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangwei Yang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Kexin Wang,
| |
Collapse
|
34
|
Shen Y, Liu K, Luo X, Guan Q, Cheng L. A simple and reliable bile acid assay in human serum by LC-MS/MS. J Clin Lab Anal 2022; 36:e24279. [PMID: 35137454 PMCID: PMC8906021 DOI: 10.1002/jcla.24279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bile acids, as important signaling molecules and regulatory factors acting on glucose, lipid, and energy metabolism, are always involved in liver, biliary, and intestinal diseases. Development and validation of a simple liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for determination of bile acids is significant for the routine clinical testing. Methods Fifty microlitre of serum was mixed with 10 μl of the internal standard working solution and then 140 μl of methanol for protein precipitation. After centrifuged, the supernatant was directly used for LC‐MS/MS analysis. Results Good separation of all bile acid species was achieved. The method was validated with consistent linearity for individual bile acids, good recovery, low carryover, satisfactory sample stability, and analytical specificity against hemolysis, lipemia, and bilirubinemia. The intra‐day and the inter‐day imprecision values were in the range of 1.53%–10.63% and 3.01%–13.98%, respectively. No obvious matrix effect was observed. The reference intervals of bile acids in adults have been established for the clinical testing. Conclusions The low sample volume, simple sample preparation, good separation of all species, and satisfying validation results make this LC‐MS/MS approach suitable for usage as a high‐throughput assay in routine clinical laboratories.
Collapse
Affiliation(s)
- Ying Shen
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ke Liu
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xia Luo
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Guan
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liming Cheng
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
35
|
Abstract
Bile acids are detergent molecules that solubilize dietary lipids and lipid-soluble vitamins. Humans synthesize bile acids with α-orientation hydroxyl groups which can be biotransformed by gut microbiota to toxic, hydrophobic bile acids, such as deoxycholic acid (DCA). Gut microbiota can also convert hydroxyl groups from the α-orientation through an oxo-intermediate to the β-orientation, resulting in more hydrophilic, less toxic bile acids. This interconversion is catalyzed by regio- (C-3 vs. C-7) and stereospecific (α vs. β) hydroxysteroid dehydrogenases (HSDHs). So far, genes encoding the urso- (7α-HSDH & 7β-HSDH) and iso- (3α-HSDH & 3β-HSDH) bile acid pathways have been described. Recently, multiple human gut clostridia were reported to encode 12α-HSDH, which interconverts DCA and 12-oxolithocholic acid (12-oxoLCA). 12β-HSDH completes the epi-bile acid pathway by converting 12-oxoLCA to the 12β-bile acid denoted epiDCA; however, a gene(s) encoding this enzyme has yet to be identified. We confirmed 12β-HSDH activity in cultures of Clostridium paraputrificum ATCC 25780. From six candidate C. paraputrificum ATCC 25780 oxidoreductase genes, we discovered the first gene (DR024_RS09610) encoding bile acid 12β-HSDH. Phylogenetic analysis revealed unforeseen diversity for 12β-HSDH, leading to validation of two additional bile acid 12β-HSDHs through a synthetic biology approach. By comparison to a previous phylogenetic analysis of 12α-HSDH, we identified the first potential C-12 epimerizing strains: Collinsella tanakaei YIT 12063 and Collinsella stercoris DSM 13279. A Hidden Markov Model search against human gut metagenomes located putative 12β-HSDH genes in about 30% of subjects within the cohorts analyzed, indicating this gene is relevant in the human gut microbiome.
Collapse
Affiliation(s)
- Heidi L. Doden
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Institute for Health Research and Policy, University of Illinois, Chicago, IL, USA,Cancer Education and Career Development Program, University of Illinois, Chicago, IL, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Cancer Center at Illinois, Urbana, IL, USA
| | | | - João M. P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jason M. Ridlon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA,Cancer Center at Illinois, Urbana, IL, USA,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,CONTACT Jason M. Ridlon Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
36
|
Schlörmann W, Bockwoldt JA, Mayr MF, Lorkowski S, Dawczynski C, Rohn S, Ehrmann MA, Glei M. Fermentation profile, cholesterol-reducing properties and chemopreventive potential of β-glucans from Levilactobacillus brevis and Pediococcus claussenii - a comparative study with β-glucans from different sources. Food Funct 2021; 12:10615-10631. [PMID: 34585204 DOI: 10.1039/d1fo02175c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate whether β-glucans obtained from the lactic acid bacteria (LAB) Levilactobacillus (L.) brevis and Pediococcus (P.) claussenii exhibit similar physiological effects such as cholesterol-binding capacity (CBC) as the structurally different β-glucans from oat, barley, and yeast as well as curdlan. After in vitro fermentation, fermentation supernatants (FSs) and/or -pellets (FPs) were analyzed regarding the concentrations of short-chain fatty acids (SCFAs), ammonia, bile acids, the relative abundance of bacterial taxa and chemopreventive effects (growth inhibition, apoptosis, genotoxicity) in LT97 colon adenoma cells. Compared to other glucans, the highest CBC was determined for oat β-glucan (65.9 ± 8.8 mg g-1, p < 0.05). Concentrations of SCFA were increased in FSs of all β-glucans (up to 2.7-fold). The lowest concentrations of ammonia (down to 0.8 ± 0.3 mmol L-1) and bile acids (2.5-5.2 μg mL-1) were detected in FSs of the β-glucans from oat, barley, yeast, and curdlan. The various β-glucans differentially modulated the relative abundance of bacteria families and reduced the Firmicutes/Bacteroidetes ratio. Treatment of LT97 cells with the FSs led to a significant dose-dependent growth reduction and increase in caspase-3 activity without exhibiting genotoxic effects. Though the different β-glucans show different fermentation profiles as well as cholesterol- and bile acid-reducing properties, they exhibit comparable chemopreventive effects.
Collapse
Affiliation(s)
- W Schlörmann
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - J A Bockwoldt
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M F Mayr
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany.
| | - S Lorkowski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Straße 25, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - C Dawczynski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Junior Research Group Nutritional Concepts, Dornburger Straße 29, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - S Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M A Ehrmann
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M Glei
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
37
|
Zhang W, Zhou Y, Xu X, Tian Y, Zhang C. A Time-Resolved-Fluorescence Lateral Flow Assay for Rapid Detection of Cholyglycine Acid for the Diagnosis of Liver Diseases. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver disease is a great danger to human health. The determination of blood level of Cholyglycine acid (CG) is a vital biomarker for the assessment of liver function in clinic, which is contribute to the diagnosis of liver diseases. Thus, establishing accuracy, rapid and convenient
method for the detection of glycolic acid is of great significance. In this study, a time-resolved-fluorescence (TRF) lateral flow assay for rapid detection of CG was development. The analytical detection limit (mean of zero-2 SD) was 0.06 μg/mL The method showed good linearity in
the range of 0.2–40 g/mL and was not affected by biomolecules with similar structure to CG. The analytical mean recovery of control was between 90–110% and the imprecision of intra- and inter-assay of CVs was less than 10%. No significant matrix effect was observed in saline, serum,
plasma or whole blood. A good correlation was found with the homogeneous enzyme immunoassay (HEIA) assay (slopes 1.0463, y-intercepts 0.2721 μg/mL, R = 0.989, n = 50, P < 0.001). The CG TRF analysis could provide reproducible and quantitative information
about the state of liver in a few minutes, which is suitable for the detection of liver diseases in point-of-care-testing (POCT) conditions.
Collapse
Affiliation(s)
- Wang Zhang
- Chinese People’s Liberation Army General Hospital, 100853, Beijing, China
| | - Yujun Zhou
- Chinese People’s Liberation Army General Hospital, 100853, Beijing, China
| | - Xiuli Xu
- Beijing Diagreat Biotechnologies Co., Ltd, 101102, Beijing, China
| | - Yaping Tian
- Chinese People’s Liberation Army General Hospital, 100853, Beijing, China
| | - Chunyan Zhang
- Chinese People’s Liberation Army General Hospital, 100853, Beijing, China
| |
Collapse
|
38
|
Gregor A, Pignitter M, Fahrngruber C, Bayer S, Somoza V, König J, Duszka K. Caloric restriction increases levels of taurine in the intestine and stimulates taurine uptake by conjugation to glutathione. J Nutr Biochem 2021; 96:108781. [PMID: 34022385 DOI: 10.1016/j.jnutbio.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Our previous study indicated increased levels of taurine-conjugated bile acids (BA) in the intestine content of mice submitted to caloric restriction (CR). In the current project, we found increased levels of free taurine and taurine conjugates, including glutathione (GSH)-taurine, in CR compared to ad libitum fed animals in the mucosa along the intestine but not in the liver. The levels of free GSH were decreased in the intestine of CR compared to ad libitum fed mice. However, the levels of oxidized GSH were not affected and were complemented by the lack of changes in the antioxidative parameters. Glutathione-S transferases (GST) enzymatic activity was increased as was the expression of GST genes along the gastrointestinal tract of CR mice. In the CR intestine, addition of GSH to taurine solution enhanced taurine uptake. Accordingly, the expression of taurine transporter (TauT) was increased in the ileum of CR animals and the levels of free and BA-conjugated taurine were lower in the feces of CR compared to ad libitum fed mice. Fittingly, BA- and GSH-conjugated taurine levels were increased in the plasma of CR mice, however, free taurine remained unaffected. We conclude that CR-triggered production and release of taurine-conjugated BA in the intestine results in increased levels of free taurine what stimulates GST to conjugate and enhance uptake of taurine from the intestine.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | | | - Sebastian Bayer
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria; Leibniz-Institut for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Lucas LN, Barrett K, Kerby RL, Zhang Q, Cattaneo LE, Stevenson D, Rey FE, Amador-Noguez D. Dominant Bacterial Phyla from the Human Gut Show Widespread Ability To Transform and Conjugate Bile Acids. mSystems 2021; 6:e0080521. [PMID: 34463573 DOI: 10.1128/msystems.00805-21] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Gut bacteria influence human physiology by chemically modifying host-synthesized primary bile acids. These modified bile acids, known as secondary bile acids, can act as signaling molecules that modulate host lipid, glucose, and energy metabolism and affect gut microbiota composition via selective antimicrobial properties. However, knowledge regarding the bile acid-transforming capabilities of individual gut microbes remains limited. To help address this knowledge gap, we screened 72 bacterial isolates, spanning seven major phyla commonly found in the human gut, for their ability to chemically modify unconjugated bile acids. We found that 43 isolates, representing 41 species, were capable of in vitro modification of one or more of the three most abundant unconjugated bile acids in humans: cholic acid, chenodeoxycholic acid, and deoxycholic acid. Of these, 32 species have not been previously described as bile acid transformers. The most prevalent bile acid transformations detected were oxidation of 3α-, 7α-, or 12α-hydroxyl groups on the steroid core, a reaction catalyzed by hydroxysteroid dehydrogenases. In addition, we found 7α-dehydroxylation activity to be distributed across various bacterial genera, and we observed several other complex bile acid transformations. Finally, our screen revealed widespread bacterial conjugation of primary and secondary bile acids to glycine, a process that was thought to only occur in the liver, and to 15 other amino acids, resulting in the discovery of 44 novel microbially conjugated bile acids. IMPORTANCE Our current knowledge regarding microbial bile acid transformations comes primarily from biochemical studies on a relatively small number of species or from bioinformatic predictions that rely on homology to known bile acid-transforming enzyme sequences. Therefore, much remains to be learned regarding the variety of bile acid transformations and their representation across gut microbial species. By carrying out a systematic investigation of bacterial species commonly found in the human intestinal tract, this study helps better define the gut bacteria that impact composition of the bile acid pool, which has implications in the context of metabolic disorders and cancers of the digestive tract. Our results greatly expand upon the list of bacterial species known to perform different types of bile acid transformations. This knowledge will be vital for assessing the causal connections between the microbiome, bile acid pool composition, and human health.
Collapse
Affiliation(s)
- L N Lucas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - K Barrett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Q Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - L E Cattaneo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - D Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - F E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - D Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Lin A, Shih CT, Chu HF, Chen CW, Cheng YT, Wu CC, Yang CCH, Tsai YC. Lactobacillus fermentum PS150 promotes non-rapid eye movement sleep in the first night effect of mice. Sci Rep 2021; 11:16313. [PMID: 34381098 PMCID: PMC8357945 DOI: 10.1038/s41598-021-95659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
The first night effect (FNE) is a type of sleep disturbance caused by an unfamiliar environment, which leads to difficulty falling asleep and reduced sleep duration. Previously, we reported that Lactobacillus fermentum PS150 (PS150) improves sleep conditions in a pentobarbital-induced sleep mouse model. In this study, we aimed to evaluate the effect of PS150 on the FNE in mice. Briefly, mice were implanted with electrodes and orally administered PS150 for four weeks, and then the FNE was induced by cage changing. Analysis of polysomnographic signals revealed that intervention with PS150 restored non-rapid eye movement (NREM) sleep length under the FNE. Compared to diphenhydramine, a commonly used sleep aid, PS150 had no unwanted side effects, such as rapid eye movement (REM) sleep deprivation and fragmented sleep. Moreover, temporal analysis revealed that PS150 efficiently reduced both sleep latency and time spent restoring normal levels of REM sleep. Taken together, these results suggest that PS150 efficiently ameliorates sleep disturbance caused by the FNE. Additionally, V3–V4 16S rRNA sequencing revealed significant increases in Erysipelotrichia, Actinobacteria, and Coriobacteriia in fecal specimens of the PS150-treated group, indicating that PS150 induces gut microbiota remodeling.
Collapse
Affiliation(s)
- Alexander Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Chung Mei Biopharma Co., Ltd., Taichung, Taiwan
| | | | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan
| | - Chieh-Wen Chen
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Cheng
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | - Cheryl C H Yang
- Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan. .,Sleep Research Center, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan.
| |
Collapse
|
41
|
Meng F, Zong W, Wei X, Tao Y, Wang G, Liao Z, Chen M. Dolomiaea souliei ethyl acetate extract protected against α-naphthylisothiocyanate-induced acute intrahepatic cholestasis through regulation of farnesoid x receptor-mediated bile acid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153588. [PMID: 34091148 DOI: 10.1016/j.phymed.2021.153588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cholestasis is characterized by accumulation of bile components in liver and systemic circulation. Restoration of bile acid homeostasis via activating farnesoid x receptor (FXR) is a promising strategy for the treatment of cholestasis. FXR-SHP (small heterodimer partner) axis plays an important role in maintaining bile acid homeostasis. PURPOSE To investigate the anti-cholestasis effect of Dolomiaea souliei (Franch.) C.Shih (D. souliei) and clarify its underlying mechanism against α-naphthylisothiocyanate (ANIT) induced acute intrahepatic cholestasis. METHODS ANIT-induced Sprague-Dawley rats were employed to investigate the anti-cholestasis effect of D. souliei ethyl acetate extract (DSE). Ursodeoxycholic acid (UDCA) was used as positive control. Bile flow and blood biochemical parameters were measured. Liver histopathological examination was conducted via hematoxylin-eosin staining. Western blot analysis was carried out to evaluate the protein levels related to bile acids metabolism and inflammation. The interactions between FXR and costunolide or dehydrocostus lactone, were conducted by molecular docking experiments. The effect of costunolide and dehydrocostus lactone on aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and FXR expression were also evaluated using guggulsterone-induced L02 cells. RESULTS DSE could promote bile excretions and protect against ANIT-induced liver damage in cholestasis rats. Protein levels of FXR, SHP, Na+/taurocholate cotransporter (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) were increased and the expressions of cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) were decreased by DSE. Meanwhile, the anti-inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were also significantly increased, and the pro-inflammatory factor, interleukin-10 (IL-10), was significantly decreased in rats of DSE groups. Molecular docking revealed that costunolide and dehydrocostus lactone could be well docked into the FXR protein molecule, and hydrophobic interactions played the main function. Costunolide could reverse the increased AST and ALT levels and increase the FXR expression in guggulsterone-induced L02 cells. CONCLUSION DSE had an anti-cholestasis effect by activating FXR-SHP axis, inhibiting synthesis of bile acid, and increasing bile secretion, together with inflammatory response and improving liver injury. Costunolide may be the main active component. This study provided a potential therapeutic mechanism for D. souliei as an anti-cholestasis medicine in the treatment of cholestasis liver diseases.
Collapse
Affiliation(s)
- FanCheng Meng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - Wei Zong
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - XiaoDong Wei
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - YunYi Tao
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - GuoWei Wang
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - ZhiHua Liao
- School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P.R. China.
| |
Collapse
|
42
|
Riba A, Hassani K, Walker A, van Best N, von Zezschwitz D, Anslinger T, Sillner N, Rosenhain S, Eibach D, Maiga-Ascofaré O, Rolle-Kampczyk U, Basic M, Binz A, Mocek S, Sodeik B, Bauerfeind R, Mohs A, Trautwein C, Kiessling F, May J, Klingenspor M, Gremse F, Schmitt-Kopplin P, Bleich A, Torow N, von Bergen M, Hornef MW. Disturbed gut microbiota and bile homeostasis in Giardia-infected mice contributes to metabolic dysregulation and growth impairment. Sci Transl Med 2021; 12:12/565/eaay7019. [PMID: 33055245 DOI: 10.1126/scitranslmed.aay7019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Although infection with the human enteropathogen Giardia lamblia causes self-limited diarrhea in adults, infant populations in endemic areas experience persistent pathogen carriage in the absence of diarrhea. The persistence of this protozoan parasite in infants has been associated with reduced weight gain and linear growth (height-for-age). The mechanisms that support persistent infection and determine the different disease outcomes in the infant host are incompletely understood. Using a neonatal mouse model of persistent G. lamblia infection, we demonstrate that G. lamblia induced bile secretion and used the bile constituent phosphatidylcholine as a substrate for parasite growth. In addition, we show that G. lamblia infection altered the enteric microbiota composition, leading to enhanced bile acid deconjugation and increased expression of fibroblast growth factor 15. This resulted in elevated energy expenditure and dysregulated lipid metabolism with reduced adipose tissue, body weight gain, and growth in the infected mice. Our results indicate that this enteropathogen's modulation of bile acid metabolism and lipid metabolism in the neonatal mouse host led to an altered body composition, suggesting how G. lamblia infection could contribute to growth restriction in infants in endemic areas.
Collapse
Affiliation(s)
- Ambre Riba
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Kasra Hassani
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Niels van Best
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany.,Department of Medical Microbiology and NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Dunja von Zezschwitz
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Teresa Anslinger
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Nina Sillner
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Stefanie Rosenhain
- Institute for Experimental Molecular Imaging, University Hospital Aachen, 52074 Aachen, Germany
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | - Ulrike Rolle-Kampczyk
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, 04318 Leipzig, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Mocek
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Antje Mohs
- Medizinische Klinik III, RWTH University Hospital, Aachen, 52074 Aachen, Germany
| | - Christian Trautwein
- Medizinische Klinik III, RWTH University Hospital, Aachen, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, 52074 Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, University Hospital Aachen, 52074 Aachen, Germany.,Software Tools for Computational Engineering, RWTH Aachen University, 52072 Aachen, Germany.,Gremse-IT GmbH, 52068 Aachen, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany.,Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Bruderstrase 34, D-04103 Leipzig, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany.
| |
Collapse
|
43
|
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. MICROBIOME 2021; 9:140. [PMID: 34127070 PMCID: PMC8204491 DOI: 10.1186/s40168-021-01101-1] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Bile acids play key roles in gut metabolism, cell signaling, and microbiome composition. While the liver is responsible for the production of primary bile acids, microbes in the gut modify these compounds into myriad forms that greatly increase their diversity and biological function. Since the early 1960s, microbes have been known to transform human bile acids in four distinct ways: deconjugation of the amino acids glycine or taurine, and dehydroxylation, dehydrogenation, and epimerization of the cholesterol core. Alterations in the chemistry of these secondary bile acids have been linked to several diseases, such as cirrhosis, inflammatory bowel disease, and cancer. In addition to the previously known transformations, a recent study has shown that members of our gut microbiota are also able to conjugate amino acids to bile acids, representing a new set of "microbially conjugated bile acids." This new finding greatly influences the diversity of bile acids in the mammalian gut, but the effects on host physiology and microbial dynamics are mostly unknown. This review focuses on recent discoveries investigating microbial mechanisms of human bile acids and explores the chemical diversity that may exist in bile acid structures in light of the new discovery of microbial conjugations. Video Abstract.
Collapse
Affiliation(s)
- Douglas V. Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Robert A. Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
44
|
Reiter S, Dunkel A, Metwaly A, Panes J, Salas A, Haller D, Hofmann T. Development of a Highly Sensitive Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry Quantitation Method for Fecal Bile Acids and Application on Crohn's Disease Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5238-5251. [PMID: 33890469 DOI: 10.1021/acs.jafc.1c00769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In addition to their important role in fat digestion, bile acids are increasingly being used as markers for various diseases. The large diversity of bile acids results from the conversion of primary and conjugated bile acids into secondary bile acids by deconjugation and dehydroxylation reactions mediated by the intestinal microbiota. Here, we describe a fast and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for absolute quantitation of 45 bile acids in human or mouse feces in combination with a simple workup and extraction procedure. Method validation outlined excellent limits of detection and quantitation, linearity, selectivity, recovery, extraction loss, and precision. To investigate the connection between microbiome alterations and bile acid metabolism, the method was applied on a Crohn's disease study including patients with histologically documented active disease or remission as well as on a model using humanized mice. As the complex mechanism including genetic and environmental factors leading to the development of Crohn's disease is so far not completely understood, the study investigates the microbial metabolism of bile acids and the potential use of bile acid profiles to predict disease state.
Collapse
Affiliation(s)
- Sinah Reiter
- Chair for Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
- ZIEL-Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Julian Panes
- Inflammatory Bowel Disease Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, c/ Rosselló 149-153, 08036 Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, c/ Rosselló 149-153, 08036 Barcelona, Spain
| | - Dirk Haller
- ZIEL-Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair for Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
45
|
Han P, Gu JQ, Li LS, Wang XY, Wang HT, Wang Y, Chang C, Sun JL. The Association Between Intestinal Bacteria and Allergic Diseases-Cause or Consequence? Front Cell Infect Microbiol 2021; 11:650893. [PMID: 33937097 PMCID: PMC8083053 DOI: 10.3389/fcimb.2021.650893] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of allergic disorders has been increasing over the past few decades, especially in industrialized countries. Allergies can affect people of any age. The pathogenesis of allergic diseases is complex and involves genetic, epigenetic, and environmental factors, and the response to medication is very variable. For some patients, avoidance is the sole effective therapy, and only when the triggers are identifiable. In recent years, the intestinal microbiota has emerged as a significant contributor to the development of allergic diseases. However, the precise mechanisms related to the effects of the microbiome on the pathogenesis of allergic diseases are unknown. This review summarizes the recent association between allergic disorders and intestinal bacterial dysbiosis, describes the function of gut microbes in allergic disease development from both preclinical and clinical studies, discusses the factors that influence gut microbial diversity and advanced techniques used in microbial analysis. Ultimately, more studies are required to define the host-microbial relationship relevant to allergic disorders and amenable to new therapeutic interventions.
Collapse
Affiliation(s)
- Pei Han
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jian-Qing Gu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Sha Li
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Yan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong-Tian Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Chascsa DM, Ferré EMN, Hadjiyannis Y, Alao H, Natarajan M, Quinones M, Kleiner DE, Simcox TL, Chitsaz E, Rose SR, Hallgren A, Kampe O, Marko J, Ali RO, Auh S, Koh C, Belkaid Y, Lionakis MS, Heller T. APECED-Associated Hepatitis: Clinical, Biochemical, Histological and Treatment Data From a Large, Predominantly American Cohort. Hepatology 2021; 73:1088-1104. [PMID: 32557834 PMCID: PMC9169991 DOI: 10.1002/hep.31421] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), caused by autoimmune regulator (AIRE) mutations, manifests with chronic mucocutaneous candidiasis (CMC) and multisystem autoimmunity, most often hypoparathyroidism (HP) and adrenal insufficiency (AI). European cohorts previously reported a ~10% prevalence of APECED-associated hepatitis (APAH) with presentations ranging from asymptomatic laboratory derangements to fatal fulminant hepatic failure. Herein, we characterized APAH in a large APECED cohort from the Americas. APPROACH AND RESULTS Forty-five consecutive patients with APECED were evaluated (2013-2015) at the National Institutes of Health (NIH; NCT01386437). Hepatology consultation assessed hepatic and autoimmune biomarkers and liver ultrasound in all patients. Liver biopsies evaluated autoimmune features and fibrosis. The 16S ribosomal RNA (rRNA) sequencing was performed in 35 patients' stools (12 with and 23 without APAH). Among 43 evaluable patients, 18 (42%) had APAH; in 33.3% of those with APAH, APAH occurred before developing classic APECED diagnostic criteria. At APAH diagnosis, the median age was 7.8 years, and patients manifested with aminotransferase elevation and/or hyperbilirubinemia. All patients with APAH were in clinical remission during their NIH evaluation while receiving immunomodulatory treatment. We found no difference in age, sex, or prevalence of CMC, AI, or HP between patients with or without APAH. Autoantibody positivity against aromatic L-amino acid decarboxylase, cytochrome P450 family 1 subfamily A member 2, histidine decarboxylase (HDC), bactericidal/permeability-increasing fold-containing B1, tryptophan hydroxlase, and 21-hydroxylase (21-OH), and the homozygous c.967_979del13 AIRE mutation were associated with APAH development. Classical serological biomarkers of autoimmune hepatitis (AIH) were only sporadically positive. AIH-like lymphoplasmacytic inflammation with mild fibrosis was the predominant histological feature. Stool microbiome analysis found Slackia and Acidaminococcus in greater abundance in patients with APAH. CONCLUSIONS APAH is more common than previously described, may present early before classic APECED manifestations, and most often manifests with milder, treatment-responsive disease. Several APECED-associated autoantibodies, but not standard AIH-associated biomarkers, correlate with APAH.
Collapse
Affiliation(s)
- David M. Chascsa
- Translational, Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Elise M. N. Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yannis Hadjiyannis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hawwa Alao
- Translational, Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Mukil Natarajan
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mariam Quinones
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David E. Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas L. Simcox
- Translational, Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ehsan Chitsaz
- Translational, Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Stacey R. Rose
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Asa Hallgren
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Olle Kampe
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Jamie Marko
- Radiology and Imaging Sciences, NIH Clinical Center, National Institutes of Health, Bethesda, MD
| | - Rabab O. Ali
- Translational, Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Sungyoung Auh
- National Institute of Diabetes and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher Koh
- Translational, Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institue of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Theo Heller
- Translational, Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Fischer J, Treblin M, Sitz T, Rohn S. Development of a targeted HPLC-ESI-QqQ-MS/MS method for the quantification of sulfolipids from a cyanobacterium, selected leafy vegetables, and a microalgae species. Anal Bioanal Chem 2021; 413:1941-1954. [PMID: 33483837 PMCID: PMC7925498 DOI: 10.1007/s00216-021-03164-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
The use of macro- and microalgae, as well as cyanobacteria, becomes increasingly important for human nutrition, even in Western diets. Health effects, positive as well as negative, are believed to result mainly from minor components in the food. In macro- and microalgae as well as in certain cyanobacteria, one class of such minor compounds is sulfolipids, more precisely sulfoquinovosylmonoacylglycerol (SQMG) and sulfoquinovosyldiacylglycerol (SQDG) derivatives. SQMGs and SQDGs consist of a diacylglycerol esterified with varying fatty acid combinations and a sulfoquinovose moiety. Sulfoquinovose is a sulfonated hexose analogous to D-glucose, but featuring a stable carbon-sulfur bond. With regard to their chemical structure, SQDGs can be distinguished according to their sn1- and sn2-bound fatty acids. Although there is great interest in SQDGs, because of their controversially discussed bioactivities, only a negligible number of comprehensive methods for identification and quantification has been published, so far. Within this work, a sample preparation including a quantitative isolation of SQDGs from selected raw materials, a clean-up with solid-phase extraction (SPE), and a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of different, intact SQMGs and SQDGs were developed and validated. The applicability of the method was further demonstrated by comparing a prominent cyanobacterium (Arthrospira sp.) with a microalgae preparation (Chlorella vulgaris), and selected leafy vegetables (spinach, basil).
Collapse
Affiliation(s)
- Judith Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Mascha Treblin
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Tobias Sitz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany.
- Institute for Food and Environmental Research (ILU) e.V., Papendorfer Weg 3, 14806, Bad Belzig, Germany.
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
48
|
Han R, Ma Y, Xiao J, You L, Pedisić S, Liao L. The possible mechanism of the protective effect of a sulfated polysaccharide from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium in mice. Food Chem Toxicol 2021; 149:112001. [PMID: 33482260 DOI: 10.1016/j.fct.2021.112001] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the possible mechanism of the protective effect of a sulfated polysaccharide (SP) from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium (DSS). Balb/c mice were gavaged with SP for four weeks, then colon tissue, cecal contents and feces were collected for further analysis. Results showed that SP was effective for inhibiting colon shortening and oedema forming. It could alleviate colonic inflammation via down-regulating the expression of tumor necrosis factor-α (TNF-α), interleukin (IL-6, IL-1β). Besides, it enhanced the intestinal barrier by up-regulating the expression of tight junction proteins Claudin-1 and Zonula occludens-1 (ZO-1) as well as Mucin (MUC-2). The increased expression of short chain fatty acid (SCFA) receptors including G protein-coupled receptor (GPR43, GPR109A) and olfactory receptor (Olfr78), and SCFA production in feces indicated that most of SCFA were absorbed in colon, which could play positive roles in ameliorating colitis. Furthermore, the results of gut microbiota showed that Enterorhabdus, Desulfovibrio, Alistipes, Bacteroides acidifaciens had closest correlations with the strongest protective effects against colitis. Therefore, SP could alleviate DSS-induced colitis via enhancing intestinal barrier, reducing inflammation, activating SCFA receptors and regulating gut microbiota. It could be developed as functional foods which is good for gut health.
Collapse
Affiliation(s)
- Rui Han
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, Guangdong, China
| | - Yongxuan Ma
- Guangzhou Liheng Clinical Nutrition Co.LTD, 133 Yiheng Road, Guangzhou, 510610, Guangdong, China
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau SAR, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, Guangdong, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, Guangdong, China.
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Prolaz Kasandrića 6, 23000, Zadar, Croatia
| | - Lan Liao
- Department of Food Science, College of Food Science and Technology, Foshan University, Foshan, Guangdong, 528000, China
| |
Collapse
|
49
|
Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, Ivey KL, Shai I, Willett WC, Hu FB, Rimm EB, Stampfer MJ, Chan AT, Huttenhower C. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med 2021; 27:333-343. [PMID: 33574608 PMCID: PMC8186452 DOI: 10.1038/s41591-020-01223-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
To address how the microbiome might modify the interaction between diet and cardiometabolic health, we analyzed longitudinal microbiome data from 307 male participants in the Health Professionals Follow-Up Study, together with long-term dietary information and measurements of biomarkers of glucose homeostasis, lipid metabolism and inflammation from blood samples. Here, we demonstrate that a healthy Mediterranean-style dietary pattern is associated with specific functional and taxonomic components of the gut microbiome, and that its protective associations with cardiometabolic health vary depending on microbial composition. In particular, the protective association between adherence to the Mediterranean diet and cardiometabolic disease risk was significantly stronger among participants with decreased abundance of Prevotella copri. Our findings advance the concept of precision nutrition and have the potential to inform more effective and precise dietary approaches for the prevention of cardiometabolic disease mediated through alterations in the gut microbiome.
Collapse
Affiliation(s)
- Dong D Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Long H Nguyen
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wenjie Ma
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ehud Rinott
- Ben-Gurion University of the Negev, Negev, Israel
| | - Kerry L Ivey
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, South Australia, Australia
- Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Iris Shai
- Ben-Gurion University of the Negev, Negev, Israel
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Meir J Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
50
|
Yan R, Wang K, Wang Q, Jiang H, Lu Y, Chen X, Zhang H, Su X, Du Y, Chen L, Li L, Lv L. Probiotic Lactobacillus casei Shirota prevents acute liver injury by reshaping the gut microbiota to alleviate excessive inflammation and metabolic disorders. Microb Biotechnol 2021; 15:247-261. [PMID: 33492728 PMCID: PMC8719798 DOI: 10.1111/1751-7915.13750] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of people die from liver diseases annually, and liver failure is one of the three major outcomes of liver disease. The gut microbiota plays a crucial role in liver diseases. This study aimed to explore the effects of Lactobacillus casei strain Shirota (LcS), a probiotics used widely around the world, on acute liver injury (ALI), as well as the underlying mechanism. Sprague Dawley rats were intragastrically administered LcS suspensions or placebo once daily for 7 days before induction of ALI by intraperitoneal injection of D-galactosamine (D-GalN). Histopathological examination and assessments of liver biochemical markers, inflammatory cytokines, and the gut microbiota, metabolome and transcriptome were conducted. Our results showed that pretreatment with LcS reduced hepatic and intestinal damage and reduced the elevation of serum gamma-glutamyltranspeptidase (GGT), total bile acids, IL-5, IL-10, G-CSF and RANTES. The analysis of the gut microbiota, metabolome and transcriptome showed that LcS lowered the ratio of Firmicutes to Bacteroidetes; reduced the enrichment of metabolites such as chenodeoxycholic acid, deoxycholic acid, lithocholic acid, d-talose and N-acetyl-glucosamine, reduce the depletion of d-glucose and l-methionine; and alleviated the downregulation of retinol metabolism and PPAR signalling and the upregulation of the pyruvate metabolism pathway in the liver. These results indicate the promising prospect of using LcS for the treatment of liver diseases, particularly ALI.
Collapse
Affiliation(s)
- Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiling Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lifeng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|