1
|
Islam MT, Akbor MS, Bhuia MS, Hasan R, Chowdhury R, Islam MA, Saifuzzaman M. GABAergic antidepressant effect of daidzin: in vivo approach with in silico receptor binding affinities. In Silico Pharmacol 2025; 13:57. [PMID: 40248027 PMCID: PMC11999917 DOI: 10.1007/s40203-025-00357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Daidzin (DZN: 7-(β-D-Glucopyranosyloxy)-4-hydroxyisoflavone) is a soy plant-derived isoflavone. It has diverse biological activities, including nephroprotective effects. To date, its anxiolytic, memory-enhancing, and antiepileptic properties have been discovered. However, its antidepressant activity has not yet been investigated.This study aimed to investigate DZN's antidepressant activity through animal and in silico studies. Male Swiss albino mice were randomly divided into nine groups consisting of control (vehicle), DZN 5, 10, and 20mg/kg, diazepam (GABAA agonist), flumazenil (GABAA antagonist), and a combination of DZN-10 with diazepam and/or flumazenil. Additionally, in silico studies were also performed to understand the possible molecular mechanisms behind this neurological activity. Findings suggest that DZN dose-dependently and significantly (p < 0.05) enhanced immobility time (IMT) in animals. DZN-10 also increased diazepam's effects significantly (p < 0.05), possibly by raising its IMT values. However, DZN significantly (p < 0.05) declined flumazenil's effect in their combination. In silico findings suggest that DZN has a strong binding affinity against GABAA receptor subtypes. We suppose DZN exerts its antidepressant effect, possibly by interacting with GABAA receptors. It exerts a synergistic effect with the GABA agonist drug diazepam. Further studies are required to determine the exact molecular mechanism behind this neurological activity.
Collapse
Affiliation(s)
- Md. Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208 Bangladesh
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Md. Showkot Akbor
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Md. Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208 Bangladesh
- Department of Pharmacy, East West University, Dhaka, 1212 Bangladesh
| | - Md. Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna, 9208 Bangladesh
| |
Collapse
|
2
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. Neuropsychopharmacology 2025; 50:673-684. [PMID: 39390105 PMCID: PMC11845475 DOI: 10.1038/s41386-024-02002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
3
|
Fluyau D, Kailasam VK, Kim P, Revadigar N. Selective serotonin reuptake inhibitors and quality of life: a meta-analysis of randomized placebo-controlled trials. Int Clin Psychopharmacol 2025:00004850-990000000-00163. [PMID: 40014013 DOI: 10.1097/yic.0000000000000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The benefit of selective serotonin reuptake inhibitors (SSRIs) in improving quality of life (QoL) has been investigated in randomized-controlled trials (RCTs) with equivocal results. This study explored whether SSRIs could improve QoL in individuals with medical, psychiatric, and neuropsychiatric conditions. RCTs were searched in PubMed, Embase, Scopus, Ovid, and Google Scholar. Data were synthesized via a meta-analysis. Subgroup and meta-regression analyses were performed. The sample size was 9,070. Compared with placebo, SSRIs showed statistically significant improvements in QoL in cancer (d = 0.30), major depressive disorder (d = 0.27), premenstrual dysphoric disorder (d = 0.38), type 2 diabetes mellitus (d = 0.48), persistent depressive disorder (d = 0.32), and menopausal symptoms (d = 0.40). Paroxetine exhibited the highest effect size. No significant improvements were noted in chronic obstructive pulmonary disease (d = 0.65, P = 0.09), congestive heart failure (d = 0.46, P = 0.27), and irritable bowel syndrome (d = 0.26, P = 0.127). The reduction in depressive symptoms improved QoL. Small-study effects, high attrition rates, and demographic imbalances are limiting factors to recommend SSRIs to improve QoL. Future research should focus on QoL domains and pharmacological properties of each SSRI.
Collapse
Affiliation(s)
- Dimy Fluyau
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Vasanth Kattalai Kailasam
- Department of Psychiatry, College of Medicine at Chicago, University of Illinois, Rockford, Illinois
| | - Paul Kim
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Neelambika Revadigar
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Park H, Ryu H, Zhang S, Kim S, Chung C. Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats. Neuropsychopharmacology 2025; 50:540-547. [PMID: 39528624 PMCID: PMC11735983 DOI: 10.1038/s41386-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Emerging evidence suggests that the enhanced activity of lateral habenula (LHb) is involved in depressive disorders. This abnormal potentiation of LHb neurons was shown to originate from presynaptic alterations; however, the mechanisms underlying this presynaptic enhancement and physiological consequences are yet to be elucidated. Previously, we reported that presynaptic transmission in the LHb is temporally rhythmic, showing greater activity in the afternoon than in the morning. Here, we used a learned helpless rodent model of depression to show that exposure to a stressor or incubation with the stress hormone, corticosterone, abolished the presynaptic temporal variation in the LHb. In addition, selective inhibition of mitogen-activated protein kinase (MAPK) kinase (MAPKK, MEK) activity in the LHb restored the presynaptic alteration even after stress exposure. Moreover, we observed a slight increase in phosphorylated synapsin I after stress exposure. Finally, we found that a blockade of MAPK signaling before stress exposure successfully prevented the depression-like behaviors, including behavioral despair and helplessness, in an acute learned helpless animal model of depression. Our study delineates the cellular and molecular mechanisms responsible for the abnormal presynaptic enhancement of the LHb in depression, which may mediate depressive behaviors.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sungmin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea.
| |
Collapse
|
5
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Ozdemir-Kumral ZN, Akgün T, Haşim C, Ulusoy E, Kalpakçıoğlu MK, Yüksel MF, Okumuş T, Us Z, Akakın D, Yüksel M, Gören Z, Yeğen BÇ. Intracerebroventricular administration of the exercise hormone irisin or acute strenuous exercise alleviates epileptic seizure-induced neuroinflammation and improves memory dysfunction in rats. BMC Neurosci 2024; 25:36. [PMID: 39103771 DOI: 10.1186/s12868-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.
Collapse
Affiliation(s)
- Zarife Nigâr Ozdemir-Kumral
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Tuğçe Akgün
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Ceren Haşim
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Ezgi Ulusoy
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | | | | | - Tunahan Okumuş
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Zeynep Us
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Services, İstanbul, Türkiye
| | - Zafer Gören
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye.
| |
Collapse
|
7
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605610. [PMID: 39131322 PMCID: PMC11312475 DOI: 10.1101/2024.07.29.605610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V. Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| |
Collapse
|
8
|
Nurten A, Gören MZ, Tekin N, Kaşkal M, Enginar N. Assessing effects of tamoxifen on tolerance, dependence, and glutamate and glutamine levels in frontal cortex and hippocampus in chronic morphine treatment. Behav Brain Res 2024; 463:114897. [PMID: 38331101 DOI: 10.1016/j.bbr.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tamoxifen has been shown to reduce glutamate release from presynaptic glutamatergic nerves and reverse tolerance to morphine-induced respiratory depression. Changes in glutamatergic neurotransmission in the central nervous system contribute to morphine tolerance, dependence, and withdrawal. This study, therefore, evaluated effects of tamoxifen on development of analgesic tolerance and dependence, and brain glutamate and glutamine levels in chronic morphine administration. Mice implanted with placebo or morphine pellets were injected with tamoxifen (0.6-2 mg/kg) or vehicle twice daily for 3 days. Nociceptive response was evaluated in the hot plate and tail immersion tests, 4, 48 and 72 h post-implant, and following a challenge dose of morphine (10 mg/kg). Withdrawal signs were determined after naloxone (1 mg/kg) administration. Morphine increased nociceptive threshold which declined over time. At 72 h, acute morphine elicited tolerance to the analgesic effect in the hot plate test in vehicle or tamoxifen administered animals. In the tail immersion test, however, tolerance to morphine analgesia was observed in tamoxifen, but not vehicle, co-administration. Tamoxifen did not reduce withdrawal signs. In contrast to previous reports, glutamate and glutamine levels in the hippocampus and frontal cortex did not change in the morphine-vehicle group. Confirming previous findings, tamoxifen (2 mg/kg) decreased glutamate and glutamine concentrations in the hippocampus in animals with placebo pellets. Both doses of tamoxifen significantly changed glutamate and/or glutamine concentrations in both regions in morphine pellet implanted animals. These results suggest that tamoxifen has no effect on dependence but may facilitate tolerance development to the antinociception, possibly mediated at the spinal level, in chronic morphine administration.
Collapse
Affiliation(s)
- Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mert Kaşkal
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
9
|
Ren P, Wang JY, Chen HL, Wang Y, Cui LY, Duan JY, Guo WZ, Zhao YQ, Li YF. Activation of σ-1 receptor mitigates estrogen withdrawal-induced anxiety/depressive-like behavior in mice via restoration of GABA/glutamate signaling and neuroplasticity in the hippocampus. J Pharmacol Sci 2024; 154:236-245. [PMID: 38485341 DOI: 10.1016/j.jphs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Postpartum depression (PPD) is a significant contributor to maternal morbidity and mortality. The Sigma-1 (σ-1) receptor has received increasing attention in recent years because of its ability to link different signaling systems and exert its function in the brain through chaperone actions, especially in neuropsychiatric disorders. YL-0919, a novel σ-1 receptor agonist developed by our institute, has shown antidepressive and anxiolytic effects in a variety of animal models, but effects on PPD have not been revealed. In the present study, excitatory/inhibitory signaling in the hippocampus was reflected by GABA and glutamate and their associated excitatory-inhibitory receptor proteins, the HPA axis hormones in the hippocampus were assessed by ELISA. Finally, immunofluorescence for markers of newborn neuron were undertaken in the dentate gyri, along with dendritic spine staining and dendritic arborization tracing. YL-0919 rapidly improves anxiety and depressive-like behavior in PPD-like mice within one week, along with normalizing the excitation/inhibition signaling as well as the HPA axis activity. YL-0919 rescued the decrease in hippocampal dendritic complexity and spine density induced by estrogen withdrawal. The study results suggest that YL-0919 elicits a therapeutic effect on PPD-like mice; therefore, the σ-1 receptor may be a novel promising target for PPD treatment in the future.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yue Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, 7th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
10
|
Zhao T, Liu T, Wang L, Xie K, Tang H, Tang M. Dysfunction of neurotransmitter metabolism is associated with the severity of depression in first-diagnosed, drug-naïve depressed patients. J Affect Disord 2024; 349:332-341. [PMID: 38199403 DOI: 10.1016/j.jad.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND & AIMS Biochemical changes of neurotransmitters underlying major depressive disorder (MDD) are unknown. This study preliminarily explored the association between neurotransmitters with MDD and the possibility of objective laboratory prediction of neurotransmitter involvement in MDD. METHODS A total of 87 first-diagnosed, drug-naïve patients with depression and 50 healthy controls (HCs) were included in the cross-sectional study. The levels and turnovers of neurotransmitters (glutamine (GLN), glutamic acid (GLU), γ-2Aminobutiric acid (GABA), kainate (KA), vanillylmandelic acid (VMA), 3-methoxy 4-hydroxyphenyl ethylene glycol (MHPG), noradrenaline (NE), homovanillic acid (HVA), dihydroxy-phenyl acetic acid (DOPAC), dopamine (DA), tryptophane (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA)) were determined and the confounding factors were adjusted. Then a correlation and a predictive analysis towards neurotransmitters for MDD were performed. RESULTS After adjusting confounding factors, GLU (OR = 1.159), (GLU+ GABA)/GLN (OR = 1.217), DOPAC (OR = 1.106), DOPAC/DA (OR = 1.089) and (DOPAC+ HVA)/DA (OR = 1.026) enacted as risk factors of MDD, while KYN (OR = 0.992) was a protective factor. GABAergic and TRPergic pathways were associated with severity of depressive and anxiety symptoms in patients with depression. The predictive model for MDD (AUC = 0.775, 95%CI 0.683-0.860) consisted of KYN (OR = 0.990) and (GLU + GABA)/GLN (OR = 4.101). CONCLUSIONS First-diagnosed, drug-naïve depression patients showed abnormal neurotransmitter composition. GLU, (GLU + GABA)/GLN, DOPAC, DOPAC/DA and (DOPAC + HVA)/DA were risk factors of MDD, while KYN was a protective factor. GABAergic and TRPergic pathways were correlated with MDD clinical characteristics. KYN and (GLU + GABA)/GLN may have a predictive value for MDD.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
11
|
Yan JZ, Li GX, Sun SR, Cui LY, Yin YY, Li YF. A rate-limiting step in antidepressants onset: Excitation of glutamatergic pyramidal neurons in medial prefrontal cortex of rodents. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110911. [PMID: 38065287 DOI: 10.1016/j.pnpbp.2023.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
Although clinical antidepressants have varied mechanisms of action, it remains unclear whether they may have a common mechanism underlying their antidepressant effects. We investigated the behavioral effects of five different antidepressants (differing in target, chemical structure, and rate of onset) and their effects on the firing activities of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC) using the forced swimming test (FST) and electrophysiological techniques (in vivo). We employed fiber photometry recordings to validate the effects of antidepressants on the firing activity of pyramidal neurons. Additionally, multichannel electrophysiological recordings were conducted in mice exhibiting depressive-like behaviors induced by chronic restraint stress (CRS) to investigate whether antidepressants exert similar effects on pyramidal neurons in depressed mice. Behavioral tests were utilized for evaluating the depression model. We found that fluoxetine, duloxetine, vilazodone, YL-0919, and ketamine all increase the firing activities of glutamatergic pyramidal neurons (at least 57%) while exerting their initial onset of antidepressant effects. Fiber photometry revealed an increase in the calcium activity of pyramidal neurons in the mPFC at the onset of antidepressant effects. Furthermore, a significant reduction was observed in the firing activity of pyramidal neurons in the mPFC of CRS-exposed mice, which was reversed by antidepressants. Taken together, our findings suggested that five pharmacologically distinct classes of antidepressants share the common ability to increase the firing activity of pyramidal neurons, just different time, which might be a rate-limiting step in antidepressants onset. The study contributes to the body of knowledge of the mechanisms underlying antidepressant effects and paves the way for developing rapid-acting antidepressants.
Collapse
Affiliation(s)
- Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Si-Rui Sun
- Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Lin-Yu Cui
- College of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
12
|
Huang R, Gong M, Tan X, Shen J, Wu Y, Cai X, Wang S, Min L, Gong L, Liang W. Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model. Mol Neurobiol 2024; 61:1655-1672. [PMID: 37751044 DOI: 10.1007/s12035-023-03615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People's Republic of China
| | - Min Gong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Jianying Shen
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - You Wu
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Xiaoshi Cai
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Suying Wang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Li Min
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Lin Gong
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Wenna Liang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
13
|
Krzyściak W, Bystrowska B, Karcz P, Chrzan R, Bryll A, Turek A, Mazur P, Śmierciak N, Szwajca M, Donicz P, Furman K, Pilato F, Kozicz T, Popiela T, Pilecki M. Association of Blood Metabolomics Biomarkers with Brain Metabolites and Patient-Reported Outcomes as a New Approach in Individualized Diagnosis of Schizophrenia. Int J Mol Sci 2024; 25:2294. [PMID: 38396971 PMCID: PMC10888632 DOI: 10.3390/ijms25042294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Given its polygenic nature, there is a need for a personalized approach to schizophrenia. The aim of the study was to select laboratory biomarkers from blood, brain imaging, and clinical assessment, with an emphasis on patients' self-report questionnaires. Metabolomics studies of serum samples from 51 patients and 45 healthy volunteers, based on the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS), led to the identification of 3 biochemical indicators (cortisol, glutamate, lactate) of schizophrenia. These metabolites were sequentially correlated with laboratory tests results, imaging results, and clinical assessment outcomes, including patient self-report outcomes. The hierarchical cluster analysis on the principal components (HCPC) was performed to identify the most homogeneous clinical groups. Significant correlations were noted between blood lactates and 11 clinical and 10 neuroimaging parameters. The increase in lactate and cortisol were significantly associated with a decrease in immunological parameters, especially with the level of reactive lymphocytes. The strongest correlations with the level of blood lactate and cortisol were demonstrated by brain glutamate, N-acetylaspartate and the concentrations of glutamate and glutamine, creatine and phosphocreatine in the prefrontal cortex. Metabolomics studies and the search for associations with brain parameters and self-reported outcomes may provide new diagnostic evidence to specific schizophrenia phenotypes.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Faculty of Health Sciences, 31-126 Krakow, Poland;
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Mazur
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Katarzyna Furman
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| |
Collapse
|
14
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
15
|
Wojtas A. The possible place for psychedelics in pharmacotherapy of mental disorders. Pharmacol Rep 2023; 75:1313-1325. [PMID: 37934320 PMCID: PMC10661751 DOI: 10.1007/s43440-023-00550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Since its emergence in the 1960s, the serotonergic theory of depression bore fruit in the discovery of a plethora of antidepressant drugs affecting the lives of millions of patients. While crucial in the history of drug development, recent studies undermine the effectiveness of currently used antidepressant drugs in comparison to placebo, emphasizing the long time it takes to initiate the therapeutic response and numerous adverse effects. Thus, the scope of contemporary pharmacological research shifts from drugs affecting the serotonin system to rapid-acting antidepressant drugs. The prototypical representative of the aforementioned class is ketamine, an NMDA receptor antagonist capable of alleviating the symptoms of depression shortly after the drug administration. This discovery led to a paradigm shift, focusing on amino-acidic neurotransmitters and growth factors. Alas, the drug is not perfect, as its therapeutic effect diminishes circa 2 weeks after administration. Furthermore, it is not devoid of some severe side effects. However, there seems to be another, more efficient, and safer way to target the glutamatergic system. Hallucinogenic agonists of the 5-HT2A receptor, commonly known as psychedelics, are nowadays being reconsidered in clinical practice, shedding their infamous 1970s stigma. More and more clinical studies prove their clinical efficacy and rapid onset after a single administration while bearing fewer side effects. This review focuses on the current state-of-the-art literature and most recent clinical studies concerning the use of psychedelic drugs in the treatment of mental disorders. Specifically, the antidepressant potential of LSD, psilocybin, DMT, and 5-MeO-DMT will be discussed, together with a brief summary of other possible applications.
Collapse
Affiliation(s)
- Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
16
|
Wang X, Hou X, Huo Y, Wang D, Fan X, Lin X, Yu W, Cui C, Guo J, Li Y. Phosphorylated Ser187-SNAP25-modulated hyperfunction of glutamatergic system in the vmPFC mediates depressive-like behaviors in male mice. Neuropharmacology 2023; 239:109691. [PMID: 37625690 DOI: 10.1016/j.neuropharm.2023.109691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Dysfunctional glutamatergic neurotransmission contributes importantly to the pathophysiology of depression. However, the underlying neural mechanisms of glutamatergic dysfunction remain poorly understood. Here, we employed chronic unpredictable mild stress (CUMS) to induce depression-like behavior in male mice and to assess the alterations of glutamatergic system within the ventromedial prefrontal cortex (vmPFC). Male mice subjected to CUMS showed an increase in levels of glutamate content, synaptosomal GluN2B-NMDA receptors (GluN2B-NMDARs) and phosphorylated synaptosomal associated protein 25 KD of Ser187 (pSer187-SNAP25), which is involved in synaptic vesicular fusion processes in the vmPFC. Downregulation of pSer187-SNAP25 via the TAT-S187 fusion peptide efficiently alleviated CUMS-induced depressive-like behaviors in male mice by reversing the increase of glutamate content and synaptosomal GluN2B-NMDARs. These findings demonstrated a critical role for pSer187-SNAP25-mediated glutamatergic dysfunction in CUMS-induced depressive-like behaviors, suggesting the potential of pS187-SNAP25 inhibitors for further investigation on depression management.
Collapse
Affiliation(s)
- Xinjuan Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xueyu Hou
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China
| | - Yu Huo
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xiang Fan
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Xiaorui Lin
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China.
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China.
| |
Collapse
|
17
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
18
|
Zou J, Yang L, Yang G, Gao J. The efficacy and safety of some new GABAkines for treatment of depression: A systematic review and meta-analysis from randomized controlled trials. Psychiatry Res 2023; 328:115450. [PMID: 37683318 DOI: 10.1016/j.psychres.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, or GABAkines, play important roles in the treatment of depression, epilepsy, insomnia, and other disorders. Recently, some new GABAkines (zuranolone and brexanolone) have been administrated to patients with major depressive disorder (MDD) or postpartum depression (PPD) in randomized controlled trials (RCTs). This study aims to systematically review and examine the efficacy and safety of zuranolone or brexanolone for treatment of depression. A systematic literature retrieval was conducted through August 20, 2023. RCTs evaluating the efficacy and safety of zuranolone or brexanolone for treatment of depression were included. Eight studies (nine reports) were identified in the study. The percentages of patients with PPD achieving Hamilton Depression Rating Scale (HAM-D) response and remission were significantly higher after brexanolone or zuranolone administration compared with placebo at different points. The percentages of patients with MDD achieving HAM-D response and remission were significantly increased during the zuranolone treatment period compared with placebo. In addition, zuranolone caused more adverse events in patients with MDD compared with placebo. Our findings support the effects of brexanolone on improving the core symptoms of depression in patients with PPD, and the potential of zuranolone in treating patients with MDD or PPD.
Collapse
Affiliation(s)
- Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guoyu Yang
- School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
19
|
Fogaça MV, Wu M, Li C, Li XY, Duman RS, Picciotto MR. M1 acetylcholine receptors in somatostatin interneurons contribute to GABAergic and glutamatergic plasticity in the mPFC and antidepressant-like responses. Neuropsychopharmacology 2023; 48:1277-1287. [PMID: 37142667 PMCID: PMC10354201 DOI: 10.1038/s41386-023-01583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
Alterations in glutamatergic and GABAergic function in the medial prefrontal cortex (mPFC) are prevalent in individuals with major depressive disorder, resulting in impaired synaptic plasticity that compromises the integrity of signal transfer to limbic regions. Scopolamine, a non-selective muscarinic receptor antagonist, produces rapid antidepressant-like effects by targeting M1-type acetylcholine receptors (M1R) on somatostatin (SST) interneurons. So far, these effects have been investigated with relatively short-term manipulations, and long-lasting synaptic mechanisms involved in these responses are still unknown. Here, we generated mice with conditional deletion of M1R (M1f/fSstCre+) only in SST interneurons to determine the role of M1R in modulating long-term GABAergic and glutamatergic plasticity in the mPFC that leads to attenuation of stress-relevant behaviors. We have also investigated whether the molecular and antidepressant-like effects of scopolamine could be mimicked or occluded in male M1f/fSstCre+ mice. M1R deletion in SST-expressing neurons occluded the rapid and sustained antidepressant-like effects of scopolamine, as well as scopolamine-induced increases in c-Fos+/CaMKIIα cells and proteins necessary for glutamatergic and GABAergic function in the mPFC. Importantly, M1R SST deletion resulted in resilience to chronic unpredictable stress in behaviors relevant to coping strategies and motivation, and to a lesser extent, in behaviors relevant to avoidance. Finally, M1R SST deletion also prevented stress-induced impairments in the expression of GABAergic and glutamatergic markers in the mPFC. These findings suggest that the antidepressant-like effects of scopolamine result from modulation of excitatory and inhibitory plasticity via M1R blockade in SST interneurons. This mechanism could represent a promising strategy for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Min Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Chan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Xiao-Yuan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
20
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
21
|
Kositsyn YM, de Abreu MS, Kolesnikova TO, Lagunin AA, Poroikov VV, Harutyunyan HS, Yenkoyan KB, Kalueff AV. Towards Novel Potential Molecular Targets for Antidepressant and Antipsychotic Pharmacotherapies. Int J Mol Sci 2023; 24:ijms24119482. [PMID: 37298431 DOI: 10.3390/ijms24119482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.
Collapse
Affiliation(s)
- Yuriy M Kositsyn
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Murilo S de Abreu
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
| | - Tatiana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
| | - Alexey A Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir V Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Hasmik S Harutyunyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Allan V Kalueff
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| |
Collapse
|
22
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
24
|
Li S, Zheng Y, Xiao L, Lan S, Xiang J, Liao L, Lin Y, Ye Y. Aldehyde dehydrogenase 2-associated changes in pharmacokinetics, locomotor function and peripheral glutamic acid and gamma-aminobutyric acid levels during acute alcohol intoxication in male mice. Behav Pharmacol 2022; 33:551-558. [PMID: 36256704 DOI: 10.1097/fbp.0000000000000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The insufficiency of human aldehyde dehydrogenase 2 (ALDH2) has been consistently associated with high blood acetaldehyde levels and impaired locomotor function during acute alcohol intoxication. The ALDH2-associated change in peripheral glutamic acid (Glu) and gamma-aminobutyric acid (GABA) levels and its correlation with pharmacokinetics and psychomotor function remain unclear. In this study, ALDH2*2 mice were used to build an acute alcohol intoxication model after intraperitoneal administration. The blood ethanol and acetaldehyde concentrations were analyzed to generate concentration-time curves at two doses of alcohol (2.0 and 4.0 g/kg). The dose of 4.0 g/kg was selected in accordance with the preliminary behavioral evaluation result to perform the following behavioral tests (e.g. the rotarod test, the open field test, and the Y-maze test), so as to assess locomotor activity, anxiety and cognitive ability. Plasma Glu and GABA levels were determined through enzyme-linked immunosorbent assays. The results suggested that the ALDH2*2 mice had highly accumulated acetaldehyde levels, impaired locomotor activity and anxiety-like emotion but unimpaired cognitive function, compared to the wild type (WT) mice. The plasma Glu level and the ratio of Glu/GABA in the alcohol-treated WT and ALDH2*2 groups decreased from 2 to 5 h after intraperitoneal administration, whereas the GABA level did not change significantly. The blood alcohol concentration in the WT and ALDH2*2 mice was positively correlated with plasma Glu level, whereas the blood acetaldehyde level was found as the opposite. We speculate that the decline degree of Glu/GABA ratio could be associated with psychomotor retardation and needs to be further investigated.
Collapse
Affiliation(s)
- Songfan Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuzi Zheng
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Li Xiao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shengnan Lan
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jin Xiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yao Lin
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
The α 2C-adrenoceptor antagonist JP-1302 controls behavioral parameters, tyrosine hydroxylase activity and receptor expression in a rat model of ketamine-induced schizophrenia-like deficits. Pharmacol Biochem Behav 2022; 221:173490. [PMID: 36379444 DOI: 10.1016/j.pbb.2022.173490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Schizophrenia is a chronic disabling disease affecting 1 % of the population. Current antipsychotics have limited efficacy in mitigating the severity of the symptoms of the disease. Therefore, searching for new therapeutic targets is essential. Previous studies have shown that α2C-adrenoceptor antagonists may have antipsychotic and pro-cognitive effects. Therefore, the current study evaluates the behavioral and neurochemical effects of JP-1302, a selective α2C-adrenoceptor antagonist, in a model of schizophrenia-like deficits induced by sub-chronic ketamine (KET) administration. Here, we administered ketamine (25 mg/kg, i.p.) to male and female Wistar rats for eight consecutive days. On the last two days of ketamine administration, rats were pretreated with either JP-1302 (1-3-10 μmol/kg, i.p.), chlorpromazine (0.1 mg/kg, i.p.), or saline, and the behavioral tests were performed. Behaviors related to positive (locomotor activity), negative (social interaction), and cognitive (novel object recognition) symptoms of schizophrenia were assessed. Glutamate, glutamine, GABA levels, and α2C-adrenoceptor expression were measured in the frontal cortex and the hippocampus. Tyrosine hydroxylase immunocytochemical reactivity was also shown in the midbrain regions. Sub-chronic ketamine administration increased locomotor activity and produced robust social interaction and object recognition deficits, and JP-1302 significantly ameliorated ketamine-induced cognitive deficits. Ketamine induced a hyperdopaminergic activity in the striatum, which was reversed by the treatment with JP-1302. Also, the α2C-adrenoceptor expression was higher in the frontal cortex and hippocampus in the ketamine-treated rats. Our findings confirm that α2C-adrenoceptor antagonism may be a potential drug target for treating cognitive disorders related to schizophrenia.
Collapse
|
26
|
Maratha S, Sharma V, Walia V. Possible involvement of NO-cGMP signaling in the antidepressant like Effect of Amantadine in mice. Metab Brain Dis 2022; 37:2067-2075. [PMID: 35666396 DOI: 10.1007/s11011-022-01006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
In the present study, antidepressant like effect of amantadine was studied in mice using tail suspension test (TST) and forced swim test (FST). Further the effect of amantadine treatment on the brain nitrite, glutamate and serotonin levels was also determined. Amantadine (AMT) (50, 100 and 150 mg/kg, i.p.) was administered to the mice and after 30 min of administration the mice were subjected to TST and FST. It was observed that the administration of AMT (100 and 150 mg/kg, i.p.) decreased the immobility period of mice in TST and FST significantly as compared to control. The findings from the whole brain neurochemical assay suggested that the AMT (100 and 150 mg/kg, i.p.) treatment decreased the brain nitrite and glutamate level but increased the brain serotonin significantly as compared to control. Further the influence of NO-cGMP signaling in the antidepressant like effect of amantadine was also determined. It was observed that the NO donor (i.e. L-Arginine (50 mg/kg, i.p.)) potentiated the effect elicited by AMT (50 mg/kg, i.p.) in FST and decreased the brain serotonin level of AMT (50 mg/kg, i.p.) treated mice. Further the pretreatment of cGMP modulator (i.e. Sildenafil (1 mg/kg, i.p.)) potentiated the behavioral effect elicited by AMT (50 mg/kg, i.p.) in TST and FST and decreased the brain nitrite and glutamate level of AMT (50 mg/kg, i.p.) treated mice. In conclusion, amantadine exerted antidepressant like effect in mice and NO-cGMP signaling influences the antidepressant like effect of amantadine in mice.
Collapse
Affiliation(s)
- Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vijay Sharma
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
27
|
de Bie TH, Balvers MGJ, de Vos RCH, Witkamp RF, Jongsma MA. The influence of a tomato food matrix on the bioavailability and plasma kinetics of oral gamma-aminobutyric acid (GABA) and its precursor glutamate in healthy men. Food Funct 2022; 13:8399-8410. [PMID: 35852458 DOI: 10.1039/d2fo01358d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) and its precursor glutamate play signaling roles in a range of tissues. Both function as neurotransmitters in the central nervous system, but they also modulate pancreatic and immune functioning, for example. Besides endogenous production, both compounds are found in food products, reaching relatively high levels in tomatoes. Recent studies in rodents suggest beneficial effects of oral GABA on glucose homeostasis and blood pressure. However, the bioavailability from food remains unknown. We studied the bioavailability of GABA and glutamate from tomatoes relative to a solution in water. After a fasting blood sample was taken, eleven healthy men randomly received 1 liter of 4 different drinks in a cross-over design with a one-week interval. The drinks were a solution of 888 mg L-1 GABA, a solution of 3673 mg L-1 glutamate, pureed fresh tomatoes and plain water as the control. Following intake, 18 blood samples were taken at intervals for 24 hours. Plasma GABA and glutamate concentrations were determined by ultra-pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fasting plasma GABA and glutamate concentrations were found to be 16.71 (SD 2.18) ng mL-1 and 4626 (SD 1666) ng mL-1, respectively. Fasting GABA levels were constant (5.8 CV%) between individuals, while fasting glutamate levels varied considerably (23.5 CV%). GABA from pureed tomatoes showed similar bioavailability to that of a solution in water. For glutamate, the absorption from pureed tomatoes occurred more slowly as seen from a longer tmax (0.98 ± 0.14 h vs. 0.41 ± 0.04 h, P = 0.003) and lower Cmax (7815 ± 627 ng mL-1vs. 16 420 ± 2778 ng mL-1, P = 0.006). These data suggest that GABA is bioavailable from tomatoes, and that food products containing GABA could potentially induce health effects similar to those claimed for GABA supplements. The results merit further studies on the bioavailability of GABA from other food products and the health effects of GABA-rich diets. The clinical trial registry number is NCT04086108 (https://clinicaltrials.gov/ct2/show/NCT04303468).
Collapse
Affiliation(s)
- Tessa H de Bie
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands. .,Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Maarten A Jongsma
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
28
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
29
|
Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022; 12:metabo12050459. [PMID: 35629963 PMCID: PMC9143347 DOI: 10.3390/metabo12050459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Depression is a significant cause of disability and affects millions worldwide; however, antidepressant therapies often fail or are inadequate. Current medications for treating major depressive disorder can take weeks or months to reach efficacy, have troubling side effects, and are limited in their long-term capabilities. Recent studies have identified a new set of glutamate-based approaches, such as blood glutamate scavengers, which have the potential to provide alternatives to traditional antidepressants. In this review, we hypothesize as to the involvement of the glutamate system in the development of depression. We identify the mechanisms underlying glutamate dysregulation, offering new perspectives on the therapeutic modalities of depression with a focus on its relationship to blood–brain barrier (BBB) permeability. Ultimately, we conclude that in diseases with impaired BBB permeability, such as depression following stroke or traumatic brain injury, or in neurogenerative diseases, the glutamate system should be considered as a pathway to treatment. We propose that drugs such as blood glutamate scavengers should be further studied for treatment of these conditions.
Collapse
|
30
|
Effects of pharmacological treatment on metabolomic alterations in animal models of depression. Transl Psychiatry 2022; 12:175. [PMID: 35487889 PMCID: PMC9055046 DOI: 10.1038/s41398-022-01947-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have investigated metabolite alterations resulting from pharmacological treatment in depression models although few quantitative studies explored metabolites exhibiting constant alterations. This study aimed to identify consistently dysregulated metabolites across such studies using a knowledgebase-driven approach. This study was based on 157 studies that identified an assembly of 2757 differential metabolites in the brain, blood, urine, liver, and feces samples of depression models with pharmacological medication. The use of a vote-counting approach to identify consistently upregulated and downregulated metabolites showed that serotonin, dopamine, norepinephrine, gamma-aminobutyric acid, anandamide, tryptophan, hypoxanthine, and 3-methoxytyramine were upregulated in the brain, while quinolinic acid, glutamic acid, 5-hydroxyindoleacetic acid, myo-inositol, lactic acid, and the kynurenine/tryptophan ratio were downregulated. Circulating levels of trimethylamine N-oxide, isoleucine, leucine, tryptophan, creatine, serotonin, valine, betaine, and low-density lipoprotein were elevated. In contrast, levels of alpha-D-glucose, lactic acid, N-acetyl glycoprotein, glutamine, beta-D-glucose, corticosterone, alanine, phenylacetylglycine, glycine, high-density lipoprotein, arachidonic acid, myo-inositol, allantoin, and taurine were decreased. Moreover, 12 metabolites in urine and nine metabolites in the liver were dysregulated after treatment. Pharmacological treatment also increased fecal levels of butyric acid, acetic acid, propionic acid, and isovaleric acid. Collectively, metabolite disturbances induced by depression were reversed by pharmacological treatment. Pharmacological medication reversed the reduction of brain neurotransmitters caused by depression, modulated disturbance of the tryptophan-kynurenine pathway and inflammatory activation, and alleviated abnormalities of amino acid metabolism, energy metabolism, lipid metabolism, and gut microbiota-derived metabolites.
Collapse
|
31
|
Li S, Rong P, Wang Y, Jin G, Hou X, Li S, Xiao X, Zhou W, Wu Y, Liu Y, Zhang Y, Zhao B, Huang Y, Cao J, Chen H, Hodges S, Vangel M, Kong J. Comparative Effectiveness of Transcutaneous Auricular Vagus Nerve Stimulation vs Citalopram for Major Depressive Disorder: A Randomized Trial. Neuromodulation 2022; 25:450-460. [PMID: 35088753 DOI: 10.1016/j.neurom.2021.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) is one of the most common mental illnesses. This study aims to investigate the effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) compared with the effectiveness of citalopram, a commonly used antidepressant, in patients with depression. MATERIAL AND METHODS A total of 107 male and female patients with MDD (55 in the taVNS group and 52 in the citalopram group) were enrolled in a prospective 12-week, single-blind, comparative effectiveness trial. Participants were recruited from the outpatient departments of three hospitals in China. Participants were randomly assigned to either taVNS treatment (eight weeks, twice per day, with an additional four-week follow-up) or citalopram treatment (12 weeks, 40 mg/d). The primary outcome was the 17-item Hamilton Depression Rating Scale (HAM-D17) measured every two weeks by trained interviewers blinded to the treatment assignment. The secondary end points included the 14-item Hamilton Anxiety Scale and peripheral blood biochemical indexes. RESULTS The HAM-D17 scores were reduced in both treatment groups; however, there was no significant group-by-time interaction (95% CI: -0.07 to 0.15, p = 0.79). Nevertheless, we found that taVNS produced a significantly higher remission rate at week four and week six than citalopram. Both treatments were associated with significant changes in the peripheral blood levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, and noradrenaline, but there was no significant difference between the two groups. CONCLUSION taVNS resulted in symptom improvement similar to that of citalopram; thus, taVNS should be considered as a therapeutic option in the multidisciplinary management of MDD. Nevertheless, owing to the design of this study, it cannot be ruled out that the reduction in depression severity in both treatment groups could be a placebo effect.
Collapse
Affiliation(s)
- Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guixing Jin
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobing Hou
- Department of Psychiatry, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Suxia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xue Xiao
- Department of Psychiatry, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Wei Zhou
- Department of Acupuncture, Huguo Temple Hospital of Traditional Chinese Medicine affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yue Wu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaping Liu
- Department of Acupuncture, Huguo Temple Hospital of Traditional Chinese Medicine affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Helen Chen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mark Vangel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
32
|
Rasheed M, Asghar R, Firdoos S, Ahmad N, Nazir A, Ullah KM, Li N, Zhuang F, Chen Z, Deng Y. A Systematic Review of Circulatory microRNAs in Major Depressive Disorder: Potential Biomarkers for Disease Prognosis. Int J Mol Sci 2022; 23:1294. [PMID: 35163214 PMCID: PMC8835958 DOI: 10.3390/ijms23031294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Major depressive disorder (MDD) is a neuropsychiatric disorder, which remains challenging to diagnose and manage due to its complex endophenotype. In this aspect, circulatory microRNAs (cimiRNAs) offer great potential as biomarkers and may provide new insights for MDD diagnosis. Therefore, we systemically reviewed the literature to explore various cimiRNAs contributing to MDD diagnosis and underlying molecular pathways. A comprehensive literature survey was conducted, employing four databases from 2012 to January 2021. Out of 1004 records, 157 reports were accessed for eligibility criteria, and 32 reports meeting our inclusion criteria were considered for in-silico analysis. This study identified 99 dysregulated cimiRNAs in MDD patients, out of which 20 cimiRNAs found in multiple reports were selected for in-silico analysis. KEGG pathway analysis indicated activation of ALS, MAPK, p53, and P13K-Akt signaling pathways, while gene ontology analysis demonstrated that most protein targets were associated with transcription. In addition, chromosomal location analysis showed clustering of dysregulated cimiRNAs at proximity 3p22-p21, 9q22.32, and 17q11.2, proposing their coregulation with specific transcription factors primarily involved in MDD physiology. Further analysis of transcription factor sites revealed the existence of HIF-1, REST, and TAL1 in most cimiRNAs. These transcription factors are proposed to target genes linked with MDD, hypothesizing that first-wave cimiRNA dysregulation may trigger the second wave of transcription-wide changes, altering the protein expressions of MDD-affected cells. Overall, this systematic review presented a list of dysregulated cimiRNAs in MDD, notably miR-24-3p, let 7a-5p, miR-26a-5p, miR135a, miR-425-3p, miR-132, miR-124 and miR-16-5p as the most prominent cimiRNAs. However, various constraints did not permit us to make firm conclusions on the clinical significance of these cimiRNAs, suggesting the need for more research on single blood compartment to identify the biomarker potential of consistently dysregulated cimiRNAs in MDD, as well as the therapeutic implications of these in-silico insights.
Collapse
Affiliation(s)
- Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Sundas Firdoos
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Nadeem Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan 250100, China;
| | - Kakar Mohib Ullah
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Noumin Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Fengyuan Zhuang
- School of Biology and Medical Engineering, Beihang University, Beijing 100191, China;
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (R.A.); (S.F.); (K.M.U.); (N.L.)
| |
Collapse
|
33
|
Edem EE, Ihaza BE, Fafure AA, Ishola AO, Nebo KE, Enye LA, Akinluyi ET. Virgin coconut oil abrogates depression-associated cognitive deficits by modulating hippocampal antioxidant balance, GABAergic and glutamatergic receptors in mice. Drug Metab Pers Ther 2021; 37:177-190. [PMID: 34881837 DOI: 10.1515/dmpt-2021-0126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES GABA and glutamate neurotransmission play critical roles in both the neurobiology of depression and cognition; and Virgin coconut oil (VCO) is reported to support brain health. The present study investigated the effect of VCO on depression-associated cognitive deficits in mice. METHODS Thirty male mice divided into five groups were either exposed to chronic unpredicted mild stress (CUMS) protocol for 28 days or pre-treated with 3 mL/kg b. wt. of VCO for 21 days or post-treated with 3 mL/kg b. wt. of VCO for 21 days following 28 days of CUMS exposure. Mice were subjected to behavioural assessments for depressive-like behaviours and short-term memory, and thereafter euthanised. Hippocampal tissue was dissected from the harvested whole brain for biochemical and immunohistochemical evaluations. RESULTS Our results showed that CUMS exposure produced depressive-like behaviours, cognitive deficits and altered hippocampal redox balance. However, treatment with VCO abrogated depression-associated cognitive impairment, and enhanced hippocampal antioxidant concentration. Furthermore, immunohistochemical evaluation revealed significant improvement in GABAA and mGluR1a immunoreactivity following treatment with VCO in the depressed mice. CONCLUSIONS Therefore, findings from this study support the dietary application of VCO to enhance neural resilience in patients with depression and related disorders.
Collapse
Affiliation(s)
- Edem Ekpenyong Edem
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Blessing Eghosa Ihaza
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adedamola Adediran Fafure
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Azeez Olakunle Ishola
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Kate Eberechukwu Nebo
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
34
|
Rosdy MS, Rofiee MS, Samsulrizal N, Salleh MZ, Teh LK. Understanding the effects of Moringa oleifera in chronic unpredictable stressed zebrafish using metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114290. [PMID: 34090909 DOI: 10.1016/j.jep.2021.114290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa leaves have been used for thousands of years to maintain skin health and mental fitness. People also use it to relieves pain and stress. AIM OF THE STUDY To determine the effects of Moringa oleifera leaves ethanol-aqueous (ratio 7:3) extract (MOLE) on the chronically stressed zebrafish. METHOD The changes in the stress-related behaviour and the metabolic pathways in response to MOLE treatment in zebrafish were studied. A chronic unpredictable stress model was adopted in which zebrafish were induced with different stressors for 14 days. Stress-related behaviour was assessed using a depth-preference test and a light and dark test. Three doses of MOLE (500, 1000, and 2000 mg/L) were administered to the zebrafish. Upon sacrifice, the brains were harvested and processed for LC-MS QTOF based, global metabolomics analysis. RESULTS We observed significant changes in the behavioural parameters, where the swimming time at the light phase and upper phase of the tank were increased in the chronically stressed zebrafish treated with MOLE compared to those zebrafish which were not treated. Further, distinctive metabolite profiles were observed in zebrafish with different treatments. Several pathways that shed light on effects of MOLE were identified. MOLE is believed to relieve stress by regulating pathways that are involved in the metabolism of purine, glutathione, arginine and proline, D-glutamine, and D-glutamate. CONCLUSION MOLE is potentially an effective stress reliever. However, its effects in human needs to be confirmed with a systematic randomised control trial.
Collapse
Affiliation(s)
- Muhammad Shazly Rosdy
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Mohd Salleh Rofiee
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | | | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia.
| |
Collapse
|
35
|
Zhou Y, Li T, Zhu S, Gong W, Qin X, Du G. Study on antidepressant mechanism of Radix Bupleuri-Radix Paeoniae Alba herb pair by metabonomics combined with 1H nuclear magnetic resonance and ultra-high-performance liquid chromatography-tandem mass spectrometry detection technology. J Pharm Pharmacol 2021; 73:1262-1273. [PMID: 33885788 DOI: 10.1093/jpp/rgab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Radix Bupleuri-Radix Paeoniae Alba (BP), a traditional Chinese medicine herb pair, has treated depression by coordinating the liver in Chinese classical medicine books and modern research. This study aims to verify the antidepressant effect of BP by behavioural examination, and reveal the underlying antidepressant mechanisms of BP. METHODS The antidepressant effects in chronic unpredictable mild stress (CUMS) of BP were observed by behavioural indicators and 1H nuclear magnetic resonance (1H-NMR) and ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) metabonomics techniques combined with the related analysis platforms. KEY FINDINGS BP could significantly improve the depressive behaviour of CUMS rats. Compared with the model group, body weight (P < 0.05), the number of crossing (P < 0.001) and rearing (P < 0.01) and sucrose preference rate (P < 0.01) were significantly enhanced, and the immobility time was shortened in the forced swimming test (P < 0.001) of the BP group. In metabonomics study, 35 depression-related metabolites were identified by 1H NMR and UHPLC-MS/MS metabonomics by comparing model and control groups. BP could significantly retrieve 17 depression-related metabolites. Thirteen depression-related metabolic pathways were found through Met-PA and BP could regulate seven metabolic pathways. CONCLUSIONS BP herb pair had significantly antidepressant effect, which provides a basis for further finding drug targets.
Collapse
Affiliation(s)
- Yuzhi Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Tian Li
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Shiwei Zhu
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, P.R. China
| | - Wenxia Gong
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Xuemei Qin
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| |
Collapse
|
36
|
Kurokawa S, Tomizawa Y, Miyaho K, Ishii D, Takamiya A, Ishii C, Sanada K, Fukuda S, Mimura M, Kishimoto T. Fecal Microbial and Metabolomic Change during treatment course for depression: An Observational Study. J Psychiatr Res 2021; 140:45-52. [PMID: 34091346 DOI: 10.1016/j.jpsychires.2021.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/17/2021] [Accepted: 05/01/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is growing evidence regarding the connection between alterations in gut microbiota and their metabolites in patients with depressive disorders, suggesting a potential role in pathophysiology. Our study aimed to investigate the relationship between microbial, metabolomic features and the course of treatment for depression in a real-world clinical setting. METHODS Patients diagnosed with depressive disorders were recruited, and their stool was collected at three time points during their depression treatments. Patients were divided into three groups: non-responders, responders, and stable remitters. Gut microbiomes were analyzed using 16S rRNA gene sequencing, and gut metabolomes were analyzed by a mass spectrometry approach. Microbiomes/metabolomes were compared between groups cross-sectionally and longitudinally. RESULTS A total of 33 patients were recruited and divided into non-responders (n = 16), responders (n = 11), and stable remitters (n = 6). Non-responders presented lower alpha diversity in the Phylogenic Diversity index compared to responders during the treatment course (p = 0.003). Non-responders presented increased estimated glutamate synthesis functions by the microbiota compared to responders and stable remitters (p = 0.035). There were no specific microbiota or metabolome that differentiated the three groups. LIMITATIONS Small sample size with no healthy controls. CONCLUSIONS Our results indicate that both cross-sectional microbial features and longitudinal microbial transitions are different depending on the treatment course of depression. Controlled studies, as well as animal studies, are needed in the future to elucidate the causal relationship between microbiota and depression.
Collapse
Affiliation(s)
- Shunya Kurokawa
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshihiro Tomizawa
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Daiki Ishii
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Akihiro Takamiya
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan; Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan; Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
37
|
Onaolapo AY, Onaolapo OJ. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J Psychiatry 2021; 11:297-315. [PMID: 34327123 PMCID: PMC8311508 DOI: 10.5498/wjp.v11.i7.297] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
The versatility of glutamate as the brain’s foremost excitatory neurotransmitter and modulator of neurotransmission and function is considered common knowledge. Years of research have continued to uncover glutamate’s effects and roles in several neurological and neuropsychiatric disorders, including depression. It had been considered that a deeper understanding of the roles of glutamate in depression might open a new door to understanding the pathological basis of the disorder, improve the approach to patient management, and lead to the development of newer drugs that may benefit more patients. This review examines our current understanding of the roles of endogenous and exogenous sources of glutamate and the glutamatergic system in the aetiology, progression and management of depression. It also examines the relationships that link the gut-brain axis, glutamate and depression; as it emphasizes how the gut-brain axis could impact depression pathogenesis and management via changes in glutamate homeostasis. Finally, we consider what the likely future of glutamate-based therapies and glutamate-based therapeutic manipulations in depression are, and if with them, we are now on the final chapter of understanding the neurochemical milieu of depressive disorders.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| | - Olakunle James Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Oyo State 234, Nigeria
| |
Collapse
|
38
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
39
|
Jiang A, Su P, Li S, Wong AHC, Liu F. Disrupting the α7nAChR-NR2A protein complex exerts antidepressant-like effects. Mol Brain 2021; 14:107. [PMID: 34225758 PMCID: PMC8256601 DOI: 10.1186/s13041-021-00817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Major depressive disorder (MDD) is associated with significant morbidity and mortality. Most antidepressant medications target the serotonin and norepinephrine transporters, but a significant minority of patients do not respond to treatment and novel therapeutic targets are needed. We previously identified a protein complex composed of the α7 nicotinic acetylcholine receptor (nAChR) and NMDA glutamate receptors (NMDARs), through which α7nAChR upregulates NMDAR function. Disruption of the α7nAChR-NMDAR complex with an interfering peptide blocked α7nAChR-mediated upregulation of NMDAR function and cue-induced reinstatement of nicotine seeking in rat models of relapse. Here we report that disrupting the α7nAChR-NMDAR complex with the interfering peptide also has antidepressant-like effects in the forced swim test (FST), a common rat behaviour screening test for antidepressant effects. Furthermore, the interfering peptide significantly increases extracellular signal-regulated kinase (ERK) activity in the animals subjected to the FST. Our results provide a novel potential therapeutic target for the development of new antidepressant medications.
Collapse
Affiliation(s)
- Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Shupeng Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Departments of Pharmacology, University of Toronto, Toronto, ON, M5T 1R8, Canada
- Institutes of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.
- Institutes of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada.
- University of Toronto, Toronto, ON, M5T 1R8, Canada.
- University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
40
|
Sharma A, Mohammad A, Saini AK, Goyal R. Neuroprotective Effects of Fluoxetine on Molecular Markers of Circadian Rhythm, Cognitive Deficits, Oxidative Damage, and Biomarkers of Alzheimer's Disease-Like Pathology Induced under Chronic Constant Light Regime in Wistar Rats. ACS Chem Neurosci 2021; 12:2233-2246. [PMID: 34029460 DOI: 10.1021/acschemneuro.1c00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is mounting evidence of circadian rhythm disruption in Alzheimer's disease (AD); however, the cause-and-effect relationship between them is not understood. Chronic constant light exposure effectively disrupts circadian rhythm in rats. On the basis of previous publications, we hypothesized that chronic constant light exposure might contribute significantly to development of AD-like-phenotype in rats and that fluoxetine (Flx) treatment might protect the brain against it. Adult male rats were exposed to normal light-dark cycles, constant light (LL), constant dark, and LL+Flx (5 mg/kg/day, ZT5) for four months. The expression of molecular markers of circadian rhythm: Per2 transcripts; and protein expression of peroxiredoxin-1 (PRX1) and hyperoxidized peroxiredoxins (PRX-SO2/3) were significantly dysregulated in the suprachiasmatic nuclei (SCN) of LL rats, which was prevented with concomitant fluoxetine administration. The levels of glutamate and γ-aminobutyric acid were dysregulated, and oxidative damage was observed in the SCN and hippocampi of LL rats. Fluoxetine treatment conferred protection against oxidative damage in LL rats. Constant light exposure also impaired rats' performance on Y-maze, Morris maze, and novel object recognition test, which was prevented with fluoxetine administration. A significant elevation in soluble Aβ1-42 levels, which strongly correlated with upregulation of Bace1 and Mgat3 transcripts was observed in the hippocampus of LL rats. Further, the expression of antiaging gene Sirt1 was downregulated, and neuronal damage indicator Prokr2 was upregulated in hippocampus. Fluoxetine rescued Aβ1-42 upregulation and AD-related genes' dysregulation. Our findings show that circadian disruption by exposure to chronic constant light may contribute to progression of AD, which can be prevented with fluoxetine treatment.
Collapse
Affiliation(s)
- Ashish Sharma
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No.
9, Solan, Himachal Pradesh 173212, India
| | - Ashu Mohammad
- School of Biotechnology and Applied Sciences, Shoolini University, Post Box No.
9, Solan, Himachal Pradesh 173212, India
| | - Adesh K. Saini
- Faculty of Basic Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar University, Mullana Haryana 133207, India
- Maharishi Markandeshwar University, Solan, Himachal Pradesh 173229, India
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No.
9, Solan, Himachal Pradesh 173212, India
| |
Collapse
|
41
|
Yin YY, Wang YH, Liu WG, Yao JQ, Yuan J, Li ZH, Ran YH, Zhang LM, Li YF. The role of the excitation:inhibition functional balance in the mPFC in the onset of antidepressants. Neuropharmacology 2021; 191:108573. [PMID: 33945826 DOI: 10.1016/j.neuropharm.2021.108573] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Hui Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | | | - Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jin Yuan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Ze-Han Li
- Capital Normal University High School, Beijing, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
42
|
Kukuia KKE, Mensah JA, Amoateng P, Osei-Safo D, Koomson AE, Torbi J, Adongo DW, Ameyaw EO, Ben IO, Amponsah SK, Bugyei KA, Asiedu-Gyekye IJ. Glycine/NMDA Receptor Pathway Mediates the Rapid-onset Antidepressant Effect of Alkaloids From Trichilia Monadelpha. Basic Clin Neurosci 2021; 12:395-408. [PMID: 34917298 PMCID: PMC8666917 DOI: 10.32598/bcn.12.3.2838.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Major depressive disorder is often associated with suicidal tendencies, and this condition accentuates the need for rapid-acting antidepressants. We previously reported that Alkaloids (ALK) from Trichilia monadelpha possess antidepressant action in acute animal models of depression and that this effect is mediated through the monoamine and L-arginine-NO-cGMP pathways. This study investigated the possible rapid-onset antidepressant effect of ALK from T. monadelpha and its connection with the glycine/NMDA receptor pathway. METHODS The onset of ALK action from T. monadelpha was evaluated using the Open Space Swim Test (OSST), a chronic model of depression. The modified forced swimming and tail suspension tests were used to assess the effect of the ALK on the glycine/NMDA receptor pathway. The Instutute of Cancer Research (ICR) mice were treated with either ALK (30-300 mg/kg, orally [PO]), imipramine (3-30 mg/kg, PO), fluoxetine (3-30 mg/kg, PO), or saline. To identify the role of glycine/NMDA receptor pathway in the effect of ALK, we pretreated mice with a partial agonist of the glycine/NMDA receptor, D-cycloserine (2.5 mg/kg, intraperitoneally [IP]), and an agonist of glycine/NMDA receptor, D-serine (600 mg/kg, IP), before ALK administration. RESULTS ALK reversed immobility in mice after the second day of drug treatment in the OSST. In contrast, there was a delay in the effects induced by fluoxetine and imipramine. ALK also increased mean swimming and climbing scores in mice. ALK was more efficacious than imipramine and fluoxetine in reducing immobility and increasing distance traveled. It is noteworthy that ALK was less potent than fluoxetine and imipramine. D-cycloserine potentiated mobility observed in the ALK- and fluoxetine-treated mice. In contrast, D-serine decreased mobility in the ALK-treated mice. CONCLUSION The study results suggest that ALK from T. monadelpha exhibits rapid antidepressant action in mice, and the glycine/NMDA receptor pathway possibly mediates the observed effect.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Jeffrey Amoako Mensah
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, U.S. A
| | - Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Awo Efua Koomson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Joseph Torbi
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Elvis Ofori Ameyaw
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Inemesit Okon Ben
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Kwasi Agyei Bugyei
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
43
|
Özakman S, Gören MZ, Nurten A, Tekin N, Kalaycı R, Enginar N. Effects of tamoxifen and glutamate and glutamine levels in brain regions in repeated sleep deprivation-induced mania model in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:619-629. [PMID: 33104849 DOI: 10.1007/s00210-020-02001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Protein kinase C inhibitor tamoxifen reduces symptoms of acute mania in bipolar patients and mania-like behaviors in animals. Memory impairment and altered levels of glutamate and glutamate/glutamine ratio have been reported in mania. Tamoxifen suppresses glutamate release which plays an important role in memory. The present study evaluated whether tamoxifen's activity participates in its antimanic efficacy in repeated sleep deprivation mania model. Mice were divided into control and 24-h sleep-deprived groups and were treated with vehicle or 1 mg/kg tamoxifen twice daily for 8 days. Sleep deprivation was repeated three times at intervals of 2 days. Square crossing and rearing were recorded as measures of locomotor activity. Memory and risk taking behavior were evaluated using novel object recognition and staircase tests, respectively. Glutamate and glutamine levels were measured in the frontal cortex and hippocampus. Behavioral tests were conducted 24 h after the second or immediately after the third sleep deprivations. Sleep deprivation increased locomotor activity and risk taking. Glutamate and glutamine levels and glutamate/glutamine ratio in the frontal cortex and hippocampus were unaffected. Locomotor hyperactivity was prevented by tamoxifen treatment. No change in the recognition index suggested lack of memory impairment in the model. These findings confirm the relevance of repeated sleep deprivation as a mania model and tamoxifen as an antimanic agent. However, future research is needed to further address lack of memory impairment in the model and lack of glutamatergic influence on the model and antimanic effect of tamoxifen.
Collapse
Affiliation(s)
- Selda Özakman
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rivaze Kalaycı
- Department of Laboratory Animals Science, Istanbul University Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
44
|
Malik S, Singh R, Arora G, Dangol A, Goyal S. Biomarkers of Major Depressive Disorder: Knowing is Half the Battle. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:12-25. [PMID: 33508785 PMCID: PMC7851463 DOI: 10.9758/cpn.2021.19.1.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a heterogeneous disease which is why there are currently no specific methods to accurately test the severity, endophenotype or therapy response. This lack of progress is partly attributed to the com-plexity and variability of depression, in association with analytical variability of clinical literature and the wide number of theoretically complex biomarkers. The literature accessible, indicates that markers involved in inflammatory, neuro-trophic and metabolic processes and components of neurotransmitters and neuroendocrine systems are rather strong indicators to be considered clinically and can be measured through genetic and epigenetic, transcriptomic and proteomic, metabolomics and neuroimaging assessments. Promising biologic systems/markers found were i.e., growth biomarkers, endocrine markers, oxidant stress markers, proteomic and chronic inflammatory markers, are discussed in this review. Several lines of evidence suggest that a portion of MDD is a dopamine agonist-responsive subtype. This review analyzes concise reports on the pathophysiological biomarkers of MDD and therapeutic reactions via peripheral developmental factors, inflammative cytokines, endocrine factors and metabolic markers. Various literatures also support that endocrine and metabolism changes are associated with MDD. Accumulating evidence suggests that at least a portion of MDD patients show characteristics pathological changes regarding different clinical pathological biomarkers. By this review we sum up all the different biomarkers playing an important role in the detection or treatment of the different patients suffering from MDD. The review also gives an overview of different biomarker's playing a potential role in modulating effect of MDD.
Collapse
Affiliation(s)
- Sahil Malik
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Govind Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Akriti Dangol
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sanjay Goyal
- Department of Internal Medicine, Government Medical College, Patiala, India
| |
Collapse
|
45
|
de Bie TH, Witkamp RF, Jongsma MA, Balvers MGJ. Development and validation of a UPLC-MS/MS method for the simultaneous determination of gamma-aminobutyric acid and glutamic acid in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122519. [PMID: 33454439 DOI: 10.1016/j.jchromb.2020.122519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022]
Abstract
Gamma-aminobutyric acid (GABA) and its precursor glutamic acid are important neurotransmitters. Both are also present in peripheral tissues and the circulation, where abnormal plasma concentrations have been linked to specific mental disorders. In addition to endogenous synthesis, GABA and glutamic acid can be obtained from dietary sources. An increasing number of studies suggest beneficial cardio-metabolic effects of GABA intake, and therefore GABA is being marketed as a food supplement. The need for further research into their health effects merits accurate and sensitive methods to analyze GABA and glutamic acid in plasma. To this end, an ultra-pressure liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of GABA and glutamic acid in human plasma. Samples were prepared by a protein precipitation step and subsequent solid phase extraction using acetonitrile. Chromatographic separation was achieved on an Acquity UPLC HSS reversed phase C18 column using gradient elution. Analytes were detected using electrospray ionization and selective reaction monitoring. Standard curve concentrations for GABA ranged from 3.4 to 2500 ng/mL and for glutamic acid from 30.9 ng/mL to 22,500 ng/mL. Within- and between-day accuracy and precision were <10% in quality control samples at low, medium and high concentrations for both GABA and glutamic acid. GABA and glutamic acid were found to be stable in plasma after freeze-thaw cycles and up to 12 months of storage. The validated method was applied to human plasma from 17 volunteers. The observed concentrations ranged between 11.5 and 20.0 ng/ml and 2269 and 7625 ng/ml for respectively GABA and glutamic acid. The reported method is well suited for the measurement of plasma GABA and glutamic acid in pre-clinical or clinical studies.
Collapse
Affiliation(s)
- Tessa H de Bie
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Maarten A Jongsma
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
46
|
Charvériat M, Guiard BP. Serotonergic neurons in the treatment of mood disorders: The dialogue with astrocytes. PROGRESS IN BRAIN RESEARCH 2021; 259:197-228. [PMID: 33541677 DOI: 10.1016/bs.pbr.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
47
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
48
|
Powers B, Joyce C, Kleinman JE, Hyde TM, Ajilore O, Leow A, Sodhi MS. Sex differences in the transcription of glutamate transporters in major depression and suicide. J Affect Disord 2020; 277:244-252. [PMID: 32836031 DOI: 10.1016/j.jad.2020.07.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 05/29/2020] [Accepted: 07/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Accumulating evidence indicates that the glutamate system contributes to the pathophysiology of major depressive disorder (MDD) and suicide. We previously reported higher mRNA expression of glutamate receptors in the dorsolateral prefrontal cortex (DLPFC) of females with MDD. METHODS In the current study, we measured the expression of mRNAs encoding glutamate transporters in the DLPFC of MDD subjects who died by suicide (MDD-S, n = 51), MDD non-suicide subjects (MDD-NS, n = 28), and individuals who did not have a history of neurological illness (CTRL, n = 32). RESULTS Females but not males with MDD showed higher expression of EAATs and VGLUTs relative to CTRLs. VGLUT expression was significantly higher in the female MDD-S group, relative to the other groups. EAAT expression was lower in the male violent suicides. LIMITATIONS This study has limitations common to most human studies, including medication history and demographic differences between the diagnostic groups. We mitigated the effects of confounders by including them as covariates in our analyses. CONCLUSIONS We report sex differences in the expression of glutamate transporter genes in the DLPFC in MDD. Increased neuronal glutamate transporter expression may increase synaptic glutamate, leading to neuronal and glial loss in the DLPFC in MDD. These deficits may lower DLPFC activity, impair problem solving and impair executive function in depression, perhaps increasing vulnerability to suicidal behavior. These data add to accumulating support for the hypothesis that glutamatergic transmission is dysregulated in MDD and suicide. Glutamate transporters may be novel targets for the development of rapidly acting antidepressant therapies.
Collapse
Affiliation(s)
- Brian Powers
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Cara Joyce
- Biostatistics Collaborative Core, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Joel E Kleinman
- Lieber Institute for Brain Development and Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas M Hyde
- Lieber Institute for Brain Development and Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, United States
| | - Olusola Ajilore
- Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Leow
- Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Monsheel S Sodhi
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Dept. Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
49
|
Nobis A, Zalewski D, Waszkiewicz N. Peripheral Markers of Depression. J Clin Med 2020; 9:E3793. [PMID: 33255237 PMCID: PMC7760788 DOI: 10.3390/jcm9123793] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide, creating a high medical and socioeconomic burden. There is a growing interest in the biological underpinnings of depression, which are reflected by altered levels of biological markers. Among others, enhanced inflammation has been reported in MDD, as reflected by increased concentrations of inflammatory markers-C-reactive protein, interleukin-6, tumor necrosis factor-α and soluble interleukin-2 receptor. Oxidative and nitrosative stress also plays a role in the pathophysiology of MDD. Notably, increased levels of lipid peroxidation markers are characteristic of MDD. Dysregulation of the stress axis, along with increased cortisol levels, have also been reported in MDD. Alterations in growth factors, with a significant decrease in brain-derived neurotrophic factor and an increase in fibroblast growth factor-2 and insulin-like growth factor-1 concentrations have also been found in MDD. Finally, kynurenine metabolites, increased glutamate and decreased total cholesterol also hold promise as reliable biomarkers for MDD. Research in the field of MDD biomarkers is hindered by insufficient understanding of MDD etiopathogenesis, substantial heterogeneity of the disorder, common co-morbidities and low specificity of biomarkers. The construction of biomarker panels and their evaluation with use of new technologies may have the potential to overcome the above mentioned obstacles.
Collapse
Affiliation(s)
- Aleksander Nobis
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (D.Z.); (N.W.)
| | | | | |
Collapse
|
50
|
Chen H, Xie H, Huang S, Xiao T, Wang Z, Ni X, Deng S, Lu H, Hu J, Li L, Wen Y, Shang D. Development of mass spectrometry-based relatively quantitative targeted method for amino acids and neurotransmitters: Applications in the diagnosis of major depression. J Pharm Biomed Anal 2020; 194:113773. [PMID: 33279298 DOI: 10.1016/j.jpba.2020.113773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Targeted metabolomics analysis based on triple quadrupole (QQQ) MS coupled with multiple reaction monitoring mode (MRM) is the gold standard for metabolite quantification and it is widely applied in metabolomics. However, standard compounds for each metabolite and the corresponding analogs are necessary for quantitative measurements. To identify the differentially present metabolites in various groups, determining the relative concentration of metabolites would be more efficient than accurate quantification. In this study, a relatively quantitative targeted method was established for metabonomics research, on the basis of hydrophilic interaction liquid chromatography (HILIC)/QQQ MS operated in MRM mode. The quality control-base random forest signal correction algorithm (QC-RFSC algorithm) was applied for quality control instead of the internal standard method. High quality relative quantification was achieved without internal standards, and integrated peak areas were successfully used for statistical and pathway analyses. Amino acids and neurotransmitters (dopamine, kynurenic acid, urocanic acid, tryptophan, kynurenine, tyrosine, valine, threonine, serine, alanine, glycine, glutamine, citrulline, GABA, glutamate, aspartate, arginine, ornithine and histidine) in serum samples were simultaneously determined with the newly developed method. To demonstrate the applicability of this method in large-scale analyses, we analyzed the above metabolites in serum from patients with major depression. The serum levels of glutamate, aspartate, threonine, glycine and alanine were significantly higher, and those of citrulline, kynurenic acid and urocanic acid were significantly lower, in patients with major depression than in controls. This is the first report of the difference in urocanic acid, a compound reported to improve glutamate biosynthesis and release in the central nervous system, between healthy controls and patients with major depression.
Collapse
Affiliation(s)
- Hongzhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Huanshan Xie
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Xiaojiao Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Jingqin Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,510370,Guangzhou,China.
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,510370,Guangzhou,China.
| |
Collapse
|