1
|
Zhou Z, Chen Z, Li Y, Mao X, Chen J, Zhou X, Zhang B. Advances in solubilization and stabilization techniques for structural and functional studies of membrane proteins. PeerJ 2025; 13:e19211. [PMID: 40196297 PMCID: PMC11974516 DOI: 10.7717/peerj.19211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Membrane proteins (MPs) are indispensable in various biological processes, including material transport, signal transduction, immune response, and cell recognition. Unraveling the intricate interplay between MP structure and function is pivotal for advancing fundamental biology and pharmaceutical research. However, the inherent hydrophobicity and complex lipid interactions of MPs pose significant challenges in determining their three-dimensional configurations. In recent years, cryo-electron microscopy (cryo-EM) has emerged as a powerful alternative for structural elucidation, overcoming the challenges faced by traditional techniques such as X-ray crystallography and nuclear magnetic resonance (NMR). This review centers on advanced solubilization and stabilization techniques for MPs, as well as MP functions and expression systems, highlighting the strengths and limitations of conventional detergents, liposomes, bicelles, and nanodiscs, alongside emerging alternatives like styrene-maleic acid (SMA) and diisobutylene-maleic acid (DIBMA). Notably, SMA and its derivatives provide promising detergent-free alternatives that preserve protein stability and native conformation, which is particularly valuable for accurate cryo-EM characterization of complex MPs. This work is designed to serve as both an updated resource for researchers already immersed in the field and an accessible entry point for those new to MP research. By consolidating recent advancements and highlighting critical gaps, this review aims to inspire future investigations that push the boundaries of MP structural and functional studies, ultimately driving innovations in drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Zhuanghan Zhou
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Zheng Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yiran Li
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xingyue Mao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Junjie Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Bo Zhang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University of New Jersey, Union, NJ, United States of America
| |
Collapse
|
2
|
Anton JS, Iacovache I, Bada Juarez JF, Abriata LA, Perrin LW, Cao C, Marcaida MJ, Zuber B, Dal Peraro M. Aerolysin Nanopore Structures Revealed at High Resolution in a Lipid Environment. J Am Chem Soc 2025; 147:4984-4992. [PMID: 39900531 PMCID: PMC11826888 DOI: 10.1021/jacs.4c14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Aerolysin is a β-pore-forming toxin produced by most Aeromonas bacteria, which has attracted large attention in the field of nanopore sensing due to its narrow and charged pore lumen. Structurally similar proteins, belonging to the aerolysin-like family, are present throughout all kingdoms of life, but very few of them have been structurally characterized in a lipid environment. Here, we present the first high-resolution atomic cryo-EM structures of aerolysin prepore and pore in a membrane-like environment. These structures allow the identification of key interactions, which are relevant for understanding the pore formation mechanism and for correctly positioning the pore β-barrel and its anchoring β-turn motif in the membrane. Moreover, we elucidate at high resolution the architecture of key pore mutations and precisely identify four constriction rings in the pore lumen that are highly relevant for nanopore sensing experiments.
Collapse
Affiliation(s)
- Jana S. Anton
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luciano A. Abriata
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Louis W. Perrin
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Chan Cao
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Maria J. Marcaida
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Kuyler G, Barnard E, Sridhar P, Murray RJ, Pollock NL, Wheatley M, Dafforn TR, Klumperman B. Tunable Terpolymer Series for the Systematic Investigation of Membrane Proteins. Biomacromolecules 2025; 26:415-427. [PMID: 39725644 PMCID: PMC11733950 DOI: 10.1021/acs.biomac.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Membrane proteins (MPs) are critical to cellular processes and serve as essential therapeutic targets. However, their isolation and characterization are often impeded by traditional detergent-based methods, which can compromise their native states, and retention of their native lipid environment. Amphiphilic polymers have emerged as effective alternatives, enabling the formation of nanoscale discs that preserve MPs' structural and functional integrity. We introduce a novel series of poly(styrene-co-maleic acid-co-(N-benzyl)maleimide) (BzAM) terpolymers with tunable amphiphilicity, synthesized through controlled polymerization. Designed to mimic and improve upon industry-standard poly(styrene-co-maleic acid), these well-defined terpolymers offer enhanced control over molecular weight and distribution, allowing for systematic evaluation of polymer properties and their effect on membrane solubilization. The BzAM series effectively solubilized membranes and demonstrated a direct correlation between polymer hydrophobicity and solubilization efficiency of bacterial ABC transporter, Sav1866. This research highlights the importance of rational polymer design in MP research and provides a foundation for future developments.
Collapse
Affiliation(s)
- Gestél
C. Kuyler
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
- Centre for
Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Elaine Barnard
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
| | - Pooja Sridhar
- School of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rebecca J. Murray
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
- Centre for
Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Naomi L. Pollock
- School of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mark Wheatley
- Centre for
Health and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
- Centre of
Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands B15 2TT, United Kingdom
| | - Timothy R. Dafforn
- School of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bert Klumperman
- Department
of Chemistry and Polymer Science, Stellenbosch
University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
4
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551527. [PMID: 37577460 PMCID: PMC10418163 DOI: 10.1101/2023.08.01.551527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P. Knejski
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
- Present address: Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| | - Satchal K. Erramilli
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Present address: Meso Scale Diagnostics, LLC, Rockville, Maryland 20850, USA
| | - Anthony A. Kossiakoff
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment. Commun Biol 2024; 7:733. [PMID: 38886509 PMCID: PMC11183071 DOI: 10.1038/s42003-024-06437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Pfizer, San Diego, CA, 92121, USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
6
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Umar AW, Ahmad N, Xu M. Reviving Natural Rubber Synthesis via Native/Large Nanodiscs. Polymers (Basel) 2024; 16:1468. [PMID: 38891415 PMCID: PMC11174458 DOI: 10.3390/polym16111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Natural rubber (NR) is utilized in more than 40,000 products, and the demand for NR is projected to reach $68.5 billion by 2026. The primary commercial source of NR is the latex of Hevea brasiliensis. NR is produced by the sequential cis-condensation of isopentenyl diphosphate (IPP) through a complex known as the rubber transferase (RTase) complex. This complex is associated with rubber particles, specialized organelles for NR synthesis. Despite numerous attempts to isolate, characterize, and study the RTase complex, definitive results have not yet been achieved. This review proposes an innovative approach to overcome this longstanding challenge. The suggested method involves isolating the RTase complex without using detergents, instead utilizing the native membrane lipids, referred to as "natural nanodiscs", and subsequently reconstituting the complex on liposomes. Additionally, we recommend the adaptation of large nanodiscs for the incorporation and reconstitution of the RTase complex, whether it is in vitro transcribed or present within the natural nanodiscs. These techniques show promise as a viable solution to the current obstacles. Based on our experimental experience and insights from published literature, we believe these refined methodologies can significantly enhance our understanding of the RTase complex and its role in in vitro NR synthesis.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China
| |
Collapse
|
8
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. Structure 2024; 32:411-423.e6. [PMID: 38325368 PMCID: PMC10997469 DOI: 10.1016/j.str.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P Knejski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Murugan S, Iqbal T, Das D. Functional production and biochemical investigation of an integral membrane enzyme for olefin biosynthesis. Protein Sci 2024; 33:e4893. [PMID: 38160318 PMCID: PMC10804661 DOI: 10.1002/pro.4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Integral membrane enzymes play essential roles in a plethora of biochemical processes. The fatty acid desaturases (FADS)-like superfamily is an important group of integral membrane enzymes that catalyze a wide array of reactions, including hydroxylation, desaturation, and cyclization; however, due to the membrane-bound nature, the majority of these enzymes have remained poorly understood. UndB is a member of the FADS-like superfamily, which catalyzes fatty acid decarboxylation, a chemically challenging reaction at the membrane interface. UndB reaction produces terminal olefins that are prominent biofuel candidates and building blocks of polymers with widespread industrial applications. Despite the great importance of UndB for several biotechnological applications, the enzyme has eluded comprehensive investigation. Here, we report details of the expression, solubilization, and purification of several constructs of UndB to achieve the optimally functional enzyme. We gained important insights into the biochemical, biophysical, and catalytic properties of UndB, including the thermal stability and factors influencing the enzyme activity. Additionally, we established the ability and kinetics of UndB to produce dienes by performing di-decarboxylation of diacids. We found that the reaction proceeds by forming a mono-carboxylic acid intermediate. Our findings shed light on the unexplored biochemical properties of the UndB and extend opportunities for its rigorous mechanistic and structural characterization.
Collapse
Affiliation(s)
- Subhashini Murugan
- Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
| | - Tabish Iqbal
- Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
| | - Debasis Das
- Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
10
|
Vénien-Bryan C, Fernandes CAH. Overview of Membrane Protein Sample Preparation for Single-Particle Cryo-Electron Microscopy Analysis. Int J Mol Sci 2023; 24:14785. [PMID: 37834233 PMCID: PMC10573263 DOI: 10.3390/ijms241914785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM SPA) has recently emerged as an exceptionally well-suited technique for determining the structure of membrane proteins (MPs). Indeed, in recent years, huge increase in the number of MPs solved via cryo-EM SPA at a resolution better than 3.0 Å in the Protein Data Bank (PDB) has been observed. However, sample preparation remains a significant challenge in the field. Here, we evaluated the MPs solved using cryo-EM SPA deposited in the PDB in the last two years at a resolution below 3.0 Å. The most critical parameters for sample preparation are as follows: (i) the surfactant used for protein extraction from the membrane, (ii) the surfactant, amphiphiles, nanodiscs or other molecules present in the vitrification step, (iii) the vitrification method employed, and (iv) the type of grids used. The aim is not to provide a definitive answer on the optimal sample conditions for cryo-EM SPA of MPs but rather assess the current trends in the MP structural biology community towards obtaining high-resolution cryo-EM structures.
Collapse
Affiliation(s)
| | - Carlos A. H. Fernandes
- Unité Mixte de Recherche (UMR) 7590, Centre National de la Recherche Scientifique (CNRS), Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement (IRD), Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
11
|
Michon B, López-Sánchez U, Degrouard J, Nury H, Leforestier A, Rio E, Salonen A, Zoonens M. Role of surfactants in electron cryo-microscopy film preparation. Biophys J 2023; 122:1846-1857. [PMID: 37077048 PMCID: PMC10209149 DOI: 10.1016/j.bpj.2023.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/01/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Single-particle electron cryo-microscopy (cryo-EM) has become an effective and straightforward approach to determine the structure of membrane proteins. However, obtaining cryo-EM grids of sufficient quality for high-resolution structural analysis remains a major bottleneck. One of the difficulties arises from the presence of detergents, which often leads to a lack of control of the ice thickness. Amphipathic polymers such as amphipols (APols) are detergent substitutes, which have proven to be valuable tools for cryo-EM studies. In this work, we investigate the physico-chemical behavior of APol- and detergent-containing solutions and show a correlation with the properties of vitreous thin films in cryo-EM grids. This study provides new insight on the potential of APols, allowing a better control of ice thickness while limiting protein adsorption at the air-water interface, as shown with the full-length mouse serotonin 5-HT3A receptor whose structure has been solved in APol. These findings may speed up the process of grid optimization to obtain high-resolution structures of membrane proteins.
Collapse
Affiliation(s)
- Baptiste Michon
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Paris, France
| | | | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Hugues Nury
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France.
| | - Emmanuelle Rio
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Anniina Salonen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Manuela Zoonens
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Paris, France.
| |
Collapse
|
12
|
Sawczyc H, Heit S, Watts A. A comparative characterisation of commercially available lipid-polymer nanoparticles formed from model membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:39-51. [PMID: 36786921 PMCID: PMC10039845 DOI: 10.1007/s00249-023-01632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.
Collapse
Affiliation(s)
- Henry Sawczyc
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Sabine Heit
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
13
|
Marconnet A, Michon B, Prost B, Solgadi A, Le Bon C, Giusti F, Tribet C, Zoonens M. Influence of Hydrophobic Groups Attached to Amphipathic Polymers on the Solubilization of Membrane Proteins along with Their Lipids. Anal Chem 2022; 94:14151-14158. [PMID: 36200347 DOI: 10.1021/acs.analchem.2c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.
Collapse
Affiliation(s)
- Anaïs Marconnet
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Baptiste Michon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Bastien Prost
- UMS-IPSIT SAMM, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- UMS-IPSIT SAMM, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Fabrice Giusti
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Christophe Tribet
- P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Manuela Zoonens
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Université Paris Cité, F-75005 Paris, France.,Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
14
|
Ing G, Hartley AM, Pinotsis N, Maréchal A. Cryo-EM structure of a monomeric yeast S. cerevisiae complex IV isolated with maltosides: Implications in supercomplex formation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148591. [PMID: 35839926 DOI: 10.1016/j.bbabio.2022.148591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In mitochondria, complex IV (CIV) can be found as a monomer, a dimer or in association with other respiratory complexes. The atomic structure of the yeast S. cerevisiae CIV in a supercomplex (SC) with complex III (CIII) pointed to a region of significant conformational changes compared to the homologous mammalian CIV structures. These changes involved the matrix side domain of Cox5A at the CIII-CIV interface, and it was suggested that it could be required for SC formation. To investigate this, we solved the structure of the isolated monomeric CIV from S. cerevisiae stabilised in amphipol A8-35 at 3.9 Å using cryo-electron microscopy. Only a minor change in flexibility was seen in this Cox5A region, ruling out large CIV conformational shift for interaction with CIII and confirming the different fold of the yeast Cox5A subunit compared to mammalian homologues. Other differences in structure were the absence of two canonical subunits, Cox12 and Cox13, as well as Cox26, which is unique to the yeast CIV. Their absence is most likely due to the protein purification protocol used to isolate CIV from the III-IV SC.
Collapse
Affiliation(s)
- Gabriel Ing
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew M Hartley
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Amandine Maréchal
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
15
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
16
|
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092658. [PMID: 35566006 PMCID: PMC9101874 DOI: 10.3390/molecules27092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.
Collapse
|
17
|
Orekhov PS, Bozdaganyan ME, Voskoboynikova N, Mulkidjanian AY, Karlova MG, Yudenko A, Remeeva A, Ryzhykau YL, Gushchin I, Gordeliy VI, Sokolova OS, Steinhoff HJ, Kirpichnikov MP, Shaitan KV. Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:361. [PMID: 35159706 PMCID: PMC8838559 DOI: 10.3390/nano12030361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Marine E. Bozdaganyan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia Voskoboynikova
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Karlova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Valentin I. Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| |
Collapse
|
18
|
Higgins AJ, Flynn AJ, Marconnet A, Musgrove LJ, Postis VLG, Lippiat JD, Chung CW, Ceska T, Zoonens M, Sobott F, Muench SP. Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis. Commun Biol 2021; 4:1337. [PMID: 34824357 PMCID: PMC8617058 DOI: 10.1038/s42003-021-02834-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Collapse
Affiliation(s)
- Anna J Higgins
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex J Flynn
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaïs Marconnet
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France
| | - Laura J Musgrove
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Vincent L G Postis
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chun-Wa Chung
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France.
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Bajrovic I, Le MD, Davis MM, Croyle MA. Evaluation of intermolecular interactions required for thermostability of a recombinant adenovirus within a film matrix. J Control Release 2021; 341:118-131. [PMID: 34780881 DOI: 10.1016/j.jconrel.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Thermostability of vaccines and biologic drugs are key to increasing global access to a variety of life-saving agents. In this report, we characterize interactions between a novel zwitterionic surfactant and adenovirus serotype 5 which allow the virus to remain stable at room temperature in a thin film matrix. Complexity of the adenovirus capsid and the polydispersity of the surfactant required use of a variety of techniques to achieve this goal. The CMC of the surfactant in Tris buffer (pH 6.5) was estimated to be 0.7-1.17 × 10-4 M by the pyrene 1:3 ratio method. TEM images depict micelle formation around virus capsids. An estimated Kd of the virus-surfactant interaction of 2.25 × 10-9 M was determined by isothermal titration calorimetry. Associated data suggest that this interaction may be thermodynamically favorable and entropically driven. A competitive saturation study and TEM images indicate that the surfactant also binds to hexon proteins on the virus capsid. Taken together, these data support the working hypothesis that the surfactant is capable of forming micelles in the solid and liquid state and that it forms a protective coating around the virus by binding to hexon proteins on the virus capsid during the film forming process.
Collapse
Affiliation(s)
- Irnela Bajrovic
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA
| | - Matthew D Le
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA
| | - Madison M Davis
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA
| | - Maria A Croyle
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA; LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
20
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
21
|
Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans 2021; 49:1763-1777. [PMID: 34415288 PMCID: PMC8421053 DOI: 10.1042/bst20210181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The solubilisation of membrane proteins (MPs) necessitates the overlap of two contradictory events; the extraction of MPs from their native lipid membranes and their subsequent stabilisation in aqueous environments. Whilst the current myriad of membrane mimetic systems provide a range of modus operandi, there are no golden rules for selecting the optimal pipeline for solubilisation of a specific MP hence a miscellaneous approach must be employed balancing both solubilisation efficiency and protein stability. In recent years, numerous diverse lipid membrane mimetic systems have been developed, expanding the pool of available solubilisation strategies. This review provides an overview of recent developments in the membrane mimetic field, with particular emphasis placed upon detergents, polymer-based nanodiscs and amphipols, highlighting the latest reagents to enter the toolbox of MP research.
Collapse
|
22
|
Zampieri V, Hilpert C, Garnier M, Gestin Y, Delolme S, Martin J, Falson P, Launay G, Chaptal V. The Det.Belt Server: A Tool to Visualize and Estimate Amphipathic Solvent Belts around Membrane Proteins. MEMBRANES 2021; 11:459. [PMID: 34206634 PMCID: PMC8307592 DOI: 10.3390/membranes11070459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
Detergents wrap around membrane proteins to form a belt covering the hydrophobic part of the protein serving for membrane insertion and interaction with lipids. The number of detergent monomers forming this belt is usually unknown to investigators, unless dedicated detergent quantification is undertaken, which for many projects is difficult to setup. Yet, having an approximate knowledge of the amount of detergent forming the belt is extremely useful, to better grasp the protein of interest in interaction with its direct environment rather than picturing the membrane protein "naked". We created the Det.Belt server to dress up membrane proteins and represent in 3D the bulk made by detergent molecules wrapping in a belt. Many detergents are included in a database, allowing investigators to screen in silico the effect of different detergents around their membrane protein. The input number of detergents is changeable with fast recomputation of the belt for interactive usage. Metrics representing the belt are readily available together with scripts to render quality 3D images for publication. The Det.Belt server is a tool for biochemists to better grasp their sample.
Collapse
Affiliation(s)
- Veronica Zampieri
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, CEDEX 9, 38042 Grenoble, France;
| | - Cécile Hilpert
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Mélanie Garnier
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Yannick Gestin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Sébastien Delolme
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Pierre Falson
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Guillaume Launay
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| |
Collapse
|
23
|
Biological insights from SMA-extracted proteins. Biochem Soc Trans 2021; 49:1349-1359. [PMID: 34110372 PMCID: PMC8286838 DOI: 10.1042/bst20201067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
In the twelve years since styrene maleic acid (SMA) was first used to extract and purify a membrane protein within a native lipid bilayer, this technological breakthrough has provided insight into the structural and functional details of protein–lipid interactions. Most recently, advances in cryo-EM have demonstrated that SMA-extracted membrane proteins are a rich-source of structural data. For example, it has been possible to resolve the details of annular lipids and protein–protein interactions within complexes, the nature of lipids within central cavities and binding pockets, regions involved in stabilising multimers, details of terminal residues that would otherwise remain unresolved and the identification of physiologically relevant states. Functionally, SMA extraction has allowed the analysis of membrane proteins that are unstable in detergents, the characterization of an ultrafast component in the kinetics of electron transfer that was not possible in detergent-solubilised samples and quantitative, real-time measurement of binding assays with low concentrations of purified protein. While the use of SMA comes with limitations such as its sensitivity to low pH and divalent cations, its major advantage is maintenance of a protein's lipid bilayer. This has enabled researchers to view and assay proteins in an environment close to their native ones, leading to new structural and mechanistic insights.
Collapse
|
24
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
25
|
Olerinyova A, Sonn-Segev A, Gault J, Eichmann C, Schimpf J, Kopf AH, Rudden LSP, Ashkinadze D, Bomba R, Frey L, Greenwald J, Degiacomi MT, Steinhilper R, Killian JA, Friedrich T, Riek R, Struwe WB, Kukura P. Mass Photometry of Membrane Proteins. Chem 2021; 7:224-236. [PMID: 33511302 PMCID: PMC7815066 DOI: 10.1016/j.chempr.2020.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/20/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers—in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation. We introduce a label-free, single molecule approach for membrane-protein characterization Mass photometry quantifies membrane proteins in different membrane-mimetic systems MP reveals carrier and protein heterogeneity It helps distinguish different functional states of membrane proteins
Membrane proteins are some of the most important biological molecules, carrying out vital functions and being frequent drug targets. Yet, preferring lipid environments and so requiring solubilization, they are challenging to study. Here, we show that mass photometry can characterize the heterogeneity of membrane proteins and the carriers in which they are solubilized. It can also distinguish different functional states of membrane proteins. Our approach thus opens the door to more comprehensive studies of function, structure, and interaction of these critical proteins in their native membrane environment at the single-molecule level.
Collapse
Affiliation(s)
- Anna Olerinyova
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Adar Sonn-Segev
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Cédric Eichmann
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Johannes Schimpf
- Institut für Biochemie, Albert-Ludwigs-Universität, Alberstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Adrian H Kopf
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Lucas S P Rudden
- Department of Physics, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Dzmitry Ashkinadze
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Radoslaw Bomba
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Matteo T Degiacomi
- Department of Physics, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Ralf Steinhilper
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - J Antoinette Killian
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität, Alberstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
26
|
Birch J, Cheruvara H, Gamage N, Harrison PJ, Lithgo R, Quigley A. Changes in Membrane Protein Structural Biology. BIOLOGY 2020; 9:E401. [PMID: 33207666 PMCID: PMC7696871 DOI: 10.3390/biology9110401] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Membrane proteins are essential components of many biochemical processes and are important pharmaceutical targets. Membrane protein structural biology provides the molecular rationale for these biochemical process as well as being a highly useful tool for drug discovery. Unfortunately, membrane protein structural biology is a difficult area of study due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Despite this instability, membrane protein structural biology has made great leaps over the last fifteen years. Today, the landscape is almost unrecognisable. The numbers of available atomic resolution structures have increased 10-fold though advances in crystallography and more recently by cryo-electron microscopy. These advances in structural biology were achieved through the efforts of many researchers around the world as well as initiatives such as the Membrane Protein Laboratory (MPL) at Diamond Light Source. The MPL has helped, provided access to and contributed to advances in protein production, sample preparation and data collection. Together, these advances have enabled higher resolution structures, from less material, at a greater rate, from a more diverse range of membrane protein targets. Despite this success, significant challenges remain. Here, we review the progress made and highlight current and future challenges that will be overcome.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ryan Lithgo
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| |
Collapse
|
27
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
28
|
|
29
|
Biotinylated non-ionic amphipols for GPCR ligands screening. Methods 2020; 180:69-78. [PMID: 32505829 DOI: 10.1016/j.ymeth.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
We present herein the synthesis of biotin-functionalized polymers (BNAPols) that have been developed for the fixation of membrane proteins (MPs) onto surfaces. BNAPols were synthesized by free-radical polymerization of a tris(hydroxymethyl)acrylamidomethane (THAM)-derived amphiphilic monomer in the presence of a thiol-based transfer agent with an azido group. Then a Huisgen-cycloaddition reaction was performed with Biotin-(PEG)8-alkyne that resulted in formation of the biotinylated polymers. The designed structure of BNAPols was confirmed by NMR spectroscopy, and a HABA/avidin assay was used for estimating the percentage of biotin grafted on the polymer end chain. The colloidal characterization of these biotin-functionalized polymers was done using both dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. BNAPols were used to stabilize a model G protein-coupled receptor (GPCR), the human Growth Hormone Secretagogue Receptor (GHSR), out of its membrane environment. Subsequent immobilization of the BNAPols:GHSR complex onto a streptavidin-coated surface allowed screening of ligands based on their ability to bind the immobilized receptor. This opens the way to the use of biotinylated NAPols to immobilize functional, unmodified, membrane proteins, providing original sensor devices for multiple applications including innovative ligand screening assays.
Collapse
|
30
|
Gulamhussein AA, Uddin R, Tighe BJ, Poyner DR, Rothnie AJ. A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183281. [DOI: 10.1016/j.bbamem.2020.183281] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
|
31
|
Marconnet A, Michon B, Le Bon C, Giusti F, Tribet C, Zoonens M. Solubilization and Stabilization of Membrane Proteins by Cycloalkane-Modified Amphiphilic Polymers. Biomacromolecules 2020; 21:3459-3467. [DOI: 10.1021/acs.biomac.0c00929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anaïs Marconnet
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Baptiste Michon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Christel Le Bon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Fabrice Giusti
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| |
Collapse
|
32
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
33
|
Tifrea DF, Pal S, le Bon C, Cocco MJ, Zoonens M, de la Maza LM. Improved protection against Chlamydia muridarum using the native major outer membrane protein trapped in Resiquimod-carrying amphipols and effects in protection with addition of a Th1 (CpG-1826) and a Th2 (Montanide ISA 720) adjuvant. Vaccine 2020; 38:4412-4422. [PMID: 32386746 DOI: 10.1016/j.vaccine.2020.04.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 04/26/2020] [Indexed: 01/15/2023]
Abstract
A new vaccine formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) and amphipols was assessed in an intranasal (i.n.) challenge mouse model. nMOMP was trapped either in amphipol A8-35 (nMOMP/A8-35) or in A8-35 conjugated with Resiquimod (nMOMP/Resiq-A8-35), a TLR7/8 agonist added as adjuvant. The effects of free Resiquimod and/or additional adjuvants, Montanide ISA 720 (TLR independent) and CpG-1826 (TLR9 agonist), were also evaluated. Immunization with nMOMP/A8-35 alone administered i.n. was used as negative adjuvant-control group, whereas immunizations with C. muridarum elementary bodies (EBs) and MEM buffer, administered i.n., were used as positive and negative controls, respectively. Vaccinated mice were challenged i.n. with C. muridarum and changes in body weight, lungs weight and recovery of Chlamydia from the lungs were evaluated. All the experimental groups showed protection when compared with the negative control group. Resiquimod alone produced weak humoral and cellular immune responses, but both Montanide and CpG-1826 showed significant increases in both responses. The addition of CpG-1826 alone switched immune responses to be Th1-biased. The most robust protection was elicited in mice immunized with the three adjuvants and conjugated Resiquimod. Increased protection induced by the Resiquimod covalently linked to A8-35, in the presence of Montanide and CpG-1826 was established based on a set of parameters: (1) the ability of the antibodies to neutralize C. muridarum; (2) the increased proliferation of T-cells in vitro accompanied by higher production of IFN-γ, IL-6 and IL-17; (3) the decreased body weight loss over the 10 days after challenge; and (4) the number of IFUs recovered from the lungs at day 10 post challenge. In conclusion, a vaccine formulated with the C. muridarum nMOMP bound to amphipols conjugated with Resiquimod enhances protective immune responses that can be further improved by the addition of Montanide and CpG-1826.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christel le Bon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, F-75005 Paris, France
| | - Melanie J Cocco
- Department of Molecular Biology and Biochemistry, Department of Pharmaceutical Sciences, 1218 Natural Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, F-75005 Paris, France.
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
34
|
Kehlenbeck DM, Josts I, Nitsche J, Busch S, Forsyth VT, Tidow H. Comparison of lipidic carrier systems for integral membrane proteins - MsbA as case study. Biol Chem 2020; 400:1509-1518. [PMID: 31141477 DOI: 10.1515/hsz-2019-0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023]
Abstract
Membrane protein research suffers from the drawback that detergents, which are commonly used to solubilize integral membrane proteins (IMPs), often lead to protein instability and reduced activity. Recently, lipid nanodiscs (NDs) and saposin-lipoprotein particles (Salipro) have emerged as alternative carrier systems that keep membrane proteins in a native-like lipidic solution environment and are suitable for biophysical and structural studies. Here, we systematically compare nanodiscs and Salipros with respect to long-term stability as well as activity and stability of the incorporated membrane protein using the ABC transporter MsbA as model system. Our results show that both systems are suitable for activity measurements as well as structural studies in solution. Based on our results we suggest screening of different lipids with respect to activity and stability of the incorporated IMP before performing structural studies.
Collapse
Affiliation(s)
- Dominique-Maurice Kehlenbeck
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Julius Nitsche
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht, Lichtenbergstr. 1, 85747 Garching bei München, Germany
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France.,School of Life Sciences, Keele University, Staffordshire ST5 5BG, England
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
35
|
Barniol-Xicota M, Verhelst SHL. Isolation of intramembrane proteases in membrane-like environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183193. [PMID: 31945321 DOI: 10.1016/j.bbamem.2020.183193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Intramembrane proteases (IMPs) are proteolytic enzymes embedded in the lipid bilayer, where they cleave transmembrane substrates. The importance of IMPs relies on their role in a wide variety of cellular processes and diseases. In order to study the activity and function of IMPs, their purified form is often desired. The production of pure and active IMPs has proven to be a challenging task. This process unavoidably requires the use of solubilizing agents that will, to some extent, alter the native environment of these proteases. In this review we present the current solubilization and reconstitution techniques that have been applied to IMPs. In addition, we describe how these techniques had an influence on the activity and structural studies of IMPs, focusing on rhomboid proteases and γ-secretase.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium.
| | - Steven H L Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium; Leibniz Institute for Analytical Sciences, ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| |
Collapse
|
36
|
Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183192. [PMID: 31945320 PMCID: PMC7086155 DOI: 10.1016/j.bbamem.2020.183192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Membrane proteins are traditionally extracted and purified in detergent for biochemical and structural characterisation. This process is often costly and laborious, and the stripping away of potentially stabilising lipids from the membrane protein of interest can have detrimental effects on protein integrity. Recently, styrene-maleic acid (SMA) co-polymers have offered a solution to this problem by extracting membrane proteins directly from their native membrane, while retaining their naturally associated lipids in the form of stable SMA lipid particles (SMALPs). However, the inherent nature and heterogeneity of the polymer renders their use challenging for some downstream applications – particularly mass spectrometry (MS). While advances in cryo-electron microscopy (cryo-EM) have enhanced our understanding of membrane protein:lipid interactions in both SMALPs and detergent, the resolution obtained with this technique is often insufficient to accurately identify closely associated lipids within the transmembrane annulus. Native-MS has the power to fill this knowledge gap, but the SMA polymer itself remains largely incompatible with this technique. To increase sample homogeneity and allow characterisation of membrane protein:lipid complexes by native-MS, we have developed a novel SMA-exchange method; whereby the membrane protein of interest is first solubilised and purified in SMA, then transferred into amphipols or detergents. This allows the membrane protein and endogenously associated lipids extracted by SMA co-polymer to be identified and examined by MS, thereby complementing results obtained by cryo-EM and creating a better understanding of how the lipid bilayer directly affects membrane protein structure and function. First reported exchange protocol for transferring membrane proteins solubilised in SMALPs, into detergent or amphipols. Purification of protein:lipid complexes without detergent for mass spectrometry and subsequent lipid identification. Cost effective membrane protein purification requiring only minimal amounts of detergents in the exchange process.
Collapse
|
37
|
Cooper RS, Heldwein EE. Expression, Purification, and Crystallization of Full-Length HSV-1 gB for Structure Determination. Methods Mol Biol 2020; 2060:395-407. [PMID: 31617193 PMCID: PMC10167678 DOI: 10.1007/978-1-4939-9814-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
HSV glycoproteins play important roles in the viral life cycle, particularly viral cell entry. Here we describe the protocol for expression, purification, and crystallization of full-length HSV-1 glycoprotein B. The protocol provides a framework for incorporating transmembrane domain-stabilizing amphipols into the crystallization setup and can be adapted to isolate other complete HSV glycoproteins.
Collapse
Affiliation(s)
- Rebecca S Cooper
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
38
|
Puthenveetil R, Vinogradova O. Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J Biol Chem 2019; 294:15914-15931. [PMID: 31551353 DOI: 10.1074/jbc.rev119.009178] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A third of the genes in prokaryotic and eukaryotic genomes encode membrane proteins that are either essential for signal transduction and solute transport or function as scaffold structures. Unlike many of their soluble counterparts, the overall structural and functional organization of membrane proteins is sparingly understood. Recent advances in X-ray crystallography, cryo-EM, and nuclear magnetic resonance (NMR) are closing this gap by enabling an in-depth view of these ever-elusive proteins at atomic resolution. Despite substantial technological advancements, however, the overall proportion of membrane protein entries in the Protein Data Bank (PDB) remains <4%. This paucity is mainly attributed to difficulties associated with their expression and purification, propensity to form large multisubunit complexes, and challenges pertinent to identification of an ideal detergent, lipid, or detergent/lipid mixture that closely mimic their native environment. NMR is a powerful technique to obtain atomic-resolution and dynamic details of a protein in solution. This is accomplished through an assortment of isotopic labeling schemes designed to acquire multiple spectra that facilitate deduction of the final protein structure. In this review, we discuss current approaches and technological developments in the determination of membrane protein structures by solution NMR and highlight recent structural and mechanistic insights gained with this technique. We also discuss strategies for overcoming size limitations in NMR applications, and we explore a plethora of membrane mimetics available for the structural and mechanistic understanding of these essential cellular proteins.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Department of Molecular and Cell Biology, college of liberal arts and sciences, University of Connecticut at Storrs, Storrs, Connecticut 06269
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, Connecticut 06269
| |
Collapse
|
39
|
Kim E, Watanabe A, Sato R, Okajima K, Minagawa J. pH-Responsive Binding Properties of Light-Harvesting Complexes in a Photosystem II Supercomplex Investigated by Thermodynamic Dissociation Kinetics Analysis. J Phys Chem Lett 2019; 10:3615-3620. [PMID: 31180687 DOI: 10.1021/acs.jpclett.9b01208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reorganization of photosynthetic proteins on the thylakoid membrane is an important regulatory process for photoacclimation in photosynthetic organisms. However, the underlying mechanism has been poorly understood due to the lack of methods to analyze the interactions between membrane proteins. To investigate the mechanism, we demonstrated the binding properties of light-harvesting complex proteins (LHCs) in a photosystem II (PSII) supercomplex regulated by pH conditions, which primarily responded to environmental light conditions, using a thermodynamic dissociation kinetics analysis. The results showed that the strongly bound LHCs (∼60%) were responsive to pH conditions, whereas the moderately and loosely bound LHCs (∼40%) were nonresponsive. This result implies that the pH condition alters the binding properties of LHCs in the PSII supercomplex, inducing the reorganization of protein complexes.
Collapse
Affiliation(s)
- Eunchul Kim
- Division of Environmental Photobiology , National Institute for Basic Biology , Okazaki 444-8585 , Japan
| | - Akimasa Watanabe
- Division of Environmental Photobiology , National Institute for Basic Biology , Okazaki 444-8585 , Japan
- Department of Basic Biology, School of Life Science , Graduate University for Advanced Studies , Okazaki 444-8585 , Japan
| | - Ryoichi Sato
- Division of Environmental Photobiology , National Institute for Basic Biology , Okazaki 444-8585 , Japan
| | - Keisuke Okajima
- Division of Environmental Photobiology , National Institute for Basic Biology , Okazaki 444-8585 , Japan
- Department of Basic Biology, School of Life Science , Graduate University for Advanced Studies , Okazaki 444-8585 , Japan
| | - Jun Minagawa
- Division of Environmental Photobiology , National Institute for Basic Biology , Okazaki 444-8585 , Japan
- Department of Basic Biology, School of Life Science , Graduate University for Advanced Studies , Okazaki 444-8585 , Japan
| |
Collapse
|
40
|
Zubcevic L, Hsu AL, Borgnia MJ, Lee SY. Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes. eLife 2019; 8:e45779. [PMID: 31090543 PMCID: PMC6544438 DOI: 10.7554/elife.45779] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
The Transient Receptor Potential Vanilloid 2 (TRPV2) channel is a member of the temperature-sensing thermoTRPV family. Recent advances in cryo-electronmicroscopy (cryo-EM) and X-ray crystallography have provided many important insights into the gating mechanisms of thermoTRPV channels. Interestingly, crystallographic studies of ligand-dependent TRPV2 gating have shown that the TRPV2 channel adopts two-fold symmetric arrangements during the gating cycle. However, it was unclear if crystal packing forces played a role in stabilizing the two-fold symmetric arrangement of the channel. Here, we employ cryo-EM to elucidate the structure of full-length rabbit TRPV2 in complex with the agonist resiniferatoxin (RTx) in nanodiscs and amphipol. We show that RTx induces two-fold symmetric conformations of TRPV2 in both environments. However, the two-fold symmetry is more pronounced in the native-like lipid environment of the nanodiscs. Our data offers insights into a gating pathway in TRPV2 involving symmetry transitions.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Department of BiochemistryDuke University School of MedicineDurhamUnited States
| | - Allen L Hsu
- Genome Integrity and Structural Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human ServicesResearch Triangle ParkUnited States
| | - Mario J Borgnia
- Department of BiochemistryDuke University School of MedicineDurhamUnited States
- Genome Integrity and Structural Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human ServicesResearch Triangle ParkUnited States
| | - Seok-Yong Lee
- Department of BiochemistryDuke University School of MedicineDurhamUnited States
| |
Collapse
|
41
|
Nawrocki WJ, Buchert F, Joliot P, Rappaport F, Bailleul B, Wollman FA. Chlororespiration Controls Growth Under Intermittent Light. PLANT PHYSIOLOGY 2019; 179:630-639. [PMID: 30498023 PMCID: PMC6426412 DOI: 10.1104/pp.18.01213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 05/25/2023]
Abstract
Whereas photosynthetic function under steady-state light conditions has been well characterized, little is known about its changes that occur in response to light fluctuations. Chlororespiration, a simplified respiratory chain, is widespread across all photosynthetic lineages, but its role remains elusive. Here, we show that chlororespiration plays a crucial role in intermittent-light conditions in the green alga Chlamydomonas reinhardtii Chlororespiration, which is localized in thylakoid membranes together with the photosynthetic electron transfer chain, involves plastoquinone reduction and plastoquinol oxidation by a Plastid Terminal Oxidase (PTOX). We show that PTOX activity is critical for growth under intermittent light, with severe growth defects being observed in a mutant lacking PTOX2, the major plastoquinol oxidase. We demonstrate that the hampered growth results from a major change in the kinetics of redox relaxation of the photosynthetic electron transfer chain during the dark periods. This change, in turn, has a dramatic effect on the physiology of photosynthesis during the light periods, notably stimulating cyclic electron flow at the expense of the linear electron flow.
Collapse
Affiliation(s)
- Wojciech J Nawrocki
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Felix Buchert
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Pierre Joliot
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| |
Collapse
|
42
|
Perry TN, Souabni H, Rapisarda C, Fronzes R, Giusti F, Popot JL, Zoonens M, Gubellini F. BAmSA: Visualising transmembrane regions in protein complexes using biotinylated amphipols and electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:466-477. [DOI: 10.1016/j.bbamem.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
|
43
|
Abstract
Numerous biosynthetic pathways have been shown to assemble at the surface of cellular membranes into efficient dynamic supramolecular assemblies termed metabolons. In response to environmental stimuli, metabolons assemble on-demand making them highly dynamic and fragile. This transient nature has previously hampered isolation and molecular characterization of dynamic metabolons. In contrast to conventional detergents, which tend to disrupt weak protein-protein interactions and remove lipids, the competence of a styrene maleic acid copolymer to carve out discrete lipid nanodisc from membranes offers immense potential for isolation of intact protein assemblies. Here, we present a method to extract the entire membrane-bound dhurrin pathway directly from microsomal fractions of the cereal Sorghum bicolor. This detergent-free nanodisc approach may be generally transposed for isolation of entire plant biosynthetic metabolons. This method provides a simple practical toolkit for the study of membrane protein complexes.
Collapse
|
44
|
Flayhan A, Mertens HDT, Ural-Blimke Y, Martinez Molledo M, Svergun DI, Löw C. Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research. Structure 2018; 26:345-355.e5. [PMID: 29413323 PMCID: PMC5807053 DOI: 10.1016/j.str.2018.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/27/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
Abstract
Saposin-derived lipid nanoparticles (SapNPs) are a new alternative tool for membrane protein reconstitution. Here we demonstrate the potential and advantages of SapNPs. We show that SapA has the lowest lipid specificity for SapNP formation. These nanoparticles are modular and offer a tunable range of size and composition depending on the stoichiometric ratio of lipid and saposin components. They are stable and exhibit features typical of lipid-bilayer systems. Our data suggest that SapNPs are versatile and can adapt to membrane proteins of various sizes and architectures. Using SapA and various types of lipids we could reconstitute membrane proteins of different transmembrane cross-sectional areas (from 14 to 56 transmembrane α helices). SapNP-reconstituted proteins bound their respective ligands and were more heat stable compared with the detergent-solubilized form. Moreover, SapNPs encircle membrane proteins in a compact way, allowing structural investigations of small membrane proteins in a detergent-free environment using small-angle X-ray scattering. SapA shows the lowest lipid specificity for SapNP formation SapNPs are versatile and can adapt to MPs of various sizes and architectures SapNP-reconstituted MPs are more stable than in detergent SapNPs encapsulate MPs in a compact manner
Collapse
Affiliation(s)
- Ali Flayhan
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
45
|
Membrane protein nanoparticles: the shape of things to come. Biochem Soc Trans 2018; 46:1495-1504. [PMID: 30464048 PMCID: PMC6299238 DOI: 10.1042/bst20180139] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
The use of styrene–maleic acid (SMA) for the purification of a wide range of membrane proteins (MPs) from both prokaryotic and eukaryotic sources has begun to make an impact in the field of MP biology. This method is growing in popularity as a means to purify and thoroughly investigate the structure and function of MPs and biological membranes. The amphiphilic SMA copolymer can effectively extract MPs directly from a native lipid bilayer to form discs ∼10 nm in diameter. The resulting lipid particles, or styrene–maleic acid lipid particles (SMALPs), contain SMA, protein and membrane lipid. MPs purified in SMALPs are able to retain their native structure and, in many cases, functional activity, and growing evidence suggests that MPs purified using SMA have enhanced thermal stability compared with detergent-purified proteins. The SMALP method is versatile and is compatible with a wide range of cell types across taxonomic domains. It can readily be adapted to replace detergent in many protein purification methods, often with only minor changes made to the existing protocol. Moreover, biophysical analysis and structural determination may now be a possibility for many large, unstable MPs. Here, we review recent advances in the area of SMALP purification and how it is affecting the field of MP biology, critically assess recent progress made with this method, address some of the associated technical challenges which may remain unresolved and discuss opportunities for exploiting SMALPs to expand our understanding of structural and functional properties of MPs.
Collapse
|
46
|
Buchert F, Hamon M, Gäbelein P, Scholz M, Hippler M, Wollman FA. The labile interactions of cyclic electron flow effector proteins. J Biol Chem 2018; 293:17559-17573. [PMID: 30228184 PMCID: PMC6231120 DOI: 10.1074/jbc.ra118.004475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.
Collapse
Affiliation(s)
- Felix Buchert
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Marion Hamon
- the Institut de Biologie Physico-Chimique, UMR8226/FRC550 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
| | - Philipp Gäbelein
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Martin Scholz
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Michael Hippler
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Francis-André Wollman
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France,
| |
Collapse
|
47
|
Smirnova IA, Ädelroth P, Brzezinski P. Extraction and liposome reconstitution of membrane proteins with their native lipids without the use of detergents. Sci Rep 2018; 8:14950. [PMID: 30297885 PMCID: PMC6175888 DOI: 10.1038/s41598-018-33208-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
Functional studies of membrane-bound channels, transporters or signal transducers require that the protein of interest resides in a membrane that separates two compartments. One approach that is commonly used to prepare these systems is to reconstitute the protein in liposomes. An intermediate step of this method is purification of the protein, which typically involves solubilization of the native membrane using detergent. The use of detergents often results in removal of lipids surrounding the protein, which may alter its structure and function. Here, we have employed a method for isolation of membrane proteins with a disc of their native lipids to develop an approach that allows transfer of the purified membrane protein to liposomes without the use of any detergents.
Collapse
Affiliation(s)
- Irina A Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
48
|
Calabrese AN, Radford SE. Mass spectrometry-enabled structural biology of membrane proteins. Methods 2018; 147:187-205. [DOI: 10.1016/j.ymeth.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
|
49
|
Puvanendran D, Cece Q, Picard M. Reconstitution of the activity of RND efflux pumps: a “bottom-up” approach. Res Microbiol 2018; 169:442-449. [DOI: 10.1016/j.resmic.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/11/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
|
50
|
Cooper RS, Georgieva ER, Borbat PP, Freed JH, Heldwein EE. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat Struct Mol Biol 2018; 25:416-424. [PMID: 29728654 PMCID: PMC5942590 DOI: 10.1038/s41594-018-0060-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Viral fusogens merge viral and cell membranes during cell penetration. Their ectodomains drive fusion by undergoing large-scale refolding, but little is known about the functionally important regions located within or near the membrane. Here, we report the crystal structure of the full-length glycoprotein B, the fusogen from Herpes Simplex Virus, complemented by electron spin resonance measurements. The membrane-proximal (MPR), transmembrane (TMD), and cytoplasmic (CTD) domains form a uniquely folded trimeric pedestal beneath the ectodomain, which balances dynamic flexibility with extensive, stabilizing membrane interactions. Hyperfusogenic mutations within the CTD destabilize it, targeting trimeric interfaces, structural motifs, and membrane-interacting elements. Thus, we propose that the CTD trimer observed in the structure stabilizes gB in its prefusion state despite being appended to the postfusion ectodomain. Our data suggest a model for how this dynamic, membrane-dependent “clamp” controls the fusogenic refolding of gB.
Collapse
Affiliation(s)
- Rebecca S Cooper
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|