1
|
Liu P, Guo Z, Wang Y, He M, Kang Y, Wu H, Hu Z, Zhang J. Occurrence of polycyclic aromatic hydrocarbons in the Yellow River delta: Sources, ecological risks, and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122432. [PMID: 39243646 DOI: 10.1016/j.jenvman.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This research investigated the distribution, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in the Yellow River Delta (YRD), China, emphasizing the response of soil microorganisms. The study involved quantitative analyses of 16 PAHs specified by the U.S. Environmental Protection Agency (USEPA) in both water and soil, utilizing metagenomic technique to determine the response of microbial communities and metabolism within the soil. Results noted that PAHs in the water mainly originate from pyrogenic source and in the soil originate from mixture source, with higher concentrations found in wetland areas compared to river regions. The ecological risk assessment revealed low-to-moderate risk. Microbial analysis demonstrated increased diversity and abundance of bacteria associated with PAHs in areas with higher PAHs pollution. Metagenomic insights revealed significant effects of organic carbon on PAHs degradation genes (ko00624 and ko00626), as well as significant differences in specific metabolic pathways including phenanthrene degradation, with key enzymes showing significant differences between the two environments. The study underscores the importance of understanding PAHs distribution and microbial responses to effectively manage and mitigate pollution in estuarine environments.
Collapse
Affiliation(s)
- Peiqiong Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
2
|
Kou B, Huo L, Cao M, Yu T, Wu Y, Hui K, Tan W, Yuan Y, Zhu X. Applying kitchen compost promoted soil chrysene degradation by optimizing microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122761. [PMID: 39369537 DOI: 10.1016/j.jenvman.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Chrysene, as a high molecular weight polycyclic aromatic hydrocarbon (PAH), has become an important factor in degrading soil quality and constraining the safe production of food crops. Compost has been widely used to amend contaminated soil. However, to date, the main components of kitchen compost that enhance the biodegradation of chrysene in the soil remain unidentified. Thus, in this study, the enhancing effect and mechanisms of kitchen compost (KC) and kitchen compost-derived dissolved organic matter (KCOM) on chrysene removal from soil were investigated through cultivation experiments combined with high-throughput sequencing technology. Additionally, the key components influencing the degradation of chrysene were identified. The results showed that KCOM was the main component of compost that promoted the degradation of chrysene. The average degradation rate of chrysene in 1% KC- and 1% KCOM-treated soil increased by 27.20% and 24.18%, respectively, at different levels of chrysene pollution compared with the control treatment (CK). KC and KCOM significantly increased soil nutrient content, accelerated humification of organic matter, and increased microbial activity in the chrysene-contaminated soil. Correlation analyses revealed that the application of KC and KCOM optimized the microbial community by altering soil properties and organic matter structure. This optimization enhanced the degradation of soil chrysene by increasing the abundance of chrysene-degrading functional bacteria from the genera Bacillus, Arthrobacter, Pseudomonas, Lysinibacillus, and Acinetobacter. This study provides insight into the identification of key components that promote chrysene degradation and into the microbial-enhanced remediation of chrysene-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Yuman Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
3
|
Kravchenko E, Sushkova S, Raza MH, Minkina T, Dudnikova T, Barbashev A, Maksimov A, Wong MH. Ecological and human health impact assessments based on long-term monitoring of soil PAHs near a coal-fired power plant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:288. [PMID: 38970676 DOI: 10.1007/s10653-024-02060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 07/08/2024]
Abstract
The combustion of coal in power plants releases significant amounts of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic and carcinogenic. This study assesses the ecological and human health impacts of PAHs contamination from a coal-fired power plant over 8 years. The monitoring site selection considered the distance from the power plant and the prevailing wind direction in the investigated area. The results reveal that, during the monitoring period, PAH levels increased on average by 43%, 61%, and 37% in the zone of the prevailing wind direction, in the area proximate to the power plant, and the zone distant from it, respectively. The site, which has a radius of 4.5 km in the prevailing wind direction, exhibited the highest ecological and human health impacts. Additionally, a strong correlation was observed between environmental and human health impacts, depending on the distance from the power plant, particularly in areas with the prevailing wind direction. These insights contribute to a comprehensive understanding of the intricate dynamics linking power plant emissions, PAHs contamination, and their far-reaching consequences on the environment and human health.
Collapse
Affiliation(s)
- Ekaterina Kravchenko
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia.
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Muhammad Huzaifa Raza
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tamara Dudnikova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Andrey Barbashev
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Aleksey Maksimov
- National Medical Research Centre for Oncology, Rostov-On-Don, Russia
| | - Ming Hung Wong
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
- Consortium On Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| |
Collapse
|
4
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
5
|
Brzeszcz J, Steliga T, Ryszka P, Kaszycki P, Kapusta P. Bacteria degrading both n-alkanes and aromatic hydrocarbons are prevalent in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5668-5683. [PMID: 38127231 PMCID: PMC10799122 DOI: 10.1007/s11356-023-31405-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
This study was undertaken to determine the distribution of soil bacteria capable of utilizing both n-alkanes and aromatic hydrocarbons. These microorganisms have not been comprehensively investigated so far. Ten contaminated (4046-43,861 mg of total petroleum hydrocarbons (TPH) kg-1 of dry weight of soil) and five unpolluted (320-2754 mg TPH kg-1 of dry weight of soil) soil samples from temperate, arid, and Alpine soils were subjected to isolation of degraders with extended preferences and shotgun metagenomic sequencing (selected samples). The applied approach allowed to reveal that (a) these bacteria can be isolated from pristine and polluted soils, and (b) the distribution of alkane monooxygenase (alkB) and aromatic ring hydroxylating dioxygenases (ARHDs) encoding genes is not associated with the contamination presence. Some alkB and ARHD genes shared the same taxonomic affiliation; they were most often linked with the Rhodococcus, Pseudomonas, and Mycolicibacterium genera. Moreover, these taxa together with the Paeniglutamicibacter genus constituted the most numerous groups among 132 culturable strains growing in the presence of both n-alkanes and aromatic hydrocarbons. All those results indicate (a) the prevalence of the hydrocarbon degraders with extended preferences and (b) the potential of uncontaminated soil as a source of hydrocarbon degraders applied for bioremediation purposes.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Teresa Steliga
- Department of Production Technology of Reservoir Fluids, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland
| | - Przemysław Ryszka
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-425, Kraków, Poland
| | - Piotr Kapusta
- Department of Microbiology, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland
| |
Collapse
|
6
|
Moncrieffe R, Masry M, Cai B, Rossignol S, Kamari A, Poirier L, Bertrand S, Wong-Wah-Chung P, Zalouk-Vergnoux A. Study of the ageing and the sorption of polyaromatic hydrocarbons as influencing factors on the effects of microplastics on blue mussel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106669. [PMID: 37647752 DOI: 10.1016/j.aquatox.2023.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The mussels are species with high socio-economic weights and are often used as bioindicators of biological and chemical contamination. In the field and aquaculture, they can intake microplastics during filter-feeding, and the microplastics can have a negative impact on their health, even at low concentrations. The effects of microplastics have yet to be fully examined on the blue mussel (Mytilus edulis), considering the factors of ageing and sorption of some polyaromatic hydrocarbons (PAHs), ubiquitous environmental contaminants. In this work, 5 different exposure conditions were studied: pristine microplastics, microplastics aged for 1000 days under UV radiation, microplastics sorbing PAHs, as well as microplastics both aged and sorbing PAHs, in parallel to controls. The microplastic changes after ageing were studied with spectroscopic and chromatographic methods. Then, 8-day laboratory exposures of mussels at 10 µg/L of microplastics were performed. The oxidative stress, as well as neurotoxic and immunological responses of M. edulis, were measured using a battery of biomarkers (catalase/CAT, superoxide dismutase/SOD, glutathione S-transferases/GST, acetylcholinesterase/AChE) in 3 different organs (digestive gland, gills and mantle), and acid phosphatase in hemolymph. Then, a study of lipid impairments on the digestive gland was performed through the use of lipidomic tools. No significant difference of oxidative stress activity was observed for all the tissues of mussels exposed to pristine microplastics at 10 µg/L, compared to controls. The ageing and the PAH soption onto microplastics were influencing factors of the oxydative stress in mussels with increased CAT activities in the digestive glands and decreased SOD activities in the mantles. The neurotoxicity was highlighted by higher AChE activities measured in the mantle of mussels exposed to all the microplastic treatments, compared to controls. Concerning lipidomics, no compound was determined as a biomarker of microplastic exposure. The study demonstrated a low toxicity of microplastics at environmental relevant concentration with a 8-day exposure and using the chosen biomarkers. However, some microplastic changes seemed to lead to specific effects on mussels.
Collapse
Affiliation(s)
- Romaric Moncrieffe
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F44000, France
| | - Maria Masry
- Aix Marseille University, CNRS, LCE, Marseille, France
| | - Binbin Cai
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F44000, France
| | | | - Abderrahmane Kamari
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F44000, France
| | - Laurence Poirier
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F44000, France
| | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F44000, France; ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | | | - Aurore Zalouk-Vergnoux
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes F44000, France.
| |
Collapse
|
7
|
Zhang Z, Xia Y, Meng L, Xiao L, Zhang Y, Ye J, Wang F, Deng H. Polycyclic Aromatic Hydrocarbons in Topsoils Along the Taipu River Banks in the Yangtze River Delta, China: Occurrence, Source and Risk Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:9. [PMID: 37358629 DOI: 10.1007/s00128-023-03751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/23/2023] [Indexed: 06/27/2023]
Abstract
Taipu River is an important transboundary river and drinking water source in the Yangtze River Delta, China. This study collected 15 topsoil samples along the Taipu River banks and subsequently determined the polycyclic aromatic hydrocarbons (PAHs) concentrations, sources, and ecological and health risks. The sum of toxic 15 PAHs concentrations ranged from 83.13 to 28342.53 ng/g, with a mean of 2828.69 ng/g. High molecular weight (HMW) PAHs were the dominant components and Indene (1,2,3, -cd) benzopyrene (InP) accounted for the highest proportion in individuals. The average PAH concentration in residential land was the highest, followed by those in industrial and agricultural land. The PAH concentration was positively related to contents of total carbon, total nitrogen, ammonium nitrogen, and aminopeptidase activity in soils. The mixed combustion of biomass, coal, and petroleum and traffic emissions could be the primary PAH contributors. The total PAHs at over half of sampling points had relatively high risk quotients and incremental lifetime cancer risk (ILCR) values, posing potential or great ecological threats and health risks.
Collapse
Affiliation(s)
- Zhibo Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China
| | - Yangrongchang Xia
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou, 310058, China.
- The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China.
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China.
| | - Lishan Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 201722, China
| | - Ying Zhang
- The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Fenghua Wang
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huan Deng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
8
|
Vijayanand M, Ramakrishnan A, Subramanian R, Issac PK, Nasr M, Khoo KS, Rajagopal R, Greff B, Wan Azelee NI, Jeon BH, Chang SW, Ravindran B. Polyaromatic hydrocarbons (PAHs) in the water environment: A review on toxicity, microbial biodegradation, systematic biological advancements, and environmental fate. ENVIRONMENTAL RESEARCH 2023; 227:115716. [PMID: 36940816 DOI: 10.1016/j.envres.2023.115716] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Abiraami Ramakrishnan
- Department of Civil Engineering, Christian College of Engineering and Technology Oddanchatram, 624619,Dindigul District, Tamilnadu, India
| | - Ramakrishnan Subramanian
- Department of Civil Engineering, Sri Krishna College of Engineering and Technology, Kuniamuthur, Coimbatore, 641008, Tamilnadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt
| | - Kuan Shiong Khoo
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Babett Greff
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Nur Izyan Wan Azelee
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor Darul Takzim, Malaysia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea.
| |
Collapse
|
9
|
Liang C, Ye Q, Huang Y, Wang Y, Zhang Z, Wang H. Shifts of the new functional marker gene (pahE) of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial population and its relationship with PAHs biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129305. [PMID: 35709619 DOI: 10.1016/j.jhazmat.2022.129305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Identification of polycyclic aromatic hydrocarbons (PAHs) degrading bacterial populations and understanding their responses to PAHs are crucial for the designing of appropriate bioremediation strategies. In this study, the responses of PAHs-degrading bacterial populations to different PAHs were studied in terms of the compositions and abundance variations of their new functional marker gene (pahE) by gene-targeted metagenomic and qPCR analysis. Overall, PAHs species significantly affected the composition and abundance of pahE gene within the PAHs-degrading bacteria in each treatment and different pahE of PAHs-degrading bacteria involved in the different stages of PAHs degradation. Noted that new pahE genotypes were also discovered in all PAHs treatment groups, indicating that some potential new PAHs-degrading bacterial genera were also involved in PAHs degradation. Besides, all three PAH removal rates were significantly positively related with pahE gene abundances (R2 = 0.908 ~ 0.922, p < 0.01), demonstrating that pahE could be a good indicator of PAHs degradation activity or potential. This is the first study focusing on the dynamic changes of the pahE gene within PAHs-degrading bacterial community during the degradation of PAHs in mangrove sediment, providing novel insights into the use of pahE gene as the functional marker to indicate PAH degradation.
Collapse
Affiliation(s)
- Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Wei Z, Ma X, Zhang Y, Guo Y, Wang W, Jiang ZY. High-efficiency adsorption of phenanthrene by Fe 3O 4-SiO 2-dimethoxydiphenylsilane nanocomposite: Experimental and theoretical study. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126948. [PMID: 34449349 DOI: 10.1016/j.jhazmat.2021.126948] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 05/19/2023]
Abstract
Phenanthrene (PHE), as one of representative polycyclic aromatic hydrocarbons (PAHs) can cause serious adverse effects on human health, developing effective adsorbents to alleviate PHE contamination is in urgent demand. A novel Fe3O4-SiO2-Dimethoxydiphenylsilane (Fe3O4-SiO2-2DMDPS) nanocomposite was fabricated from encapsulation and grafting process. Magnetic Fe3O4 nanoparticles were served as preliminary matrix material, SiO2 was used to link the magnetic oxide and provide hydroxyl groups for proceeding the silane coupling reaction subsequently, and the aromatic rings in DMDPS could provide active sites for PHE adsorption via π-π interaction. SEM-EDS, TEM, BET, VSM, XRD, FTIR, Raman, Zeta potential, and XPS techniques were used to characterize magnetic nanocomposite. The prepared Fe3O4-SiO2-2DMDPS exhibited an excellent adsorption performance towards PHE, it could maintain 75.97% adsorption capacity after four regeneration cycles. Homogeneous adsorption acted crucial role in the whole adsorption process and film diffusion was the rate-controlling procedure. Theoretical calculations put forward the most favorable bonding modes between Fe3O4-SiO2-2DMDPS and PHE molecules, confirmed the π-π interaction was valid and it usually existed in the form of parallel-displaced. This work might aid us to develop effective modification strategy for Fe3O4 nanoparticles and expand its application in the PAHs removing field.
Collapse
Affiliation(s)
- Zhengwen Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xuedong Ma
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yaoyao Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yingmin Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Wei Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Zhen-Yi Jiang
- Institute of Modern Physics, Northwest University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
11
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
12
|
Ilyas M, Ahmad W, Khan H. Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:609-631. [PMID: 34388122 DOI: 10.2166/wst.2021.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Serious environmental deterioration caused by synthetic waste plastics, and the pollution of freshwater resources are the most alarming and marked challenges of the 21st century. Therefore, immense scientific efforts are being made towards the management of waste plastics and treatment of polluted water. The current study reports on the utilization of waste polyethylene terephthalate (wPET) and waste polystyrene (wPS) for fabrication of activated carbon (AC) and its application for the removal of hazardous polycyclic aromatic hydrocarbons (PAHs) pollutants from water. AC was prepared from wPET and wPS by carbonization under a N2 atmosphere followed by chemical activation with 1 M KOH and 1 M HCl. The AC was characterized by scanning electron microscopy, surface area analysis, and Fourier transform infrared spectroscopy. Adsorption of PAHs from aqueous solutions through AC was examined by batch adsorption tests. The optimum parameters for maximum adsorption of PAHs were found to be: initial PAHs concentration 40 ppm, 2 h contact time, pH 3, 5, and 7, 50 °C temperature and adsorbent dose of 0.8 g. Kinetic and isotherm models were applied to evaluate the adsorbent capacity for PAHs adsorption. The kinetic study shows that the adsorption of these PAHs onto AC follows pseudo-second-order kinetics. The experimental results demonstrated that the Langmuir isotherm model best fitted the data. The thermodynamic factors calculated such as entropy change (ΔS°), enthalpy change (ΔS°) and free energy change (ΔG°) show that the adsorption process is non-spontaneous and endothermic in nature. Results were also compared with the efficiencies of some commercial adsorbents used in practice. This examination revealed that the novel plastic-derived AC possesses a great potential for elimination and recovery of PAH elimination from industrial wastewater.
Collapse
Affiliation(s)
- Muhmmad Ilyas
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Hizbullah Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
13
|
Wilcke W, Bigalke M, Wei C, Han Y, Musa Bandowe BA. Global distribution of oxygenated polycyclic aromatic hydrocarbons in mineral topsoils. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:717-729. [PMID: 33825209 DOI: 10.1002/jeq2.20224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Hazardous oxygenated polycyclic aromatic hydrocarbons (OPAHs) originate from combustion (primary sources) or postemission conversion of polycyclic aromatic hydrocarbons (PAHs) (secondary sources). We evaluated the global distribution of up to 15 OPAHs in 195 mineral topsoils from 33 study sites (covering 52° N-47° S, 71° W-118 °E) to identify indications of primary or secondary sources of OPAHs. The sums of the (frequently measured 7 and 15) OPAH concentrations correlated with those of the Σ16EPA-PAHs. The relationship of the Σ16EPA-PAH concentrations with the Σ7OPAH/Σ16EPA-PAH concentration ratios (a measure of the variable OPAH sources) could be described by a power function with a negative exponent <1, leveling off at a Σ16EPA-PAH concentration of approximately 400 ng g-1 . We suggest that below this value, secondary sources contributed more to the OPAH burden in soil than above this value, where primary sources dominated the OPAH mixture. This was supported by a negative correlation of the Σ16EPA-PAH concentrations with the contribution of the more readily biologically produced highly polar OPAHs (log octanol-water partition coefficient <3) to the Σ7OPAH concentrations. We identified mean annual precipitation (Spearman ρ = .33, p < .001, n = 143) and clay concentrations (ρ = .55, p < .001, n = 33) as important drivers of the Σ7OPAH/Σ16EPA-PAH concentration ratios. Our results indicate that at low PAH contamination levels, secondary sources contribute considerably and to a variable extent to total OPAH concentrations, whereas at Σ16EPA-PAH contamination levels >400 ng g-1 , there was a nearly constant Σ7OPAH/Σ16EPA-PAH ratio (0.08 ± 0.005 [SE], n = 80) determined by their combustion sources.
Collapse
Affiliation(s)
- Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Reinhard-Baumeister-Platz 1, 76131, Karlsruhe, Germany
| | - Moritz Bigalke
- Institute of Geography, Univ. of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
| | - Chong Wei
- Shanghai Carbon Data Research Center, Key Lab. of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Lab. of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yongming Han
- State Key Lab. of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong Univ., Xi'an, 710049, China
| | - Benjamin A Musa Bandowe
- Dep. of Multiphase Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| |
Collapse
|
14
|
Geng S, Cao W, Yuan J, Wang Y, Guo Y, Ding A, Zhu Y, Dou J. Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110931. [PMID: 32684516 DOI: 10.1016/j.ecoenv.2020.110931] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have enriched our knowledge of the microbial community composition and metabolic versatility of contaminated soil. However, there remains a substantial gap regarding the bioassembly patterns of the indigenous microbial community distribution in contaminated deep soils. Herein, the indigenous microbial community structure diversity, function, and co-occurrence relationships in aged PAH-contaminated deep soil collected from an abandoned chemical facility were investigated using high-throughput sequencing. The results showed that the dominant phyla in all samples were responsible for PAH degradation and included Proteobacteria (20.86%-81.37%), Chloroflexi (2.03%-28.44%), Firmicutes (3.06%-31.16%), Actinobacteria (2.92%-11.91%), Acidobacteria (0.41%-12.68%), and Nitrospirae (0.81%-9.21%). Eighty biomarkers were obtained by linear discriminant analysis of effect size (LEfSe), and most of these biomarkers were PAH degraders. Functional predictions using Tax4Fun indicated that the aged contaminated soil has the potential for PAH degradation. Statistical analysis showed that in contrast with the PAH concentration, edaphic properties (nutrients and pH) were significantly correlated (r > 0.25, P < 0.01) with the bacterial community and functional composition. Co-occurrence network analysis (modularity index of 0.781) revealed non-random assembly patterns of the bacterial communities in the PAH-contaminated soils. The modules in the network were mainly involved in carbon and nitrogen cycles, organic substance degradation, and biological electron transfer processes. Microbes from the same module had strong ecological linkages. Additionally, SAR202 clade, Thermoanaerobaculum, Nitrospira, and Xanthomonadales, which were identified as keystone species, played an irreplaceable role in the network. Overall, our results suggested that environmental factors such as nutrients and pH, together with ecological function, are the main factors driving the assembly of microbial communities in aged PAH-contaminated deep soils.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei Cao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jing Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanqing Guo
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
15
|
Meng X, Zhang C, Zhuang J, Zheng G, Zhou L. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction. CHEMOSPHERE 2020; 244:125523. [PMID: 31812054 DOI: 10.1016/j.chemosphere.2019.125523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Schwertmannite, jarosite or goethite are commonly used to remove metals and/or metalloids from contaminated water via adsorption processes, but it is still unclear whether they can be used as adsorbents to remove hydrophobic organic pollutants (HOCs), such as polycyclic aromatic hydrocarbons (PAHs), from groundwater or wastewater. Here, the feasibility of using these iron (oxyhydr) oxide minerals as adsorbents for phenanthrene (a model PAH) adsorption and regenerating the spent adsorbents via heterogeneous Fenton-like reaction was investigated. Results showed that they exhibited rapid adsorption rates and considerable adsorption capacities for phenanthrene. The maximum Langmuir capacities (Qmax) for phenanthrene adsorption at 28 °C were in an ascending order of goethite (567 μg·g-1) < schwertmannite (727 μg·g-1) < jarosite (2088 μg·g-1). The adsorption process was a spontaneous and exothermic process along with the decrease of randomness at the solid/liquid interfaces, which was influenced by temperature, adsorbent dosage, and the coexistence of inorganic anions. Both schwertmannite and jarosite were superior to goethite in light of their easy separation from the bulk solution after the adsorption processes. A multi-cycle experiment demonstrated that the regeneration efficiency of schwertmannite (97.9-99.7%) was much higher than that of jarosite (80.1-87.2%), and the mineral structure, morphology and functional groups of schwertmannite were not changed during the successive adsorption-regeneration processes. Therefore, among the investigated three iron (oxyhydr) oxide minerals, schwertmannite was an attractive and regenerable adsorbent for the removal of phenanthrene from water owing to its high adsorption capacity, good separation ability, and excellent reusability.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunmei Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
16
|
Stiborova H, Strejcek M, Musilova L, Demnerova K, Uhlik O. Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge. CHEMOSPHERE 2020; 238:124629. [PMID: 31524607 DOI: 10.1016/j.chemosphere.2019.124629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 05/23/2023]
Abstract
Despite wastewater treatment, sewage sludge is often contaminated with multiple pollutants. Their impact on the phylogenetic composition and diversity of prokaryotic communities in sludge samples remains largely unknown. In this study, we analyzed the phylogenetic structure of bacterial communities and diversity in sludge from six waste water treatment plants (WWTPs) and linked this information with the pollutants identified in these samples: eight potentially toxic metals (PTMs) and four groups of organic pollutants [polychlorinated biphenyls (PCBs), polyromantic hydrocarbons (PAHs), brominated flame retardants (BFRs) and organochlorine pesticides (OCPs)]. Alpha diversity measures and the distribution of dominant phyla varied among the samples, with the community from the thermophilic anaerobic digestion (TAD)-stabilized sample from Prague being the least rich and the least diverse and containing on average 36% of 16S rRNA gene sequence reads of the thermotolerant genus Coprothermobacter of the class Clostridia (phylum Firmicutes). Using weighted UniFrac distance-based redundancy analysis (dbRDA), we found that a collection of 5 PTMs: Cr, Cu, Ni, Pb, Zn, and a pair of BFRs: hexabromocyclododecane (HBCD) and tribromodiphenyl ethers (triBDEs) were significantly associated with the bacterial community structure in mesophilic anaerobic digestion (MAD)-stabilized samples, whereas PCBs were observed to be marginally significant. Altogether, 85% of the variance in bacterial community structure could be ascribed to these pollutants. The data presented here contribute to a greater understanding of the ecological effects of combined pollution on the composition and diversity of bacterial communities, hence have the potential to aid in predicting ecosystem functions and/or disruptions associated with pollution.
Collapse
Affiliation(s)
- Hana Stiborova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Lucie Musilova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Katerina Demnerova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| |
Collapse
|
17
|
Lemmel F, Maunoury-Danger F, Leyval C, Cébron A. DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils. FEMS Microbiol Ecol 2019; 95:5626340. [PMID: 31730156 DOI: 10.1093/femsec/fiz181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil organic pollutants. Although PAH-degrading bacteria are present in almost all soils, their selection and enrichment have been shown in historically high PAH contaminated soils. We can wonder if the effectiveness of PAH biodegradation and the PAH-degrading bacterial diversity differ among soils. The stable isotope probing (SIP) technique with 13C-phenanthrene (PHE) as a model PAH was used to: (i) compare for the first time a range of 10 soils with various PAH contamination levels, (ii) determine their PHE-degradation efficiency and (iii) identify the active PHE-degraders using 16S rRNA gene amplicon sequencing from 13C-labeled DNA. Surprisingly, the PHE degradation rate was not directly correlated to the initial level of total PAHs and phenanthrene in the soils, but was mostly explained by the initial abundance and richness of soil bacterial communities. A large diversity of PAH-degrading bacteria was identified for seven of the soils, with differences among soils. In the soils where the PHE degradation activities were the higher, Mycobacterium species were always the dominant active PHE degraders. A positive correlation between PHE-degradation level and the diversity of active PHE-degraders (Shannon index) supported the hypothesis that cooperation between strains led to a more efficient PAH degradation.
Collapse
Affiliation(s)
- Florian Lemmel
- Université de Lorraine, CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-les-Nancy, France
| | - Florence Maunoury-Danger
- Université de Lorraine, CNRS, LIEC UMR7360, Campus Bridoux, Avenue du général Delestraint, 57070 Metz, France
| | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-les-Nancy, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Bd des Aiguillettes, BP70239, 54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
18
|
Khatoon K, Malik A. Screening of polycyclic aromatic hydrocarbon degrading bacterial isolates from oil refinery wastewater and detection of conjugative plasmids in polycyclic aromatic hydrocarbon tolerant and multi-metal resistant bacteria. Heliyon 2019; 5:e02742. [PMID: 31720477 PMCID: PMC6838955 DOI: 10.1016/j.heliyon.2019.e02742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 01/26/2023] Open
Abstract
Wastewater were collected from the effluent channel in the vicinity of Mathura oil refinery, U.P. (India) and analysed for physicochemical characteristics, heavy metals as well as organic compounds including PAHs. The interaction of PAHs and heavy metals with various group of microorganisms revealed the viable count of aerobic heterotrophs, asymbiotic nitrogen fixers, actinomycetes and fungi were found to be 2.38 × 106, 1.89 × 104, 2.20 × 104 CFU/mL and 8.76 × 103 CFU/mL respectively. We have selected and screened 50 bacterial isolates for their resistance/tolerance to heavy metal and PAHs. Out of 25 multi-metal resistant isolates, 6 were able to tolerate PAHs at the concentration of 5000 μg/mL (50μg/disc) to naphthalene, anthracene, phenanthrene and pyrene. The PAH degradation efficiency of the isolates was assessed using spectrophotometer with 100 μg/mL of phenanthrene and observed different degree of degradation ranging from 34-66% after 96 h of incubation. One of the bacterial isolates KWB3 (identified as Enterobacter ludwigii by 16S rDNA sequencing) exhibited maximum degradation efficiency (66%) was further tested for phenanthrene degrading ability in the presence and absence of a co-substrate (glucose) in a mineral salt medium; and a number of metabolites were produced and detected by GC-MS which revealed the presence of benzocoumarin, phthalic acid, catechol and several low molecular weight compounds. The DNA derived from multi-metal and PAHs tolerant bacteria were PCR amplified using Inc specific primers and positive PCR products were obtained with oriT and trfA2 of the IncP group; indicates that these bacteria have gene-mobilizing capacity.
Collapse
Affiliation(s)
- Khalida Khatoon
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
19
|
Machado LF, de Assis Leite DC, da Costa Rachid CTC, Paes JE, Martins EF, Peixoto RS, Rosado AS. Tracking Mangrove Oil Bioremediation Approaches and Bacterial Diversity at Different Depths in an in situ Mesocosms System. Front Microbiol 2019; 10:2107. [PMID: 31572322 PMCID: PMC6753392 DOI: 10.3389/fmicb.2019.02107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, oil spills were simulated in field-based mangrove mesocosms to compare the efficiency of bioremediation strategies and to characterize the presence of the alkB, ndo, assA, and bssA genes and the ecological structures of microbial communities in mangrove sediments at two different depths, (D1) 1–10 cm and (D2) 25–35 cm. The results indicated that the hydrocarbon degradation efficiency was higher in superficial sediment layers, although no differences in the hydrocarbon degradation rates or in the abundances of the alkB and ndo genes were detected among the tested bioremediation strategies at this depth. Samples from the deeper layer exhibited higher abundances of the analyzed genes, except for assA and bssA, which were not detected in our samples. For all of the treatments and depths, the most abundant phyla were Proteobacteria, Firmicutes and Bacteroidetes, with Gammaproteobacteria, Flavobacteriales and Clostridiales being the most common classes. The indicator species analysis (ISA) results showed strong distinctions among microbial taxa in response to different treatments and in the two collection depths. Our results indicated a high efficiency of the monitored natural attenuation (MNA) for oil consumption in the tested mangrove sediments, revealing the potential of this strategy for environmental decontamination and suggesting that environmental and ecological factors may select for specific bacterial populations in distinct niches.
Collapse
Affiliation(s)
- Laís Feitosa Machado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jorge Eduardo Paes
- Research Center Leopoldo Américo Miguez de Mello, Rio de Janeiro, Brazil
| | - Edir Ferreira Martins
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Kuo Y, Pal S, Li F, Lin C. Polystyrene‐Supported Core–Shell Beads with Aluminium MOF Coating for Extraction of Organic Pollutants. Chem Asian J 2019; 14:3675-3681. [DOI: 10.1002/asia.201900737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/10/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Yu‐Ching Kuo
- Department of ChemistryChung-Yuan Christian University Chung Li 32023 Taiwan
| | - Souvik Pal
- Department of ChemistryChung-Yuan Christian University Chung Li 32023 Taiwan
| | - Fang‐Yu Li
- Department of ChemistryChung-Yuan Christian University Chung Li 32023 Taiwan
| | - Chia‐Her Lin
- Department of ChemistryChung-Yuan Christian University Chung Li 32023 Taiwan
- R&D Center for Membrane TechnologyChung-Yuan Christian University Chung Li 32023 Taiwan
| |
Collapse
|
21
|
Tahseen R, Arslan M, Iqbal S, Khalid ZM, Afzal M. Enhanced degradation of hydrocarbons by gamma ray induced mutant strain of Pseudomonas putida. Biotechnol Lett 2019; 41:391-399. [PMID: 30610497 DOI: 10.1007/s10529-019-02644-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/01/2019] [Indexed: 01/29/2023]
Abstract
Soil contamination due to petroleum hydrocarbons is a ubiquitous environmental problem for which efficient remediation alternatives are required. Application of hydrocarbons degrading bacteria with enhanced degradation potential is such an alternative. The aim of present investigation was to induce mutagenicity in Pseudomonas putida through gamma-ray irradiation for the enhanced degradation of crude oil. A total of mutant 10 bacterial strains (300A-J) were screened for their degradation abilities in vitro; among which the performance of 300-B was outstanding. Subsequently, spiked soil (30 g/kg crude oil) was augmented with the wild-type parent strain and mutant 300-B strain in individual experiments. Bacterial inoculation in both experiments enhanced hydrocarbons degradation; however, degradation was 46.3% higher when 300-B mutant strain was employed. This improved oil degradation was found to have a strong positive correlation with the gene abundance and expression of the mutant strain, suggesting its successful survival and catabolic potential in situ. Concomitantly, a better nutrients assimilation and water utilization was observed in the experiment containing 300-B mutant. Yet preliminary, these findings highlight the importance of gamma ray irradiation towards improved degradation potential of previously isolated hydrocarbons degrading bacteria.
Collapse
Affiliation(s)
- Razia Tahseen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Arslan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
- Environmental Biotechnology Department, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - Zafar M Khalid
- Biotechnology Department, Islamic International University, Islamabad, Pakistan
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
22
|
Storey S, Ashaari MM, Clipson N, Doyle E, de Menezes AB. Opportunistic Bacteria Dominate the Soil Microbiome Response to Phenanthrene in a Microcosm-Based Study. Front Microbiol 2018; 9:2815. [PMID: 30519226 PMCID: PMC6258822 DOI: 10.3389/fmicb.2018.02815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/02/2018] [Indexed: 11/17/2022] Open
Abstract
Bioremediation offers a sustainable approach for removal of polycyclic aromatic hydrocarbons (PAHs) from the environment; however, information regarding the microbial communities involved remains limited. In this study, microbial community dynamics and the abundance of the key gene (PAH-RHDα) encoding a ring hydroxylating dioxygenase involved in PAH degradation were examined during degradation of phenanthrene in a podzolic soil from the site of a former timber treatment facility. The 10,000-fold greater abundance of this gene associated with Gram-positive bacteria found in phenanthrene-amended soil compared to unamended soil indicated the likely role of Gram-positive bacteria in PAH degradation. In contrast, the abundance of the Gram-negative PAHs-RHDα gene was very low throughout the experiment. While phenanthrene induced increases in the abundance of a small number of OTUs from the Actinomycetales and Sphingomonadale, most of the remainder of the community remained stable. A single unclassified OTU from the Micrococcaceae family increased ~20-fold in relative abundance, reaching 32% of the total sequences in amended microcosms on day 7 of the experiment. The relative abundance of this same OTU increased 4.5-fold in unamended soils, and a similar pattern was observed for the second most abundant PAH-responsive OTU, classified into the Sphingomonas genus. Furthermore, the relative abundance of both of these OTUs decreased substantially between days 7 and 17 in the phenanthrene-amended and control microcosms. This suggests that their opportunistic phenotype, in addition to likely PAH-degrading ability, was determinant in the vigorous growth of dominant PAH-responsive OTUs following phenanthrene amendment. This study provides new information on the temporal response of soil microbial communities to the presence and degradation of a significant environmental pollutant, and as such has the potential to inform the design of PAH bioremediation protocols.
Collapse
Affiliation(s)
- Sean Storey
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Mardiana Mohd Ashaari
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Malaysia, Malaysia
| | - Nicholas Clipson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Evelyn Doyle
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Alexandre B de Menezes
- Microbiology, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Ai F, Eisenhauer N, Xie Y, Zhu J, Jousset A, Du W, Yin Y, Zhang X, Ji R, Guo H. Elevated CO2 accelerates polycyclic aromatic hydrocarbon accumulation in a paddy soil grown with rice. PLoS One 2018; 13:e0196439. [PMID: 29689089 PMCID: PMC5916858 DOI: 10.1371/journal.pone.0196439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022] Open
Abstract
The concentration of atmospheric carbon dioxide (CO2) and polycyclic aromatic hydrocarbons (PAHs) contents in the environment have been rising due to human activities. Elevated CO2 (eCO2) levels have been shown to affect plant physiology and soil microbes, which may alter the degradation of organic pollutants. Here, we study the effect of eCO2 on PAH accumulation in a paddy soil grown with rice. We collected soil and plant samples after rice harvest from a free-air CO2 enrichment (FACE) system, which had already run for more than 15 years. Our results show that eCO2 increased PAH concentrations in the soil, and we link this effect to a shift in soil microbial community structure and function. Elevated CO2 changed the composition of soil microbial communities, especially by reducing the abundance of some microbial groups driving PAH degradation. Our study indicates that elevated CO2 levels may weaken the self-cleaning ability of soils related to organic pollutants. Such changes in the function of soil microbial communities may threaten the quality of crops, with unknown implications for food safety and human health in future climate scenarios.
Collapse
Affiliation(s)
- Fuxun Ai
- Stake Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Yuwei Xie
- Stake Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Alexandre Jousset
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Wenchao Du
- Stake Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Ying Yin
- Stake Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Xiaowei Zhang
- Stake Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Rong Ji
- Stake Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Hongyan Guo
- Stake Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
24
|
Elevated tropospheric CO 2 and O 3 concentrations impair organic pollutant removal from grassland soil. Sci Rep 2018; 8:5519. [PMID: 29615649 PMCID: PMC5882802 DOI: 10.1038/s41598-018-23522-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/12/2018] [Indexed: 11/24/2022] Open
Abstract
The concentrations of tropospheric CO2 and O3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO2 and eO3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO2 and O3 concentrations decreased PAH removal with lowest removal rates at elevated CO2 and elevated O3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO2 and O3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO2 and O3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO2 and O3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.
Collapse
|
25
|
Priming of microbial microcystin degradation in biomass-fed gravity driven membrane filtration biofilms. Syst Appl Microbiol 2017; 41:221-231. [PMID: 29358063 DOI: 10.1016/j.syapm.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/21/2022]
Abstract
Gravity-driven membrane (GDM) filtration is a promising tool for low-cost decentralized drinking water production. The biofilms in GDM systems are able of removing harmful chemical components, particularly toxic cyanobacterial metabolites such as microcystins (MCs). This is relevant for the application of GDM filtration because anthropogenic nutrient input and climate change have led to an increase of toxic cyanobacterial blooms. However, removal of MCs in newly developing GDM biofilms is only established after a prolonged period of time. Since cyanobacterial blooms are transient phenomena, it is important to understand MC removal in mature biofilms with or without prior toxin exposure. In this study, the microbial community composition of GDM biofilms was investigated in systems fed with water from a lake with periodic blooms of MC-producing cyanobacteria. Two out of three experimental treatments were supplemented with dead biomass of a MC-containing cyanobacterial strain, or of a non-toxic mutant, respectively. Analysis of bacterial rRNA genes revealed that both biomass-amended treatments were significantly more similar to each other than to a non-supplemented control. Therefore, it was hypothesized that biofilms could potentially be 'primed' for rapid MC removal by prior addition of non-toxic biomass. A subsequent experiment showed that MC removal developed significantly faster in mature biofilms that were pre-fed with biomass from the mutant strain than in unamended controls, indicating that MC degradation was a facultative trait of bacterial populations in GDM biofilms. The significant enrichment of bacteria related to both aerobic and anaerobic MC degraders suggested that this process might have occurred in parallel in different microniches.
Collapse
|
26
|
Macchi M, Martinez M, Tauil RMN, Valacco MP, Morelli IS, Coppotelli BM. Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation. World J Microbiol Biotechnol 2017; 34:7. [DOI: 10.1007/s11274-017-2391-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
27
|
Okere UV, Schuster JK, Ogbonnaya UO, Jones KC, Semple KT. Indigenous 14C-phenanthrene biodegradation in "pristine" woodland and grassland soils from Norway and the United Kingdom. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1437-1444. [PMID: 29083422 DOI: 10.1039/c7em00242d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the indigenous microbial mineralisation of 14C-phenanthrene in seven background soils (four from Norwegian woodland and three from the UK (two grasslands and one woodland)) was investigated. ∑PAHs ranged from 16.39 to 285.54 ng g-1 dw soil. Lag phases (time before 14C-phenanthrene mineralisation reached 5%) were longer in all of the Norwegian soils and correlated positively with TOC, but negatively with ∑PAHs and phenanthrene degraders for all soils. 14C-phenanthrene mineralisation in the soils varied due to physicochemical properties. The results show that indigenous microorganisms can adapt to 14C-phenanthrene mineralisation following diffuse PAH contamination. Considering the potential of soil as a secondary PAH source, these findings highlight the important role of indigenous microflora in the processing of PAHs in the environment.
Collapse
|
28
|
Włóka D, Placek A, Rorat A, Smol M, Kacprzak M. The evaluation of polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soil amended with organic fertilizers and bulking agents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:161-168. [PMID: 28734218 DOI: 10.1016/j.ecoenv.2017.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/02/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soils fertilized with organic amendments (sewage sludge, compost), bulking agents (mineral sorbent, silicon dioxide in form of nano powder), and novel compositions of those materials. The scope of conducted works includes a cyclic CO2 production measurements and the determinations of PAHs content in soil samples, before and after 3-months of incubation. Obtained results show that the use of both type of organic fertilizers have a positive effect on the PAHs removal from soil. However, the CO2 emission remains higher only in the first stage of the process. The best acquired means in terms of PAHs removal as well as most sustained CO2 production were noted in samples treated with the mixtures of organic fertilizers and bulking agents. In conclusion the addition of structural forming materials to the organic fertilizers was critical for the soil bioremediation efficiency. Therefore, the practical implementation of collected data could find a wide range of applications during the design of new, more effective solutions for the soil bioremediation purposes.
Collapse
Affiliation(s)
- Dariusz Włóka
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Brzeznicka street 60a, 42-200 Czestochowa, Poland.
| | - Agnieszka Placek
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Brzeznicka street 60a, 42-200 Czestochowa, Poland
| | - Agnieszka Rorat
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d'Ascq, France
| | - Marzena Smol
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 31-261 Cracow, Poland
| | - Małgorzata Kacprzak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Brzeznicka street 60a, 42-200 Czestochowa, Poland
| |
Collapse
|
29
|
Alegbeleye OO, Opeolu BO, Jackson VA. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. ENVIRONMENTAL MANAGEMENT 2017; 60:758-783. [PMID: 28573478 DOI: 10.1007/s00267-017-0896-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/23/2017] [Indexed: 05/21/2023]
Abstract
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Collapse
Affiliation(s)
- Oluwadara Oluwaseun Alegbeleye
- Department of Environmental and Occupational Studies, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa.
| | - Beatrice Oluwatoyin Opeolu
- Extended Curriculum Programmes, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa
| | - Vanessa Angela Jackson
- Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa
| |
Collapse
|
30
|
Biache C, Ouali S, Cébron A, Lorgeoux C, Colombano S, Faure P. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:1-10. [PMID: 28119192 DOI: 10.1016/j.jhazmat.2017.01.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/02/2016] [Accepted: 01/15/2017] [Indexed: 05/22/2023]
Abstract
A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils.
Collapse
Affiliation(s)
- Coralie Biache
- Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France; CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France.
| | - Salma Ouali
- Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France; CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France
| | - Aurélie Cébron
- Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France; CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France
| | - Catherine Lorgeoux
- Université de Lorraine, CNRS, CREGU, GeoRessources lab, UMR7359, Vandœuvre-lès-Nancy 54506, France
| | - Stéfan Colombano
- BRGM, 3 avenue Claude Guillemin, BP 36009, Orléans Cedex 2 45060, France
| | - Pierre Faure
- Université de Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France; CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy 54506, France
| |
Collapse
|
31
|
Rein A, Adam IKU, Miltner A, Brumme K, Kästner M, Trapp S. Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-Model simulations for prediction of bioremediation success. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:105-114. [PMID: 26705887 DOI: 10.1016/j.jhazmat.2015.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Many attempts for bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated sites failed in the past, but the reasons for this failure are not well understood. Here we apply and improve a model for integrated assessment of mass transfer, biodegradation and residual concentrations for predicting the success of remediation actions. First, we provide growth parameters for Mycobacterium rutilum and Mycobacterium pallens growing on phenanthrene (PHE) or pyrene (PYR) degraded the PAH completely at all investigated concentrations. Maximum metabolic rates vmax and growth rates μ were similar for the substrates PHE and PYR and for both strains. The investigated Mycobacterium species were not superior in PHE degradation to strains investigated earlier with this method. Real-world degradation scenario simulations including diffusive flux to the microbial cells indicate: that (i) bioaugmentation only has a small, short-lived effect; (ii) Increasing sorption shifts the remaining PAH to the adsorbed/sequestered PAH pool; (iii) mobilizing by solvents or surfactants resulted in a significant decrease of the sequestered PAH, and (iv) co-metabolization e.g. by compost addition can contribute significantly to the reduction of PAH, because active biomass is maintained at a high level by the compost. The model therefore is a valuable contribution to the assessment of potential remediation action at PAH-polluted sites.
Collapse
Affiliation(s)
- Arno Rein
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej bd. 113, DK-2800 Kgs. Lyngby, Denmark
| | - Iris K U Adam
- UFZ-Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Anja Miltner
- UFZ-Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Katja Brumme
- UFZ-Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Matthias Kästner
- UFZ-Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej bd. 113, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
32
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. CHEMOSPHERE 2016; 148:336-53. [PMID: 26820781 DOI: 10.1016/j.chemosphere.2016.01.036] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/01/2015] [Accepted: 01/09/2016] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Institute for Infrastructure Engineering, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
33
|
Zoppini A, Ademollo N, Amalfitano S, Capri S, Casella P, Fazi S, Marxsen J, Patrolecco L. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1364-1371. [PMID: 26479910 DOI: 10.1016/j.scitotenv.2015.09.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/27/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.
Collapse
Affiliation(s)
- Annamaria Zoppini
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy.
| | - Nicoletta Ademollo
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Stefano Amalfitano
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Silvio Capri
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Patrizia Casella
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Stefano Fazi
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Juergen Marxsen
- Limnologische Fluss-Station des Max-Planck-Instituts für Limnologie, Schlitz, Germany and Institut für Allgemeine und Spezielle Zoologie, Tierökologie, Justus-Liebig-Universität, Gießen, Germany
| | - Luisa Patrolecco
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| |
Collapse
|
34
|
Itrich NR, McDonough KM, van Ginkel CG, Bisinger EC, LePage JN, Schaefer EC, Menzies JZ, Casteel KD, Federle TW. Widespread Microbial Adaptation to l-Glutamate-N,N-diacetate (L-GLDA) Following Its Market Introduction in a Consumer Cleaning Product. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13314-13321. [PMID: 26465169 DOI: 10.1021/acs.est.5b03649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
l-Glutamate-N,N-diacetate (L-GLDA) was recently introduced in the United States (U.S.) market as a phosphate replacement in automatic dishwashing detergents (ADW). Prior to introduction, L-GLDA exhibited poor biodegradation in OECD 301B Ready Biodegradation Tests inoculated with sludge from U.S. wastewater treatment plants (WWTPs). However, OECD 303A Activated Sludge WWTP Simulation studies showed that with a lag period to allow for growth (40-50 days) and a solids retention time (SRT) that allows establishment of L-GLDA degraders (>15 days), significant biodegradation (>80% dissolved organic carbon removal) would occur. Corresponding to the ADW market launch, a study was undertaken to monitor changes in the ready biodegradability of L-GLDA using activated sludge samples from various U.S. WWTPs. Initially all sludge inocula showed limited biodegradation ability, but as market introduction progressed, both the rate and extent of degradation increased significantly. Within 22 months, L-GLDA was ready biodegradable using inocula from 12 WWTPs. In an OECD 303A study repeated 18 months post launch, significant and sustained carbon removal (>94%) was observed after a 29-day acclimation period. This study systematically documented field adaptation of a new consumer product chemical across a large geographic region and confirmed the ability of laboratory simulation studies to predict field adaptation.
Collapse
Affiliation(s)
- Nina R Itrich
- Procter and Gamble, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Kathleen M McDonough
- Procter and Gamble, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Cornelis G van Ginkel
- Akzo Nobel Functional Chemicals, 525 West van Buren Street, Chicago, Illinois 60607, United States
| | - Ed C Bisinger
- Akzo Nobel Functional Chemicals, 525 West van Buren Street, Chicago, Illinois 60607, United States
| | - Jim N LePage
- Akzo Nobel Functional Chemicals, 525 West van Buren Street, Chicago, Illinois 60607, United States
| | - Edward C Schaefer
- Wildlife International, 8598 Commerce Drive, Easton, Maryland 21601, United States
| | - Jennifer Z Menzies
- Procter and Gamble, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Kenneth D Casteel
- Procter and Gamble, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Thomas W Federle
- Procter and Gamble, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| |
Collapse
|
35
|
Cébron A, Beguiristain T, Bongoua-Devisme J, Denonfoux J, Faure P, Lorgeoux C, Ouvrard S, Parisot N, Peyret P, Leyval C. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13724-13738. [PMID: 25616383 DOI: 10.1007/s11356-015-4117-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.
Collapse
Affiliation(s)
- Aurélie Cébron
- CNRS, LIEC UMR 7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xie H, Liu H, Xie Y, Yang M, Guo S, Zhou Z, Xu H. Fabrication of a novel immobilization system and its application for removal of anthracene from soil. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Bahr A, Fischer A, Vogt C, Bombach P. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds. WATER RESEARCH 2015; 69:100-109. [PMID: 25437342 DOI: 10.1016/j.watres.2014.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 05/21/2023]
Abstract
The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers.
Collapse
Affiliation(s)
- Arne Bahr
- UFZ - Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Anko Fischer
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| | - Carsten Vogt
- UFZ - Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Petra Bombach
- UFZ - Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany.
| |
Collapse
|
38
|
Ren G, Ren W, Teng Y, Li Z. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil. Front Microbiol 2015; 6:22. [PMID: 25688237 PMCID: PMC4311681 DOI: 10.3389/fmicb.2015.00022] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding the potential for Polycyclic aromatic hydrocarbons (PAH) degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene) at three dosages (5, 30, and 70 mg ⋅ kg(-1)). Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA) quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1) at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0%) including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while three phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria) were significantly increased; and (2) at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems at the microbial community level.
Collapse
Affiliation(s)
- Gaidi Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science - Chinese Academy of Sciences Nanjing, China
| |
Collapse
|
39
|
Bacosa HP, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:689-697. [PMID: 25464311 DOI: 10.1016/j.jhazmat.2014.09.068] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.
Collapse
Affiliation(s)
- Hernando Pactao Bacosa
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
40
|
Bak F, Bonnichsen L, Jørgensen NOG, Nicolaisen MH, Nybroe O. The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biotechnol 2014; 99:1475-83. [PMID: 25216581 PMCID: PMC4306737 DOI: 10.1007/s00253-014-6054-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022]
Abstract
Pseudomonas produces powerful lipopeptide biosurfactants including viscosin, massetolide A, putisolvin, and amphisin, but their ability to stimulate alkane mineralization and their utility for bioremediation have received limited attention. The four Pseudomonas lipopeptides yielded emulsification indices on hexadecane of 20–31 % at 90 mg/l, which is comparable to values for the synthetic surfactant Tween 80. Viscosin was the optimal emulsifier and significantly stimulated n-hexadecane mineralization by diesel-degrading bacterial consortia but exclusively during the first 2 days of batch culture experiments. Growth of the consortia, as determined by OD600 measurements and quantification of the alkB marker gene for alkane degradation, was arrested after the first day of the experiment. In contrast, the control consortia continued to grow and reached higher OD600 values and higher alkB copy numbers during the next days. Due to the short-lived stimulation of n-hexadecane mineralization, the stability of viscosin was analyzed, and it was observed that added viscosin was degraded by the bacterial consortium during the first 2 days. Hence, viscosin has a potential as stimulator of alkane degradation, but its utility in bioremediation may be limited by its rapid degradation and growth-inhibiting properties.
Collapse
Affiliation(s)
- Frederik Bak
- Section of Genetics and Microbiology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Sawulski P, Clipson N, Doyle E. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. Biodegradation 2014; 25:835-47. [PMID: 25095739 DOI: 10.1007/s10532-014-9703-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/26/2014] [Indexed: 01/11/2023]
Abstract
Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial community in soil. The current study provides information on the response of soil bacterial, archaeal and fungal communities during the degradation of three priority pollutants and contributes to a knowledge base that can inform the development of effective bioremediation strategies for contaminated sites.
Collapse
Affiliation(s)
- Przemyslaw Sawulski
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
43
|
Niepceron M, Beguet J, Portet-Koltalo F, Martin-Laurent F, Quillet L, Bodilis J. Low impact of phenanthrene dissipation on the bacterial community in grassland soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2977-2987. [PMID: 24170505 DOI: 10.1007/s11356-013-2258-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
The effect of phenanthrene on the bacterial community was studied on permanent grassland soil historically presenting low contamination (i.e. less than 1 mg kg(-1)) by polycyclic aromatic hydrocarbons (PAHs). Microcosms of soil were spiked with phenanthrene at 300 mg kg(-1). After 30 days of incubation, the phenanthrene concentration decreased rapidly until its total dissipation within 90 days. During this incubation period, significant changes of the total bacterial community diversity were observed, as assessed by automated-ribosomal intergenic spacer analysis fingerprinting. In order to get a deeper view of the effect of phenanthrene on the bacterial community, the abundances of ten phyla and classes (Actinobacteria, Acidobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Verrucomicrobiales, Gemmatimonadetes, and Planctomycetes) were monitored by quantitative polymerase chain reaction performed on soil DNA extracts. Interestingly, abundances of some bacterial taxa significantly changed as compared with controls. Moreover, among these bacterial groups impacted by phenanthrene spiking, some of them presented the potential of phenanthrene degradation, as assessed by PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene detection. However, neither the abundance nor the diversity of the PAH-RHDα genes was significantly impacted by phenanthrene spiking, highlighting the low impact of this organic contaminant on the functional bacterial diversities in grassland soil.
Collapse
Affiliation(s)
- Maïté Niepceron
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, EA 4312, 76821, Mont Saint Aignan, France
| | | | | | | | | | | |
Collapse
|
44
|
Johnsen AR, Styrishave B, Aamand J. Quantification of small-scale variation in the size and composition of phenanthrene-degrader populations and PAH contaminants in traffic-impacted topsoil. FEMS Microbiol Ecol 2014; 88:84-93. [DOI: 10.1111/1574-6941.12272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/02/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Anders R. Johnsen
- Department of Geochemistry; Geological Survey of Denmark and Greenland (GEUS); Copenhagen K Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory; Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen K Denmark
| | - Jens Aamand
- Department of Geochemistry; Geological Survey of Denmark and Greenland (GEUS); Copenhagen K Denmark
| |
Collapse
|
45
|
Simarro R, González N, Bautista LF, Molina MC. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:158-167. [PMID: 24025312 DOI: 10.1016/j.jhazmat.2013.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/29/2013] [Accepted: 08/11/2013] [Indexed: 06/02/2023]
Abstract
This work aimed to assess the effectiveness of different in situ bioremediation treatments (bioaugmentation, biostimulation, bioaugmentation and biostimulation, and natural attenuation) on creosote polluted soil. Toxicity, microbial respiration, creosote degradation and the evolution of bacterial communities were analyzed. Results showed that creosote decreased significantly in all treatments, and no significant differences were found between treatments. However, some specific polycyclic aromatic hydrocarbons (PAH) were degraded to a greater extent by biostimulation. The dominance of low temperatures (8.9 °C average) slowed down microbial creosote and PAH uptake and, despite significantly creosote degradation (>60%) at the end of the experiment, toxicity remained constant and high throughout the biodegradation process. DGGE results revealed that biostimulation showed the highest microbial biodiversity, although at the end of the biodegradation process, community composition in all treatments was different from that of the control assay (unpolluted soil). The active uncultured bacteria belonged to the genera Pseudomonas, Sphingomonas, Flexibacter, Pantoea and Balneimonas, the latter two of which have not been previously described as PAH degraders. The majority of the species identified during the creosote biodegradation belonged to Pseudomonas genus, which has been widely studied in bioremediation processes. Results confirmed that some bacteria have an intrinsic capacity to degrade the creosote without previous exposure.
Collapse
Affiliation(s)
- R Simarro
- Department of Biology and Geology, ESCET, Universidad Rey Juan Carlos, E-28933 Móstoles, Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Marchal G, Smith KEC, Rein A, Winding A, Trapp S, Karlson UG. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. CHEMOSPHERE 2013; 90:1767-1778. [PMID: 22921652 DOI: 10.1016/j.chemosphere.2012.07.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/17/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of (14)C-labelled phenanthrene (≤5 μg L(-1)) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84±2.3%, 87±4.1%, and 53±1.2% for water, MSM and TSB, respectively), followed by charcoal (35±2.2%, 32±1.7%, and 12±0.3%, respectively) and compost (1.3±0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56±11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost was fully desorbed and biodegraded.
Collapse
Affiliation(s)
- Geoffrey Marchal
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Simarro R, González N, Bautista LF, Molina MC. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiol Ecol 2012; 83:438-49. [DOI: 10.1111/1574-6941.12006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 08/28/2012] [Accepted: 09/02/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Raquel Simarro
- Department of Biology and Geology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| | - Natalia González
- Department of Biology and Geology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| | - Maria Carmen Molina
- Department of Biology and Geology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| |
Collapse
|
48
|
Okere UV, Cabrerizo A, Dachs J, Jones KC, Semple KT. Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica. FEMS Microbiol Lett 2012; 329:69-77. [DOI: 10.1111/j.1574-6968.2012.02501.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Ana Cabrerizo
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona; Catalonia; Spain
| | - Jordi Dachs
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona; Catalonia; Spain
| | - Kevin C. Jones
- Lancaster Environment Centre; Lancaster University; Lancaster; UK
| | - Kirk T. Semple
- Lancaster Environment Centre; Lancaster University; Lancaster; UK
| |
Collapse
|
49
|
Chaudhary P, Singh SB, Chaudhry S, Nain L. Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area--a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:1145-56. [PMID: 21505770 DOI: 10.1007/s10661-011-2029-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/16/2011] [Indexed: 05/24/2023]
Abstract
The present study is aimed at analysing and comparing different soil enzymes in soil samples of native contaminated sites of a Mathura refinery and adjoining agricultural land. Enzyme activities are considered as indicators of soil quality and changes in biogeochemical function due to management or perturbations. Soil samples were collected from the premises and nearby area of Mathura refinery, India. Biological health parameters (dehydrogenase, aryl esterase, aryl sulphatase, [Formula: see text]-glucosidase, alkaline phosphatase, acid phosphatase, lipase, laccase and catalase activity) were estimated in the soil samples. Among all the samples, sewage sludge soil showed maximum activity of enzymes, microbial biomass carbon and most probable number of polycyclic aromatic hydrocarbon (PAH) degraders in soils spiked with three- to four-ring PAHs at 50 ppm. Available phosphorus, potassium and nitrogen was also exceptionally high in this sample, indicating maximum microbial bioconversion due to presence of nutrients stimulating potent PAH-degrading microorganisms.
Collapse
Affiliation(s)
- Priyanka Chaudhary
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | |
Collapse
|
50
|
Sun M, Luo Y, Christie P, Jia Z, Li Z, Teng Y. Methyl-beta-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. J Environ Sci (China) 2012; 24:926-933. [PMID: 22893972 DOI: 10.1016/s1001-0742(11)60865-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The contamination of soils by polycyclic aromatic hydrocarbons (PAHs) is a widespread environmental problem and the remediation of PAHs from these areas has been a major concern. The effectiveness of many in situ bioremediation systems may be constrained by low contaminant bioavailability due to limited aqueous solubility or a large magnitude of sorption. The objective of this research was to evaluate the effect of methyl-beta-cyclodextrin (MCD) on bioaugmentation by Paracoccus sp. strain HPD-2 of an aged PAH-contaminated soil. When 10% (W/W) MCD amendment was combined with bioaugmentation by the PAH-degrading bacterium Paracoccus sp. strain HPD-2, the percentage degradation of total PAHs was significantly enhanced up to 34.8%. Higher counts of culturable PAH-degrading bacteria and higher soil dehydrogenase and soil polyphenol oxidase activities were observed in 10% (W/W) MCD-assisted bioaugmentation soil. This MCD-assisted bioaugmentation strategy showed significant increases (p < 0.05) in the average well color development (AWCD) obtained by the BIOLOG Eco plate assay, Shannon-Weaver index (H) and Simpson index (lambda) compared with the controls, implying that this strategy at least partially restored the microbiological functioning of the PAH-contaminated soil. The results suggest that MCD-aided bioaugmentation by Paracoccus sp. strain HPD-2 may be a promising practical bioremediation strategy for aged PAH-contaminated soils.
Collapse
Affiliation(s)
- Mingming Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | | | | | | | | |
Collapse
|