1
|
Chandra Nayak S, Latha PB, Kandanattu B, Pympallil U, Kumar A, Kumar Banga H. The Oral Microbiome and Systemic Health: Bridging the Gap Between Dentistry and Medicine. Cureus 2025; 17:e78918. [PMID: 40091996 PMCID: PMC11909285 DOI: 10.7759/cureus.78918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The oral microbiome, consisting of a mixture of bacteria, fungi, and viruses, is an important contributor to oral and systemic health. Microbial balance disruptions are associated with oral pathologies like dental caries and periodontitis as well as systemic diseases such as cardiovascular diseases, adverse pregnancy outcomes, and respiratory diseases. This review explores the mechanistic pathways linking oral dysbiosis to systemic inflammation, endothelial dysfunction, and immune modulation. The roles of key microbial species in health and disease are analyzed, with an emphasis on how hematogenous dissemination leads to systemic pathologies through inflammatory signaling. Also, advances in high throughput sequencing are discussed, as well as microbial diversity and its implications for diagnostics and therapeutics. The review highlights the potential of oral microbiota-targeted interventions to mitigate systemic diseases through dentistry and medicine integration, by throwing light on interdisciplinary strategies. Future work should focus on the evaluation of the mechanisms by which the oral microbiome plays a role in systemic diseases through the integration of multi-omics approaches such as metagenomics, transcriptomics, and metabolomics. Furthermore, clinical trials need to be designed in a way to evaluate the efficacy of microbiome-targeted therapies in the prevention of cardiovascular diseases, adverse pregnancy outcomes, and autoimmune disorders.
Collapse
Affiliation(s)
- Subash Chandra Nayak
- Department of Conservative Dentistry and Endodontics, Hi-Tech Dental College and Hospital, Bhubaneshwar, IND
| | - P Bhagya Latha
- Department of Zoology, SIR C R Reddy College, Eluru, IND
| | - Bharath Kandanattu
- Pediatric and Preventive Dentistry, Institute of Dental Studies and Technologies, Modinagar, Ghaziabad, IND
| | - Unni Pympallil
- Department of Prosthodontics, Mahe Institute of Dental Sciences & Hospital, Mahe, IND
| | - Ankit Kumar
- Dentistry, Mithila Minority Dental College and Hospital, Darbhanga, IND
| | - Harish Kumar Banga
- Fashion and Lifestyle Accessory Design, National Institute of Fashion Technology, Kangra, IND
| |
Collapse
|
2
|
Ohsawa M, Nishi H, Emi M, Yoshikawa T, Hamai Y, Ibuki Y, Kurokawa T, Hirohata R, Kitasaki N, Kawada-Matsuo M, Komatsuzawa H, Kawaguchi H, Okada M. Impact of Fusobacterium nucleatum in the treatment of cancer, including radiotherapy and its future potential in esophageal cancer. JOURNAL OF RADIATION RESEARCH 2024; 65:i126-i134. [PMID: 39679879 DOI: 10.1093/jrr/rrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/09/2024] [Indexed: 12/17/2024]
Abstract
Despite advances in multimodality therapy, including surgery, chemotherapy, radiation therapy and chemoradiation, the fatality rate for esophageal cancer remains high. Specifically, Fusobacterium nucleatum, due to its aggregation capacity, has shown a tendency to form biofilms. The biofilm-forming capabilities of microbial communities are of utmost importance in the context of cancer treatment, as they have been shown to drive significant losses in the efficaciousness of various cancer treatments. Therefore, elucidating the dynamics of F. nucleatum will be important for the development of effective treatments for esophageal cancer. Therefore, this review summarizes the current knowledge of F. nucleatum, its involvement in cancer and its impact on chemotherapy and radiation therapy. In conclusion, further research on the role of F. nucleatum is essential for the continued advancement of the treatment of esophageal cancer and patient care.
Collapse
Affiliation(s)
- Manato Ohsawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Manabu Emi
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Toru Yoshikawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Yoichi Hamai
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Yuta Ibuki
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Tomoaki Kurokawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Ryosuke Hirohata
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Nao Kitasaki
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hiroyuki Kawaguchi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| |
Collapse
|
3
|
Dong PT, Shi W, He X, Borisy GG. Adhesive interactions within microbial consortia can be differentiated at the single-cell level through expansion microscopy. Proc Natl Acad Sci U S A 2024; 121:e2411617121. [PMID: 39565308 PMCID: PMC11621516 DOI: 10.1073/pnas.2411617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Investigating microbe-microbe interactions at the single-cell level is critical to unraveling the ecology and dynamics of microbial communities. In many situations, microbes assemble themselves into densely packed multispecies biofilms. The density and complexity pose acute difficulties for visualizing individual cells and analyzing their interactions. Here, we address this problem through an unconventional application of expansion microscopy, which allows for the "decrowding" of individual bacterial cells within a multispecies community. Expansion microscopy generally has been carried out under isotropic expansion conditions and used as a resolution-enhancing method. In our variation of expansion microscopy, we carry out expansion under heterotropic conditions; that is, we expand the space between bacterial cells but not the space within individual cells. The separation of individual bacterial cells from each other reflects the competition between the expansion force pulling them apart and the adhesion force holding them together. We employed heterotropic expansion microscopy to study the relative strength of adhesion in model biofilm communities. These included mono- and dual-species Streptococcus biofilms and a three-species synthetic community (Fusobacterium nucleatum, Streptococcus mutans, and Streptococcus sanguinis) under conditions that facilitated interspecies coaggregation. Using adhesion mutants, we investigated the interplay between F. nucleatum outer membrane protein RadD and different Streptococcus species. We also examined the Schaalia-TM7 epibiont association. Quantitative proximity analysis was used to evaluate the separation of individual microbial members. Our study demonstrates that heterotropic expansion microscopy can "decrowd" dense biofilm communities, improve visualization of individual bacterial members, and enable analysis of microbe-microbe adhesive interactions at the single-cell level.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Gary G. Borisy
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| |
Collapse
|
4
|
Zhang L, Leng XX, Qi J, Wang N, Han JX, Tao ZH, Zhuang ZY, Ren Y, Xie YL, Jiang SS, Li JL, Chen H, Zhou CB, Cui Y, Chen X, Wang Z, Zhang ZZ, Hong J, Chen HY, Jiang W, Chen YX, Zhao X, Yu J, Fang JY. The adhesin RadD enhances Fusobacterium nucleatum tumour colonization and colorectal carcinogenesis. Nat Microbiol 2024; 9:2292-2307. [PMID: 39169124 DOI: 10.1038/s41564-024-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Fusobacterium nucleatum can bind to host cells and potentiate intestinal tumorigenesis. Here we used a genome-wide screen to identify an adhesin, RadD, which facilitates the attachment of F. nucleatum to colorectal cancer (CRC) cells in vitro. RadD directly binds to CD147, a receptor overexpressed on CRC cell surfaces, which initiated a PI3K-AKT-NF-κB-MMP9 cascade, subsequently enhancing tumorigenesis in mice. Clinical specimen analysis showed that elevated radD gene levels in CRC tissues correlated positively with activated oncogenic signalling and poor patient outcomes. Finally, blockade of the interaction between RadD and CD147 in mice effectively impaired F. nucleatum attachment and attenuated F. nucleatum-induced oncogenic response. Together, our study provides insights into an oncogenic mechanism driven by F. nucleatum RadD and suggests that the RadD-CD147 interaction could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lu Zhang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xu Leng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hang Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Yan Zhuang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Le Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Lu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
6
|
Dong PT, Shi W, He X, Borisy GG. Adhesive interactions within microbial consortia can be differentiated at the single-cell level through expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600639. [PMID: 38979233 PMCID: PMC11230439 DOI: 10.1101/2024.06.25.600639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Investigating microbe-microbe interactions at the single-cell level is critical to unraveling the ecology and dynamics of microbial communities. In many situations, microbes assemble themselves into densely packed multi-species biofilms. The density and complexity pose acute difficulties for visualizing individual cells and analyzing their interactions. Here, we address this problem through an unconventional application of expansion microscopy, which allows for the 'decrowding' of individual bacterial cells within a multispecies community. Expansion microscopy generally has been carried out under isotropic expansion conditions and used as a resolution-enhancing method. In our variation of expansion microscopy, we carry out expansion under heterotropic conditions; that is, we expand the space between bacterial cells but not the space within individual cells. The separation of individual bacterial cells from each other reflects the competition between the expansion force pulling them apart and the adhesion force holding them together. We employed heterotropic expansion microscopy to study the relative strength of adhesion in model biofilm communities. These included mono and dual-species Streptococcus biofilms, and a three-species synthetic community (Fusobacterium nucleatum, Streptococcus mutans, and Streptococcus sanguinis) under conditions that facilitated interspecies coaggregation. Using adhesion mutants, we investigated the interplay between F. nucleatum outer membrane protein RadD and different Streptococcus species. We also examined the Schaalia-TM7 epibiont association. Quantitative proximity analysis was used to evaluate the separation of individual microbial members. Our study demonstrates that heterotropic expansion microscopy can 'decrowd' dense biofilm communities, improve visualization of individual bacterial members, and enable analysis of microbe-microbe adhesive interactions at the single-cell level.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Gary G. Borisy
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Khairunnisa Z, Tuygunov N, Cahyanto A, Aznita WH, Purwasena IA, Noor NSM, Azami NH, Zakaria MN. Potential of microbial-derived biosurfactants for oral applications-a systematic review. BMC Oral Health 2024; 24:707. [PMID: 38898470 PMCID: PMC11186162 DOI: 10.1186/s12903-024-04479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Biosurfactants are amphiphilic compounds produced by various microorganisms. Current research evaluates diverse types of biosurfactants against a range of oral pathogens. OBJECTIVES This systematic review aims to explore the potential of microbial-derived biosurfactants for oral applications. METHODOLOGY A systematic literature search was performed utilizing PubMed-MEDLINE, Scopus, and Web of Science databases with designated keywords. The results were registered in the PROSPERO database and conducted following the PRISMA checklist. Criteria for eligibility, guided by the PICOS framework, were established for both inclusion and exclusion criteria. The QUIN tool was used to assess the bias risk for in vitro dentistry studies. RESULTS Among the initial 357 findings, ten studies were selected for further analysis. The outcomes of this systematic review reveal that both crude and purified forms of biosurfactants exhibit antimicrobial and antibiofilm properties against various oral pathogens. Noteworthy applications of biosurfactants in oral products include mouthwash, toothpaste, and implant coating. CONCLUSION Biosurfactants have garnered considerable interest and demonstrated their potential for application in oral health. This is attributed to their surface-active properties, antiadhesive activity, biodegradability, and antimicrobial effectiveness against a variety of oral microorganisms, including bacteria and fungi.
Collapse
Affiliation(s)
- Z Khairunnisa
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Oral Biology, Faculty of Dentistry, University of Jenderal Achmad Yani, Cimahi, 40525, Indonesia
| | - N Tuygunov
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - A Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - W H Aznita
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - I A Purwasena
- Department of Microbiology, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - N S M Noor
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - N H Azami
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M N Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
8
|
Sikdar R, Beauclaire MV, Lima BP, Herzberg MC, Elias MH. N-acyl homoserine lactone signaling modulates bacterial community associated with human dental plaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585217. [PMID: 38559107 PMCID: PMC10980036 DOI: 10.1101/2024.03.15.585217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Mai V. Beauclaire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Bruno P. Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mikael H. Elias
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
9
|
Smirnov A, Yanushevich O, Krikheli N, Solis Pinargote NW, Peretyagin P, Grigoriev S, Alou L, Sevillano D, López-Piriz R, Guitian F, Bartolomé JF. 3Y-TZP/Ta Biocermet as a Dental Material: An Analysis of the In Vitro Adherence of Streptococcus Oralis Biofilm and an In Vivo Pilot Study in Dogs. Antibiotics (Basel) 2024; 13:175. [PMID: 38391561 PMCID: PMC10886202 DOI: 10.3390/antibiotics13020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The surface adhesion of bacterial cells and the in vivo biocompatibility of a new ceramic-metal composite made of zirconium dioxide and tantalum were evaluated. Within the framework of an in vitro study using the crystal violet staining and colony counting methods, a relatively similar adhesion of Streptococcus oralis to the 3Y-TZP/Ta biocermet (roughness Ra = 0.12 ± 0.04 µm) and Ti-Al6-V4 titanium alloy (Ra = 0.04 ± 0.01 µm) was found. In addition, in an in vivo preliminary study focused on the histological analysis of a series of rods implanted in the jaws of beagle dogs for a six-month period, the absence of any fibrous tissue or inflammatory reaction at the interface between the implanted 3Y-TZP/Ta biocermets and the new bone was found. Thus, it can be concluded that the developed ceramic-metal biocomposite may be a promising new material for use in dentistry.
Collapse
Affiliation(s)
- Anton Smirnov
- Spark Plasma Sintering Research Laboratory, Moscow State University of Technology "STANKIN", Vadkovsky per. 1, Moscow 127055, Russia
| | - Oleg Yanushevich
- Scientific Department, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, Moscow 127473, Russia
| | - Natella Krikheli
- Scientific Department, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, Moscow 127473, Russia
| | - Nestor Washington Solis Pinargote
- Spark Plasma Sintering Research Laboratory, Moscow State University of Technology "STANKIN", Vadkovsky per. 1, Moscow 127055, Russia
| | - Pavel Peretyagin
- Spark Plasma Sintering Research Laboratory, Moscow State University of Technology "STANKIN", Vadkovsky per. 1, Moscow 127055, Russia
- Scientific Department, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, Moscow 127473, Russia
| | - Sergey Grigoriev
- Spark Plasma Sintering Research Laboratory, Moscow State University of Technology "STANKIN", Vadkovsky per. 1, Moscow 127055, Russia
| | - Luis Alou
- Microbiology Department, School of Medicine, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | - David Sevillano
- Microbiology Department, School of Medicine, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Roberto López-Piriz
- Instituto de Cirugía Oral Avanzada-ICOA, Calle de Fray Luis de León, 14, 28012 Madrid, Spain
| | - Francisco Guitian
- Instituto de Materiales, iMATUS-USC, Santiago de Compostela, Avenida do Mestre Mateo 25, 15782 La Coruña, Spain
| | - José Florindo Bartolomé
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
10
|
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Abstract
Oral commensal streptococci are primary colonizers of the oral cavity. These streptococci produce many adhesins, metabolites, and antimicrobials that modulate microbial succession and diversity within the oral cavity. Often, oral commensal streptococci antagonize cariogenic and periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis, respectively. Mechanisms of antagonism are varied and range from the generation of hydrogen peroxide, competitive metabolite scavenging, the generation of reactive nitrogen intermediates, and bacteriocin production. Furthermore, several oral commensal streptococci have been shown to alter the host immune response at steady state and in response to oral pathogens. Collectively, these features highlight the remarkable ability of oral commensal streptococci to regulate the structure and function of the oral microbiome. In this review, we discuss mechanisms used by oral commensal streptococci to interact with diverse oral pathogens, both physically and through the production of antimicrobials. Finally, we conclude by exploring the critical roles of oral commensal streptococci in modulating the host immune response and maintaining health and homeostasis.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Karaca B, Haliscelik O, Gursoy M, Kiran F, Loimaranta V, Söderling E, Gursoy UK. Analysis of Chemical Structure and Antibiofilm Properties of Exopolysaccharides from Lactiplantibacillus plantarum EIR/IF-1 Postbiotics. Microorganisms 2022; 10:2200. [PMID: 36363792 PMCID: PMC9693231 DOI: 10.3390/microorganisms10112200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2024] Open
Abstract
Previous studies have indicated that the exopolysaccharides of lactic acid bacteria exhibit antibiofilm activity against non-oral bacteria by preventing their initial adhesion to surfaces and by downregulating the expression of genes responsible for their biofilm formation. The aims of this study were to (1) characterize the exopolysaccharides (EPSs) of Lactobacillus plantarum EIR/IF-1 postbiotics, (2) test their antibiofilm effect on dual biofilms, and (3) evaluate their bacterial auto-aggregation, co-aggregation, and hydrocarbon-binding inhibitory activity. The EPSs were characterized by FTIR, HPLC, and thermogravimetric analysis. Bacterial auto- and co-aggregation were tested by Kolenbrander's method and hydrocarbon binding was tested by Rosenberg's method. Dual biofilms were formed by culturing Fusobacterium nucleatum ATCC 25586 with one of the following bacteria: Prevotella denticola ATCC 33185, P. denticola AHN 33266, Porphyromonas gingivalis ATCC 33277, P. gingivalis AHN 24155, and Filifactor alocis ATCC 35896. The EPSs contained fractions with different molecular weights (51 and 841 kDa) and monosaccharides of glucose, galactose, and fructose. The EPSs showed antibiofilm activity in all the biofilm models tested. The EPSs may have inhibited bacterial aggregation and binding to hydrocarbons by reducing bacterial hydrophobicity. In conclusion, the EPSs of L. plantarum EIR/IF-1, which consists of two major fractions, exhibited antibiofilm activity against oral bacteria, which can be explained by the inhibitory effect of EPSs on the auto-aggregation and co-aggregation of bacteria and their binding to hydrocarbons.
Collapse
Affiliation(s)
- Basar Karaca
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Ozan Haliscelik
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, 20521 Turku, Finland
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Vuokko Loimaranta
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Eva Söderling
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
13
|
Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int J Mol Sci 2022; 23:ijms23158323. [PMID: 35955456 PMCID: PMC9368704 DOI: 10.3390/ijms23158323] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis. Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC) through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation, and altering the host immune response. During the process of carcinogenesis, the composition of the bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC. Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples. These have a potential diagnostic application to predict oral cancer through noninvasive salivary screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various disorders, are valuable adjuvants to improve the response to OSCC therapy.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy
- Correspondence:
| | - Federica Maria Romei
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Saint’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| |
Collapse
|
14
|
Torralba MG, Aleti G, Li W, Moncera KJ, Lin YH, Yu Y, Masternak MM, Golusinski W, Golusinski P, Lamperska K, Edlund A, Freire M, Nelson KE. Oral Microbial Species and Virulence Factors Associated with Oral Squamous Cell Carcinoma. MICROBIAL ECOLOGY 2021; 82:1030-1046. [PMID: 33155101 PMCID: PMC8551143 DOI: 10.1007/s00248-020-01596-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/01/2020] [Indexed: 05/14/2023]
Abstract
The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.
Collapse
Affiliation(s)
- Manolito G Torralba
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| | - Gajender Aleti
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Weizhong Li
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kelvin Jens Moncera
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yi-Han Lin
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yanbao Yu
- Department of Genomic Medicine, J. Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Central Florida Blvd, Orlando, FL, 32827, USA
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Podgórna 50, 65-246, Zielona Góra, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15th Garbary Street, room 5025, 61-866, Poznan, Poland
| | - Anna Edlund
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Karen E Nelson
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| |
Collapse
|
15
|
Kotásková I, Syrovátka V, Obručová H, Vídeňská P, Zwinsová B, Holá V, Blaštíková E, Růžička F, Freiberger T. Actinotignum schaalii: Relation to Concomitants and Connection to Patients' Conditions in Polymicrobial Biofilms of Urinary Tract Catheters and Urines. Microorganisms 2021; 9:microorganisms9030669. [PMID: 33807120 PMCID: PMC8004716 DOI: 10.3390/microorganisms9030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022] Open
Abstract
Actinotignum schaalii is an emerging, opportunistic pathogen and its connection to non-infectious diseases and conditions, such as prostate or bladder cancer, or chronic inflammation has been proposed. Here, we analyzed 297 urine, ureteral and urinary catheter samples from 128 patients by Polymerase Chain Reaction followed by Denaturing Gradient Gel Electrophoresis and Sequencing (PCR-DGGE-S), and culture, and 29 of these samples also by 16S rRNA Illumina sequencing, to establish A. schaalii’s prevalence in urinary tract-related samples, its relation to other bacteria, and its potential association with patients’ conditions and samples’ characteristics. A. schaalii-positive samples were significantly more diverse than A. schaalii negative and between-group diversity was higher than intra-group. Propionimicrobium lymphophilum, Fusobacterium nucleatum, Veillonella sp., Morganella sp., and Aerococcus sp. were significantly more often present in A. schaalii-positive samples; thus, we suggest these species are A. schaalii’s concomitants, while Enterobacter and Staphylococcaceae were more often identified in A. schaalii-negative samples; therefore, we propose A. schaalii and these species are mutually exclusive. Additionally, a significantly higher A. schaalii prevalence in patients with ureter stricture associated hydronephrosis (p = 0.020) was noted. We suggest that A. schaalii could be an early polybacterial biofilm colonizer, together with concomitant species, known for pro-inflammatory features.
Collapse
Affiliation(s)
- Iva Kotásková
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 61600 Brno, Czech Republic; (I.K.); (H.O.); (E.B.)
- Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, 61600 Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Masaryk University, 61600 Brno, Czech Republic; (P.V.); (B.Z.)
| | - Vít Syrovátka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61600 Brno, Czech Republic;
| | - Hana Obručová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 61600 Brno, Czech Republic; (I.K.); (H.O.); (E.B.)
| | - Petra Vídeňská
- Research Centre for Toxic Compounds in the Environment, Masaryk University, 61600 Brno, Czech Republic; (P.V.); (B.Z.)
| | - Barbora Zwinsová
- Research Centre for Toxic Compounds in the Environment, Masaryk University, 61600 Brno, Czech Republic; (P.V.); (B.Z.)
| | - Veronika Holá
- Institute of Microbiology, Faculty of Medicine, St. Anne’s University Hospital, Masaryk University, 61600 Brno, Czech Republic; (V.H.); (F.R.)
| | - Eva Blaštíková
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 61600 Brno, Czech Republic; (I.K.); (H.O.); (E.B.)
| | - Filip Růžička
- Institute of Microbiology, Faculty of Medicine, St. Anne’s University Hospital, Masaryk University, 61600 Brno, Czech Republic; (V.H.); (F.R.)
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 61600 Brno, Czech Republic; (I.K.); (H.O.); (E.B.)
- Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, 61600 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
16
|
Engevik MA, Danhof HA, Ruan W, Engevik AC, Chang-Graham AL, Engevik KA, Shi Z, Zhao Y, Brand CK, Krystofiak ES, Venable S, Liu X, Hirschi KD, Hyser JM, Spinler JK, Britton RA, Versalovic J. Fusobacterium nucleatum Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation. mBio 2021; 12:e02706-20. [PMID: 33653893 PMCID: PMC8092269 DOI: 10.1128/mbio.02706-20] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Heather A Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Amy C Engevik
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville Tennessee, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Yanling Zhao
- Department of Pediatrics, Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Colleen K Brand
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Kendal D Hirschi
- Department of Pediatrics and Human and Molecular Genetics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
17
|
Engevik MA, Danhof HA, Auchtung J, Endres BT, Ruan W, Bassères E, Engevik AC, Wu Q, Nicholson M, Luna RA, Garey KW, Crawford SE, Estes MK, Lux R, Yacyshyn MB, Yacyshyn B, Savidge T, Britton RA, Versalovic J. Fusobacteriumnucleatum Adheres to Clostridioides difficile via the RadD Adhesin to Enhance Biofilm Formation in Intestinal Mucus. Gastroenterology 2021; 160:1301-1314.e8. [PMID: 33227279 PMCID: PMC7956072 DOI: 10.1053/j.gastro.2020.11.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C difficile. We hypothesized that select mucus-associated bacteria would promote C difficile colonization and biofilm formation. METHODS To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C difficile with the addition of human MUC2-coated coverslips. RESULTS C difficile was found to colonize and form biofilms on MUC2-coated coverslips, and 16S rRNA sequencing showed a unique biofilm profile with substantial cocolonization with Fusobacterium species. Consistent with our bioreactor data, publicly available data sets and patient stool samples showed that a subset of patients with C difficile infection harbored high levels of Fusobacterium species. We observed colocalization of C difficile and F nucleatum in an aggregation assay using adult patients and stool of pediatric patients with inflammatory bowel disease and in tissue sections of patients with CDI. C difficile strains were found to coaggregate with F nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C difficile. Aggregation was shown to be unique between F nucleatum and C difficile, because other gut commensals did not aggregate with C difficile. Addition of F nucleatum also enhanced C difficile biofilm formation and extracellular polysaccharide production. CONCLUSIONS Collectively, these data show a unique interaction of between pathogenic C difficile and F nucleatum in the intestinal mucus layer.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of
Medicine,Texas Children’s Microbiome Center, Department of
Pathology, Texas Children's Hospital
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor
College of Medicine
| | - Jennifer Auchtung
- Department of Molecular Virology and Microbiology, Baylor
College of Medicine,Department of Food Science and Technology, University of
Nebraska-Lincoln
| | - Bradley T. Endres
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy
| | - Wenly Ruan
- Department of Pathology & Immunology, Baylor College of
Medicine,Texas Children’s Microbiome Center, Department of
Pathology, Texas Children's Hospital
| | - Eugénie Bassères
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy
| | - Amy C. Engevik
- Department of Surgical Sciences, Vanderbilt University
Medical Center
| | - Qinglong Wu
- Department of Pathology & Immunology, Baylor College of
Medicine,Texas Children’s Microbiome Center, Department of
Pathology, Texas Children's Hospital
| | | | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of
Medicine,Texas Children’s Microbiome Center, Department of
Pathology, Texas Children's Hospital
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational Research,
University of Houston College of Pharmacy
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor
College of Medicine
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor
College of Medicine,Department of Surgical Sciences, Vanderbilt University
Medical Center
| | - Renate Lux
- Department of Periodontics, University of California Los
Angeles School of Dentistry
| | - Mary Beth Yacyshyn
- Department of Medicine Division of Digestive Diseases
University of Cincinnati College of Medicine
| | - Bruce Yacyshyn
- Department of Medicine Division of Digestive Diseases
University of Cincinnati College of Medicine
| | - Tor Savidge
- Department of Pathology & Immunology, Baylor College of
Medicine,Texas Children’s Microbiome Center, Department of
Pathology, Texas Children's Hospital
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor
College of Medicine
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of
Medicine,Texas Children’s Microbiome Center, Department of
Pathology, Texas Children's Hospital
| |
Collapse
|
18
|
Yamamoto K, Honda T, Ito T, Ishizu Y, Kuzuya T, Nakamura M, Miyahara R, Kawashima H, Ishigami M, Fujishiro M. The relationship between oral-origin bacteria in the fecal microbiome and albumin-bilirubin grade in patients with hepatitis C. J Gastroenterol Hepatol 2021; 36:790-799. [PMID: 32744764 DOI: 10.1111/jgh.15206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bacteria of oral origin (BO) in the gut are associated with prognosis in patients with cirrhosis. The Greengenes database (gg_13_8) is widely used in microbiome analysis, but the expanded Human Oral Microbiome Database (eHOMD), a specialized database for BO, can add more detailed information. We used each database to evaluate the relationship between the albumin-bilirubin grade (ALBI) and the microbiome in patients with hepatitis C. METHODS Eighty patients were classified into the low ALBI group (LA; n = 34) or high ALBI group (HA; n = 46). Isolated DNA from stool was amplified to target the V3-4 regions of 16S rRNA. The microbiomes of the two groups were compared using gg_13_8 or eHOMD. We evaluated the associations between microbiomes and prognoses using Cox proportional hazards models. RESULTS At the genus level, the two groups differed significantly regarding 6 (gg_13_8) and 7 (eHOMD) types of bacteria. All types except Akkermansia are classified as BO. Both databases showed an increase in Streptococcus and Veillonella. eHOMD showed a decrease in Fusobacterium and an increase in Fretibacterium; both produce various types of short-chain fatty acids. At the species level, the two groups demonstrated significant differences in 2 (gg_13_8) and 6 (eHOMD) bacterial types. Selenomonas noxia and Streptococcus salivarius were related to poor prognosis in univariate analysis. CONCLUSION The HA group demonstrated increased BO, most of which produce lactic acid or acetic acid. The correlation between the microbiome and metabolism might be related to prognosis. eHOMD was a useful database for analyzing BO.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Bongrand C, Ruby EG. The impact of Vibrio fischeri strain variation on host colonization. Curr Opin Microbiol 2019; 50:15-19. [PMID: 31593868 DOI: 10.1016/j.mib.2019.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023]
Abstract
Strain-level epidemiology is a key approach to understanding the mechanisms underlying establishment of any host-microbe association. The squid-vibrio light organ symbiosis has proven to be an informative and tractable experimental model in which to discover these mechanisms because it involves only one bacterial species, Vibrio fischeri. In this horizontally transmitted symbiosis, the squid presents nutrients to the bacteria located in a bilobed light-emitting organ, while the symbionts provide bioluminescence to their host. To initiate this association, V. fischeri cells go through several distinct stages: from free-living in the bacterioplankton, to forming a multicellular aggregation near pores on the light organ's surface, to migrating through the pores and into crypts deep in the light organ, where the symbiont population grows and luminesces. Because individual cells must successfully navigate these distinct regions, phenotypic differences between strains will have a strong impact on the composition of the population finally colonizing the squid. Here we review recent advances in our understanding of behavioral characteristics that differentially drive a strain's success, including its effectiveness of aggregation, the rapidity with which it reaches the deep crypts, and its deployment of type VI secretion.
Collapse
|
20
|
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Microbiol 2019; 10:1716. [PMID: 31417514 PMCID: PMC6683768 DOI: 10.3389/fmicb.2019.01716] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival “feeding”, and a subgingival biofilm model. The standard six-species supragingival and “feeding” biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the “feeding” supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuela Flury
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
21
|
Kotaskova I, Obrucova H, Malisova B, Videnska P, Zwinsova B, Peroutkova T, Dvorackova M, Kumstat P, Trojan P, Ruzicka F, Hola V, Freiberger T. Molecular Techniques Complement Culture-Based Assessment of Bacteria Composition in Mixed Biofilms of Urinary Tract Catheter-Related Samples. Front Microbiol 2019; 10:462. [PMID: 30949137 PMCID: PMC6435596 DOI: 10.3389/fmicb.2019.00462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Urinary or ureteral catheter insertion remains one of the most common urological procedures, yet is considered a predisposing factor for urinary tract infection. Diverse bacterial consortia adhere to foreign body surfaces and create various difficult to treat biofilm structures. We analyzed 347 urinary catheter- and stent-related samples, treated with sonication, using both routine culture and broad-range 16S rDNA PCR followed by Denaturing Gradient Gel Electrophoresis and Sanger sequencing (PCR-DGGE-S). In 29 selected samples, 16S rRNA amplicon Illumina sequencing was performed. The results of all methods were compared. In 338 positive samples, from which 86.1% were polybacterial, 1,295 representatives of 153 unique OTUs were detected. Gram-positive microbes were found in 46.5 and 59.1% of catheter- and stent-related samples, respectively. PCR-DGGE-S was shown as a feasible method with higher overall specificity (95 vs. 85%, p < 0.01) though lower sensitivity (50 vs. 69%, p < 0.01) in comparison to standard culture. Molecular methods considerably widened a spectrum of microbes detected in biofilms, including the very prevalent emerging opportunistic pathogen Actinotignum schaalii. Using massive parallel sequencing as a reference method in selected specimens, culture combined with PCR-DGGE was shown to be an efficient and reliable tool for determining the composition of urinary catheter-related biofilms. This might be applicable particularly to immunocompromised patients, in whom catheter-colonizing bacteria may lead to severe infectious complications. For the first time, broad-range molecular detection sensitivity and specificity were evaluated in this setting. This study extends the knowledge of biofilm consortia composition by analyzing large urinary catheter and stent sample sets using both molecular and culture techniques, including the widest dataset of catheter-related samples characterized by 16S rRNA amplicon Illumina sequencing.
Collapse
Affiliation(s)
- Iva Kotaskova
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Genomics Research Group, CEITEC, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, Brno, Czechia
| | - Hana Obrucova
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Barbora Malisova
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Petra Videnska
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czechia
| | - Barbora Zwinsova
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czechia
| | - Tereza Peroutkova
- Institute of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czechia
| | - Milada Dvorackova
- Institute of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czechia
| | - Petr Kumstat
- Department of Urology, St. Anne's University Hospital, Brno, Czechia
| | - Pavel Trojan
- Department of Urology, St. Anne's University Hospital, Brno, Czechia
| | - Filip Ruzicka
- Institute of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czechia
| | - Veronika Hola
- Institute of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czechia
| | - Tomas Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Genomics Research Group, CEITEC, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, Brno, Czechia
| |
Collapse
|
22
|
Bartnicka D, Karkowska-Kuleta J, Zawrotniak M, Satała D, Michalik K, Zielinska G, Bochenska O, Kozik A, Ciaston I, Koziel J, Dutton LC, Nobbs AH, Potempa B, Baster Z, Rajfur Z, Potempa J, Rapala-Kozik M. Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment. Sci Rep 2019; 9:4376. [PMID: 30867500 PMCID: PMC6416349 DOI: 10.1038/s41598-019-40771-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
The oral cavity contains different types of microbial species that colonize human host via extensive cell-to-cell interactions and biofilm formation. Candida albicans-a yeast-like fungus that inhabits mucosal surfaces-is also a significant colonizer of subgingival sites in patients with chronic periodontitis. It is notable however that one of the main infectious agents that causes periodontal disease is an anaerobic bacterium-Porphyromonas gingivalis. In our study, we evaluated the different strategies of both pathogens in the mutual colonization of an artificial surface and confirmed that a protective environment existed for P. gingivalis within developed fungal biofilm formed under oxic conditions where fungal cells grow mainly in their filamentous form i.e. hyphae. A direct physical contact between fungi and P. gingivalis was initiated via a modulation of gene expression for the major fungal cell surface adhesin Als3 and the aspartic proteases Sap6 and Sap9. Proteomic identification of the fungal surfaceome suggested also an involvement of the Mp65 adhesin and a "moonlighting" protein, enolase, as partners for the interaction with P. gingivalis. Using mutant strains of these bacteria that are defective in the production of the gingipains-the proteolytic enzymes that also harbor hemagglutinin domains-significant roles of these proteins in the formation of bacteria-protecting biofilm were clearly demonstrated.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kinga Michalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lindsay C Dutton
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Zbigniew Baster
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
23
|
Some Oral Pathogenic Bacteria, Isolation and Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol 2018; 13:915-932. [PMID: 29882414 PMCID: PMC6060398 DOI: 10.2217/fmb-2018-0043] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caries and periodontitis are the two most common human dental diseases and are caused by dysbiosis of oral flora. Although commensal microorganisms have been demonstrated to protect against pathogens and promote oral health, most previous studies have addressed pathogenesis rather than commensalism. Streptococcus sanguinis is a commensal bacterium that is abundant in the oral biofilm and whose presence is correlated with health. Here, we focus on the mechanism of biofilm formation in S. sanguinis and the interaction of S. sanguinis with caries- and periodontitis-associated pathogens. In addition, since S. sanguinis is well known as a cause of infective endocarditis, we discuss the relationship between S. sanguinis biofilm formation and its pathogenicity in endocarditis.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lorna C Macleod
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
25
|
Karkowska-Kuleta J, Bartnicka D, Zawrotniak M, Zielinska G, Kieronska A, Bochenska O, Ciaston I, Koziel J, Potempa J, Baster Z, Rajfur Z, Rapala-Kozik M. The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathog Dis 2018; 76:4969680. [PMID: 29668945 PMCID: PMC6251568 DOI: 10.1093/femspd/fty033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis, an anaerobic Gram-negative bacterium critically involved in the development of human periodontitis, belongs to the late colonizers of the oral cavity. The success of this pathogen in the host colonization and infection results from the presence of several virulence factors, including extracellular peptidylarginine deiminase (PPAD), an enzyme that converts protein arginine residues to citrullines. A common opportunistic fungal pathogen of humans, Candida albicans, is also frequently identified among microorganisms that reside at subgingival sites. The aim of the current work was to verify if protein citrullination can influence the formation of mixed biofilms by both microorganisms under hypoxic and normoxic conditions. Quantitative estimations of the bacterial adhesion to fungal cells demonstrated the importance of PPAD activity in this process, since the level of binding of P. gingivalis mutant strain deprived of PPAD was significantly lower than that observed for the wild-type strain. These results were consistent with mass spectrometric detection of the citrullination of selected surface-exposed C. albicans proteins. Furthermore, a viability of P. gingivalis cells under normoxia increased in the presence of fungal biofilm compared with the bacteria that formed single-species biofilm. These findings suggest a possible protection of these strict anaerobes under unfavorable aerobic conditions by C. albicans during mixed biofilm formation.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Kieronska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
26
|
Gomar-Vercher S, Simón-Soro A, Montiel-Company JM, Almerich-Silla JM, Mira A. Stimulated and unstimulated saliva samples have significantly different bacterial profiles. PLoS One 2018; 13:e0198021. [PMID: 29856779 PMCID: PMC5983451 DOI: 10.1371/journal.pone.0198021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/12/2018] [Indexed: 12/20/2022] Open
Abstract
Epidemiological studies use saliva on a regular basis as a non-invasive and easy-to-take sample, which is assumed to be a microbial representative of the oral cavity ecosystem. However, comparative studies between different kinds of saliva samples normally used in microbial studies are scarce. The aim of the current study was to compare oral microbiota composition between two different saliva samples collected simultaneously: non-stimulated saliva with paper points and stimulated saliva collected after chewing paraffin gum. DNA was extracted from saliva samples of ten individuals, then analyzed by 16S rRNA pyrosequencing to describe bacterial diversity. The results demonstrate significant differences between the microbiota of these two kinds of saliva. Stimulated saliva was found to contain an estimated number of species over three times higher than unstimulated saliva. In addition, bacterial composition at the class and genus level was radically different between both types of samples. When compared to other oral niches, both types of saliva showed some similarity to tongue and buccal mucosa, but they do not correlate at all with the bacterial composition described in supra- or sub-gingival dental plaque, questioning their use in etiological and epidemiological studies of oral diseases of microbial origin.
Collapse
Affiliation(s)
- Sonia Gomar-Vercher
- University of Valencia, Stomatology Department, Gascó Oliag 1, Valencia, Spain
| | - Aurea Simón-Soro
- Department of Genomics and Health, Centre for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain
| | | | | | - Alex Mira
- Department of Genomics and Health, Centre for Advanced Research in Public Health, CSISP-FISABIO, Valencia, Spain
| |
Collapse
|
27
|
Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol 2018; 200:525-540. [PMID: 29572583 DOI: 10.1007/s00203-018-1505-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
Human oral cavity harbors the second most abundant microbiota after the gastrointestinal tract. The expanded Human Oral Microbiome Database (eHOMD) that was last updated on November 22, 2017, contains the information of approximately 772 prokaryotic species, where 70% is cultivable, and 30% belong to the uncultivable class of microorganisms along with whole genome sequences of 482 taxa. Out of 70% culturable species, 57% have already been assigned to their names. The 16S rDNA profiling of the healthy oral cavity categorized the inhabitant bacteria into six broad phyla, viz. Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, Bacteroidetes and Spirochaetes constituting 96% of total oral bacteria. These hidden oral micro-inhabitants exhibit a direct influence on human health, from host's metabolism to immune responses. Altered oral microflora has been observed in several diseases such as diabetes, bacteremia, endocarditis, cancer, autoimmune disease and preterm births. Therefore, it becomes crucial to understand the oral microbial diversity and how it fluctuates under diseased/perturbed conditions. Advances in metagenomics and next-generation sequencing techniques generate rapid sequences and provide extensive information of inhabitant microorganisms of a niche. Thus, the retrieved information can be utilized for developing microbiome-based biomarkers for their use in early diagnosis of oral and associated diseases. Besides, several apex companies have shown keen interest in oral microbiome for its diagnostic and therapeutic potential indicating a vast market opportunity. This review gives an insight of various associated aspects of the human oral microbiome.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - Pankaj Kumar Garg
- University College of Medical Sciences and Guru Teg Bahadur Hospital, University of Delhi, Dilshad Garden, New Delhi, India
| | - Ashok Kumar Dubey
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
28
|
Stauffacher S, Lussi A, Nietzsche S, Neuhaus KW, Eick S. Bacterial invasion into radicular dentine-an in vitro study. Clin Oral Investig 2016; 21:1743-1752. [PMID: 27722787 DOI: 10.1007/s00784-016-1960-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES We wanted to investigate differences in invasiveness into radicular dentinal tubules by monocultured and co-cultured bacteria frequently found in infected root canals. METHODS Fifty-one human roots were incubated for 8 weeks with monocultured Streptococcus gordonii ATCC 10558, Streptococcus sanguinis ATCC 10556, and with five capnophiles/anaerobes as well as with capnophiles/anaerobes co-cultured with a streptococcal species. Thereafter, bacterial samples were cultured from the inner, middle, and outer third of the root dentine of longitudinally broken teeth (n = 5). In addition, scanning electron microscopy (SEM) images were obtained. RESULTS Single gram-positive species were able to penetrate into the middle and outer third of the root dentine. Fusobacterium nucleatum ATCC 25586 was not found in any of the dentine specimens. Prevotella intermedia ATCC 25611 and Porphyromonas gingivalis ATCC 33277 were found in the inner and middle third. The bacterial load of streptococci was higher in all thirds in co-cultures compared to single infections. In co-cultures with streptococci, Actinomyces oris ATCC 43146 was found in the outer third in 9/10 samples, whereas P. intermedia ATCC 25611 was not detectable inside dentine. Co-culture with S. sanguinis ATCC 10556 enabled F. nucleatum ATCC 25586 to invade dentine; SEM images showed that F. nucleatum ATCC 25586 had a swollen shape. CONCLUSIONS Invasiveness of bacteria into dentinal tubules is species-specific and may change depending on culturing as a single species or co-culturing with other bacteria. CLINICAL RELEVANCE Oral streptococci may promote or inhibit invasion of capnophiles/anaerobes into radicular dentine.
Collapse
Affiliation(s)
- Simone Stauffacher
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Sandor Nietzsche
- Center of Electron Microscopy, University Hospital of Jena, Jena, Germany
| | - Klaus W Neuhaus
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Elshikh M, Marchant R, Banat IM. Biosurfactants: promising bioactive molecules for oral-related health applications. FEMS Microbiol Lett 2016; 363:fnw213. [PMID: 27619892 DOI: 10.1093/femsle/fnw213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Biosurfactants are naturally produced molecules that demonstrate potentially useful properties such as the ability to reduce surface tensions between different phases. Besides having similar properties to their artificial chemical counterparts, they are regarded as environmental friendly, biodegradable and less toxic, which make them desirable candidates for downstream applications. The structure-activity-related properties of the biosurfactants which are directly correlated with potency of the biosurfactants as antimicrobial agents, the ability of the biosurfactants to alter surface energies and their ability to increase bioavailability are particularly what attract researchers to exploit their potential use in the oral-related health applications. Current research into biosurfactant indicates significant future potential for use in cosmetic and therapeutic oral hygiene product formulations and related medical device treatments.
Collapse
Affiliation(s)
- Mohamed Elshikh
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine County Londonderry BT52 1SA, Northern Ireland, UK
| | - Roger Marchant
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine County Londonderry BT52 1SA, Northern Ireland, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine County Londonderry BT52 1SA, Northern Ireland, UK
| |
Collapse
|
30
|
Stevens MRE, Luo TL, Vornhagen J, Jakubovics NS, Gilsdorf JR, Marrs CF, Møretrø T, Rickard AH. Coaggregation occurs between microorganisms isolated from different environments. FEMS Microbiol Ecol 2015; 91:fiv123. [DOI: 10.1093/femsec/fiv123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 11/12/2022] Open
|
31
|
Wu T, Cen L, Kaplan C, Zhou X, Lux R, Shi W, He X. Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum. J Dent Res 2015; 94:1432-8. [PMID: 26152186 DOI: 10.1177/0022034515593706] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen found as part of the normal oral flora. It can be coisolated with Fusobacterium nucleatum, an opportunistic bacterial pathogen, from oral disease sites, such as those involved in refractory periodontitis and pulp necrosis. The physical coadherence between these 2 clinically important microbes has been well documented and suggested to play a role in facilitating their oral colonization and colocalization and contributing to polymicrobial pathogenesis. Previous studies indicated that the physical interaction between C. albicans and F. nucleatum was mediated by the carbohydrate components on the surface of C. albicans and the protein components on the Fusobaterium cell surface. However, the identities of the components involved still remain elusive. This study was aimed at identifying the genetic determinants involved in coaggregation between the 2 species. By screening a C. albicans SN152 mutant library and a panel of F. nucleatum 23726 outer membrane protein mutants, we identified FLO9, which encodes a putative adhesin-like cell wall mannoprotein of C. albicans and radD, an arginine-inhibitable adhesin-encoding gene in F. nucleatum that is involved in interspecies coadherence. Consistent with these findings, we demonstrated that the strong coaggregation between wild-type F. nucleatum 23726 and C. albicans SN152 in an in vitro assay could be greatly inhibited by arginine and mannose. Our study also suggested a complex multifaceted mechanism underlying physical interaction between C. albicans and F. nucleatum and for the first time revealed the identity of major genetic components involved in mediating the coaggregation. These observations provide useful knowledge for developing new targeted treatments for disrupting interactions between these 2 clinically relevant pathogens.
Collapse
Affiliation(s)
- T Wu
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - L Cen
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - C Kaplan
- C3 Jian, Inc., Marina del Rey, CA, USA
| | - X Zhou
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Lux
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - W Shi
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - X He
- School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Karched M, Bhardwaj RG, Asikainen SE. Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol 2015; 15:114. [PMID: 26025449 PMCID: PMC4448563 DOI: 10.1186/s12866-015-0439-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/08/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Members of fastidious Granulicatella and Aggregatibacter genera belong to normal oral flora bacteria that can cause serious infections, such as infective endocarditis. Aggregatibacter actinomycetemcomitans has long been implicated in aggressive periodontitis, whereas DNA-based methods only recently showed an association between Granulicatella spp. and dental diseases. As bacterial coaggregation is a key phenomenon in the development of oral and nonoral multispecies bacterial communities it would be of interest knowing coaggregation pattern of Granulicatella species with A. actinomycetemcomitans in comparison with the multipotent coaggregator Fusobacterium nucleatum. The aim was to investigate coaggregation and biofilm formation of Granulicatella elegans and Granulicatella adiacens with A. actinomycetemcomitans and F. nucleatum strains. RESULTS F. nucleatum exhibited significantly (p < 0.05) higher autoaggregation than all other test species, followed by A. actinomycetemcomitans SA269 and G. elegans. A. actinomycetemcomitans CU1060 and G. adiacens did not autoaggregate. G. elegans with F. nucleatum exhibited significantly (p < 0.05) higher coaggregation than most others, but failed to grow as biofilm together or separately. With F. nucleatum as partner, A. actinomycetemcomitans strains SA269, a rough-colony wild-type strain, and CU1060, a spontaneous smooth-colony laboratory variant, and G. adiacens were the next in coaggregation efficiency. These dual species combinations also were able to grow as biofilms. While both G. elegans and G. adiacens coaggregated with A. actinomycetemcomitans strain SA269, but not with CU1060, they grew as biofilms with both A. actinomycetemcomitans strains. CONCLUSIONS G. elegans failed to form biofilm with F. nucleatum despite the strongest coaggregation with it. The ability of Granulicatella spp. to coaggregate and/or form biofilms with F. nucleatum and A. actinomycetemcomitans strains suggests that Granulicatella spp. have the potential to integrate into dental plaque biofilms.
Collapse
Affiliation(s)
- Maribasappa Karched
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Radhika G Bhardwaj
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Sirkka E Asikainen
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| |
Collapse
|
33
|
Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol 2015; 6:20. [PMID: 25699023 PMCID: PMC4313696 DOI: 10.3389/fmicb.2015.00020] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
The dysbiosis of the human intestinal microbiota is linked to sporadic colorectal carcinoma (CRC). The present study was designed to investigate the gut microbiota distribution features in CRC patients. We performed pyrosequencing based analysis of the 16S rRNA gene V3 region to investigate microbiota of the cancerous tissue and adjacent non-cancerous normal tissue in proximal and distal CRC samples. The results revealed that the microbial structures of the CRC patients and healthy individuals differed significantly. Firmicutes and Fusobacteria were over-represented whereas Proteobacteria was under-represented in CRC patients. In addition, Lactococcus and Fusobacterium exhibited a relatively higher abundance while Pseudomonas and Escherichia-Shigella was reduced in cancerous tissues compared to adjacent non-cancerous tissues. Meanwhile, the overall microbial structures of proximal and distal colon cancerous tissues were similar; but certain potential pro-oncogenic pathogens were different. These results suggested that the mucosa-associated microbiota is dynamically associated with CRC, which may provide evidences for microbiota-associated diagnostic, prognostic, preventive, and therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Bomin Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Qingchao Zhu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| |
Collapse
|
34
|
Africa CWJ, Nel J, Stemmet M. Anaerobes and bacterial vaginosis in pregnancy: virulence factors contributing to vaginal colonisation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:6979-7000. [PMID: 25014248 PMCID: PMC4113856 DOI: 10.3390/ijerph110706979] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
The aetiology and pathogenesis of bacterial vaginosis (BV) is unclear but it appears to be associated with factors that disrupt the normal acidity of the vagina thus altering the equilibrium between the normal vaginal microbiota. BV has serious implications for female morbidity, including reports of pelvic inflammatory disease, adverse pregnancy outcomes, increased susceptibility to sexually transmitted infections and infertility. This paper reviewed new available information regarding possible factors contributing to the establishment of the BV vaginal biofilm, examined the proposed role of anaerobic microbial species recently detected by new culture-independent methods and discusses developments related to the effects of BV on human pregnancy. The literature search included Pubmed (NLM), LISTA (EBSCO), and Web of Science. Because of the complexity and diversity of population groups, diagnosis and methodology used, no meta-analysis was performed. Several anaerobic microbial species previously missed in the laboratory diagnosis of BV have been revealed while taking cognisance of newly proposed theories of infection, thereby improving our understanding and knowledge of the complex aetiology and pathogenesis of BV and its perceived role in adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Charlene W J Africa
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa.
| | - Janske Nel
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa.
| | - Megan Stemmet
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa.
| |
Collapse
|
35
|
Guo L, He X, Shi W. Intercellular communications in multispecies oral microbial communities. Front Microbiol 2014; 5:328. [PMID: 25071741 PMCID: PMC4076886 DOI: 10.3389/fmicb.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/14/2014] [Indexed: 01/22/2023] Open
Abstract
The oral cavity contains more than 700 microbial species that are engaged in extensive cell–cell interactions. These interactions contribute to the formation of highly structured multispecies communities, allow them to perform physiological functions, and induce synergistic pathogenesis. Co-adhesion between oral microbial species influences their colonization of oral cavity and effectuates, to a large extent, the temporal and spatial formation of highly organized polymicrobial community architecture. Individual species also compete and collaborate with other neighboring species through metabolic interactions, which not only modify the local microenvironment such as pH and the amount of oxygen, making it more suitable for the growth of other species, but also provide a metabolic framework for the participating microorganisms by maximizing their potential to extract energy from limited substrates. Direct physical contact of bacterial species with its neighboring co-habitants within microbial community could initiate signaling cascade and achieve modulation of gene expression in accordance with different species it is in contact with. In addition to communication through cell–cell contact, quorum sensing (QS) mediated by small signaling molecules such as competence-stimulating peptides (CSPs) and autoinducer-2 (AI-2), plays essential roles in bacterial physiology and ecology. This review will summarize the evidence that oral microbes participate in intercellular communications with co-inhabitants through cell contact-dependent physical interactions, metabolic interdependencies, as well as coordinative signaling systems to establish and maintain balanced microbial communities.
Collapse
Affiliation(s)
- Lihong Guo
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Xuesong He
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Wenyuan Shi
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| |
Collapse
|
36
|
Katharios-Lanwermeyer S, Xi C, Jakubovics NS, Rickard AH. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development. BIOFOULING 2014; 30:1235-1251. [PMID: 25421394 DOI: 10.1080/08927014.2014.976206] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coaggregation is the specific recognition and adherence of genetically distinct microorganisms. Because most biofilms are polymicrobial communities, there is potential for coaggregation to play an integral role in spatiotemporal biofilm development and the moderation of biofilm community composition. However, understanding of the mechanisms contributing to coaggregation and the relevance of coaggregation to biofilm ecology is at a very early stage. The purpose of this review is to highlight recent advances in the understanding of microbial coaggregation within different environments and to describe the possible ecological ramifications of such interactions. Bacteria that coaggregate with many partner species within different environments will be highlighted, including oral streptococci and oral bridging organisms such as fusobacteria, as well as the freshwater sphingomonads and acinetobacters. Irrespective of environment, it is proposed that coaggregation is essential for the orchestrated development of multi-species biofilms.
Collapse
Affiliation(s)
- S Katharios-Lanwermeyer
- a Department of Environmental Health Sciences , University of Michigan , Ann Arbor , MI , USA
| | | | | | | |
Collapse
|
37
|
He X, McLean JS, Guo L, Lux R, Shi W. The social structure of microbial community involved in colonization resistance. ISME JOURNAL 2013; 8:564-574. [PMID: 24088624 DOI: 10.1038/ismej.2013.172] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/15/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
It is well established that host-associated microbial communities can interfere with the colonization and establishment of microbes of foreign origins, a phenomenon often referred to as bacterial interference or colonization resistance. However, due to the complexity of the indigenous microbiota, it has been extremely difficult to elucidate the community colonization resistance mechanisms and identify the bacterial species involved. In a recent study, we have established an in vitro mice oral microbial community (O-mix) and demonstrated its colonization resistance against an Escherichia coli strain of mice gut origin. In this study, we further analyzed the community structure of the O-mix by using a dilution/regrowth approach and identified the bacterial species involved in colonization resistance against E. coli. Our results revealed that, within the O-mix there were three different types of bacterial species forming unique social structure. They act as 'Sensor', 'Mediator' and 'Killer', respectively, and have coordinated roles in initiating the antagonistic action and preventing the integration of E. coli. The functional role of each identified bacterial species was further confirmed by E. coli-specific responsiveness of the synthetic communities composed of different combination of the identified players. The study reveals for the first time the sophisticated structural and functional organization of a colonization resistance pathway within a microbial community. Furthermore, our results emphasize the importance of 'Facilitation' or positive interactions in the development of community-level functions, such as colonization resistance.
Collapse
Affiliation(s)
- Xuesong He
- UCLA School of Dentistry, Los Angeles, CA, USA
| | | | - Lihong Guo
- UCLA School of Dentistry, Los Angeles, CA, USA
| | - Renate Lux
- UCLA School of Dentistry, Los Angeles, CA, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Simón-Soro A, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res 2013; 92:616-21. [PMID: 23674263 DOI: 10.1177/0022034513488119] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We aimed to determine the bacterial diversity of different oral micro-niches and to assess whether saliva and plaque samples are representative of oral microbial composition. We took minute samples from each surface of the individual teeth and gingival crevices of two healthy volunteers (112 samples per donor), as well as samples from the tongue dorsum and non-stimulated and stimulated saliva. DNA was extracted from 67 selected samples of each donor, and the 16S rRNA gene was amplified by PCR and pyrosequenced to obtain, on average, over 2,700 reads per sample, which were taxonomically assigned to obtain a geographic map of bacterial diversity at each tooth and sulcus location. Analysis of the data shows considerable differences in bacterial composition between teeth at different intra-oral locations and between surfaces of the same tooth. The most pronounced differences were observed in incisors and canines, where genera like Streptococcus were found at 40% to 70% on the vestibular surfaces but were almost absent on the lingual sides. Saliva samples, especially non-stimulated saliva, were not representative of supra-and subgingival plaque in the two individuals tested. We suggest that more precise sampling is required for the proper determination of oral microbial composition and to relate that diversity to epidemiological, clinical, and etiological parameters.
Collapse
Affiliation(s)
- A Simón-Soro
- Center for Advanced Research in Public Health (CSISP), Valencia, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
40
|
Microscope-based imaging platform for large-scale analysis of oral biofilms. Appl Environ Microbiol 2012; 78:8703-11. [PMID: 23042171 DOI: 10.1128/aem.02416-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A microscopic method for noninvasively monitoring oral biofilms at the macroscale was developed to describe the spatial distribution of biofilms of different bacterial composition on bovine enamel surfaces (BES). For this purpose, oral biofilm was grown in situ on BES that were fixed at approximal sites of individual upper jaw acrylic devices worn by a volunteer for 3 or 5 days. Eubacteria, Streptococcus spp., and Fusobacterium nucleatum were stained using specific fluorescence in situ hybridization (FISH) probes. The resulting fluorescence signals were subsequently tested by confocal laser scanning microscopy (CLSM) and monitored by an automated wide-field microscope-based imaging platform (Scan∧R). Automated image processing and data analysis were conducted by microscope-associated software and followed by statistical evaluation of the results. The full segmentation of biofilm images revealed a random distribution of bacteria across the entire area of the enamel surfaces examined. Significant differences in the composition of the microflora were recorded across individual as well as between different enamel surfaces varying from sparsely colonized (47.26%) after 3 days to almost full surface coverage (84.45%) after 5 days. The enamel plates that were positioned at the back or in the middle of the oral cavity were found to be more suitable for the examination of biofilms up to 3 days old. In conclusion, automated microscopy combined with the use of FISH can enable the efficient visualization and meaningful quantification of bacterial composition over the entire sample surface. Due to the possibility of automation, Scan∧R overcomes the technical limitations of conventional CLSM.
Collapse
|
41
|
A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012; 10:575-82. [PMID: 22728587 DOI: 10.1038/nrmicro2819] [Citation(s) in RCA: 652] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer has long been considered a genetic disease. However, accumulating evidence supports the involvement of infectious agents in the development of cancer, especially in those organs that are continuously exposed to microorganisms, such as the large intestine. Recent next-generation sequencing studies of the intestinal microbiota now offer an unprecedented view of the aetiology of sporadic colorectal cancer and have revealed that the microbiota associated with colorectal cancer contains bacterial species that differ in their temporal associations with developing tumours. Here, we propose a bacterial driver-passenger model for microbial involvement in the development of colorectal cancer and suggest that this model be incorporated into the genetic paradigm of cancer progression.
Collapse
|