1
|
Ocaña-Cabrera JS, Martin-Solano S, Saegerman C. Environmental Sources of Possible Associated Pathogens and Contaminants of Stingless Bees in the Neotropics. INSECTS 2025; 16:350. [PMID: 40332795 PMCID: PMC12027748 DOI: 10.3390/insects16040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
Stingless bees are crucial for pollination and support diverse ecological relationships, offering economic benefits and contributing to enhanced crop yields. Their tropical pollinator status makes them highly sensitive to environmental changes and disruptions, which could affect their survival, as well as to pathogens that threaten their health. The lack of comprehensive research and the scattering of reports make it difficult to identify pathogens and contaminants. This review aims to provide an overview of diseases in stingless bees, examine chemical contaminants in their products, and explore threatened sources. Using the PRISMA flowchart, a total of 30 articles from 2009 to 2024 concerning pathogens and contaminants in stingless bees were retrieved. A total of 15 pathogens and 26 pollutants affect life expectancy and survival rate of stingless bees (mainly the genera Melipona and Tetragonisca) were identified in five major areas of the Neotropics, including Brazil, Mexico, Costa Rica, Australia, and Asia. Studies indicated that the bacterial genera Pseudomonas, Melissococcus, and Lysinibacillus are affecting the survival of stingless bees, particularly their brood, and contributing to annual colony deaths. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), and microplastics have been detected in by-products of stingless bees, especially honey. Epidemiological research is crucial, including studies on pathogens associated with diseases, the effects of contaminants on bees, and the development of quality guidelines for stingless-bee products.
Collapse
Affiliation(s)
- Joseline Sofía Ocaña-Cabrera
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B43a, Sart-Tilman, 4000 Liege, Belgium;
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171103, Ecuador;
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B43a, Sart-Tilman, 4000 Liege, Belgium;
| |
Collapse
|
2
|
Ocaña-Cabrera JS, Martin-Solano S, Saegerman C. Development of Tools to Understand the Relationship between Good Management Practices and Nest Losses in Meliponiculture: A Pilot Study in Latin American Countries. INSECTS 2024; 15:715. [PMID: 39336683 PMCID: PMC11432252 DOI: 10.3390/insects15090715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Insect pollination services amount to USD 235-577 billion. Seventy five percent of agricultural production for human consumption depends on pollination, mainly by bees. A decline in pollinators, including Meliponini tribe bees, will impact the economy, food security, human health, and ecosystem stability, especially in tropical forests where stingless bees are the main pollinators. The objective of this survey was to understand the relationship between good management practices and nest losses in meliponiculture, encompassing biosecurity and conservation criteria. A 36-question survey was organized and spread. We received 92 responses, representing 4548 managed nests. The primary motivation for engaging in meliponiculture was biodiversity conservation (92%). More than 50% of the questions on biosecurity were answered as "applied". Hand washing before any activity with bees was the main rule, followed by material sterilization and personal protective equipment use. The annual mortality rate of stingless bee nests was estimated at 15%. Nest invaders (72%) and nearby sources of pollution (60%) were identified as the main potential causes of nest losses. From a general perspective, meliponiculture practices continue to expand remarkably. The implementation of effective nest management strategies is associated with a reduction in nest losses. It is important to consider One Health's perspective to ensure optimal management practices.
Collapse
Affiliation(s)
- Joseline Sofía Ocaña-Cabrera
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, P.O. Box 171-5-231, Sangolquí 171103, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| |
Collapse
|
3
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
4
|
Tejerina MR, Cabana MJ, Enríquez PA, Benítez-Ahrendts MR, Fonseca MI. Bacterial Strains Isolated from Stingless Bee Workers Inhibit the Growth of Apis mellifera Pathogens. Curr Microbiol 2024; 81:106. [PMID: 38418777 DOI: 10.1007/s00284-024-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Apis mellifera bees are an important resource for the local economy of various regions in Argentina and the maintenance of natural ecosystems. In recent years, different alternatives have been investigated to avoid the reduction or loss of colonies caused by pathogens and parasites such as Ascosphaera apis, Aspergillus flavus, and Paenibacillus larvae. We focused on bacterial strains isolated from the intestine of native stingless bees, to elucidate their antagonistic effect on diseases of A. mellifera colonies. For this purpose, worker bees of the species Tetragonisca fiebrigi, Plebeia spp., and Scaptotrigona jujuyensis were captured from the entrance to tree hives and transported to the laboratory, where their intestines were extracted. Twenty bacterial colonies were isolated from the intestines, and those capable of inhibiting enterobacteria in vitro and producing organic acids, proteases, and chitinases were selected. Four genera, Levilactobacillus, Acetobacter, Lactiplantibacillus, and Pantoea, were selected and identified by the molecular marker that codes for the 16S rRNA gene. For inhibition assays, cell suspensions and cell-free suspensions were performed. All treatments showed significant antibacterial effects, in comparison with the controls, against P. larvae and antifungal effects against A. apis and A. flavus. However, the mechanisms by which these bacteria inhibit the growth of these pathogens were not studied.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina.
- Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina.
| | - María José Cabana
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Pablo Adrián Enríquez
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Marcelo Rafael Benítez-Ahrendts
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
- Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina
| | - María Isabel Fonseca
- Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Zbrozek M, Fearon ML, Weise C, Tibbetts EA. Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees. Ecol Evol 2023; 13:e10528. [PMID: 37736280 PMCID: PMC10511299 DOI: 10.1002/ece3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Vairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers-including the petals, stamen, and nectary-at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.
Collapse
Affiliation(s)
- Maryellen Zbrozek
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Michelle L. Fearon
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Weise
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Tibbetts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Tejerina MR, Cabana MJ, Cruz NM, Enríquez PA, Benitez-Ahrendts MR, Fonseca MI. Fungal microbiota isolated from native stingless bee species inhibited pathogens of Apis mellifera. Fungal Biol 2023; 127:1267-1275. [PMID: 37821148 DOI: 10.1016/j.funbio.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/13/2023]
Abstract
Social bees can establish interactions with microorganisms to keep their colonies free of pathogens and parasites by developing different protection strategies. We explored the fungal microbiota isolated from three species of stingless bees, Tetragonisca fiebrigi, Plebeias sp., and Scaptotrigona jujuyensis, and its potential ability to suppress pathogenic microorganisms of A. mellifera, namely Paenibacillus larvae, Ascosphaera apis and Aspergillus flavus, which were tested and evaluated. Six filamentous fungal strains, Trametes hirsuta, Alternaria alternata, Curvularia spicifera, Skeletocutis sp., Alternaria tenuissima, Monascus spp., as well as the yeast Wickerhamomyces anomalus, were selected for trials and isolated from the heads of foraging bees. The fungal strains were identified by macroscopic and microscopic taxonomic characteristics and by sequencing of the ITS1-5.8S-ITS2 region of ribosomal DNA. All fungal strains inhibited these pathogens of A. mellifera. We also evaluated the effect of the secondary metabolites extracted with and without ethanol. Both metabolites showed antimicrobial properties, and our results suggest that fungi isolated from stingless bees produce bioactive compounds with antibacterial and antifungal effects that could be used to treat Apis mellifera colony diseases and maintain colony health.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, Jujuy, Argentina.
| | - María José Cabana
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Nancy Marina Cruz
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Pablo Adrián Enríquez
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Marcelo Rafael Benitez-Ahrendts
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, Jujuy, Argentina
| | - María Isabel Fonseca
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina; CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Rodríguez-Flores MS, Mazzei M, Felicioli A, Diéguez-Antón A, Seijo MC. Emerging Risk of Cross-Species Transmission of Honey Bee Viruses in the Presence of Invasive Vespid Species. INSECTS 2022; 14:6. [PMID: 36661935 PMCID: PMC9866884 DOI: 10.3390/insects14010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The increase in invasive alien species is a concern for the environment. The establishment of some of these species may be changing the balance between pathogenicity and host factors, which could alter the defense strategies of native host species. Vespid species are among the most successful invasive animals, such as the genera Vespa, Vespula and Polistes. Bee viruses have been extensively studied as an important cause of honey bee population losses. However, knowledge about the transmission of honey bee viruses in Vespids is a relevant and under-researched aspect. The role of some mites such as Varroa in the transmission of honey bee viruses is clearer than in the case of Vespidae. This type of transmission by vectors has not yet been clarified in Vespidae, with interspecific relationships being the main hypotheses accepted for the transmission of bee viruses. A majority of studies describe the presence of viruses or their replicability, but aspects such as the symptomatology in Vespids or the ability to infect other hosts from Vespids are scarcely discussed. Highlighting the case of Vespa velutina as an invader, which is causing huge losses in European beekeeping, is of special interest. The pressure caused by V. velutina leads to weakened hives that become susceptible to pathogens. Gathering this information is necessary to promote further research on the spread of bee viruses in ecosystems invaded by invasive species of Vespids, as well as to prevent the decline of bee populations due to bee viruses.
Collapse
Affiliation(s)
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Ana Diéguez-Antón
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| | - María Carmen Seijo
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
8
|
Gómez-Moracho T, Durand AM, Lihoreau M. The gut parasite Nosema ceranae impairs olfactory learning in bumblebees. J Exp Biol 2022; 225:jeb244340. [PMID: 35726829 DOI: 10.1242/jeb.244340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Pollinators are exposed to numerous parasites and pathogens when foraging on flowers. These biological stressors may affect critical cognitive abilities required for foraging. Here, we tested whether exposure to Nosema ceranae, one of the most widespread parasites of honey bees also found in wild pollinators, impacts cognition in bumblebees. We investigated different forms of olfactory learning and memory using conditioning of the proboscis extension reflex. Seven days after being exposed to parasite spores, bumblebees showed lower performance in absolute, differential and reversal learning than controls. The consistent observations across different types of olfactory learning indicate a general negative effect of N. ceranae exposure that did not specifically target particular brain areas or neural processes. We discuss the potential mechanisms by which N. ceranae impairs bumblebee cognition and the broader consequences for populations of pollinators.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| | - Alice Mélusine Durand
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| |
Collapse
|
9
|
Polymorphism of 16s rRNA Gene: Any Effect on the Biomolecular Quantitation of the Honey Bee (Apis mellifera L., 1758) Pathogen Nosema ceranae? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microsporidian Nosema ceranae is a severe threat to the western honey bee Apis mellifera, as it is responsible for nosemosis type C, which leads the colonies to dwindle and collapse. Infection quantification is essential to clinical and research aims. Assessment is made often with molecular assays based on rRNA genes, which are present in the N. ceranae genome as multiple and polymorphic copies. This study aims to compare two different methods of Real-Time PCR (qPCR), respectively relying on the 16S rRNA and Hsp70 genes, the first of which is described as a multiple and polymorphic gene. Young worker bees, hatched in the laboratory and artificially inoculated with N. ceranae spores, were incubated at 33 °C and subject to different treatment regimens. Samples were taken post-infection and analyzed with both qPCR methods. Compared to Hsp70, the 16S rRNA method systematically detected higher abundance. Straightforward conversion between the two methods is made impossible by erratic 16s rRNA/Hsp70 ratios. The 16s rRNA polymorphism showed an increase around the inoculated dose, where a higher prevalence of ungerminated spores was expected due to the treatment effects. The possible genetic background of that irregular distribution is discussed in detail. The polymorphic nature of 16S rRNA showed to be a limit in the infection quantification. More reliably, the N. ceranae abundance can be assessed in honey bee samples with methods based on the single-copy gene Hsp70.
Collapse
|
10
|
Nanetti A, Bortolotti L, Cilia G. Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens 2021; 10:1044. [PMID: 34451508 PMCID: PMC8400633 DOI: 10.3390/pathogens10081044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.
Collapse
Affiliation(s)
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (G.C.)
| | | |
Collapse
|
11
|
Lourenço AP, Guidugli-Lazzarini KR, de Freitas NHA, Message D, Bitondi MMG, Simões ZLP, Teixeira ÉW. Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: The natural colony environment. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104237. [PMID: 33831437 DOI: 10.1016/j.jinsphys.2021.104237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Nosema ceranae is a microsporidium that infects Apis mellifera, causing diverse physiological and behavioral alterations. Given the existence of individual and social mechanisms to reduce infection and fungal spread in the colony, bees may respond differently to infection depending on their rearing conditions. In this study, we investigated the effect of N. ceranae in honey bee foragers naturally infected with different fungal loads in a tropical region. In addition, we explored the effects of N. ceranae artificially infected young bees placed in a healthy colony under field conditions. Honey bees naturally infected with higher loads of N. ceranae showed downregulation of genes from Toll and IMD immune pathways and antimicrobial peptide (AMP) genes, but hemolymph total protein amount and Vitellogenin (Vg) titers were not affected. Artificially infected bees spread N. ceranae to the controls in the colony, but fungal loads were generally lower than those observed in cages, probably because of social immunity. Although no significant changes in mRNA levels of AMP-encoding were observed, N. ceranae artificially infected bees showed downregulation of miR-989 (an immune-related microRNA), lower vitellogenin gene expression, and decreased hemolymph Vg titers. Our results demonstrate for the first time that natural infection by N. ceranae suppresses the immune system of honey bee foragers in the field. This parasite is detrimental to the immune system of young and old bees, and disease spread, mitigation and containment will depend on the colony environment.
Collapse
Affiliation(s)
- Anete P Lourenço
- Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| | - Karina R Guidugli-Lazzarini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nayara H A de Freitas
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Dejair Message
- Laboratório Especializado de Sanidade Apícola (LASA), Instituto Biológico, APTA, SAA-SP, Pindamonhangaba, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Érica W Teixeira
- Laboratório Especializado de Sanidade Apícola (LASA), Instituto Biológico, APTA, SAA-SP, Pindamonhangaba, SP, Brazil
| |
Collapse
|
12
|
Salvarrey S, Antúnez K, Arredondo D, Plischuk S, Revainera P, Maggi M, Invernizzi C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS One 2021; 16:e0249842. [PMID: 33901226 PMCID: PMC8075198 DOI: 10.1371/journal.pone.0249842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
Collapse
Affiliation(s)
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET- UNLP), La Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | |
Collapse
|
13
|
The Herbal Supplements NOZEMAT HERB ® and NOZEMAT HERB PLUS ®: An Alternative Therapy for N. ceranae Infection and Its Effects on Honey Bee Strength and Production Traits. Pathogens 2021; 10:pathogens10020234. [PMID: 33669663 PMCID: PMC7922068 DOI: 10.3390/pathogens10020234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Honey bees (Apis mellifera L.) are the most effective pollinators for different crops and wild flowering plants, thus maintaining numerous ecosystems in the world. However, honey bee colonies often suffer from stress or even death due to various pests and diseases. Among the latter, nosemosis is considered to be one of the most common diseases, causing serious damage to beekeeping every year. Here, we present, for the first time, the effects from the application of the herbal supplements NOZEMAT HERB® (NH) and NOZEMAT HERB PLUS® (NHP) for treating N. ceranae infection and positively influencing the general development of honey bee colonies. To achieve this, in autumn 2019, 45 colonies were selected based on the presence of N. ceranae infections. The treatment was carried out for 11 months (August 2019–June 2020). All colonies were sampled pre- and post-treatment for the presence of N. ceranae by means of light microscopy and PCR analysis. The honey bee colonies’ performance and health were evaluated pre- and post-treatment. The obtained results have shown that both supplements have exhibited statistically significant biological activity against N. ceranae in infected apiaries. Considerable enhancement in the strength of honey bee colonies and the amount of sealed workers was observed just one month after the application of NH and NHP. Although the mechanisms of action of NH and NHP against N. ceranae infection are yet to be completely elucidated, our results suggest a new holistic approach as an alternative therapy to control nosemosis and to improve honey bee colonies’ performance and health.
Collapse
|
14
|
Gómez-Moracho T, Durand T, Pasquaretta C, Heeb P, Lihoreau M. Artificial Diets Modulate Infection Rates by Nosema ceranae in Bumblebees. Microorganisms 2021; 9:microorganisms9010158. [PMID: 33445614 PMCID: PMC7827189 DOI: 10.3390/microorganisms9010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022] Open
Abstract
Parasites alter the physiology and behaviour of their hosts. In domestic honey bees, the microsporidia Nosema ceranae induces energetic stress that impairs the behaviour of foragers, potentially leading to colony collapse. Whether this parasite similarly affects wild pollinators is little understood because of the low success rates of experimental infection protocols. Here, we present a new approach for infecting bumblebees (Bombus terrestris) with controlled amounts of N. ceranae by briefly exposing individual bumblebees to parasite spores before feeding them with artificial diets. We validated our protocol by testing the effect of two spore dosages and two diets varying in their protein to carbohydrate ratio on the prevalence of the parasite (proportion of PCR-positive bumblebees), the intensity of parasites (spore count in the gut and the faeces), and the survival of bumblebees. Overall, insects fed a low-protein, high-carbohydrate diet showed the highest parasite prevalence (up to 70%) but lived the longest, suggesting that immunity and survival are maximised at different protein to carbohydrate ratios. Spore dosage did not affect parasite infection rate and host survival. The identification of experimental conditions for successfully infecting bumblebees with N. ceranae in the lab will facilitate future investigations of the sub-lethal effects of this parasite on the behaviour and cognition of wild pollinators.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
- Correspondence:
| | - Tristan Durand
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Philipp Heeb
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique, Université Paul Sabatier, ENSFEA, 31062 Toulouse, France;
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| |
Collapse
|
15
|
Ebani VV, Mancianti F. Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Vet Sci 2020; 7:E193. [PMID: 33266079 PMCID: PMC7712454 DOI: 10.3390/vetsci7040193] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Essential oils (EOs) are secondary metabolites of plants employed in folk medicine for a long time thanks to their multiple properties. In the last years, their use has been introduced in veterinary medicine, too. The study of the antibacterial properties of EOs is of increasing interest, because therapies with alternative drugs are welcome to combat infections caused by antibiotic-resistant strains. Other issues could be resolved by EOs employment, such as the presence of antibiotic residues in food of animal origin and in environment. Although the in vitro antimicrobial activity of EOs has been frequently demonstrated in studies carried out on bacterial and fungal strains of different origins, there is a lack of information about their effectiveness in treating infections in animals. The scientific literature reports some studies about in vitro EOs' activity against animal clinical bacterial and fungal isolates, but in vivo studies are very scanty. The use of EOs in therapy of companion and farm animals should follow careful studies on the toxicity of these natural products in relation to animal species and route of administration. Moreover, considering the different behavior of EOs in relation to both species and strain pathogen, before starting a therapy, an aromatogram should be executed to choose the oil with the best antimicrobial activity.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
16
|
MacInnis CI, Keddie BA, Pernal SF. Nosema ceranae (Microspora: Nosematidae): A Sweet Surprise? Investigating the Viability and Infectivity of N. ceranae Spores Maintained in Honey and on Beeswax. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2069-2078. [PMID: 32882034 DOI: 10.1093/jee/toaa170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Nosema disease is a prominent malady among adult honey bees [Apis mellifera L. (Hymenoptera: Apidae)], caused by the microsporidian parasites, Nosema apis Zander (Microspora: Nosematidae) and N. ceranae Fries et al. 1996. The biology of N. apis is well understood, as this parasite was first described over a century ago. As N. ceranae is an emerging parasite of the honey bee, we do not yet understand how long spores of this parasite survive in honey bee colonies, or all the potential modes of transmission among bees. We investigated the viability and infectivity of N. ceranae spores in honey and on beeswax over time after exposure to 33, 20, -12, and -20°C. Spores in honey maintained viability at freezing temperatures for up to 1 yr and remained viable considerably longer than those on beeswax. Based on this evidence, honey may act as an important reservoir for infective spores to initiate or perpetuate N. ceranae infections in honey bee colonies. This work provides information that may help enhance current management recommendations for apiculturalists.
Collapse
Affiliation(s)
- Courtney I MacInnis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| | - B Andrew Keddie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| |
Collapse
|
17
|
Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci Rep 2020; 10:17021. [PMID: 33046792 PMCID: PMC7550335 DOI: 10.1038/s41598-020-74209-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
The microsporidian parasite Nosema ceranae and neonicotinoid insecticides affect the health of honey bees (Apis mellifera). However, there is limited information about the effect of these stressors on other pollinators such as stingless bees (Hymenoptera: Meliponini). We examined the separate and combined effects of N. ceranae and the neonicotinoid thiamethoxam at field-exposure levels on the survivorship and cellular immunity (hemocyte concentration) of the stingless bee Melipona colimana. Newly-emerged bees were subjected to four treatments provided in sucrose syrup: N. ceranae spores, thiamethoxam, thiamethoxam and N. ceranae, and control (bees receiving only syrup). N. ceranae developed infections of > 467,000 spores/bee in the group treated with spores only. However, in the bees subjected to both stressors, infections were < 143,000 spores/bee, likely due to an inhibitory effect of thiamethoxam on the microsporidium. N. ceranae infections did not affect bee survivorship, but thiamethoxam plus N. ceranae significantly increased mortality. Hemocyte counts were significantly lower in N. ceranae infected-bees than in the other treatments. These results suggest that N. ceranae may infect, proliferate and cause cellular immunosuppression in stingless bees, that exposure to sublethal thiamethoxam concentrations is toxic to M. colimana when infected with N. ceranae, and that thiamethoxam restrains N. ceranae proliferation. These findings have implications on pollinators' conservation.
Collapse
|
18
|
Cilia G, Garrido C, Bonetto M, Tesoriero D, Nanetti A. Effect of Api-Bioxal ® and ApiHerb ® Treatments against Nosema ceranae Infection in Apis mellifera Investigated by Two qPCR Methods. Vet Sci 2020; 7:vetsci7030125. [PMID: 32899611 PMCID: PMC7558000 DOI: 10.3390/vetsci7030125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Nosema ceranae is a worldwide distributed midgut parasite of western honey bees, leading to dwindling colonies and their collapse. As a treatment, only fumagillin is available, causing issues like resistance and hampered bee physiology. This study aimed to evaluate ApiHerb® and Api-Bioxal® as treatments against N. ceranae. The efficacy was tested using two qPCR methods based on the 16S rRNA and Hsp70 genes. In addition, these methods were compared for their aptitude for the quantification of the infection. For this, 19 colonies were selected based on the presence of N. ceranae infections. The colonies were divided into three groups: treated with ApiHerb, Api-Bioxal with previous queen caging and an untreated control. All colonies were sampled pre- and post-treatment. The bees were analyzed individually and in duplicate with both qPCR methods. All bees in the pre-treatment tested positive for N. ceranae. Both treatments reduced the abundance of N. ceranae, but ApiHerb also decreased the prevalence of infected bees. Analysis with the 16S rRNA method resulted in several orders of magnitude more copies than analysis with the Hsp70 method. We conclude that both products are suitable candidates for N. ceranae treatment. From our analysis, the qPCR method based on the Hsp70 gene results as more apt for the exact quantification of N. ceranae as is needed for the development of veterinary medicinal products.
Collapse
Affiliation(s)
- Giovanni Cilia
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (M.B.); (D.T.); (A.N.)
| | - Claudia Garrido
- BeeSafe-Bee Health Consulting for Veterinary Medicine and Agriculture, 59071 Hamm, Germany
- Correspondence:
| | - Martina Bonetto
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (M.B.); (D.T.); (A.N.)
| | - Donato Tesoriero
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (M.B.); (D.T.); (A.N.)
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (M.B.); (D.T.); (A.N.)
| |
Collapse
|
19
|
Grupe AC, Quandt CA. A growing pandemic: A review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathog 2020; 16:e1008580. [PMID: 32555676 PMCID: PMC7302437 DOI: 10.1371/journal.ppat.1008580] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Arthur C. Grupe
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - C. Alisha Quandt
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
20
|
European Foulbrood in stingless bees (Apidae: Meliponini) in Brazil: Old disease, renewed threat. J Invertebr Pathol 2020; 172:107357. [DOI: 10.1016/j.jip.2020.107357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/13/2023]
|
21
|
Guimarães-Cestaro L, Martins MF, Martínez LC, Alves MLTMF, Guidugli-Lazzarini KR, Nocelli RCF, Malaspina O, Serrão JE, Teixeira ÉW. Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Naturwissenschaften 2020; 107:16. [DOI: 10.1007/s00114-020-1670-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022]
|
22
|
Plischuk S, Fernández de Landa G, Revainera P, Quintana S, Pocco ME, Cigliano MM, Lange CE. Parasites and pathogens associated with native bumble bees (Hymenoptera: Apidae:Bombusspp.) from highlands in Bolivia and Peru. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2020. [DOI: 10.1080/01650521.2020.1743551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
| | - Gregorio Fernández de Landa
- Centro de Investigación en Abejas Sociales, Instituto de Investigaciones en Producción, Sanidad y Ambiente (CONICET-CIC-UNMdP), Mar del Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales, Instituto de Investigaciones en Producción, Sanidad y Ambiente (CONICET-CIC-UNMdP), Mar del Plata, Argentina
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales, Instituto de Investigaciones en Producción, Sanidad y Ambiente (CONICET-CIC-UNMdP), Mar del Plata, Argentina
| | - Martina E. Pocco
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - María M. Cigliano
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos E. Lange
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
- Comisión de Investigaciones Científicas, Provincia de Buenos Aires (CICPBA), Argentina
| |
Collapse
|
23
|
Oliveira AH, Fernandes KM, Gonçalves WG, Zanuncio JC, Serrão JE. A peritrophin mediates the peritrophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 53:100885. [PMID: 31614307 DOI: 10.1016/j.asd.2019.100885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The permeability of the peritrophic matrix, essential for its function, depends on its chemical composition. The objective was to determine if the permeability of the peritrophic matrix varies along the midgut and in the presence of anti-peritrophin-55 antibody in Melipona quadrifasciata and Apis mellifera bees. The thickness of the peritrophic matrix in both species varies between the anterior and posterior midgut regions in workers. In A. mellifera dextran molecules with 40 kDa cross the peritrophic matrix, whereas those ≥70 kDa are retained in the endoperitrophic space. In M. quadrifasciata the peritrophic matrix permeability was for molecules <40 kDa. Bees fed on anti-peritrophin-55 antibody showed an increase in peritrophic matrix permeability, but survival was not affected. In the bees studied, the peritrophic matrices have morphological differences between midgut regions, but there is no difference in their permeability along the midgut, which is affected by peritrophin 55.
Collapse
Affiliation(s)
- André Henrique Oliveira
- Department of General Biology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| | | | - José Cola Zanuncio
- Department of Entomology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| |
Collapse
|
24
|
Purkiss T, Lach L. Pathogen spillover from Apis mellifera to a stingless bee. Proc Biol Sci 2019; 286:20191071. [PMID: 31387511 PMCID: PMC6710595 DOI: 10.1098/rspb.2019.1071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/12/2019] [Indexed: 01/13/2023] Open
Abstract
Pathogen spillover from managed bees is increasingly considered as a possible cause of pollinator decline. Though spillover has been frequently documented, evidence of the pathogen's virulence in the new host or mechanism of transmission is rare. Stingless bees (Apocrita: Meliponini) are crucial pollinators pan-tropically and overlap with managed honeybees (Apis mellifera) in much of their range. Nosema ceranae is the most prevalent disease of adult A. mellifera. We used laboratory experiments and field surveys to investigate the susceptibility of stingless bees (Tetragonula hockingsi) to N. ceranae, infection prevalence and transmissibility via flowers. We found that 67% of T. hockingsi fed sucrose with N. ceranae had detectable spores in their ventriculus, and they died at 2.96 times the rate of sucrose-only fed bees. Five of six field hives harboured bees with N. ceranae present at least once during our five-month survey, with prevalence up to 20%. In our floral transmission experiment, 67% of inflorescences exposed to infected A. mellifera yielded N. ceranae spores, and all resulted in T. hockingsi with N. ceranae spores in their guts. We conclude that N. ceranae is virulent in T. hockingsi under laboratory conditions, is common in the local T. hockingsi population and is transmissible via flowers.
Collapse
Affiliation(s)
| | - Lori Lach
- College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| |
Collapse
|
25
|
Li P, Mi R, Zhao R, Li X, Zhang B, Yue D, Ye B, Zhao Z, Wang L, Zhu Y, Bao C, Fan Q, Jiang X, Zhang Y. Quantitative real-time PCR with high-throughput automatable DNA preparation for molecular screening of Nosema spp. in Antheraea pernyi. J Invertebr Pathol 2019; 164:16-22. [PMID: 30981712 DOI: 10.1016/j.jip.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/15/2023]
Abstract
Accurate diagnosis of pathogenic Nosema spp. in Antheraea pernyi samples is considered especially useful for reducing economic losses in sericulture and improving food safety by maintaining pathogen-free pupae. However, microscopy and immunologic methods have poor diagnostic sensitivity, while the more sensitive PCR methods remain costly and time-consuming for template preparation. To address this issue, we introduce a sensitive ALMS-qPCR method that combines fast, simple DNA extraction using Alkali Lysis followed by Magnetic bead Separation (ALMS) and quantitative real-time PCR (qPCR). This approach is especially fit for large-scale pathogen molecular screening, because the DNA preparation procedure is fast (<0.94 min per sample) and is high-throughput (performs on a 96-well plate). It is cost-effective, since the most expensive materials can be made in the lab and can be recycled, while the automated procedure can help to minimize labor cost. Though the DNA preparation procedure was substantially simplified, common PCR inhibitory factors were not observed. The sensitivity of ALMS-qPCR is high and the limit of detection is 0.045 parasites/μL. Large-scale screening of Nosema spp. in 3000 Antheraea pernyi samples confirmed the efficacy of the ALMS-qPCR method. Sensitivity is much higher than clinical microscopy, especially for host groups with low infection prevalence and levels. High-throughput ALMS-qPCR, combining automated DNA preparation and sensitive qPCR, provides an enhanced approach for pébrine screening and epidemiological studies. The application of ALMS-qPCR in the sericulture industry will help to strengthen pébrine control and breed pathogen-free species, which means much safer food provision and better genetic resource conservation.
Collapse
Affiliation(s)
- Peipei Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China; Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Rui Mi
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Rui Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China
| | - Xiangcun Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China
| | - Bo Zhang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Dongmei Yue
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Bo Ye
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Linmei Wang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China
| | - Youmin Zhu
- The Sericultural Research Institute of Liaoning Province, Dandong 118100, PR China
| | - Chen Bao
- Horticulture and Native Product Station, Rural Work Committee of Jilin Province, Changchun, Jilin Province 130000, PR China
| | - Qi Fan
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning Province 116085, PR China.
| | - Xiaobin Jiang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, PR China.
| | - Yaozhou Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
26
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
27
|
Cilia G, Cabbri R, Maiorana G, Cardaio I, Dall'Olio R, Nanetti A. A novel TaqMan ® assay for Nosema ceranae quantification in honey bee, based on the protein coding gene Hsp70. Eur J Protistol 2018; 63:44-50. [PMID: 29459253 DOI: 10.1016/j.ejop.2018.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/03/2023]
Abstract
Nosema ceranae is now a widespread honey bee pathogen with high incidence in apiculture. Rapid and reliable detection and quantification methods are a matter of concern for research community, nowadays mainly relying on the use of biomolecular techniques such as PCR, RT-PCR or HRMA. The aim of this technical paper is to provide a new qPCR assay, based on the highly-conserved protein coding gene Hsp70, to detect and quantify the microsporidian Nosema ceranae affecting the western honey bee Apis mellifera. The validation steps to assess efficiency, sensitivity, specificity and robustness of the assay are described also.
Collapse
Affiliation(s)
- Giovanni Cilia
- Consiglio per la Ricerca in agricoltura e l'Analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente, Via di Saliceto 80, 40128 Bologna, Italy.
| | - Riccardo Cabbri
- Consiglio per la Ricerca in agricoltura e l'Analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente, Via di Saliceto 80, 40128 Bologna, Italy; Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di sopra 50, Ozzano del'Emilia, Bologna, Italy
| | - Giacomo Maiorana
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di sopra 50, Ozzano del'Emilia, Bologna, Italy
| | - Ilaria Cardaio
- Consiglio per la Ricerca in agricoltura e l'Analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente, Via di Saliceto 80, 40128 Bologna, Italy
| | - Raffaele Dall'Olio
- Consiglio per la Ricerca in agricoltura e l'Analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente, Via di Saliceto 80, 40128 Bologna, Italy
| | - Antonio Nanetti
- Consiglio per la Ricerca in agricoltura e l'Analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente, Via di Saliceto 80, 40128 Bologna, Italy
| |
Collapse
|