1
|
Chege GK, Chapman RE, Keyser AT, Adams CH, Benn K, van Diepen MT, Douglass N, Lambson B, Hermanus T, Moore PL, Williamson AL. Heterologous Immunization with Improved HIV-1 Subtype C Vaccines Elicit Autologous Tier 2 Neutralizing Antibodies with Rapid Viral Replication Control After SHIV Challenge. Viruses 2025; 17:277. [PMID: 40007032 PMCID: PMC11861162 DOI: 10.3390/v17020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
We previously reported on HIV vaccines that elicited autologous Tier 2 neutralizing antibodies (nAbs) in rabbits. In the current study, we sought to establish a proof of concept that HIV vaccines using identical designs elicit Tier 2 nAbs in arhesus macaque (RM) model. DNA and MVA vaccines expressing SIV Gag and HIV-1 Env antigens were constructed, and in vitro expression was confirmed. A soluble envelope protein (gp140 Env) was expressed from a stable HEK293 cell line and purified using lectin affinity and size exclusion chromatography. The expression and secretion of SIV Gag and HIV-1 Env by the DNA and MVA vaccines was verified in vitro. Five RMs were inoculated with two DNA, followed by two MVA, and finally with two gp140 Env vaccines at weeks 0, 4, 8, 12, 20 and 28. Vaccine-induced T cell immunity was measured by IFN-γ ELISpot while nAbs were evaluated against MW965 (Tier 1A), 6644 (Tier 1B), autologous ZM109.5A and a closely-related ZM109.B4 (Tier 2) pseudovirions. Vaccinated RMs were challenged intrarectally with simian-human immunodeficiency virus (SHIV), four weeks after the final vaccination, as was an unvaccinated control group (n = 4). Following vaccination, all the animals developed moderate IFN-γ ELISpot responses after the DNA vaccinations which were boosted by the MVA vaccine. After the gp140 Env boost, all animals developed nAbs with peak median titres at 762 (MW965) and 263 (ZM109.5A). The vaccinated animals became infected after a similar number of challenges to the unvaccinated controls, and the resultant number of viral copies in the blood and the lymphoid tissues were similar. However, the duration of detectable viraemia in the vaccinated animals (median: 2 weeks) was shorter than the controls (median: 8.5 weeks). These data show that the vaccines elicited robust cellular and functional humoral immune responses that resulted in a quicker control of viraemia.
Collapse
Affiliation(s)
- Gerald K. Chege
- Primate Unit and Delft Animal Centre, Centre and Platform Office, South African Medical Research Council, Parrow Valley, Cape Town 7505, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Rosamund E. Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Alana T. Keyser
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Craig H. Adams
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Kealan Benn
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Michiel T. van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicola Douglass
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Bronwen Lambson
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa; (B.L.); (T.H.); (P.L.M.)
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
| | - Tandile Hermanus
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa; (B.L.); (T.H.); (P.L.M.)
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
| | - Penny L. Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa; (B.L.); (T.H.); (P.L.M.)
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban 4001, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.E.C.); (A.T.K.); (C.H.A.); (K.B.); (M.T.v.D.); (N.D.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
3
|
Berry N, Mee ET, Almond N, Rose NJ. The Impact and Effects of Host Immunogenetics on Infectious Disease Studies Using Non-Human Primates in Biomedical Research. Microorganisms 2024; 12:155. [PMID: 38257982 PMCID: PMC10818626 DOI: 10.3390/microorganisms12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
Collapse
Affiliation(s)
- Neil Berry
- Research & Development—Science, Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, UK; (E.T.M.); (N.A.); (N.J.R.)
| | | | | | | |
Collapse
|
4
|
Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL, Baranowski TM, Tomko JA, Causgrove CM, Maiello P, O'Connor SL, Scanga CA. Pre-existing Simian Immunodeficiency Virus Infection Increases Expression of T Cell Markers Associated with Activation during Early Mycobacterium tuberculosis Coinfection and Impairs TNF Responses in Granulomas. THE JOURNAL OF IMMUNOLOGY 2021; 207:175-188. [PMID: 34145063 DOI: 10.4049/jimmunol.2100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA;
| | - Amy Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tonilynn M Baranowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chelsea M Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, WI; and
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
5
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Martin ML, Bitzer AA, Schrader A, Bergmann-Leitner ES, Soto K, Zou X, Beck Z, Matyas GR, Dutta S. Comparison of immunogenicity and safety outcomes of a malaria vaccine FMP013/ALFQ in rhesus macaques (Macaca mulatta) of Indian and Chinese origin. Malar J 2019; 18:377. [PMID: 31775762 PMCID: PMC6880475 DOI: 10.1186/s12936-019-3014-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
Background Indian-origin rhesus (InR) are preferred for research, but strict export restrictions continue to limit their use. Chinese-origin rhesus (ChR), although easier to procure, are genetically distinct from InR and differ in their immune response to infectious agents, such as the Simian Immunodeficiency Virus. The most advanced malaria vaccine, RTS,S (GlaxoSmithKline), is based on the circumsporozoite protein (CSP) of Plasmodium falciparum. The efficacy of RTS,S vaccine in the field remains low and short-lived; efforts are underway to improve CSP-based vaccines. Rhesus models can accelerate preclinical down-selection of the next generation of malaria vaccines. This study was used to determine if the safety and immunogenicity outcomes following vaccination with a CSP vaccine would differ in the InR and ChR models, given the genetic differences between the two sub-populations of rhesus. Methods The FMP013 vaccine, was composed of nearly full-length soluble P. falciparum CSP produced in Escherichia coli and was adjuvanted with the Army liposomal formulation (ALFQ). Three doses of the vaccine were administered in InR and ChR (n = 6) at 1-month intervals and the antibody and T cell responses were assessed. Results Local and systemic toxicity profile of FMP013 vaccine in InR and ChR were similar and they revealed that the FMP013 vaccine was safe and caused only mild and transient inflammatory adverse reactions. Following the first 2 vaccines, there was a slower acquisition of antibodies to the CSP repeat region in ChR. However after the 3rd vaccination the titers in the two models were comparable. The ChR group repeat-specific antibodies had higher avidity and ChR group showed higher inhibition of liver stage development activity compared to InR. There was no difference in T-cell responses to the FMP013 vaccine between the two models. Conclusions A difference in the quality of serological responses was detected between the two sub-populations of rhesus. However, both models confirmed that FMP013/ALFQ vaccine was safe, highly immunogenic, elicited functional antibodies and T-cell responses. Overall, the data suggests that rhesus of Indian and Chinese origins can be interchangeably used to compare the safety and immunogenicity of next-generation of malaria vaccines and adjuvants.
Collapse
Affiliation(s)
- Monica L Martin
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Alexis A Bitzer
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Andrew Schrader
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Elke S Bergmann-Leitner
- Immunology Core, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kim Soto
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Zoltan Beck
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Henry M. Jackson Foundation, Rockville, MD, 20852, USA
| | - Gary R Matyas
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sheetij Dutta
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| |
Collapse
|
7
|
Preexisting Simian Immunodeficiency Virus Infection Increases Susceptibility to Tuberculosis in Mauritian Cynomolgus Macaques. Infect Immun 2018; 86:IAI.00565-18. [PMID: 30224552 DOI: 10.1128/iai.00565-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death among human immunodeficiency virus (HIV)-positive patients. The precise mechanisms by which HIV impairs host resistance to a subsequent M. tuberculosis infection are unknown. We modeled this coinfection in Mauritian cynomolgus macaques (MCM) using simian immunodeficiency virus (SIV) as an HIV surrogate. We infected seven MCM with SIVmac239 intrarectally and 6 months later coinfected them via bronchoscope with ∼10 CFU of M. tuberculosis Another eight MCM were infected with M. tuberculosis alone. TB progression was monitored by clinical parameters, by culturing bacilli in gastric and bronchoalveolar lavages, and by serial [18F]fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. The eight MCM infected with M. tuberculosis alone displayed dichotomous susceptibility to TB, with four animals reaching humane endpoint within 13 weeks and four animals surviving >19 weeks after M. tuberculosis infection. In stark contrast, all seven SIV+ animals exhibited rapidly progressive TB following coinfection and all reached humane endpoint by 13 weeks. Serial PET/CT imaging confirmed dichotomous outcomes in MCM infected with M. tuberculosis alone and marked susceptibility to TB in all SIV+ MCM. Notably, imaging revealed a significant increase in TB granulomas between 4 and 8 weeks after M. tuberculosis infection in SIV+ but not in SIV-naive MCM and implies that SIV impairs the ability of animals to contain M. tuberculosis dissemination. At necropsy, animals with preexisting SIV infection had more overall pathology, increased bacterial loads, and a trend towards more extrapulmonary disease than animals infected with M. tuberculosis alone. We thus developed a tractable MCM model in which to study SIV-M. tuberculosis coinfection and demonstrate that preexisting SIV dramatically diminishes the ability to control M. tuberculosis coinfection.
Collapse
|
8
|
Acute-Phase CD4 + T Cell Responses Targeting Invariant Viral Regions Are Associated with Control of Live Attenuated Simian Immunodeficiency Virus. J Virol 2018; 92:JVI.00830-18. [PMID: 30111562 DOI: 10.1128/jvi.00830-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
We manipulated SIVmac239Δnef, a model of major histocompatibility complex (MHC)-independent viral control, to evaluate characteristics of effective cellular responses mounted by Mauritian cynomolgus macaques (MCMs) that express the M3 MHC haplotype, which has been associated with poor control of pathogenic simian immunodeficiency virus (SIV). We created SIVΔnef-8x to test the hypothesis that effective SIV-specific T cell responses targeting invariant viral regions can emerge in the absence of immunodominant CD8+ T cell responses targeting variable epitopes and that control is achievable in individuals lacking known "protective" MHC alleles. Full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays identified six newly targeted immunogenic regions following SIVΔnef-8x infection of M3/M3 MCMs. We deep sequenced circulating virus and found that four of the six newly targeted regions rarely accumulated mutations. Six animals infected with SIVΔnef-8x had T cell responses that targeted at least one of the four invariant regions and had a lower set point viral load than two animals that did not have T cell responses that targeted any invariant regions. We found that MHC class II molecules restricted all four of the invariant peptide regions, while the two variable regions were restricted by MHC class I molecules. Therefore, in the absence of immunodominant CD8+ T cell responses that target variable regions during SIVmac239Δnef infection, individuals without protective MHC alleles developed predominantly CD4+ T cell responses specific for invariant regions that may improve control of virus replication. Our results provide some evidence that antiviral CD4+ T cells during acute SIV infection can contribute to effective viral control and should be considered in strategies to combat HIV infection.IMPORTANCE Studies defining effective cellular immune responses to human immunodeficiency virus (HIV) and SIV have largely focused on a rare population that express specific MHC class I alleles and control virus replication in the absence of antiretroviral treatment. This leaves in question whether similar effective immune responses can be achieved in the larger population. The majority of HIV-infected individuals mount CD8+ T cell responses that target variable viral regions that accumulate high-frequency escape mutations. Limiting T cell responses to these variable regions and targeting invariant viral regions, similar to observations in rare "elite controllers," may provide an ideal strategy for the development of effective T cell responses in individuals with diverse MHC genetics. Therefore, it is of paramount importance to determine whether T cell responses can be redirected toward invariant viral regions in individuals without protective MHC alleles and if these responses improve control of virus replication.
Collapse
|
9
|
Morgan RA, Karl JA, Bussan HE, Heimbruch KE, O'Connor DH, Dudley DM. Restricted MHC class I A locus diversity in olive and hybrid olive/yellow baboons from the Southwest National Primate Research Center. Immunogenetics 2018; 70:449-458. [PMID: 29594415 DOI: 10.1007/s00251-018-1057-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
Baboons are valuable models for complex human diseases due to their genetic and physiologic similarities to humans. Deep sequencing methods to characterize full-length major histocompatibility complex (MHC) class I (MHC-I) alleles in different nonhuman primate populations were used to identify novel MHC-I alleles in baboons. We combined data from Illumina MiSeq sequencing and Roche/454 sequencing to characterize novel full-length MHC-I transcripts in a cohort of olive and hybrid olive/yellow baboons from the Southwest National Primate Research Center (SNPRC). We characterized 57 novel full-length alleles from 24 baboons and found limited genetic diversity at the MHC-I A locus, with significant sharing of two MHC-I A lineages between 22 out of the 24 animals characterized. These shared alleles provide the basis for development of tools such as MHC:peptide tetramers for studying cellular immune responses in this important animal model.
Collapse
Affiliation(s)
- Rebecca A Morgan
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hailey E Bussan
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Katelyn E Heimbruch
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
10
|
de Groot NG, Heijmans CMC, de Ru AH, Janssen GMC, Drijfhout JW, Otting N, Vangenot C, Doxiadis GGM, Koning F, van Veelen PA, Bontrop RE. A Specialist Macaque MHC Class I Molecule with HLA-B*27-like Peptide-Binding Characteristics. THE JOURNAL OF IMMUNOLOGY 2017; 199:3679-3690. [PMID: 29021373 DOI: 10.4049/jimmunol.1700502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022]
Abstract
In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - George M C Janssen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Christelle Vangenot
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland; and
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands.,Department of Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
11
|
Lian XD, Zhang XH, Dai ZX, Zheng YT. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina). Immunogenetics 2016; 68:261-74. [PMID: 26782049 DOI: 10.1007/s00251-015-0897-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/28/2015] [Indexed: 11/25/2022]
Abstract
The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model.
Collapse
Affiliation(s)
- Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-He Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
12
|
Walter L, Ansari AA. MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection. Front Immunol 2015; 6:540. [PMID: 26557119 PMCID: PMC4617107 DOI: 10.3389/fimmu.2015.00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
13
|
Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing: Mafa-class I polymorphism. Immunogenetics 2015; 67:563-78. [PMID: 26349955 DOI: 10.1007/s00251-015-0867-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Although the low polymorphism of the major histocompatibility complex (MHC) transplantation genes in the Filipino cynomolgus macaque (Macaca fascicularis) is expected to have important implications in the selection and breeding of animals for medical research, detailed polymorphism information is still lacking for many of the duplicated class I genes. To better elucidate the degree and types of MHC polymorphisms and haplotypes in the Filipino macaque population, we genotyped 127 unrelated animals by the Sanger sequencing method and high-resolution pyrosequencing and identified 112 different alleles, 28 at cynomolgus macaque MHC (Mafa)-A, 54 at Mafa-B, 12 at Mafa-I, 11 at Mafa-E, and seven at Mafa-F alleles, of which 56 were newly described. Of them, the newly discovered Mafa-A8*01:01 lineage allele had low nucleotide similarities (<86%) with primate MHC class I genes, and it was also conserved in the Vietnamese and Indonesian populations. In addition, haplotype estimations revealed 17 Mafa-A, 23 Mafa-B, and 12 Mafa-E haplotypes integrated with 84 Mafa-class I haplotypes and Mafa-F alleles. Of these, the two Mafa-class I haplotypes, F/A/E/B-Hp1 and F/A/E/B-Hp2, had the highest haplotype frequencies at 10.6 and 10.2%, respectively. This suggests that large scale genetic screening of the Filipino macaque population would identify these and other high-frequency Mafa-class I haplotypes that could be used as MHC control animals for the benefit of biomedical research.
Collapse
|
14
|
Mothé BR, Lindestam Arlehamn CS, Dow C, Dillon MBC, Wiseman RW, Bohn P, Karl J, Golden NA, Gilpin T, Foreman TW, Rodgers MA, Mehra S, Scriba TJ, Flynn JL, Kaushal D, O'Connor DH, Sette A. The TB-specific CD4(+) T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis (Edinb) 2015; 95:722-735. [PMID: 26526557 DOI: 10.1016/j.tube.2015.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/05/2023]
Abstract
Non-human primate (NHP) models of tuberculosis (TB) immunity and pathogenesis, especially rhesus and cynomolgus macaques, are particularly attractive because of the high similarity of the human and macaque immune systems. However, little is known about the MHC class II epitopes recognized in macaques, thus hindering the establishment of immune correlates of immunopathology and protective vaccination. We characterized immune responses in rhesus macaques vaccinated against and/or infected with Mycobacterium tuberculosis (Mtb), to a panel of antigens currently in human vaccine trials. We defined 54 new immunodominant CD4(+) T cell epitopes, and noted that antigens immunodominant in humans are also immunodominant in rhesus macaques, including Rv3875 (ESAT-6) and Rv3874 (CFP10). Pedigree and inferred restriction analysis demonstrated that this phenomenon was not due to common ancestry or inbreeding, but rather presentation by common alleles, as well as, promiscuous binding. Experiments using a second cohort of rhesus macaques demonstrated that a pool of epitopes defined in the previous experiments can be used to detect T cell responses in over 75% of individual monkeys. Additionally, 100% of cynomolgus macaques, irrespective of their latent or active TB status, responded to rhesus and human defined epitope pools. Thus, these findings reveal an unexpected general repertoire overlap between MHC class II epitopes recognized in both species of macaques and in humans, showing that epitope pools defined in humans can also be used to characterize macaque responses, despite differences in species and antigen exposure. The results have general implications for the evaluation of new vaccines and diagnostics in NHPs, and immediate applicability in the setting of macaque models of TB.
Collapse
Affiliation(s)
- Bianca R Mothé
- Department of Biology, CSUSM, San Marcos, CA 92096, USA; La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | | - Courtney Dow
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Myles B C Dillon
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Patrick Bohn
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Julie Karl
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Nadia A Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Trey Gilpin
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, LA 70803, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Department of Pediatrics and Child Health, University of Cape Town, Cape Town 7925, South Africa
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Westbrook CJ, Karl JA, Wiseman RW, Mate S, Koroleva G, Garcia K, Sanchez-Lockhart M, O'Connor DH, Palacios G. No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum Immunol 2015; 76:891-6. [PMID: 26028281 DOI: 10.1016/j.humimm.2015.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022]
Abstract
Single-molecule real-time (SMRT) sequencing technology with the Pacific Biosciences (PacBio) RS II platform offers the potential to obtain full-length coding regions (∼1100-bp) from MHC class I cDNAs. Despite the relatively high error rate associated with SMRT technology, high quality sequences can be obtained by circular consensus sequencing (CCS) due to the random nature of the error profile. In the present study we first validated the ability of SMRT-CCS to accurately identify class I transcripts in Mauritian-origin cynomolgus macaques (Macaca fascicularis) that have been characterized previously by cloning and Sanger-based sequencing as well as pyrosequencing approaches. We then applied this SMRT-CCS method to characterize 60 novel full-length class I transcript sequences expressed by a cohort of cynomolgus macaques from China. The SMRT-CCS method described here provides a straightforward protocol for characterization of unfragmented single-molecule cDNA transcripts that will potentially revolutionize MHC class I allele discovery in nonhuman primates and other species.
Collapse
Affiliation(s)
- Catherine J Westbrook
- U.S. Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, United States
| | - Julie A Karl
- Wisconsin National Primate Research Center, 555 Science Drive, University of Wisconsin-Madison, Madison, WI 53711, United States
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, 555 Science Drive, University of Wisconsin-Madison, Madison, WI 53711, United States
| | - Suzanne Mate
- U.S. Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, United States
| | - Galina Koroleva
- U.S. Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, United States
| | - Karla Garcia
- U.S. Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, United States
| | - Mariano Sanchez-Lockhart
- U.S. Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, United States.
| | - David H O'Connor
- Wisconsin National Primate Research Center, 555 Science Drive, University of Wisconsin-Madison, Madison, WI 53711, United States; Department of Pathology and Laboratory Medicine, 1685 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Gustavo Palacios
- U.S. Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, United States
| |
Collapse
|
16
|
Cao YH, Fan JW, Li AX, Liu HF, Li LR, Zhang CL, Zeng L, Sun ZZ. Identification of MHC I class genes in two Platyrrhini species. Am J Primatol 2015; 77:527-34. [PMID: 25573376 DOI: 10.1002/ajp.22372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/22/2014] [Accepted: 11/30/2014] [Indexed: 11/07/2022]
Abstract
The major histocompatibility complex is a diverse gene family that plays a crucial role in the adaptive immune system. In humans, the MHC class I genes consist of the classical loci of HLA-A, -B, and -C, and the nonclassical loci HLA-E, -F, and -G. In Platyrrhini species, few MHC class I genes have been described so far and were classified as MHC-E, MHC-F, and MHC-G, with MHC-G possibly representing a classical MHC class I locus while there were arguments about the existence of the MHC-B locus in Platyrrhini. In this study, MHC class I genes were identified in eight common marmosets (Callithrix jacchus) and two brown-headed spider monkeys (Ateles fusciceps). For common marmosets, 401 cDNA sequences were sequenced and 18 alleles were detected, including 14 Caja-G alleles and 4 Caja-B alleles. Five to eleven Caja-G alleles and one to three Caja-B alleles were detected in each animal. For brown-headed spider monkeys, 102 cDNA sequences were analyzed, and 9 new alleles were identified, including 5 Atfu-G and 4 Atfu-B alleles. Two or three Atfu-G and two Atfu-B alleles were obtained for each of animal. In phylogenetic analyses, the MHC-G and -B alleles from the two species and other Platyrrhini species show locus-specific clusters with bootstrap values of 86% and 50%. The results of pairwise sequence comparisons and an excess of non-synonymous nucleotide substitutions in the PBR region are consistent with the suggestion that Caja-G and Atfu-G may be classical MHC class I loci in the Platyrrhini species… But it appears that MHC-B locus of the two Platyrrhini species shares features with both classical and nonclasical MHC class I loci. Our results are an important addition to the limited MHC immunogenetic information available for the Platyrrhini species.
Collapse
Affiliation(s)
- Yu-Hua Cao
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing, China; College of Life Sciences of Tarim University, Alaer, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Linking pig-tailed macaque major histocompatibility complex class I haplotypes and cytotoxic T lymphocyte escape mutations in simian immunodeficiency virus infection. J Virol 2014; 88:14310-25. [PMID: 25275134 DOI: 10.1128/jvi.02428-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The influence of major histocompatibility complex class I (MHC-I) alleles on human immunodeficiency virus (HIV) diversity in humans has been well characterized at the population level. MHC-I alleles likely affect viral diversity in the simian immunodeficiency virus (SIV)-infected pig-tailed macaque (Macaca nemestrina) model, but this is poorly characterized. We studied the evolution of SIV in pig-tailed macaques with a range of MHC-I haplotypes. SIV(mac251) genomes were amplified from the plasma of 44 pig-tailed macaques infected with SIV(mac251) at 4 to 10 months after infection and characterized by Illumina deep sequencing. MHC-I typing was performed on cellular RNA using Roche/454 pyrosequencing. MHC-I haplotypes and viral sequence polymorphisms at both individual mutations and groups of mutations spanning 10-amino-acid segments were linked using in-house bioinformatics pipelines, since cytotoxic T lymphocyte (CTL) escape can occur at different amino acids within the same epitope in different animals. The approach successfully identified 6 known CTL escape mutations within 3 Mane-A1*084-restricted epitopes. The approach also identified over 70 new SIV polymorphisms linked to a variety of MHC-I haplotypes. Using functional CD8 T cell assays, we confirmed that one of these associations, a Mane-B028 haplotype-linked mutation in Nef, corresponded to a CTL epitope. We also identified mutations associated with the Mane-B017 haplotype that were previously described to be CTL epitopes restricted by Mamu-B*017:01 in rhesus macaques. This detailed study of pig-tailed macaque MHC-I genetics and SIV polymorphisms will enable a refined level of analysis for future vaccine design and strategies for treatment of HIV infection. IMPORTANCE Cytotoxic T lymphocytes select for virus escape mutants of HIV and SIV, and this limits the effectiveness of vaccines and immunotherapies against these viruses. Patterns of immune escape variants are similar in HIV type 1-infected human subjects that share the same MHC-I genes, but this has not been studied for SIV infection of macaques. By studying SIV sequence diversity in 44 MHC-typed SIV-infected pigtail macaques, we defined over 70 sites within SIV where mutations were common in macaques sharing particular MHC-I genes. Further, pigtail macaques sharing nearly identical MHC-I genes with rhesus macaques responded to the same CTL epitope and forced immune escape. This allows many reagents developed to study rhesus macaques to also be used to study pigtail macaques. Overall, our study defines sites of immune escape in SIV in pigtailed macaques, and this enables a more refined level of analysis of future vaccine design and strategies for treatment of HIV infection.
Collapse
|
18
|
Cao Y, Li A, Li L, Yan X, Fa Y, Zeng L, Fan J, Liu B, Sun Z. Identification of 32 major histocompatibility complex class I alleles in African green monkeys. ACTA ACUST UNITED AC 2014; 84:304-7. [PMID: 24899078 DOI: 10.1111/tan.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 05/08/2014] [Indexed: 11/30/2022]
Abstract
The African green monkey may be an ideal replacement for the rhesus monkey in biomedical research, but relatively little is known about the genetic background of major histocompatibility complex (MHC) class I molecules. In analysis of 12 African green monkeys, 13 Chae-A and 19 Chae-B alleles were identified. Among these alleles, 12 Chae-A and 9 Chae-B were new lineages. The full amino acid length deduced for Chae-A genes is 365 amino acids, but for Chae-B genes, the lengths are 365, 362, 361, and 359 amino acids, respectively. There were 1-3 Chae-A alleles and 2-5 Chae-B alleles in each animal. In African green monkeys, rhesus monkeys, and cynomolgus monkeys, the MHC-A and MHC-B alleles display trans-species polymorphism, rather than being clustered in a species-specific fashion.
Collapse
Affiliation(s)
- Y Cao
- Laboratory Animal Center, The Academy of Military Medical Science, Beijing, China; College of Life Sciences, Tarim University, Alaer, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Baroncelli S, Negri DRM, Michelini Z, Cara A. Macaca mulatta,fascicularisandnemestrinain AIDS vaccine development. Expert Rev Vaccines 2014; 7:1419-34. [DOI: 10.1586/14760584.7.9.1419] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Identification of MHC class I sequences in four species of Macaca of China. Immunogenetics 2013; 65:851-9. [PMID: 24045838 DOI: 10.1007/s00251-013-0735-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
Tibetan macaques (Macaca thibetana), stump-tailed macaques (M. arctoides), Assamese macaques (M. assamensis), and northern pig-tailed macaques (M. leonina) are four major species of Macaca in China. In order to effectively use these species in biomedical research, thorough investigations of their MHC immunogenetics are required. In this study, we identified MHC class I sequences using cDNA cloning and sequencing on a cohort of six M. thibetana, three M. arctoides, three M. assamensis, and three M. leonina derived from Sichuan and Yunnan provinces of China. Eighty new alleles were identified, including 26 MHC-A alleles, 46 MHC-B alleles, and 8 MHC-I alleles. Among them, Math-A1*126:01, Math-B*190:01, Math-B*191:01, Math-B*192:01, Maar-A1*127:01, Maar-A1*129:01, and Maas-A1*128:01 represent lineages that had not been reported earlier in Macaca. Phylogenetic analyses show that no obvious separation of lineages among these species of Macaca. This study provides important information about the MHC immunogenetics for the four major species of Chinese macaques and adds value to these species as model organisms in biomedical research.
Collapse
|
21
|
In vivo imaging in NHP models of malaria: challenges, progress and outlooks. Parasitol Int 2013; 63:206-15. [PMID: 24042056 PMCID: PMC7108422 DOI: 10.1016/j.parint.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Animal models of malaria, mainly mice, have made a large contribution to our knowledge of host-pathogen interactions and immune responses, and to drug and vaccine design. Non-human primate (NHP) models for malaria are admittedly under-used, although they are probably closer models than mice for human malaria; in particular, NHP models allow the use of human pathogens (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium knowlesi). NHPs, whether natural hosts or experimentally challenged with a simian Plasmodium, can also serve as robust pre-clinical models. Some simian parasites are closely related to a human counterpart, with which they may share a common ancestor, and display similar major features with the human infection and pathology. NHP models allow longitudinal studies, from the early events following sporozoite inoculation to the later events, including analysis of organs and tissues, particularly liver, spleen, brain and bone marrow. NHP models have one other significant advantage over mouse models: NHPs are our closest relatives and thus their biology is very similar to ours. Recently developed in vivo imaging tools have provided insight into malaria parasite infection and disease in mouse models. One advantage of these tools is that they limit the need for invasive procedures, such as tissue biopsies. Many such technologies are now available for NHP studies and provide new opportunities for elucidating host/parasite interactions. The aim of this review is to bring the malaria community up to date on what is currently possible and what soon will be, in terms of in vivo imaging in NHP models of malaria, to consider the pros and the cons of the various techniques, and to identify challenges.
Collapse
|
22
|
Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM, Starrett GJ, O’Connor DH. Major histocompatibility complex class I haplotype diversity in Chinese rhesus macaques. G3 (BETHESDA, MD.) 2013; 3:1195-201. [PMID: 23696100 PMCID: PMC3704247 DOI: 10.1534/g3.113.006254] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
The use of Chinese-origin rhesus macaques (Macaca mulatta) for infectious disease immunity research is increasing despite the relative lack of major histocompatibility complex (MHC) class I immunogenetics information available for this population. We determined transcript-based MHC class I haplotypes for 385 Chinese rhesus macaques from five different experimental cohorts, providing a concise representation of the full complement of MHC class I major alleles expressed by each animal. In total, 123 Mamu-A and Mamu-B haplotypes were defined in the full Chinese rhesus macaque cohort. We then performed an analysis of haplotype frequencies across the experimental cohorts of Chinese rhesus macaques, as well as a comparison against a group of 96 Indian rhesus macaques. Notably, 35 of the 51 Mamu-A and Mamu-B haplotypes observed in Indian rhesus macaques were also detected in the Chinese population, with 85% of the 385 Chinese-origin rhesus macaques expressing at least one of these class I haplotypes. This unexpected conservation of Indian rhesus macaque MHC class I haplotypes in the Chinese rhesus macaque population suggests that immunologic insights originally gleaned from studies using Indian rhesus macaques may be more applicable to Chinese rhesus macaques than previously appreciated and may provide an opportunity for studies of CD8(+) T-cell responses between populations. It may also be possible to extend these studies across multiple species of macaques, as we found evidence of shared ancestral haplotypes between Chinese rhesus and Mauritian cynomolgus macaques.
Collapse
Affiliation(s)
- Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Patrick S. Bohn
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | | | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Gabriel J. Starrett
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
23
|
Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics 2013; 65:569-84. [PMID: 23715823 PMCID: PMC3710572 DOI: 10.1007/s00251-013-0707-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
The Mamu-A, Mamu-B, and Mamu-DRB genes of the rhesus macaque show several levels of complexity such as allelic heterogeneity (polymorphism), copy number variation, differential segregation of genes/alleles present on a haplotype (diversity) and transcription level differences. A combination of techniques was implemented to screen a large panel of pedigreed Indian rhesus macaques (1,384 individuals representing the offspring of 137 founding animals) for haplotype diversity in an efficient and inexpensive manner. This approach allowed the definition of 140 haplotypes that display a relatively low degree of region variation as reflected by the presence of only 17 A, 18 B and 22 DRB types, respectively, exhibiting a global linkage disequilibrium comparable to that in humans. This finding contrasts with the situation observed in rhesus macaques from other geographic origins and in cynomolgus monkeys from Indonesia. In these latter populations, nearly every haplotype appears to be characterised by a unique A, B and DRB region. In the Indian population, however, a reshuffling of existing segments generated “new” haplotypes. Since the recombination frequency within the core MHC of the Indian rhesus macaques is relatively low, the various haplotypes were most probably produced by recombination events that accumulated over a long evolutionary time span. This idea is in accord with the notion that Indian rhesus macaques experienced a severe reduction in population during the Pleistocene due to a bottleneck caused by geographic changes. Thus, recombination-like processes appear to be a way to expand a diminished genetic repertoire in an isolated and relatively small founder population.
Collapse
|
24
|
Mumbauer A, Gettie A, Blanchard J, Cheng-Mayer C. Efficient mucosal transmissibility but limited pathogenicity of R5 SHIV SF162P3N in Chinese-origin rhesus macaques. J Acquir Immune Defic Syndr 2013; 62:496-504. [PMID: 23221980 PMCID: PMC3622143 DOI: 10.1097/qai.0b013e31827f1c11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Infection of rhesus macaques (RMs) of Indian origin with simian immunodeficiency virus or simian-HIV (SHIV) provided powerful tools to study HIV-1 transmission and disease and for testing the efficacy of novel drugs, vaccines, and prevention strategies. In developing alternative nonhuman primate AIDS models for the CCR5 (R5)-tropic SHIVSF162P3N, we characterized virus transmission and infection in Chinese-origin RMs. METHODS Virologic, immunologic, and pathogenic evaluations of R5 SHIVSF162P3N infection in Chinese RMs challenged intrarectally (ir) or intravaginally were performed and compared with those previously observed in Indian-origin rhesus exposed to the same inoculum dose and via similar route. RESULTS R5 SHIVSF162P3N transmits efficiently across mucosal surfaces in Chinese RMs. The magnitude and kinetics of early virus dissemination after ir inoculation in the Chinese macaques were similar to those observed in Indian rhesus, but a trend toward increased SHIVSF162P3N vaginal infectivity and rapid virus spread was seen in the Chinese macaques compared with the Indian-origin animals. Once infected, however, set point viremia in the ir- and intravaginal-infected Chinese rhesus was significantly lower and the animals survived longer compared with infected Indian rhesus. CONCLUSIONS The R5 SHIVSF162P3N/Chinese RM infection model is suitable for studies of mucosal HIV-1 transmission and protection, but the high frequency of spontaneous control of chronic viremia and reduced virulence with SHIVSF162P3N in this macaque subspecies may limit its utility in studying HIV-1 pathogenesis and in evaluating vaccines and antiretrovirals that rely on reduction in chronic viral load or AIDS development as an experimental end point.
Collapse
|
25
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
26
|
Liu Y, Li A, Wang X, Sui L, Li M, Zhao Y, Liu B, Zeng L, Sun Z. Mamu-B genes and their allelic repertoires in different populations of Chinese-origin rhesus macaques. Immunogenetics 2012; 65:273-80. [PMID: 23271617 DOI: 10.1007/s00251-012-0673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/11/2012] [Indexed: 11/24/2022]
Abstract
Since rhesus monkeys of Chinese origin have gained greater utilization in recent years, it is urgent to investigate the major histocompatibility complex (MHC) immunogenetics of Chinese rhesus macaques. In this study, we identified 81 Mamu-B sequences using complementary DNA cloning and sequencing on a cohort of 58 rhesus monkeys derived from three local populations of China. Twenty of these Mamu-B alleles are novel and four of them represent new lineages. Although more alleles are shared among different populations than Mamu-A locus, the Mamu-B allelic repertoires found in these three populations of Chinese macaques are largely independent, which underscores the MHC polymorphism among different populations of Chinese rhesus macaques. Our results are an important addition to the limited MHC immunogenetic information available for rhesus macaques of Chinese origin.
Collapse
Affiliation(s)
- Yi Liu
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing, 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang GQ, Ni C, Ling F, Qiu W, Wang HB, Xiao Y, Guo XJ, Huang JY, Du HL, Wang JF, Zhao SJ, Zhuo M, Wang XN. Characterization of the major histocompatibility complex class I A alleles in cynomolgus macaques of Vietnamese origin. TISSUE ANTIGENS 2012; 80:494-501. [PMID: 23137320 DOI: 10.1111/tan.12024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis, Mafa) have emerged as an important animal model for infectious disease and transplantation research. Extensive characterization of their major histocompatibility complex (MHC) polymorphism regions therefore becomes urgently required. In this study, we identified 41 MHC class I A nucleotide sequences in 34 unrelated cynomolgus macaques of Vietnamese origin farmed in Southern China, including eight novel Mafa-A sequences. We found two sequences with perfect identity and six sequences with close similarity to previously defined MHC class I alleles from other populations, especially from Indonesian-origin macaques. We also found three Vietnamese-origin cynomolgus macaque MHC class I sequences for which the predicted protein sequences identical throughout their B and F binding pockets to Mamu-A1*001:01 and Mamu-A3*13:03, respectively. This is important because Mamu-A1*001:01 and Mamu-A3*13:03 are associated with longer survival and lower set-point viral load in simian immunodeficiency virus (SIV)-infected rhesus monkeys. These findings have implications for the evolutionary history of Vietnamese-origin cynomolgus macaque as well as for the use of this model in SIV/SHIV (a virus combining parts of the HIV and SIV genomes) research.
Collapse
Affiliation(s)
- G-Q Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li A, Wang X, Liu Y, Zhao Y, Liu B, Sui L, Zeng L, Sun Z. Preliminary observations of MHC class I A region polymorphism in three populations of Chinese-origin rhesus macaques. Immunogenetics 2012; 64:887-94. [PMID: 22940774 DOI: 10.1007/s00251-012-0645-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/05/2012] [Indexed: 02/06/2023]
Abstract
Rhesus macaques are an animal model for the study of a variety of human diseases. The Chinese rhesus macaques have been widely used in biomedical research in recent years. However, the polymorphism of major histocompatibility complex (MHC) class I A region among different local populations of Chinese rhesus macaques has never been investigated. In this study, we identified 46 Mamu-A alleles by cDNA cloning and sequencing on a cohort of 53 Chinese rhesus monkeys including Zhiming, Chuanxi, and Fujian populations, of which 5 were first reported in rhesus monkeys. The frequencies of alleles were identified for each population. The result suggests that the repertoire of allelic variants of MHC class I A region found in different populations of Chinese macaques is largely non-overlapping. The frequencies of alleles and the popular allele are also different for different populations. PCR-SSP experiment further confirms the different frequencies of two alleles, Mamu-A*026:01 and Mamu-A*022:01, in additional 99 Zhiming monkeys and 191 Chuanxi monkeys. Our findings have important practical implications in that the origin of the individuals and the genetic polymorphism of the monkeys need to be considered at the level of local populations for Chinese rhesus monkeys in biomedical research. Further immunogenetic work is needed to investigate the MHC polymorphism among different populations of Chinese rhesus macaques and to reveal the functional implication of such polymorphism and disease outcome correlations.
Collapse
Affiliation(s)
- Aixue Li
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing, 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Premasuthan A, Ng J, Kanthaswamy S, Trask JS, Houghton P, Farkas T, Sestak K, Smith DG. Molecular ABO phenotyping in cynomolgus macaques using real-time quantitative PCR. ACTA ACUST UNITED AC 2012; 80:363-7. [PMID: 22861170 DOI: 10.1111/j.1399-0039.2012.01935.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/20/2012] [Accepted: 07/02/2012] [Indexed: 12/14/2022]
Abstract
Macaques are commonly used in biomedical research as animal models of human disease. The ABO phenotype of donors and recipients plays an important role in the success of transplantation and stem cell research of both human and macaque tissue. Traditional serological methods for ABO phenotyping can be time consuming, provide ambiguous results and/or require tissue that is unavailable or unsuitable. We developed a novel method to detect the A, B, and AB phenotypes of macaques using real-time quantitative polymerase chain reaction. This method enables the simple and rapid screening of these phenotypes in macaques without the need for fresh blood or saliva. This study reports the distribution of the A, B, and AB phenotypes of captive cynomolgus macaques that, while regionally variable, closely resembles that of rhesus macaques. Blood group B, as in rhesus macaques, predominates in cynomolgus macaques and its frequency distribution leads to a probability of major incompatibility of 41%. No silencing mutations have been identified in exon 6 or 7 in macaques that could be responsible for the O phenotype, that, although rare, have been reported. The excess homozygosity of rhesus and cynomolgus macaque genotypes in this study, that assumes the absence of the O allele, suggests the possibility of some mechanism preventing the expression of the A and B transferases.
Collapse
Affiliation(s)
- A Premasuthan
- Molecular Anthropology Laboratory, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 2012; 64:615-31. [PMID: 22526602 DOI: 10.1007/s00251-012-0617-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response. The MHC region is characterised by a high gene density, and most of these genes display considerable polymorphism. Next to humans, non-human primates (NHP) are well studied for their MHC. The present nomenclature report provides the scientific community with the latest nomenclature guidelines/rules and current implemented nomenclature revisions for Great Ape, Old and New World monkey species. All the currently published MHC data for the different Great Ape, Old and New World monkey species are archived at the Immuno Polymorphism Database (IPD)-MHC NHP database. The curators of the IPD-MHC NHP database are, in addition, responsible for providing official designations for newly detected polymorphisms.
Collapse
|
31
|
Sette A, Sidney J, Southwood S, Moore C, Berry J, Dow C, Bradley K, Hoof I, Lewis MG, Hildebrand WH, McMurtrey CP, Wilson NA, Watkins DI, Mothé BR. A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules. Immunogenetics 2012; 64:421-34. [PMID: 22322672 PMCID: PMC3349854 DOI: 10.1007/s00251-011-0598-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/25/2011] [Indexed: 02/07/2023]
Abstract
The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the Dd mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These “G2” alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the “G2” alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.
Collapse
Affiliation(s)
- Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saito Y, Naruse TK, Akari H, Matano T, Kimura A. Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics 2012; 64:131-41. [PMID: 21881951 DOI: 10.1007/s00251-011-0568-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/19/2011] [Indexed: 12/01/2022]
Abstract
Cynomolgus macaques are widely used as a primate model for human diseases associated with an immunological process. Because there are individual differences in immune responsiveness, which are controlled by the polymorphic nature of the major histocompatibility (MHC) locus, it is important to reveal the diversity of MHC in the model animal. In this study, we analyzed 26 cynomolgus macaques from five families for MHC class I genes. We identified 32 Mafa-A, 46 Mafa-B, 6 Mafa-I, and 3 Mafa-AG alleles in which 14, 20, 3, and 3 alleles were novel. There were 23 MHC class I haplotypes and each haplotype was composed of one to three Mafa-A alleles and one to five Mafa-B alleles. Family studies revealed that there were two haplotypes which contained two Mafa-A1 alleles. These observations demonstrated further the complexity of MHC class I locus in the Old World monkey.
Collapse
Affiliation(s)
- Yusuke Saito
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
33
|
Liao Q, Strong AJ, Liu Y, Liu Y, Meng P, Fu Y, Touzjian N, Shao Y, Zhao Z, Lu Y. HIV vaccine candidates generate in vitro T cell response to putative epitopes in Chinese-origin rhesus macaques. Vaccine 2012; 30:1601-8. [PMID: 22261410 DOI: 10.1016/j.vaccine.2011.12.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022]
Abstract
The Indian rhesus macaque is the established animal model for HIV infection and vaccine research. Growing evidence suggests that the more readily available Chinese rhesus macaque may be a more relevant option. As increasing numbers of novel Chinese rhesus MHC alleles are reported, we decided to explore potential HIV vaccine epitopes in this model. We immunized forty Chinese rhesus macaques with three different HIV vaccine candidates either individually or following a prime/boost strategy. We used ELISPOT to measure immune response in vitro to HIV-1 p24C and HIV-1 gp160 peptide libraries. We identified five putative epitopes with associations to HLA-I alleles including HLA*B-2705 and HLA-B*5101 (associated with slow disease progression and low viral set point) and HLA-B*18 (associated with rapid disease progression and high viral set point). This suggests the possible use of Chinese rhesus macaques to model different disease progressions. We also explored the use of fusion proteins as stimulators in ELISPOT assays. While PBMCs from 6 monkeys responded to peptide stimulation, PBMCs from 28 monkeys responded to the anthrax lethal factor fusion proteins LFn p24C and/or LFn gp140C. Our results support the use of Chinese rhesus macaques in HIV vaccine studies.
Collapse
Affiliation(s)
- Qi Liao
- Vaccine Laboratory, NanKai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wambua D, Henderson R, Solomon C, Hunter M, Marx P, Sette A, Mothé BR. SIV-infected Chinese-origin rhesus macaques express specific MHC class I alleles in either elite controllers or normal progressors. J Med Primatol 2011; 40:244-7. [PMID: 21781132 DOI: 10.1111/j.1600-0684.2011.00487.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel Wambua
- Department of Biology, California State University, San Marcos, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Blokhuis JH, van der Wiel MK, Doxiadis GGM, Bontrop RE. The extreme plasticity of killer cell Ig-like receptor (KIR) haplotypes differentiates rhesus macaques from humans. Eur J Immunol 2011; 41:2719-28. [DOI: 10.1002/eji.201141621] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/16/2011] [Accepted: 06/20/2011] [Indexed: 11/09/2022]
|
36
|
Positive selection of Toll-like receptor 2 polymorphisms in two closely related old world monkey species, rhesus and Japanese macaques. Immunogenetics 2011; 64:15-29. [PMID: 21744114 DOI: 10.1007/s00251-011-0556-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/21/2011] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 2 (TLR2) plays an important role in the recognition of a variety of pathogenic microbes. In the present study, we compared polymorphisms of TLR2 locus in two closely related old world monkey species, rhesus monkey (Macaca mulatta) and Japanese monkey (Macaca fuscata). By nucleotide sequencing of the third exon of TLR2 gene from 21 to 35 respective individuals, we could assign 17 haplotype combinations of 17 coding SNPs of ten non-synonymous and seven synonymous substitutions. A non-synonymous substitution at codon position 326 appeared to be differentially fixed in each species, asparagine for M. mulatta whereas tyrosine for M. fuscata, and may contribute to certain functional properties because it locates in the region contributing to ligand binding and interaction with dimerization partner of TLR2-TLR1 heterodimeric complex. Although TLR2 alleles have diverged to similar extent in both species, they have evolved in significantly different ways; TLR2 of M. fuscata has undergone purifying selection while the membrane-proximal part of the extracellular domain of M. mulatta TLR2 exhibits higher rates of non-synonymous substitutions, indicating a trace of Darwinian positive selection.
Collapse
|
37
|
Maness NJ, Walsh AD, Rudersdorf RA, Erickson PA, Piaskowski SM, Wilson NA, Watkins DI. Chinese origin rhesus macaque major histocompatibility complex class I molecules promiscuously present epitopes from SIV associated with molecules of Indian origin; implications for immunodominance and viral escape. Immunogenetics 2011; 63:587-97. [PMID: 21626440 DOI: 10.1007/s00251-011-0538-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 05/19/2011] [Indexed: 01/21/2023]
Abstract
The presentation of identical peptides by different major histocompatibility complex class I (MHC-I) molecules, termed promiscuity, is a controversial feature of T cell-mediated immunity to pathogens. The astounding diversity of MHC-I molecules in human populations, presumably to enable binding of equally diverse peptides, implies promiscuity would be a rare phenomenon. However, if it occurs, it would have important implications for immunity. We screened 77 animals for responses to peptides known to bind MHC-I molecules that were not expressed by these animals. Some cases of supposed promiscuity were determined to be the result of either non-identical optimal peptides or were simply not mapped to the correct MHC-I molecule in previous studies. Cases of promiscuity, however, were associated with alterations of immunodominance hierarchies, either in terms of the repertoire of peptides presented by the different MHC-I molecules or in the magnitude of the responses directed against the epitopes themselves. Specifically, we found that the Mamu-B*017:01-restricted peptides Vif HW8 and cRW9 were also presented by Mamu-A2*05:26 and targeted by an animal expressing that allele. We also found that the normally subdominant Mamu-A1*001:01 presented peptide Gag QI9 was also presented by Mamu-B*056:01. Both A2*05:26 and B*056:01 are molecules typically or exclusively expressed by animals of Chinese origin. These data clearly demonstrate that MHC-I epitope promiscuity, though rare, might have important implications for immunodominance and for the transmission of escape mutations, depending on the relative frequencies of the given alleles in a population.
Collapse
Affiliation(s)
- Nicholas James Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI 53711, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities. Immunogenetics 2011; 63:275-90. [PMID: 21274527 PMCID: PMC3068250 DOI: 10.1007/s00251-010-0502-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/07/2010] [Indexed: 01/15/2023]
Abstract
The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques' major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC-peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses.
Collapse
|
39
|
Rosner C, Kruse PH, Hermes M, Otto N, Walter L. Rhesus macaque inhibitory and activating KIR3D interact with Mamu-A-encoded ligands. THE JOURNAL OF IMMUNOLOGY 2011; 186:2156-63. [PMID: 21257962 DOI: 10.4049/jimmunol.1002634] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Specific interactions between killer cell Ig-like receptors (KIRs) and MHC class I ligands have not been described in rhesus macaques despite their importance in biomedical research. Using KIR-Fc fusion proteins, we detected specific interactions for three inhibitory KIRs (3DLW03, 3DL05, 3DL11) and one activating KIR (3DS05). As ligands we identified Macaca mulatta MHC (Mamu)-A1- and Mamu-A3-encoded allotypes, among them Mamu-A1*001:01, which is well known for association with slow progression to AIDS in the rhesus macaque experimental SIV infection model. Interactions with Mamu-B or Mamu-I molecules were not found. KIR3DLW03 and KIR3DL05 differ in their binding sites to their shared ligand Mamu-A1*001:01, with 3DLW03 depending on presence of the α1 domain, whereas 3DL05 depends on both the α1 and α2 domains. Fine-mapping studies revealed that binding of KIR3DLW03 is influenced by presence of the complete Bw4 epitope (positions 77, 80-83), whereas that of KIR3DL05 is mainly influenced by amino acid position 77 of Bw4 and positions 80-83 of Bw6. Our findings allowed the successful prediction of a further ligand of KIR3DL05, Mamu-A1*002:01. These functional differences of rhesus macaque KIR3DL molecules are in line with the known genetic diversification of lineage II KIRs in macaques.
Collapse
Affiliation(s)
- Cornelia Rosner
- Primate Genetics Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
40
|
Aarnink A, Dereuddre-Bosquet N, Vaslin B, Le Grand R, Winterton P, Apoil PA, Blancher A. Influence of the MHC genotype on the progression of experimental SIV infection in the Mauritian cynomolgus macaque. Immunogenetics 2011; 63:267-74. [DOI: 10.1007/s00251-010-0504-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
|
41
|
Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics 2010; 63:73-83. [PMID: 20949353 PMCID: PMC3019358 DOI: 10.1007/s00251-010-0486-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/30/2010] [Indexed: 12/11/2022]
Abstract
The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one “major” transcribed gene is present, A1 (A7), in various combinations with “minor” genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects.
Collapse
|
42
|
Xu HL, Wang YT, Cheng AC, Yao YF, Ni QY, Zeng W, Bi FJ, Yang ZX, Chen XY. [Polymorphism of MHC-DPB1 gene exon 2 in rhesus macaques (Macaca mulatta)]. YI CHUAN = HEREDITAS 2010; 32:588-98. [PMID: 20566463 DOI: 10.3724/sp.j.1005.2010.00588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rhesus macaque (Macaca mulatta) has long been used as an experimental model animal for biomedical research and was under the key state protection (class II) from Chinese government. In order to facilitate the use of Chinese rhesus macaques in biomedical research and their protection based on better understanding of the major mistocompability complex (MHC) genes in these macaques, the exon 2 of Mamu-DPB1 genes were determined in 106 wild rhesus macaques using DGGE, cloning and sequencing. A total of 21 Mamu-DPB1 alleles were obtained, of which 15 alleles were novel sequences that had not been documented previously. Mamu-DPB1 30 was the most frequent allele in the whole large population comprising all 106 rhesus macaque individuals (0.1120) and in Xiaojin population (0.1120), Mamu-DPB1 04 in Heishui (0.1702), -DPB1 32 in Bazhong (0.1613), -DPB1 30 in Hanyuan (0.1120), and -DPB1 04 in Jiulong (0.1139). The alignment of the amino acids sequences showed that 12 variable sites were species-specific, of which 9 sites occurred in the putative amino acids sequences of the 15 novel Mamu-DPB1 alleles. Trans-species polymorphism was observed on the phylogenetic tree based on the DPB1 alleles of rhesus macaques and cynomolgus (Macaca fascicularis). In addition, these results also demonstrated that significant genetic differentiation has occurred between Chinese and Indian rhesus macaque population.
Collapse
Affiliation(s)
- Huai-Liang Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Berman DM, Willman MA, Han D, Kleiner G, Kenyon NM, Cabrera O, Karl JA, Wiseman RW, O'Connor DH, Bartholomew AM, Kenyon NS. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 2010; 59:2558-68. [PMID: 20622174 PMCID: PMC3279532 DOI: 10.2337/db10-0136] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To test the graft-promoting effects of mesenchymal stem cells (MSCs) in a cynomolgus monkey model of islet/bone marrow transplantation. RESEARCH DESIGN AND METHODS Cynomolgus MSCs were obtained from iliac crest aspirate and characterized through passage 11 for phenotype, gene expression, differentiation potential, and karyotype. Allogeneic donor MSCs were cotransplanted intraportally with islets on postoperative day (POD) 0 and intravenously with donor marrow on PODs 5 and 11. Recipients were followed for stabilization of blood glucose levels, reduction of exogenous insulin requirement (EIR), C-peptide levels, changes in peripheral blood T regulatory cells, and chimerism. Destabilization of glycemia and increases in EIR were used as signs of rejection; additional intravenous MSCs were administered to test the effect on reversal of rejection. RESULTS MSC phenotype and a normal karyotype were observed through passage 11. IL-6, IL-10, vascular endothelial growth factor, TGF-β, hepatocyte growth factor, and galectin-1 gene expression levels varied among donors. MSC treatment significantly enhanced islet engraftment and function at 1 month posttransplant (n = 8), as compared with animals that received islets without MSCs (n = 3). Additional infusions of donor or third-party MSCs resulted in reversal of rejection episodes and prolongation of islet function in two animals. Stable islet allograft function was associated with increased numbers of regulatory T-cells in peripheral blood. CONCLUSIONS MSCs may provide an important approach for enhancement of islet engraftment, thereby decreasing the numbers of islets needed to achieve insulin independence. Furthermore, MSCs may serve as a new, safe, and effective antirejection therapy.
Collapse
Affiliation(s)
- Dora M. Berman
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Melissa A. Willman
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Dongmei Han
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Gary Kleiner
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Norman M. Kenyon
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Over Cabrera
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - David H. O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Norma S. Kenyon
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Biomedical Engineering, University of Miami, Miami, Florida
- Corresponding author: Norma S. Kenyon,
| |
Collapse
|
44
|
Diversity of MHC class I genes in Burmese-origin rhesus macaques. Immunogenetics 2010; 62:601-11. [PMID: 20640416 DOI: 10.1007/s00251-010-0462-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/24/2010] [Indexed: 01/05/2023]
Abstract
Rhesus macaques (Macaca mulatta) are widely used in developing a strategy for vaccination against human immunodeficiency virus by using simian immunodeficiency virus infection as a model system. Because the genome diversity of major histocompatibility complex (MHC) is well known to control the immune responsiveness to foreign antigens, MHC loci in Indian- and Chinese-origin macaques used in the experiments have been characterized, and it was revealed that the diversity of MHC in macaques was larger than the human MHC. To further characterize the diversity of Mamu-A and Mamu-B loci, we investigated a total of 73 different sequences of Mamu-A, 83 sequences of Mamu-B, and 15 sequences of Mamu-I cDNAs isolated from Burmese-origin macaques. It was found that there were one to five expressing genes in each locus. Among the Mamu-A, Mamu-B, and Mamu-I sequences, 44 (60.2%), 45 (54.2%), and 8 (53.3%), respectively, were novel, and most of the other known alleles were identical to those reported from Chinese- or Indian-origin macaques, demonstrating a genetic mixture between the geographically distinct populations of present day China and India. In addition, it was found that a Mamu haplotype contained at least two highly transcribed Mamu-A genes, because multiple Mamu-A1 cDNAs were obtained from one haplotype. These findings further revealed the diversity and complexity of MHC locus in the rhesus macaques.
Collapse
|
45
|
Solomon C, Southwood S, Hoof I, Rudersdorf R, Peters B, Sidney J, Pinilla C, Marcondes MCG, Ling B, Marx P, Sette A, Mothé BR. The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype. Immunogenetics 2010; 62:451-64. [PMID: 20480161 PMCID: PMC2890073 DOI: 10.1007/s00251-010-0450-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/19/2010] [Indexed: 01/30/2023]
Abstract
Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques.
Collapse
Affiliation(s)
- Christopher Solomon
- Department of Biological Sciences, California State University - San Marcos, San Marcos, CA 92096 USA
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Scott Southwood
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Ilka Hoof
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Richard Rudersdorf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Bjoern Peters
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - John Sidney
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, La Jolla, CA 92037 USA
| | | | - Binhua Ling
- Department of Tropical Medicine, School of Public Health, Tulane University, New Orleans, LA 70112 USA
| | - Preston Marx
- Department of Tropical Medicine, School of Public Health, Tulane University, New Orleans, LA 70112 USA
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| | - Bianca R. Mothé
- Department of Biological Sciences, California State University - San Marcos, San Marcos, CA 92096 USA
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037 USA
| |
Collapse
|
46
|
Rosner C, Kruse PH, Lübke T, Walter L. Erratum to: rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics 2010; 62:409-18. [PMID: 20445972 PMCID: PMC3128699 DOI: 10.1007/s00251-010-0447-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding alpha1 and alpha2 domains, suggesting failure of peptide binding is responsible for retaining 'intracellular' Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.
Collapse
Affiliation(s)
- Cornelia Rosner
- Abteilung Primatengenetik, Deutsches Primatenzentrum-Leibniz, Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
47
|
O'Connor SL, Lhost JJ, Becker EA, Detmer AM, Johnson RC, MacNair CE, Wiseman RW, Karl JA, Greene JM, Burwitz BJ, Bimber BN, Lank SM, Tuscher JJ, Mee ET, Rose NJ, Desrosiers RC, Hughes AL, Friedrich TC, Carrington M, O'Connor DH. MHC heterozygote advantage in simian immunodeficiency virus-infected Mauritian cynomolgus macaques. Sci Transl Med 2010; 2:22ra18. [PMID: 20375000 PMCID: PMC2865159 DOI: 10.1126/scitranslmed.3000524] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The importance of a broad CD8 T lymphocyte (CD8-TL) immune response to HIV is unknown. Ex vivo measurements of immunological activity directed at a limited number of defined epitopes provide an incomplete portrait of the actual immune response. We examined viral loads in simian immunodeficiency virus (SIV)-infected major histocompatibility complex (MHC)-homozygous and MHC-heterozygous Mauritian cynomolgus macaques. Chronic viremia in MHC-homozygous macaques was 80 times that in MHC-heterozygous macaques. Virus from MHC-homozygous macaques accumulated 11 to 14 variants, consistent with escape from CD8-TL responses after 1 year of SIV infection. The pattern of mutations detected in MHC-heterozygous macaques suggests that their epitope-specific CD8-TL responses are a composite of those present in their MHC-homozygous counterparts. These results provide the clearest example of MHC heterozygote advantage among individuals infected with the same immunodeficiency virus strain, suggesting that broad recognition of multiple CD8-TL epitopes should be a key feature of HIV vaccines.
Collapse
Affiliation(s)
- Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jennifer J. Lhost
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ann M. Detmer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Randall C. Johnson
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
- Chaire de Bioinformatique, Conservatoire National des Arts et Metiers, 75003, Paris, France
| | - Caitlin E. MacNair
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Justin M. Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Benjamin N. Bimber
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jennifer J. Tuscher
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Edward T. Mee
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Nicola J. Rose
- Division of Retrovirology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ronald C. Desrosiers
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mary Carrington
- Cancer and Inflammation Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702 and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
48
|
Blokhuis JH, van der Wiel MK, Doxiadis GGM, Bontrop RE. The mosaic of KIR haplotypes in rhesus macaques. Immunogenetics 2010; 62:295-306. [PMID: 20204612 PMCID: PMC2858804 DOI: 10.1007/s00251-010-0434-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
To further refine and improve biomedical research in rhesus macaques, it is necessary to increase our knowledge concerning both the degree of allelic variation (polymorphism) and diversity (gene copy number variation) in the killer cell immunoglobulin-like receptor (KIR) gene cluster. Pedigreed animals in particular should be studied, as segregation data will provide clues to the linkage of particular KIR genes/alleles segregating on a haplotype and to its gene content as well. A dual strategy allowed us to screen the presence and absence of genes and the corresponding transcripts, as well as to track differences in transcription levels. On the basis of this approach, 14 diverse KIR haplotypes have been described. These haplotypes consist of multiple inhibitory and activating Mamu-KIR genes, and any gene present on one haplotype may be absent on another. This suggests that the cost of accelerated evolution by recombination may be the loss of certain framework genes on a haplotype.
Collapse
Affiliation(s)
- Jeroen H Blokhuis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288GJ, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Rosner C, Kruse PH, Lübke T, Walter L. Rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics 2010; 62:149-58. [PMID: 20151120 PMCID: PMC2827799 DOI: 10.1007/s00251-010-0424-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/18/2010] [Indexed: 11/16/2022]
Abstract
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding α1 and α2 domains, suggesting failure of peptide binding is responsible for retaining ‘intracellular’ Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.
Collapse
Affiliation(s)
- Cornelia Rosner
- Abteilung Primatengenetik, Deutsches Primatenzentrum--Leibniz Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
50
|
Wiseman RW, Karl JA, Bimber BN, O'Leary CE, Lank SM, Tuscher JJ, Detmer AM, Bouffard P, Levenkova N, Turcotte CL, Szekeres E, Wright C, Harkins T, O'Connor DH. Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med 2009; 15:1322-6. [PMID: 19820716 DOI: 10.1038/nm.2038] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 05/17/2009] [Indexed: 11/10/2022]
Abstract
Major histocompatibility complex (MHC) genetics dictate adaptive cellular immune responses, making robust MHC genotyping methods essential for studies of infectious disease, vaccine development and transplantation. Nonhuman primates provide essential preclinical models for these areas of biomedical research. Unfortunately, given the unparalleled complexity of macaque MHCs, existing methodologies are inadequate for MHC typing of these key model animals. Here we use pyrosequencing of complementary DNA-PCR amplicons as a general approach to determine comprehensive MHC class I genotypes in nonhuman primates. More than 500 unique MHC class I sequences were resolved by sequence-based typing of rhesus, cynomolgus and pig-tailed macaques, nearly half of which have not been reported previously. The remarkable sensitivity of this approach in macaques demonstrates that pyrosequencing is viable for ultra-high-throughput MHC genotyping of primates, including humans.
Collapse
Affiliation(s)
- Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|