1
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Niu L, Gao M, Li Y, Wang C, Zhang C, Duan H, Li H, Wang F, Ge J. Effects of the stress hormone norepinephrine on the probiotic properties of Levilactobacillus: antibacterial colonization, anti-inflammation, and antioxidation. Front Microbiol 2025; 16:1526362. [PMID: 39996081 PMCID: PMC11849050 DOI: 10.3389/fmicb.2025.1526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Probiotics as antibiotic alternatives are unstable for use under stress in clinical applications. To explore the influence of catecholamine hormones on probiotic bacterial inhibition and antimicrobial activity, we tested the effects of norepinephrine (NE) on Levilactobacillus in vitro and in a mouse model. The in vitro results showed that in the presence of NE, 80% of Levilactobacillus strains showed increased growth rate and more than 80% of the strains indicated lower antimicrobial activity at 22 h. Furthermore, in the mouse model, NE weakens the protective effect of L. brevis 23,017 on Escherichia coli infection, which is shown by the decreased ability of antibacterial colonization, antioxidation, and anti-inflammation, and downregulating the expression of antioxidant genes and intestinal mucosal barrier-related genes. At the same time, the addition of NE modulates the bacterial microbiota richness and diversity in the intestine, disrupting the balance of intestinal probiotics. These findings provide evidence that NE reduces the probiotic ability of Levilactobacillus and illustrates the plasticity of the probiotics in response to the intestinal microenvironment under stress.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yifan Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaonan Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Ziegert Z, Dietz M, Hill M, McBride M, Painter E, Elias MH, Staley C. Targeting quorum sensing for manipulation of commensal microbiota. BMC Biotechnol 2024; 24:106. [PMID: 39696328 PMCID: PMC11653937 DOI: 10.1186/s12896-024-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteria communicate through the accumulation of autoinducer (AI) molecules that regulate gene expression at critical densities in a process called quorum sensing (QS). Extensive work using simple systems and single strains of bacteria have revealed a role for QS in the regulation of virulence factors and biofilm formation; however, less is known about QS dynamics among communities, especially in vivo. In this review, we summarize the diversity of QS signals as well as their ability to influence "non-target" behaviors among species that have receptors but not synthases for those signals. We highlight host-microbe interactions facilitated by QS and describe cross-talk between QS and the mammalian endocrine and immune systems, as well as host surveillance of QS. Further, we describe emerging evidence for the role of QS in non-infectious, chronic, microbially associated diseases including inflammatory bowel diseases and cancers. Finally, we describe potential therapeutic approaches that involve leveraging QS signals as well as quorum quenching approaches to block signaling in vivo to mitigate deleterious consequences to the host. Ultimately, QS offers a previously underexplored target that may be leveraged for precision modification of the microbiota without deleterious bactericidal consequences.
Collapse
Affiliation(s)
- Zachary Ziegert
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Dietz
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Hill
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marjais McBride
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Elizabeth Painter
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mikael H Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
4
|
Xiang SL, Xu KZ, Yin LJ, Rao Y, Wang B, Jia AQ. Dopamine, an exogenous quorum sensing signaling molecule or a modulating factor in Pseudomonas aeruginosa? Biofilm 2024; 8:100208. [PMID: 39036334 PMCID: PMC11260039 DOI: 10.1016/j.bioflm.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Pseudomonas aeruginosa is recognized globally as an opportunistic pathogen of considerable concern due to its high virulence and pathogenicity, especially in immunocompromised individuals. While research has identified several endogenous quorum sensing (QS) signaling molecules that enhance the virulence and pathogenicity of P. aeruginosa, investigations on exogenous QS signaling molecules or modulating factors remain limited. This study found that dopamine serves as an exogenous QS signaling molecule or modulating factor of P. aeruginosa PAO1, enhancing the production of virulence factors and biofilms. Compared to the control group, treatment with 40 μM dopamine resulted in a 33.1 % increase in biofilm formation, 68.1 % increase in swimming mobility, 63.1 % increase in swarming mobility, 147.2 % increase in the signaling molecule 3-oxo-C12-HSL, and 50.5 %, 28.5 %, 27.0 %, and 33.2 % increases in the virulence factors alginate, rhamnolipids, protease, and pyocyanin, respectively. This study further explored the mechanism of dopamine regulating the biofilm formation and virulence of P. aeruginosa PAO1 through transcriptome and metabolome. Transcriptomic analysis showed that dopamine promoted the expression of virulence genes psl, alg, lasA, rhlABC, rml, and phz in P. aeruginosa PAO1. Metabolomic analysis revealed changes in the concentrations of tryptophan, pyruvate, ethanolamine, glycine, 3-hydroxybutyric acid, and alizarin. Furthermore, KEGG enrichment analysis of altered genes and metabolites indicated that dopamine enhanced phenylalanine, tyrosine, and tryptophan in P. aeruginosa PAO1. The results of this study will contribute to the development of novel exogenous QS signaling molecules or modulating factors and advance our understanding of the interactions between P. aeruginosa and the host environment.
Collapse
Affiliation(s)
- Shi-Liang Xiang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Kai-Zhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Lu-Jun Yin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| |
Collapse
|
5
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
7
|
Markus V. Gut bacterial quorum sensing molecules and their association with inflammatory bowel disease: Advances and future perspectives. Biochem Biophys Res Commun 2024; 724:150243. [PMID: 38857558 DOI: 10.1016/j.bbrc.2024.150243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Inflammatory Bowel Disease (IBD) is an enduring inflammatory disease of the gastrointestinal tract (GIT). The complexity of IBD, its profound impact on patient's quality of life, and its burden on healthcare systems necessitate continuing studies to elucidate its etiology, refine care strategies, improve treatment outcomes, and identify potential targets for novel therapeutic interventions. The discovery of a connection between IBD and gut bacterial quorum sensing (QS) molecules has opened exciting opportunities for research into IBD pathophysiology. QS molecules are small chemical messengers synthesized and released by bacteria based on population density. These chemicals are sensed not only by the microbial species but also by host cells and are essential in gut homeostasis. QS molecules are now known to interact with inflammatory pathways, therefore rendering them potential therapeutic targets for IBD management. Given these intriguing developments, the most recent research findings in this area are herein reviewed. First, the global burden of IBD and the disruptions of the gut microbiota and intestinal barrier associated with the disease are assessed. Next, the general QS mechanism and signaling molecules in the gut are discussed. Then, the roles of QS molecules and their connection with IBD are elucidated. Lastly, the review proposes potential QS-based therapeutic targets for IBD, offering insights into the future research trajectory in this field.
Collapse
Affiliation(s)
- Victor Markus
- Near East University, Faculty of Medicine, Department of Medical Biochemistry, Nicosia, TRNC Mersin 10, Turkey.
| |
Collapse
|
8
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Beurel E. Stress in the microbiome-immune crosstalk. Gut Microbes 2024; 16:2327409. [PMID: 38488630 PMCID: PMC10950285 DOI: 10.1080/19490976.2024.2327409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Purtov YA, Ozoline ON. Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors. Int J Mol Sci 2023; 24:15863. [PMID: 37958845 PMCID: PMC10647483 DOI: 10.3390/ijms242115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Hormones and neurotransmitters are important components of inter-kingdom signaling systems that ensure the coexistence of eukaryotes with their microbial community. Their ability to affect bacterial physiology, metabolism, and gene expression was evidenced by various experimental approaches, but direct penetration into bacteria has only recently been reported. This opened the possibility of considering neuromodulators as potential effectors of bacterial ligand-dependent regulatory proteins. Here, we assessed the validity of this assumption for the neurotransmitters epinephrine, dopamine, and norepinephrine and two hormones (melatonin and serotonin). Using flexible molecular docking for transcription factors with ligand-dependent activity, we assessed the ability of neuromodulators to occupy their effector binding sites. For many transcription factors, including the global regulator of carbohydrate metabolism, CRP, and the key regulator of lactose assimilation, LacI, this ability was predicted based on the analysis of several 3D models. By occupying the ligand binding site, neuromodulators can sterically hinder the interaction of the target proteins with the natural effectors or even replace them. The data obtained suggest that the direct modulation of the activity of at least some bacterial transcriptional factors by neuromodulators is possible. Therefore, the natural hormonal background may be a factor that preadapts bacteria to the habitat through direct perception of host signaling molecules.
Collapse
Affiliation(s)
- Yuri A. Purtov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
11
|
Zhang C, Liu H, Sun L, Wang Y, Chen X, Du J, Sjöling Å, Yao J, Wu S. An overview of host-derived molecules that interact with gut microbiota. IMETA 2023; 2:e88. [PMID: 38868433 PMCID: PMC10989792 DOI: 10.1002/imt2.88] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
The gut microbiota comprises bacteria, archaea, fungi, protists, and viruses that live together and interact with each other and with host cells. A stable gut microbiota is vital for regulating host metabolism and maintaining body health, while a disturbed microbiota may induce different kinds of disease. In addition, diet is also considered to be the main factor that influences the gut microbiota. The host could shape the gut microbiota through other factors. Here, we reviewed the mechanisms that mediate host regulation on gut microbiota, involved in gut-derived molecules, including gut-derived immune system molecules (secretory immunoglobulin A, antimicrobial peptides, cytokines, cluster of differentiation 4+ effector T cell, and innate lymphoid cells), sources related to gut-derived mucosal molecules (carbon sources, nitrogen sources, oxygen sources, and electron respiratory acceptors), gut-derived exosomal noncoding RNA (ncRNAs) (microRNAs, circular RNA, and long ncRNA), and molecules derived from organs other than the gut (estrogen, androgen, neurohormones, bile acid, and lactic acid). This study provides a systemic overview for understanding the interplay between gut microbiota and host, a comprehensive source for potential ways to manipulate gut microbiota, and a solid foundation for future personalized treatment that utilizes gut microbiota.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huifeng Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Lei Sun
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Yue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xiaodong Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junhu Yao
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
12
|
Markus V, Paul AA, Teralı K, Özer N, Marks RS, Golberg K, Kushmaro A. Conversations in the Gut: The Role of Quorum Sensing in Normobiosis. Int J Mol Sci 2023; 24:ijms24043722. [PMID: 36835135 PMCID: PMC9963693 DOI: 10.3390/ijms24043722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
An imbalance in gut microbiota, termed dysbiosis, has been shown to affect host health. Several factors, including dietary changes, have been reported to cause dysbiosis with its associated pathologies that include inflammatory bowel disease, cancer, obesity, depression, and autism. We recently demonstrated the inhibitory effects of artificial sweeteners on bacterial quorum sensing (QS) and proposed that QS inhibition may be one mechanism behind such dysbiosis. QS is a complex network of cell-cell communication that is mediated by small diffusible molecules known as autoinducers (AIs). Using AIs, bacteria interact with one another and coordinate their gene expression based on their population density for the benefit of the whole community or one group over another. Bacteria that cannot synthesize their own AIs secretly "listen" to the signals produced by other bacteria, a phenomenon known as "eavesdropping". AIs impact gut microbiota equilibrium by mediating intra- and interspecies interactions as well as interkingdom communication. In this review, we discuss the role of QS in normobiosis (the normal balance of bacteria in the gut) and how interference in QS causes gut microbial imbalance. First, we present a review of QS discovery and then highlight the various QS signaling molecules used by bacteria in the gut. We also explore strategies that promote gut bacterial activity via QS activation and provide prospects for the future.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, Nicosia 99258, Cyprus
| | - Nazmi Özer
- Department of Biochemistry, Faculty of Pharmacy, Girne American University, Kyrenia 99428, Cyprus
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| |
Collapse
|
13
|
Norepinephrine Effects on Uropathogenic Strains Virulence. Microorganisms 2022; 10:microorganisms10112248. [DOI: 10.3390/microorganisms10112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The degree of virulence correlates with adhesion, biofilm formation, motility and the capacity to quickly colonize biological surfaces. The virulence of the bacteria that have colonized the urinary tract may be modified by substances dissolved in urine. One such substance is the norepinephrine (NE) hormone, which may be present in human urine, especially in times of stress and under changes in the activity of the renin-angiotensin-aldesterone system. In this work, we study the influence of NE on the biomass, biofilm formation, matrix production, adhesion, motility and metabolism of uropathogenic strains of E. coli and S. aureus. We used Congo red and gentian violet staining for detection of matrix and biomass formation, respectively. The optical density was measured by a multichannel spectrophotometer. The motility of bacterial cells was measured on semi-solid agar at 24 h and 48 h. The metabolic activity was analyzed by MTT assay. It was shown that the metabolic activity of E. coli was stimulated by NE, which led to the increasing synthesis of virulence factors such as biofilm production, adhesion, and motility. At the same time, NE did not activate the S. aureus strain’s metabolism and did not change its adhesion and motility. Thus, the virulence activity of uropathogenic E. coli may be modified by NE in urine.
Collapse
|
14
|
Kou TS, Wu JH, Chen XW, Peng B. Functional proteomics identify mannitol metabolism in serum resistance and therapeutic implications in Vibrio alginolyticus. Front Immunol 2022; 13:1010526. [PMID: 36389821 PMCID: PMC9660324 DOI: 10.3389/fimmu.2022.1010526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.
Collapse
Affiliation(s)
- Tian-shun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan-wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Scardaci R, Bietto F, Racine PJ, Boukerb AM, Lesouhaitier O, Feuilloley MGJ, Scutera S, Musso T, Connil N, Pessione E. Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved? Microorganisms 2022; 10:microorganisms10030487. [PMID: 35336063 PMCID: PMC8954575 DOI: 10.3390/microorganisms10030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly.
Collapse
Affiliation(s)
- Rossella Scardaci
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
- Correspondence:
| | - Francesca Bietto
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| | - Pierre-Jean Racine
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Amine M. Boukerb
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Olivier Lesouhaitier
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Sara Scutera
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Tiziana Musso
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Nathalie Connil
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Enrica Pessione
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| |
Collapse
|
16
|
Yang L, Yuan TJ, Wan Y, Li WW, Liu C, Jiang S, Duan JA. Quorum sensing: a new perspective to reveal the interaction between gut microbiota and host. Future Microbiol 2022; 17:293-309. [PMID: 35164528 DOI: 10.2217/fmb-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS), a chemical communication process between bacteria, depends on the synthesis, secretion and detection of signal molecules. It can synchronize the gene expression of bacteria to promote cooperation within the population and improve competitiveness among populations. The preliminary exploration of bacterial QS has been completed under ideal and highly controllable conditions. There is an urgent need to investigate the QS of bacteria under natural conditions, especially the QS of intestinal flora, which is closely related to health. Excitingly, growing evidence has shown that QS also exists in the intestinal flora. The crosstalk of QS between gut microbiota and the host is systematically clarified in this review.
Collapse
Affiliation(s)
- Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Tian-Jie Yuan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wen-Wen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| |
Collapse
|
17
|
Medina Lopez AI, Fregoso DR, Gallegos A, Yoon DJ, Fuentes JJ, Crawford R, Kaba H, Yang H, Isseroff RR. Beta adrenergic receptor antagonist can modify
Pseudomonas aeruginosa
biofilm formation in vitro: Implications for chronic wounds. FASEB J 2022; 36:e22057. [DOI: 10.1096/fj.202100717rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
| | - Daniel R. Fregoso
- Department of Dermatology University of California, Davis Davis California USA
| | - Anthony Gallegos
- Department of Dermatology University of California, Davis Davis California USA
| | - Daniel J. Yoon
- Department of Dermatology University of California, Davis Davis California USA
| | - Jaime J. Fuentes
- Department of Biological Sciences California State University Sacramento Sacramento California USA
| | - Robert Crawford
- Department of Biological Sciences California State University Sacramento Sacramento California USA
| | - Hawa Kaba
- Department of Dermatology University of California, Davis Davis California USA
| | - Hsin‐ya Yang
- Department of Dermatology University of California, Davis Davis California USA
| | - R. Rivkah Isseroff
- Department of Dermatology University of California, Davis Davis California USA
- Dermatology Section VA Northern California Health Care System Mather USA
| |
Collapse
|
18
|
Sayers B, Wijeyesekera A, Gibson G. Exploring the potential of prebiotic and polyphenol-based dietary interventions for the alleviation of cognitive and gastrointestinal perturbations associated with military specific stressors. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Boukerb AM, Cambronel M, Rodrigues S, Mesguida O, Knowlton R, Feuilloley MGJ, Zommiti M, Connil N. Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology. Front Microbiol 2021; 12:690942. [PMID: 34690943 PMCID: PMC8526972 DOI: 10.3389/fmicb.2021.690942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.
Collapse
Affiliation(s)
- Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Melyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sophie Rodrigues
- EA 3884, LBCM, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mohamed Zommiti
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|
20
|
Liu X, Ye H, Zheng X, Zheng Z, Chen W, Yu X. Increased risk of catheter-related infection in critically ill patients given catecholamine inotropes during continuous renal replacement therapy. Hemodial Int 2021; 26:13-22. [PMID: 34318564 DOI: 10.1111/hdi.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Previous in vitro studies have shown that catecholamine inotropes are potent stimulators of bacterial growth and biofilm formation on catheter surfaces. This study aimed to investigate the effects of administering catecholamine inotropes during continuous renal replacement therapy (CRRT) on catheter-related infections in critically ill patients. METHODS This single-center retrospective cohort study included patients requiring CRRT in an intensive care unit from 2016 to 2017, who were divided into those who received and did not receive catecholamine inotropes for ≥24 h (catecholamine and control groups, respectively). The primary endpoint was catheter-related infection, including catheter-related colonization (CRCOL) and catheter-related bloodstream infection (CRBSI). FINDINGS We included 235 patients with 297 dialysis catheters. The catecholamine group had higher proportions of cardiovascular disease (p = 0.002), shock (p < 0.001), mechanical ventilation (p < 0.001), and antibiotic use (p = 0.013). There was no significant between-group difference in the CRBSI incidence (5.742 vs. 3.143 events/1000 catheter-days; p = 0.205). However, the CRCOL incidence was significantly higher in the catecholamine group than in the control group (6.221 vs. 0.898 events/1000 catheter-days; p = 0.006). The prominent pathogenic bacteria were gram-negative bacteria. After adjusting for confounding factors in multivariate logistic models, catecholamine inotropes (OR: 3.575, 95% CI: 1.422-9.912, p = 0.008) and immunosuppression (OR: 2.980, 95% CI: 1.137-7.812, p = 0.026) were independently associated with a higher risk of catheter-related infections. DISCUSSION We observed a similar incidence of catheter-related infection with that in other CRRT patients. Using catecholamine inotropes in those patients increased CRCOL risk, which is consistent with previous in vitro studies. Our findings suggest that catecholamine inotropes is an independent risk factor for catheter-related infections in critically ill patients undergoing CRRT.
Collapse
Affiliation(s)
- Xiaotian Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xunhua Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Zhihua Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
21
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
22
|
Qin C, Hu J, Wan Y, Cai M, Wang Z, Peng Z, Liao Y, Li D, Yao P, Liu L, Rong S, Bao W, Xu G, Yang W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110093. [PMID: 32898589 DOI: 10.1016/j.pnpbp.2020.110093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
As a neuropsychiatric disorder, substance addiction represents a major public health issue with high prevalence and mortality in many countries. Recently, gut microbiota has been certified to play a part in substance addiction through various mechanisms. Hence, we mainly focused on three substance including alcohol, cocaine and methamphetamine in this review, and summarized their relationships with gut microbiota, respectively. Besides, we also concluded the possible treatments for substance addiction from the perspective of applying gut microbiota. This review aims to build a bridge between substance addiction and gut microbiota according to existing evidences, so as to excavate the possible bi-directional function of microbiota-gut-brain axis in substance addiction for developing therapeutic strategies in the future.
Collapse
Affiliation(s)
- Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yiming Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
23
|
Sevim Ç, Kara M. Can probiotics win the battle against environmental endocrine disruptors? ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Compounds that have negative effects on the endocrine system are called endocrine disrupting compounds (EDCs). There are several different types of compounds, with several different usage areas in the environment, which can be classified as EDCs. These chemicals have a wide range of negative health effects in organisms, depending on their target hormone system. EDCs are among the most popular topics of scientific research, as they are widely used and organisms are frequently exposed to these chemicals. There are various exposure routes for EDCs, such as oral, inhalation and dermal exposure. Parabens, phenolic compounds, phthalates, and pesticides are the most common EDCs. Nowadays, intestinal microorganism distribution, probiotics, and food supplements that regulate these microorganisms and their protective effects against various harmful chemicals attract attention. For this reason, many studies have been carried out in this field and certain diet schemes have been created according to the results of these studies. In fact, probiotics are preferred in order to reduce and eliminate the negative effects of harmful chemicals and to ensure that the organism reacts strongly in these conditions. In this review, we will focus on EDCs, their health effects and positive effects of probiotics on EDCs exposure conditions.
Collapse
|
24
|
Perraud Q, Kuhn L, Fritsch S, Graulier G, Gasser V, Normant V, Hammann P, Schalk IJ. Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by Pseudomonas aeruginosa. Environ Microbiol 2020; 24:878-893. [PMID: 33350053 DOI: 10.1111/1462-2920.15372] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Iron is an essential nutrient for bacterial growth and the cause of a fierce battle between the pathogen and host during infection. Bacteria have developed several strategies to access iron from the host, the most common being the production of siderophores, small iron-chelating molecules secreted into the bacterial environment. The opportunist pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a wide panoply of xenosiderophores, siderophores produced by other microorganisms. Here, we demonstrate that catecholamine neurotransmitters (dopamine, l-DOPA, epinephrine and norepinephrine) are able to chelate iron and efficiently bring iron into P. aeruginosa cells via TonB-dependent transporters (TBDTs). Bacterial growth assays under strong iron-restricted conditions and with numerous mutants showed that the TBDTs involved are PiuA and PirA. PiuA exhibited more pronounced specificity for dopamine uptake than for norepinephrine, epinephrine and l-DOPA, whereas PirA specificity appeared to be higher for l-DOPA and norepinephrine. Proteomic and qRT-PCR approaches showed pirA transcription and expression to be induced in the presence of all four catecholamines. Finally, the oxidative properties of catecholamines enable them to reduce iron, and we observed ferrous iron uptake via the FeoABC system in the presence of l-DOPA.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Sarah Fritsch
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Gwenaëlle Graulier
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Vincent Normant
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Isabelle J Schalk
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| |
Collapse
|
25
|
Scardaci R, Varese F, Manfredi M, Marengo E, Mazzoli R, Pessione E. Enterococcus faecium NCIMB10415 responds to norepinephrine by altering protein profiles and phenotypic characters. J Proteomics 2020; 231:104003. [PMID: 33038511 DOI: 10.1016/j.jprot.2020.104003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022]
Abstract
The long-term established symbiosis between gut microbiota and humans is based upon a dynamic equilibrium that, if unbalanced, could lead to the development of diseases. Despite the huge amount of data concerning the microbiota-gut-brain-axis, little information is available on what happens at the molecular level in bacteria, when exposed to human signals. In the present study, the physiological effects exerted by norepinephrine (NE), a human hormone present in significant amounts in the host gut, were analyzed using the commensal/probiotic strain Enterococcus faecium NCIMB10415 as a target. The aim was to compare the protein profiles of treated and untreated bacteria and relating these proteome patterns to some phenotypic modifications important for bacteria-host interaction. Actually, to date, only pathogens have been considered. Combining a gel-free/label-free proteomic analysis with the evaluation of bile salts resistance, biofilm formation and autoaggregation ability (as well as with the bacterial growth kinetics), allowed to detect changes induced by NE treatment on all the tested probiotic properties. Furthermore, exposure to the bioactive molecule increased the abundance of proteins related to stress response and to host-microbe interaction, such as moonlight proteins involved in adhesion and immune stimulation. The results of this investigation demonstrated that, not only pathogens, but also commensal gut bacteria are affected by host-derived hormones, underlining the importance of a correct cross-signalling in the maintenance of gut homeostasis. SIGNIFICANCE: The crucial role played by the human gut microbiota in ensuring host homeostasis and health is definitively ascertained as suggested by the holobiome concept. The present research was intended to shed light on the endocrinological perturbations possibly affecting microbiota. The microbial model used in this study belongs to Enterococcus faecium species, whose controversial role as gut commensal and opportunistic pathogen in the gut ecosystem is well recognized. The results obtained in the present investigation clearly demonstrate that E. faecium NCIMB10415 can sense and respond to norepinephrine, a human hormone abundant at the gut level, by changing protein profiles and physiology, inducing changes that could favor survival and colonization of the host tissues. To our knowledge, this is the first proteomic report concerning the impact of a human hormone on a commensal/probiotic bacterium, since previous research has focused on exploring the effects of neuroendocrine molecules on growth and virulence of pathogenic species.
Collapse
Affiliation(s)
- R Scardaci
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy.
| | - F Varese
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - M Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - E Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - R Mazzoli
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - E Pessione
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy.
| |
Collapse
|
26
|
Reiske L, Schmucker SS, Steuber J, Toulouse C, Pfaffinger B, Stefanski V. Interkingdom Cross-Talk in Times of Stress: Salmonella Typhimurium Grown in the Presence of Catecholamines Inhibits Porcine Immune Functionality in vitro. Front Immunol 2020; 11:572056. [PMID: 33101292 PMCID: PMC7556211 DOI: 10.3389/fimmu.2020.572056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 01/14/2023] Open
Abstract
In stressful situations, catecholamines modulate mammalian immune function, and in addition, they can be sensed by many bacteria. Catecholamine sensing was also found in the zoonotic gut pathogen Salmonella Typhimurium, probably contributing to the stress-induced increased risk of salmonellosis. Virulence traits such as proliferation and invasiveness are promoted upon bacterial catecholamine sensing, but it is unknown whether S. Typhimurium may also inhibit mammalian immune function in stressful situations. We thus investigated whether supernatants from S. Typhimurium grown in the presence of catecholamines modulate porcine mitogen-induced lymphocyte proliferation. Lymphocyte proliferation was reduced by supernatants from catecholamine-exposed Salmonella in a dose-dependent manner. We further examined whether adrenaline oxidation to adrenochrome, which is promoted by bacteria, could be responsible for the observed effect, but this molecule either enhanced lymphocyte functionality or had no effect. We could thereby exclude adrenochrome as a potential immunomodulating agent produced by S. Typhimurium. This study is the first to demonstrate that bacteria grown in the presence of catecholamine stress hormones alter their growth environment, probably by producing immunomodulating substances, in a way that host immune response is suppressed. These findings add a new dimension to interkingdom signaling and provide novel clues to explain the increased susceptibility of a stressed host to Salmonella infection.
Collapse
Affiliation(s)
- Lena Reiske
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sonja S Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Julia Steuber
- Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Charlotte Toulouse
- Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Birgit Pfaffinger
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
27
|
Li J, Ma X, Zhao L, Li Y, Zhou Q, Du X. Extended Contact Lens Wear Promotes Corneal Norepinephrine Secretion and Pseudomonas aeruginosa Infection in Mice. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 32298434 PMCID: PMC7401850 DOI: 10.1167/iovs.61.4.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Extended contact lens (CL) wear predisposes the wearer to Pseudomonas aeruginosa infection of the cornea, but the mechanism involved remains incompletely understood. The purpose of this study was to investigate the role of the stress hormone norepinephrine (NE) in the pathogenesis of CL-induced P. aeruginosa keratitis. Methods A total 195 adult C57BL/6 mice were used in this study. Corneal NE content was measured after 48 hours of sterile CL wear in mice. The effect of NE on P. aeruginosa adhesion and biofilm formation on the CL surface was examined in vitro. Moreover, mouse eyes were covered with P. aeruginosa-contaminated CLs, and either 500-µM NE was topically applied or the eyes were subconjunctivally injected with 100 µg of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to deplete local NE. Clinical scores, neutrophil infiltration, proinflammatory cytokine levels, and bacterial load on the corneas and CLs were evaluated. Results Corneal NE content was elevated with extended CL wear in mice. In vitro, NE promoted the adhesion and biofilm formation of P. aeruginosa on the CL surface. In mice, topical application of NE aggravated P. aeruginosa infection, accompanied with increased clinical scores, neutrophil infiltration, proinflammatory cytokine expression, and bacterial burden on the corneas and CLs. However, pre-depletion of local NE with DSP-4 significantly alleviated the severity of P. aeruginosa keratitis. Conclusions Extended CL wear elevates corneal NE content, which promotes the pathogenesis of CL-induced P. aeruginosa keratitis in mice. Targeting NE may provide a potential strategy for the treatment of CL-related corneal infection caused by P. aeruginosa.
Collapse
|
28
|
Cambronel M, Nilly F, Mesguida O, Boukerb AM, Racine PJ, Baccouri O, Borrel V, Martel J, Fécamp F, Knowlton R, Zimmermann K, Domann E, Rodrigues S, Feuilloley M, Connil N. Influence of Catecholamines (Epinephrine/Norepinephrine) on Biofilm Formation and Adhesion in Pathogenic and Probiotic Strains of Enterococcus faecalis. Front Microbiol 2020; 11:1501. [PMID: 32849320 PMCID: PMC7396564 DOI: 10.3389/fmicb.2020.01501] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Enterococcus faecalis has controversial status due to its emerging role in nosocomial infections, while some strains with beneficial effects are used as probiotics and starter cultures in dairy industry. These bacteria can be found as resident or transient germs in the gut or on skin, where they are continually exposed to various eukaryotic molecules. In this context, the aim of our work was to evaluate the effect of the catecholamine stress hormones, epinephrine (Epi), and norepinephrine (NE) on some Enterococcus strains. Four E. faecalis strains were included in this study: E. faecalis MMH594 and E. faecalis V583, pathogenic strains of clinical origin, E. faecalis Symbioflor 1 clone DSM 16431, a pharmaceutical probiotic, and E. faecalis OB15, a probiotic strain previously isolated from Tunisian rigouta (Baccouri et al., 2019). Epi was found to modulate the formation of biofilm (biovolume and thickness) in E. faecalis, whether pathogens or probiotics. NE had less effect on biofilm formation of these bacteria. We also investigated the effect of Epi and NE on adhesion of E. faecalis to eukaryotic cells as it is the first step of colonization of the host. Epi was found to significantly enhance the adhesion of MMH594 and OB15 to Caco-2/TC7 intestinal cells and HaCaT keratinocyte cells, whereas NE significantly increased the adhesion of V583 and Symbioflor 1 DSM 16431 to Caco-2/TC7 cells, the adhesion of MMH594, Symbioflor 1 DSM 16431, and OB15 to HaCaT cells. Analysis of a putative adrenergic sensor of Epi/NE in E. faecalis, compared to QseC, the Escherichia coli adrenergic receptor, allowed the identification of VicK as the nearest protein to QseC with 29% identity and 46% similarity values. Structure modeling and molecular docking of VicK corroborated the hypothesis of possible interactions of this putative adrenergic sensor with Epi and NE, with binding energies of -4.08 and -4.49 kcal/mol, respectively. In conclusion, this study showed for the first time that stress hormones could increase biofilm formation and adhesion to eukaryotic cells in E. faecalis. Future experiments will aim to confirm by in vivo studies the role of VicK as adrenergic sensor in E. faecalis probiotic and pathogen strains. This may help to develop new strategies of antagonism/competition in the gut or skin ecological niches, and to prevent the colonization by opportunistic pathogens.
Collapse
Affiliation(s)
- Mélyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Flore Nilly
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Pierre-Jean Racine
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Olfa Baccouri
- Laboratory of Protein Engineering and Bioactive Molecules, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Valérie Borrel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Jérome Martel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Florian Fécamp
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | | | - Eugen Domann
- Institute of Medical Microbiology, German Centre for Infection Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sophie Rodrigues
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|
29
|
Polymannuronic acid prevents dopaminergic neuronal loss via brain-gut-microbiota axis in Parkinson's disease model. Int J Biol Macromol 2020; 164:994-1005. [PMID: 32710966 DOI: 10.1016/j.ijbiomac.2020.07.180] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The study aims to investigate the potentially neuroprotective effects and underlying mechanisms for brown seaweed polysaccharide of polymannuronic acid (PM) against Parkinson's disease (PD) pathogenesis. PD model mice were pretreated with PM via oral gavage once per day for 4 weeks and the preventative effects of PM against neuronal loss together with its modulation on brain-gut-microbiota axis were systematically explored. The results showed PM administration improved motor functions by preventing dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc) and enhanced contents of striatal homovanillic acid (HVA), serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA) and γ-aminobutyric acid (GABA) in PD mice. PM significantly alleviated inflammation in gut, brain and systemic circulation as shown by reduced levels or expressions of pro-inflammatory cytokines concurrently and inhibited mitogen-activated protein kinases (MAPK) signaling pathway in mice colon. Meanwhile, PM greatly improved integrity of intestinal barrier and blood brain barrier (BBB) as indicated by increased expressions of tight junction associated proteins in both mice colon and SNpc. Further studies indicated PM treatment resulted in changes of gut microbial compositions, together with great alterations of digestion and metabolism of dietary proteins and fats, which led to surge increase of fecal short chain fatty acids (SCFAs) in the colon of PD mice. In conclusion, pre-administration of PM could provide neuroprotective effects against PD pathogenesis by suppressing inflammation in gut, brain and systemic circulation, and by improving integrity of intestinal barrier and BBB. PM might modulate brain-gut-microbiota axis, at least in part, via gut microbiota derived SCFAs as mediators.
Collapse
|
30
|
Hussan JR, Hunter PJ. Our natural "makeup" reveals more than it hides: Modeling the skin and its microbiome. WIREs Mech Dis 2020; 13:e1497. [PMID: 32539232 DOI: 10.1002/wsbm.1497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023]
Abstract
Skin is our primary interface with the environment. A structurally and functionally complex organ that hosts a dynamic ecosystem of microbes, and synthesizes many compounds that affect our well-being and psychosocial interactions. It is a natural platform of signal exchange between internal organs, skin resident microbes, and the environment. These interactions have gained a great deal of attention due to the increased prevalence of atopic diseases, and the co-occurrence of multiple allergic diseases related to allergic sensitization in early life. Despite significant advances in experimentally characterizing the skin, its microbial ecology, and disease phenotypes, high-levels of variability in these characteristics even for the same clinical phenotype are observed. Addressing this variability and resolving the relevant biological processes requires a systems approach. This review presents some of our current understanding of the skin, skin-immune, skin-neuroendocrine, skin-microbiome interactions, and computer-based modeling approaches to simulate this ecosystem in the context of health and disease. The review highlights the need for a systems-based understanding of this sophisticated ecosystem. This article is categorized under: Infectious Diseases > Computational Models.
Collapse
Affiliation(s)
- Jagir R Hussan
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Cambronel M, Tortuel D, Biaggini K, Maillot O, Taupin L, Réhel K, Rincé I, Muller C, Hardouin J, Feuilloley M, Rodrigues S, Connil N. Epinephrine affects motility, and increases adhesion, biofilm and virulence of Pseudomonas aeruginosa H103. Sci Rep 2019; 9:20203. [PMID: 31882963 PMCID: PMC6934790 DOI: 10.1038/s41598-019-56666-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial endocrinology has demonstrated for more than two decades, that eukaryotic substances (hormones, neurotransmitters, molecules of the immune system) can modulate the physiological behavior of bacteria. Among them, the hormones/neurotransmitters, epinephrine (Epi) and norepinephrine (NE), released in case of stress, physical effort or used in medical treatment, were shown to be able to modify biofilm formation in various bacterial species. In the present study, we have evaluated the effect of Epi on motility, adhesion, biofilm formation and virulence of Pseudomonas aeruginosa, a bacterium linked to many hospital-acquired infections, and responsible for chronic infection in immunocompromised patients including persons suffering from cystic fibrosis. The results showed that Epi increased adhesion and biofilm formation of P. aeruginosa, as well as its virulence towards the Galleria mellonella larvae in vivo model. Deciphering the sensor of this molecule in P. aeruginosa and the molecular mechanisms involved may help to find new strategies of treatment to fight against this bacterium.
Collapse
Affiliation(s)
- Mélyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Kelly Biaggini
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA 3884, IUEM, Université de Bretagne-Sud, 56100, Lorient, France
| | - Karine Réhel
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA 3884, IUEM, Université de Bretagne-Sud, 56100, Lorient, France
| | - Isabelle Rincé
- Unité de Recherche Risques Microbiens (U2RM), EA 4655, UFR des sciences, Normandie Université, Université de Caen, 14000, Caen, France
| | - Cécile Muller
- Unité de Recherche Risques Microbiens (U2RM), EA 4655, UFR des sciences, Normandie Université, Université de Caen, 14000, Caen, France
| | - Julie Hardouin
- Laboratoire Polymères, Biopolymères, Surfaces, UMR 6270 CNRS, Plateforme Protéomique, PISSARO, Normandie Université, Université de Rouen, 76130, Mont Saint Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Sophie Rodrigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université - Université de Rouen, Évreux, 27000, Evreux, France.
| |
Collapse
|
32
|
Lyte JM, Lyte M. Review: Microbial endocrinology: intersection of microbiology and neurobiology matters to swine health from infection to behavior. Animal 2019; 13:2689-2698. [PMID: 30806347 DOI: 10.1017/s1751731119000284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From birth to slaughter, pigs are in constant interaction with microorganisms. Exposure of the skin, gastrointestinal and respiratory tracts, and other systems allows microorganisms to affect the developmental trajectory and function of porcine physiology as well as impact behavior. These routes of communication are bi-directional, allowing the swine host to likewise influence microbial survival, function and community composition. Microbial endocrinology is the study of the bi-directional dialogue between host and microbe. Indeed, the landmark discovery of host neuroendocrine systems as hubs of host-microbe communication revealed neurochemicals act as an inter-kingdom evolutionary-based language between microorganism and host. Several such neurochemicals are stress catecholamines, which have been shown to drastically increase host susceptibility to infection and augment virulence of important swine pathogens, including Clostridium perfringens. Catecholamines, the production of which increase in response to stress, reach the epithelium of multiple tissues, including the gastrointestinal tract and lung, where they initiate diverse responses by members of the microbiome as well as transient microorganisms, including pathogens and opportunistic pathogens. Multiple laboratories have confirmed the evolutionary role of microbial endocrinology in infectious disease pathogenesis extending from animals to even plants. More recent investigations have now shown that microbial endocrinology also plays a role in animal behavior through the microbiota-gut-brain axis. As stress and disease are ever-present, intersecting concerns during each stage of swine production, novel strategies utilizing a microbial endocrinology-based approach will likely prove invaluable to the swine industry.
Collapse
Affiliation(s)
- J M Lyte
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - M Lyte
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
33
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
34
|
Ait-Belgnaoui A, Payard I, Rolland C, Harkat C, Braniste V, Théodorou V, Tompkins TA. Bifidobacterium longum and Lactobacillus helveticus Synergistically Suppress Stress-related Visceral Hypersensitivity Through Hypothalamic-Pituitary-Adrenal Axis Modulation. J Neurogastroenterol Motil 2018; 24:138-146. [PMID: 29291614 PMCID: PMC5753912 DOI: 10.5056/jnm16167] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/13/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Visceral pain and hypothalamic-pituitary-adrenal axis (HPA) dysregulation is a common characteristic in irritable bowel syndrome (IBS) patients. Previously, we reported that a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) prevents chronic stress-mediated brain function abnormalities by attenuating the HPA axis response. Here, we compared the effect between different probiotic treatments on the perception of visceral pain during colorectal distension (CRD) following a chronic stress and the consequences to the activity of the HPA axis. Methods After a 2-week treatment with a combined probiotic formulation, or L. helveticus or B. longum alone in stressed mice, the visceral pain in response to CRD was recorded. The expression of glucocorticoid receptors was determined in the different brain areas involved in the stress response (hypothalamus, hippocampus, and prefrontal cortex). The plasma levels of stress hormones were also measured. Results A pretreatment using the combination of probiotic formulation significantly reduces the chronic stress-induced visceral hypersensitivity respectively at 0.06, 0.08, and 0.10 mL CRD volume. However, a single probiotic (B. longum or L. helveticus) administration is less effective in reducing visceral pain in stressed mice. Moreover, the expression of the glucocorticoid receptor mRNA was consistently up-regulated in several brain areas after pretreatment with a combined probiotic, which correlated with the normalization of stress response compared to the inconsistent effects of a single probiotic. Conclusion The combination of L. helveticus and B. longum is more effective in regulating glucocorticoid negative feedback on the HPA axis than probiotic alone and subsequently in treating stress-induced visceral pain.
Collapse
Affiliation(s)
- Afifa Ait-Belgnaoui
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France.,Lallemand Health Solutions, Montreal, Canada
| | - Isabelle Payard
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France
| | | | - Cherryl Harkat
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France
| | - Viorica Braniste
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Vassillia Théodorou
- Neuro-Gastroenterology and Nutrition team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France
| | | |
Collapse
|
35
|
Singh A, Gupta R, Tandon S, Pandey R. Thyme Oil Reduces Biofilm Formation and Impairs Virulence of Xanthomonas oryzae. Front Microbiol 2017; 8:1074. [PMID: 28659894 PMCID: PMC5468448 DOI: 10.3389/fmicb.2017.01074] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), a common bacterial plant pathogen regulates its virulence and biofilm formation attribute via a chemical method of communication. Disabling this mechanism offers a promising alternative to reduce the virulence and pathogencity of the microorganism. In this study, the effect of thyme (THY) oil on Quorum Sensing mediated synthesis of various virulence factors and biofilm formation was analyzed. Treatment of Xoo with 500 ppm THY oil displayed a significant diminution in swimming, swarming, exopolysaccharide and xanthomonadin secretion. However, no effect was observed on bacterial growth kinetics and metabolic activity of the cells. Results were further authenticated by RT-qPCR as significant reduction in motA, motB, and flgE genes was observed upon THY oil treatment. Similarly, the expression of some extracellular enzyme genes such as endoglucanase, xylanase, cellobiosidase, and polygalacturonase was also found to be significantly reduced. However, biochemical plate assays revealed insignificant effect of 500 ppm THY oil on secretion of protease, cellulase, and lipase enzymes. The rpfF gene known to play a crucial role in the virulence of the phytopathogenic bacteria was also significantly reduced in the THY oil treated Xoo cells. HPTLC analysis further revealed significant reduction in DSF and BDSF signaling molecules when Xoo cells were treated with 500 ppm THY oil. Disease reduction was observed in in vitro agar plate assay as lesion length was reduced in THY oil treated Xoo cells when compared with the alone treatment. GC-MS result revealed thymol as the active and major component of THY oil which showed potential binding with rpfF gene. Application of 75 μM thymol resulted in downregulation of gumC, motA, estA, virulence acvB and pglA along with rpfF. The other genes such as cheD, flgA, cheY, and pilA, were not found to be significantly affected. Overall, the results clearly indicated THY oil and its active component Thymol to be a potential candidate for the development of anti-virulence agent which in future when applied in combination with conventional bactericides might not only help in lowering the dose of bactericides but also be successful in curbing the disease progression in rice.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Microbial Technology and Nematology, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial ResearchLucknow, India
| | - Rupali Gupta
- Department of Microbial Technology and Nematology, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial ResearchLucknow, India
| | - Sudeep Tandon
- Chemical Processing Department, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial ResearchLucknow, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial ResearchLucknow, India
| |
Collapse
|
36
|
Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, Grati M, Mittal J, Yan D, Eshraghi AA, Deo SK, Daunert S, Liu XZ. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. J Cell Physiol 2017; 232:2359-2372. [PMID: 27512962 DOI: 10.1002/jcp.25518] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitters, including catecholamines and serotonin, play a crucial role in maintaining homeostasis in the human body. Studies on these neurotransmitters mainly revolved around their role in the "fight or flight" response, transmitting signals across a chemical synapse and modulating blood flow throughout the body. However, recent research has demonstrated that neurotransmitters can play a significant role in the gastrointestinal (GI) physiology. Norepinephrine (NE), epinephrine (E), dopamine (DA), and serotonin have recently been a topic of interest because of their roles in the gut physiology and their potential roles in GI and central nervous system pathophysiology. These neurotransmitters are able to regulate and control not only blood flow, but also affect gut motility, nutrient absorption, GI innate immune system, and the microbiome. Furthermore, in pathological states, such as inflammatory bowel disease (IBD) and Parkinson's disease, the levels of these neurotransmitters are dysregulated, therefore causing a variety of GI symptoms. Research in this field has shown that exogenous manipulation of catecholamine serum concentrations can help in decreasing symptomology and/or disease progression. In this review article, we discuss the current state-of-the-art research and literature regarding the role of neurotransmitters in regulation of normal GI physiology, their impact on several disease processes, and novel work focused on the use of exogenous hormones and/or psychotropic medications to improve disease symptomology. J. Cell. Physiol. 232: 2359-2372, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
37
|
Biofilm inhibition formation of clinical strains of Pseudomonas aeruginosa mutans, photocatalytic activity of azo dye and GC-MS analysis of leaves of Lagerstroemia speciosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 169:148-160. [PMID: 28319869 DOI: 10.1016/j.jphotobiol.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 01/02/2023]
Abstract
The investigation was conducted to analyse the bioactive compounds from the leaf extracts of L. speciosa by GC-MS. The extracts were screened for antibacterial and antibiofilm activities against potential clinical strains. The bioactive compounds from the leaves of L. speciosa were extracted by soxhlet continuous extraction method and their chemical composition was analysed by Gas Chromatography-Mass Spectroscopy (GC-MS). The antibacterial activity was evaluated against clinical strain like Staphylococcus aureus, Escherichia coli, P. aeruginosa and Salmonella typhi by well diffusion technique. We also screened for antibacterial property against common food borne pathogens namely Listeria monocytogenes and Bacillus cereus at varied concentration 250μml-1 to 1000μml-1. Thereafter antibiofilm assay was carried out at from 250 to 1000μg/ml against P. aeruginosa (high biofilm forming pathogen) clinical strain by cover slip technique and the morphology of the pathogen was observed using Scanning Electron Microscopy-(SEM). It was observed that diverse class of secondary metabolites were found by GC-MS analysis for all the extracts upon the continuous extraction. It was found that only minimum inhibition was seen in alcoholic extract for antibacterial activity, whereas all other extracts showed negligible activity. P. aeruginosa biofilm inhibited to 93.0±2% and 91±2% at higher concentration (1000μg/ml) for methanolic and ethanolic extract respectively. Absence of extracellular matrix structure and the surface cracking of biofilm were viewed by SEM, which confirmed the antibiofilm activity. Hence this study reveals that L. speciosa showed significant antibiofilm activity against P. aeruginosa due to the phytoconstituents present in the leaf extracts which was well documented in the alcoholic extracts by GC-MS analysis. The methanolic and ethanolic extract showed good photocatalytic activity of 77.44% and 96.66% against azo dye degradation respectively. Further, isolating the novel phyto-compounds would yield better promising biological activities.
Collapse
|
38
|
Response of Vibrio cholerae to the Catecholamine Hormones Epinephrine and Norepinephrine. J Bacteriol 2015; 197:3769-78. [PMID: 26416829 DOI: 10.1128/jb.00345-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED In Escherichia coli or Salmonella enterica, the stress-associated mammalian hormones epinephrine (E) and norepinephrine (NE) trigger a signaling cascade by interacting with the QseC sensor protein. Here we show that Vibrio cholerae, the causative agent of cholera, exhibits a specific response to E and NE. These catecholates (0.1 mM) enhanced the growth and swimming motility of V. cholerae strain O395 on soft agar in a medium containing calf serum, which simulated the environment within the host. During growth, the hormones were converted to degradation products, including adrenochrome formed by autooxidation with O2 or superoxide. In E. coli, the QseC sensor kinase, which detects the autoinducer AI-3, also senses E or NE. The genome of V. cholerae O395 comprises an open reading frame coding for a putative protein with 29% identity to E. coli QseC. Quantitative reverse transcriptase PCR (qRT-PCR) experiments revealed increased transcript levels of the qseC-like gene and of pomB, a gene encoding a structural component of the flagellar motor complex, under the influence of E or NE. Phentolamine blocks the response of E. coli QseC to E or NE. A V. cholerae mutant devoid of the qseC-like gene retained the phentolamine-sensitive motility in the presence of E, whereas NE-stimulated motility was no longer inhibited by phentolamine. Our study demonstrates that V. cholerae senses the stress hormones E and NE. A sensor related to the histidine kinase QseC from E. coli is identified and is proposed to participate in the sensing of NE. IMPORTANCE Vibrio cholerae is a Gram-negative bacterium that may cause cholera, a severe illness with high mortality due to acute dehydration caused by diarrhea and vomiting. Pathogenic V. cholerae strains possess virulence factors like the cholera toxin (CTX) and the toxin-coregulated pilus (TCP) produced in response to signals provided by the host. In pathogenic enterobacteria, the stress-associated hormones epinephrine (E) and norepinephrine (NE) of the human host act as signal molecules for the production of virulence factors and promote bacterial growth by the sequestration of iron from the host. Here we show that V. cholerae, like some enterobacteria, benefits from these stress hormones and possesses a sensor to recognize them.
Collapse
|
39
|
Pseudomonas aeruginosa Expresses a Functional Human Natriuretic Peptide Receptor Ortholog: Involvement in Biofilm Formation. mBio 2015; 6:mBio.01033-15. [PMID: 26307165 PMCID: PMC4550695 DOI: 10.1128/mbio.01033-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Considerable evidence exists that bacteria detect eukaryotic communication molecules and modify their virulence accordingly. In previous studies, it has been demonstrated that the increasingly antibiotic-resistant pathogen Pseudomonas aeruginosa can detect the human hormones brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) at micromolar concentrations. In response, the bacterium modifies its behavior to adapt to the host physiology, increasing its overall virulence. The possibility of identifying the bacterial sensor for these hormones and interfering with this sensing mechanism offers an exciting opportunity to directly affect the infection process. Here, we show that BNP and CNP strongly decrease P. aeruginosa biofilm formation. Isatin, an antagonist of human natriuretic peptide receptors (NPR), prevents this effect. Furthermore, the human NPR-C receptor agonist cANF4-23 mimics the effects of natriuretic peptides on P. aeruginosa, while sANP, the NPR-A receptor agonist, appears to be weakly active. We show in silico that NPR-C, a preferential CNP receptor, and the P. aeruginosa protein AmiC have similar three-dimensional (3D) structures and that both CNP and isatin bind to AmiC. We demonstrate that CNP acts as an AmiC agonist, enhancing the expression of the ami operon in P. aeruginosa. Binding of CNP and NPR-C agonists to AmiC was confirmed by microscale thermophoresis. Finally, using an amiC mutant strain, we demonstrated that AmiC is essential for CNP effects on biofilm formation. In conclusion, the AmiC bacterial sensor possesses structural and pharmacological profiles similar to those of the human NPR-C receptor and appears to be a bacterial receptor for human hormones that enables P. aeruginosa to modulate biofilm expression. The bacterium Pseudomonas aeruginosa is a highly dangerous opportunist pathogen for immunocompromised hosts, especially cystic fibrosis patients. The sites of P. aeruginosa infection are varied, with predominance in the human lung, in which bacteria are in contact with host molecular messengers such as hormones. The C-type natriuretic peptide (CNP), a hormone produced by lung cells, has been described as a bacterial virulence enhancer. In this study, we showed that the CNP hormone counteracts P. aeruginosa biofilm formation and we identified the bacterial protein AmiC as the sensor involved in the CNP effects. We showed that AmiC could bind specifically CNP. These results show for the first time that a human hormone could be sensed by bacteria through a specific protein, which is an ortholog of the human receptor NPR-C. The bacterium would be able to modify its lifestyle by favoring virulence factor production while reducing biofilm formation.
Collapse
|
40
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
41
|
Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 2015; 39:509-21. [PMID: 25701044 DOI: 10.1093/femsre/fuu010] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2014] [Indexed: 12/27/2022] Open
Abstract
The new field of microbiome research studies the microbes within multicellular hosts and the many effects of these microbes on the host's health and well-being. We now know that microbes influence metabolism, immunity and even behavior. Essential questions, which are just starting to be answered, are what are the mechanisms by which these bacteria affect specific host characteristics. One important but understudied mechanism appears to involve hormones. Although the precise pathways of microbiota-hormonal signaling have not yet been deciphered, specific changes in hormone levels correlate with the presence of the gut microbiota. The microbiota produces and secretes hormones, responds to host hormones and regulates expression levels of host hormones. Here, we summarize the links between the endocrine system and the gut microbiota. We categorize these interactions by the different functions of the hormones, including those affecting behavior, sexual attraction, appetite and metabolism, gender and immunity. Future research in this area will reveal additional connections, and elucidate the pathways and consequences of bacterial interactions with the host endocrine system.
Collapse
Affiliation(s)
- Hadar Neuman
- Faculty of medicine, Bar-Ilan University, 1311502 Safed, Israel
| | - Justine W Debelius
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Omry Koren
- Faculty of medicine, Bar-Ilan University, 1311502 Safed, Israel
| |
Collapse
|
42
|
Intarak N, Muangsombut V, Vattanaviboon P, Stevens MP, Korbsrisate S. Growth, motility and resistance to oxidative stress of the melioidosis pathogenBurkholderia pseudomalleiare enhanced by epinephrine. Pathog Dis 2014; 72:24-31. [DOI: 10.1111/2049-632x.12181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/28/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Narin Intarak
- Department of Immunology; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Veerachat Muangsombut
- Department of Immunology; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | | | - Mark P. Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies; University of Edinburgh; Edinburgh UK
| | - Sunee Korbsrisate
- Department of Immunology; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| |
Collapse
|
43
|
Abstract
The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.
Collapse
|
44
|
Li X, Defoirdt T, Yang Q, Laureau S, Bossier P, Dierckens K. Host-induced increase in larval sea bass mortality in a gnotobiotic challenge test with Vibrio anguillarum. DISEASES OF AQUATIC ORGANISMS 2014; 108:211-216. [PMID: 24695234 DOI: 10.3354/dao02722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vibrio anguillarum is the major cause of haemorrhagic septicaemia, vibriosis, which is a severe disease affecting marine fish. In this work, it was found that the mortality of gnotobiotic sea bass larvae challenged with V. anguillarum was dependent on the number of dead fish in the vials at the moment of challenge. Based on this finding, the effect of dead hosts (homogenised sea bass larvae or brine shrimp) on the virulence of V. anguillarum towards sea bass larvae was further investigated. Addition of homogenised hosts led to significantly increased larval mortality of challenged larvae, and this was observed for 3 different V. anguillarum strains, i.e. 43, NB 10 and HI 610. In contrast, the addition of similar levels of tryptone had no effect on mortality. In line with this, the motility of all 3 V. anguillarum strains was significantly increased by the addition of homogenised hosts but not by tryptone. These results suggest that dead hosts increase infectivity of V. anguillarum, not merely by offering nutrients to the bacteria, but also by increasing virulence-associated activities such as motility.
Collapse
Affiliation(s)
- Xuan Li
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, 9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Multidirectional chemical signalling between Mammalian hosts, resident microbiota, and invasive pathogens: neuroendocrine hormone-induced changes in bacterial gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:241-53. [PMID: 24997037 DOI: 10.1007/978-1-4939-0897-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Host-pathogen communication appears to be crucial in establishing the outcome of bacterial infections. There is increasing evidence to suggest that this communication can take place by bacterial pathogens sensing and subsequently responding to host neuroendocrine (NE) stress hormones. Bacterial pathogens have developed mechanisms allowing them to eavesdrop on these communication pathways within their hosts. These pathogens can use intercepted communication signals to adjust their fitness to persist and cause disease in their hosts. Recently, there have been numerous studies highlighting the ability of NE hormones to act as an environmental cue for pathogens, helping to steer their responses during host infection. Host NE hormone sensing can take place indirectly or directly via bacterial adrenergic receptors (BARs). The resulting changes in bacterial gene expression can be of strategic benefit to the pathogen. Furthermore, it is intriguing that not only can bacteria sense NE stress hormones but they are also able to produce key signalling molecules known as autoinducers. The rapid advances in our knowledge of the human microbiome, and its impact on health and disease highlights the potential importance of communication between the microbiota, pathogens and the host. It is indeed likely that the microbiota input significantly in the neuroendocrinological homeostasis of the host by catabolic, anabolic, and signalling processes. The arrival of unwanted guests, such as bacterial pathogens, clearly has a major impact on these delicately balanced interactions. Unravelling the pathways involved in interkingdom communication between invading bacterial pathogens, the resident microbiota, and hosts, may provide novel targets in our continuous search for new antimicrobials to control disease.
Collapse
|
46
|
Gonzales XF, Castillo-Rojas G, Castillo-Rodal AI, Tuomanen E, López-Vidal Y. Catecholamine norepinephrine diminishes lung epithelial cell adhesion of Streptococcus pneumoniae by binding iron. Microbiology (Reading) 2013; 159:2333-2341. [DOI: 10.1099/mic.0.065607-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Xavier F. Gonzales
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, CP 04510, Mexico
| | - Gonzalo Castillo-Rojas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, CP 04510, Mexico
| | - Antonia I. Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, CP 04510, Mexico
| | - Elaine Tuomanen
- Department of Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, CP 04510, Mexico
| |
Collapse
|
47
|
Kim HS, Park HD. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One 2013; 8:e76106. [PMID: 24086697 PMCID: PMC3785436 DOI: 10.1371/journal.pone.0076106] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 01/11/2023] Open
Abstract
Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.
Collapse
Affiliation(s)
- Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, South Korea
| |
Collapse
|
48
|
Babrowski T, Romanowski K, Fink D, Kim M, Gopalakrishnan V, Zaborina O, Alverdy JC. The intestinal environment of surgical injury transforms Pseudomonas aeruginosa into a discrete hypervirulent morphotype capable of causing lethal peritonitis. Surgery 2013; 153:36-43. [PMID: 22862900 PMCID: PMC3521093 DOI: 10.1016/j.surg.2012.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/08/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Secondary peritonitis continues to carry a high mortality rate despite the aggressive use of imaging, drainage, and antibiotics. Although host factors and microbial burden contribute to the outcome of peritonitis, we propose a role for bacterial virulence as a determinant of outcome from peritonitis. Bacterial virulence is an inducible trait that is activated in response to specific local "cues" that we have previously shown to be present in the mouse gut exposed to surgical stress and injury. METHODS Pseudomonas aeruginosa was harvested after its intestinal inoculation into the cecum of mice subjected to surgical injury (30% hepatectomy) or sham surgery (controls). Harvested strains were then injected into the peritoneum of noninjured (naïve) mice and mortality determined. RESULTS P. aeruginosa harvested from the intestines of surgically injured mice caused 100% mortality, whereas strains harvested from control mice caused no mortality. Among recovered strains, a distinct P. aeruginosa morphotype (wrinkled shape) was shown to cause lethal peritonitis compared to smooth-shaped strains, which were nonlethal. Wrinkled strains were associated with a tendency to elicit a more proinflammatory response in mice compared to smooth-shaped strains. CONCLUSION Surgical injury transforms the morphotype of intestinal P. aeruginosa to express a hypervirulent response in the peritoneum of mice. Enhanced virulence of intestinal pathogens in response to surgical injury may play an important role in predicting the outcome of peritonitis.
Collapse
Affiliation(s)
- Trissa Babrowski
- Center for Surgical Infection Research and Therapeutics, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Hense BA, Müller J, Kuttler C, Hartmann A. Spatial heterogeneity of autoinducer regulation systems. SENSORS 2012; 12:4156-71. [PMID: 22666024 PMCID: PMC3355405 DOI: 10.3390/s120404156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 12/25/2022]
Abstract
Autoinducer signals enable coordinated behaviour of bacterial populations, a phenomenon originally described as quorum sensing. Autoinducer systems are often controlled by environmental substances as nutrients or secondary metabolites (signals) from neighbouring organisms. In cell aggregates and biofilms gradients of signals and environmental substances emerge. Mathematical modelling is used to analyse the functioning of the system. We find that the autoinducer regulation network generates spatially heterogeneous behaviour, up to a kind of multicellularity-like division of work, especially under nutrient-controlled conditions. A hybrid push/pull concept is proposed to explain the ecological function. The analysis allows to explain hitherto seemingly contradicting experimental findings.
Collapse
Affiliation(s)
- Burkhard A. Hense
- Institute of Biomathematics and Biometry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-89-3187-4035; Fax: +49-89-3187-3029
| | - Johannes Müller
- Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany; E-Mails: (J.M.); (C.K.)
| | - Christina Kuttler
- Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany; E-Mails: (J.M.); (C.K.)
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; E-Mail:
| |
Collapse
|
50
|
Sheng L, Pu M, Hegde M, Zhang Y, Jayaraman A, Wood TK. Interkingdom adenosine signal reduces Pseudomonas aeruginosa pathogenicity. Microb Biotechnol 2012; 5:560-72. [PMID: 22414222 PMCID: PMC3815332 DOI: 10.1111/j.1751-7915.2012.00338.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas aeruginosa is becoming recognized as an important pathogen in the gastrointestinal (GI) tract. Here we demonstrate that adenosine, derived from hydrolysis of ATP from the eucaryotic host, is a potent interkingdom signal in the GI tract for this pathogen. The addition of adenosine nearly abolished P. aeruginosa biofilm formation and abolished swarming by preventing production of rhamnolipids. Since the adenosine metabolite inosine did not affect biofilm formation and since a mutant unable to metabolize adenosine behaved like the wild-type strain, adenosine metabolism is not required to reduce pathogenicity. Adenosine also reduces production of the virulence factors pyocyanin, elastase, extracellular polysaccharide, siderophores and the Pseudomonas quinolone signal which led to reduced virulence with Caenorhabditis elegans. To provide insights into how adenosine reduces the virulence of P. aeruginosa, a whole-transcriptome analysis was conducted which revealed that adenosine addition represses genes similar to an iron-replete condition; however, adenosine did not directly bind Fur. Therefore, adenosine decreases P. aeruginosa pathogenicity as an interkingdom signal by causing genes related to iron acquisition to be repressed.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Chemical Engineering, Texas A & M University, College Station, TX 77843-3122, USA
| | | | | | | | | | | |
Collapse
|