1
|
Claveau L, Hudson N, Jeffrey P, Hassard F. Assessing microbial growth in drinking water using nucleic acid content and flow cytometry fingerprinting. iScience 2024; 27:111511. [PMID: 39759014 PMCID: PMC11699291 DOI: 10.1016/j.isci.2024.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/13/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
This study utilizes flow cytometry (FCM) to evaluate the high nucleic acid (HNA) and low nucleic acid (LNA) content of intact cells for monitoring bacterial dynamics in drinking water treatment and supply systems. Our findings indicate that chlorine and nutrients differently impact components of bacterial populations. HNA bacteria, characterized by high metabolic rates, quickly react to nutrient alterations, making them suitable indicators of growth under varying water treatment and supply conditions. Conversely, LNA bacteria adapt to environments with stable, slowly degradable organics, reflecting distinct physiological characteristics. Changes in water treatment and supply conditions, such as chlorine dosing and nutrient inputs, significantly impact the ratio between HNA and LNA. FCM fingerprinting combined with cluster analysis provides a more sensitive evaluation of water quality by capturing a broader range of microbial characteristics compared to using only HNA/LNA ratios. This work advocates for multi-parameter data analysis to advance monitoring techniques for water treatment and supply processes.
Collapse
Affiliation(s)
- Leila Claveau
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Neil Hudson
- South East Water, Rocfort Road, Snodland, Kent ME6 5AH, UK
| | - Paul Jeffrey
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Francis Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
2
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
3
|
Song Y, Mena-Aguilar D, Brown CL, Rhoads WJ, Helm RF, Pruden A, Edwards MA. Effects of Copper on Legionella pneumophila Revealed via Viability Assays and Proteomics. Pathogens 2024; 13:563. [PMID: 39057790 PMCID: PMC11279431 DOI: 10.3390/pathogens13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cu is an antimicrobial that is commonly applied to premise (i.e., building) plumbing systems for Legionella control, but the precise mechanisms of inactivation are not well defined. Here, we applied a suite of viability assays and mass spectrometry-based proteomics to assess the mechanistic effects of Cu on L. pneumophila. Although a five- to six-log reduction in culturability was observed with 5 mg/L Cu2+ exposure, cell membrane integrity only indicated a <50% reduction. Whole-cell proteomic analysis revealed that AhpD, a protein related to oxidative stress, was elevated in Cu-exposed Legionella relative to culturable cells. Other proteins related to cell membrane synthesis and motility were also higher for the Cu-exposed cells relative to controls without Cu. While the proteins related to primary metabolism decreased for the Cu-exposed cells, no significant differences in the abundance of proteins related to virulence or infectivity were found, which was consistent with the ability of VBNC cells to cause infections. Whereas the cell-membrane integrity assay provided an upper-bound measurement of viability, an amoebae co-culture assay provided a lower-bound limit. The findings have important implications for assessing Legionella risk following its exposure to copper in engineered water systems.
Collapse
Affiliation(s)
- Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
- Utilities Department, 316 N. Academy St., Town of Cary, Cary, NC 27513, USA
| | - Didier Mena-Aguilar
- Biochemistry, Virginia Tech, 340 W Campus Dr, Blacksburg, VA 24060, USA
- Department of Biochemistry, University of Nebraska-Lincoln, N106, The Beadle Center, Lincoln, NE 68588, USA
| | - Connor L. Brown
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Steger Hall, Blacksburg, VA 24061, USA
| | - William J. Rhoads
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
- Black & Veatch, 8400 Ward Pkwy, Kansas City, MO 64114, USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, 1015 Life Science Circle, 211B Steger Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
| |
Collapse
|
4
|
Ye C, Chen C, Feng M, Ou R, Yu X. Emerging contaminants in the water environment: Disinfection-induced viable but non-culturable waterborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132666. [PMID: 37793257 DOI: 10.1016/j.jhazmat.2023.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Disinfection is essential for the control of waterborne pathogens (WPs), especially during the COVID-19 pandemic. WP can enter the viable but non-culturable (VBNC) state to evade disinfection, seriously threatening water safety. VBNC WPs should be considered as an emerging contaminant to ensure a higher level of safety of the water environment. Here, this study systematically reviewed the water disinfection methods that could induce WPs into the VBNC state, and clarified the risks of different species of VBNC WPs in the relevant water environment. The physicochemical and physiological properties of VBNC cells (e.g., morphology, physiology, and resuscitation potential) were then evaluated to better understand their potential health risks. In addition, the dominant detection methods of VBNC WPs were discussed, and real-time and label-free technologies were recommended for the study of VBNC WPs in the aquatic environment. The possible mechanisms of formation and persistence at the genetic level were highlighted. It concluded that the VBNC state has a deeper level of dormancy than the persistent state, which is associated with the general stress response and stringent response systems, and its persistence is also associated with the active efflux of harmful substances. Finally, the current shortcomings and research perspectives of VBNC bacteria were summarized. This review provides new insights into the characteristics, detection methods, persistence mechanisms, and potential health risks of VBNC WPs induced by water disinfection processes, and also serves as a basis for microbial risk control in the aquatic environment.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chenclan Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Ranwen Ou
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China.
| |
Collapse
|
5
|
Shayan MNM, Tanaka Y, Hirano R, Nakaya Y, Satoh H. A simple and rapid method for detecting fecal pollution in urban rivers by measuring the intrinsic β-D-glucuronidase activity of Escherichia coli. WATER RESEARCH 2023; 246:120689. [PMID: 37801983 DOI: 10.1016/j.watres.2023.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
As urban rivers are domestic, industrial, and agricultural water resources, fecal pollution poses human health and environmental risks. In this study, we developed a simple and rapid method to detect fecal pollution in urban rivers. Water samples were mixed with liquid medium, including a fluorescent substrate and fluorescence intensity (F.I.) was measured using a microplate reader to determine Escherichia coli (E. coli) β-D-glucuronidase (GUS) activity instead of E. coli concentration. GUS activities measurements in pure E. coli cultures revealed that E. coli incubated with a GUS substrate accumulated GUS enzymes in their cells, whereas those incubated without a GUS substrate did not. The increase in GUS activity corresponded to the proliferation of E. coli and the GUS activity increased linearly even during the lag growth phase of E. coli, indicating the presence of intrinsic GUS (iGUS) in E. coli cells before incubation. iGUS activity persisted at 81 % in the chlorinated samples, even though the E. coli concentration was reduced by a factor of 106. The iGUS activity persisted for approximately three days. Therefore, we assumed that E. coli present in fecal contaminants, in which GUS substrates are present, could be distinguished from those surviving in the natural environment for three days or longer by measuring iGUS activity. River water samples were collected upstream and downstream of the discharge outlets of municipal wastewater treatment plants and a combined sewer outlet. The iGUS activities were <0.24 mMFU/mL for the upstream samples and >0.21 mMFU/mL for the downstream samples. Interestingly, E. coli concentrations were not necessarily associated with fecal pollution. This indicates that by setting a threshold for iGUS activity, our method can be used as a simple and rapid method for detecting fecal pollution in urban rivers. Because the limit of detection for our method is 20 CFU/mL, our method is applicable to detecting high fecal pollution in a small river.
Collapse
Affiliation(s)
- Mohomed N M Shayan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo 060-8628, Japan
| | - Yuna Tanaka
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo 060-8628, Japan
| | - Reiko Hirano
- Cellspect Co., Ltd., 2-4-23 Kitaiioka, Morioka, Iwate 020-0857, Japan
| | - Yuki Nakaya
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo 060-8628, Japan
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo 060-8628, Japan.
| |
Collapse
|
6
|
Shi Q, Chen Z, Yan H, Xu M, Cao KF, Mao Y, Chen X, Hu HY. Identification of significant live bacterial community shifts in different reclaimed waters during ozone and chlorine disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165199. [PMID: 37391159 DOI: 10.1016/j.scitotenv.2023.165199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Ozone and chlorine are the most widely used disinfectants for water and wastewater disinfection. They play important role in microbial inactivation but could also pose a considerable selection effect on the microbial community of reclaimed water. Classical culture-based methods that rely on the assessment of conventional bacterial indicators (e.g., coliform bacteria) could hardly reflect the survival of disinfection residual bacteria (DRB) and hidden microbial risks in disinfected effluents. Hence, this study investigated the shifts of live bacterial community during ozone and chlorine disinfection in three reclaimed waters (i.e., two secondary effluents and one tertiary effluent), adopting Illumina Miseq sequencing technology in combination with a viability assay, propidium monoazide (PMA) pretreatment. Notably, statistical analyses of Wilcoxon rank-sum test confirmed the existance of distinct differences in bacterial community structure between samples with or without PMA pretreatment. On the phylum level, Proteobacteria commonly dominated in three undisinfected reclaimed waters, while ozone and chlorine disinfection posed varied effects on its relative abundance among different influents. On the genus level, ozone and chlorine disinfection significantly changed the bacterial composition and dominant species in reclaimed waters. Specifically, the typical DRB identified in ozone disinfected effluents were Pseudomonas, Nitrospira and Dechloromonas, while for chlorine disinfected effluents, Pseudomonas, Legionella, Clostridium, Mycobacterium and Romboutsia were recognized as typical DRB, which call for much attention. The Alpha and Beta diversity analysis results also suggested that different influent compositions greatly affected the bacterial community structure during disinfection processes. Since the experiments in present study were conducted in a short period and the dataset was relatively limited, prolonged experiment under different operational conditions are needed in future to illustrate the potential long-term effects of disinfection on the microbial community structure. The findings of this study could provide insights into microbial safety concern and control after disinfection for sustainable water reclamation and reuse.
Collapse
Affiliation(s)
- Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Han Yan
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaowen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|
7
|
Role of Resuscitation Promoting Factor-like Protein from Nocardiopsis halophila. Microorganisms 2023; 11:microorganisms11020485. [PMID: 36838450 PMCID: PMC9966590 DOI: 10.3390/microorganisms11020485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Resuscitation promoting factors (Rpf), a class of proteins secreted by gram-positive bacteria including actinobacteria, promote the resuscitation of dormant bacteria and spore germination. Here, we describe the reconstitution of the resuscitation promoting activity of the Rpf protein from Nocardiopsis halophila CGMCC 4.1195Tin vitro and in vivo. The Rpf protein was expressed in the host Escherichia coli BL21 codon plus (DE3) and was confirmed to have a significant resuscitation effect on the viable but non-culturable (VBNC) N. halophila. Subsequently, the rpf gene of N. halophila was knocked out. We found that the growth rate of the mutant strain (Δrpf) was slower than that of the wild strain, and the former produced significantly shorter spores than the wild-type strain. Our results confirmed the activity of the Rpf protein in N. halophila to promote dormant bacteria resuscitation. This study will lay the foundation for the application of the Rpf protein from N. halophila to exploit actinomycetes resources.
Collapse
|
8
|
Possible Processes and Mechanisms of Hexachlorobenzene Decomposition by the Selected Comamonas testosteroni Bacterial Strains. Processes (Basel) 2022. [DOI: 10.3390/pr10112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The bacterial destructing activity toward pesticides has been the focus of research in the last few decades. Hexachlorobenzene is included in the organochlorine pesticides group that are prohibited for use. However, large hexachlorobenzene amounts are still concentrated in the soil, stressing the relevance of research on hexachlorobenzene-destroying bacteria. Methods: The ability to destroy hexachlorobenzene by Comamonas testosteroni UCM B-400, B-401, B-213 strains was investigated and established. Bacteria were cultivated (7 days at 28 °C) in mineral Luria-Bertrani (LB) medium with three hexachlorobenzene doses: 10, 20, 50 mg/L. The hexachlorobenzene concentrations were recorded by a gas chromatography method. Results: The results showed that C. testosteroni UCM B-400, B-401 have high destructive activity toward hexachlorobenzene. The highest (50 mg/L) initial concentration decreased to 41.5 and 43.8%, respectively, for C. testosteroni UCM B-400, B-401. The unadapted C. testosteroni UCM B-213 was tolerant to hexachlorobenzene (cell titers after cultivating with 10.0, 20.0, 50.0 mg/mL were higher compared to initial titer), but had a low-destructing activity level (two times less than B-400 and B-401). Conclusions: Bacterial strains C. testosteroni UCM B-400, B-401 can be seen as a potential soil bioremediation from hexachlorobenzene pollution.
Collapse
|
9
|
Cao R, Wan Q, Xu X, Tian S, Wu G, Wang J, Huang T, Wen G. Differentiation of DNA or membrane damage of the cells in disinfection by flow cytometry. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128924. [PMID: 35483263 DOI: 10.1016/j.jhazmat.2022.128924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Recently, the viabilities changes of fungal spores in the water supply system during different disinfection processes have been revealed. SYBR Green I (SG), a nucleic acid stain, its fluorescence intensity is correlated with the amount of double-stranded DNA. This study established a new method through successive SG-SG-PI staining (PI: Propidium Iodide) with flow cytometry (FCM). It could successfully distinguish DNA damage and membrane damage of fungal spores, clearly elucidating the intrinsic disinfection mechanism during the chemical disinfection. This method was briefly described as follows: firstly, (1) the fungal spores were stained with SG and washed by centrifugation; and then, (2) the washed spores were treated with disinfectants and terminated; after that, (3) the disinfected spores were re-stained with SG and analyzed by FCM; finally, (4) the SG re-stained spores were stained with PI and analyzed by FCM. The percentages of spores with DNA damage and membrane damage were determined by the fluorescence intensity obtained from steps (3) and (4), respectively. The repeatability and applicability of this developed method were confirmed. It was further applied to explore the inactivation mechanism during chlorine-based disinfection, and results demonstrated that chloramine attacked the DNA more seriously than the membrane, while chlorine and chlorine dioxide worked in a reverse way.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shiqi Tian
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
10
|
Cheswick R, Nocker A, Moore G, Jefferson B, Jarvis P. Exploring the use of flow cytometry for understanding the efficacy of disinfection in chlorine contact tanks. WATER RESEARCH 2022; 217:118420. [PMID: 35468557 DOI: 10.1016/j.watres.2022.118420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
A pilot scale chlorine contact tank (CCT) with flexible baffling was installed at an operational water treatment plant (WTP), taking a direct feed from the outlet of the rapid gravity filters (RGF). For the first time, disinfection efficacy was established by direct microbial monitoring in a continuous reactor using flow cytometry (FCM). Disinfection variables of dose, time, and hydraulic efficiency (short circuiting and dispersion) were explored following characterisation of the reactor's residence time distributions (RTD) by tracer testing. FCM enabled distinction to be made between changes in disinfection reactor design where standard culture-based methods could not. The product of chlorine concentration (C) and residence time (t) correlated well with inactivation of microbes, organisms, with the highest cell reductions (N/N0) reaching <0.025 at Ctx¯ of 20 mg.min/L and above. The influence of reactor geometry on disinfection was best shown from the Ct10. This identified that the initial level of microbial inactivation was higher in unbaffled reactors for low Ct10 values, although the highest levels of inactivation of 0.015 could only be achieved in the baffled reactors, because these conditions enabled the highest Ct10 values to be achieved. Increased levels of disinfection were closely associated with increased formation of the trihalomethane disinfection by-products. The results highlight the importance of well-designed and operated CCT. The improved resolution afforded by FCM provides a tool that can dynamically quantify disinfection processes, enabling options for much better process control.
Collapse
Affiliation(s)
- Ryan Cheswick
- Cranfield University, Bedford, MK43 0AL, UK; Scottish Water, Castle House, Dunfermline, KY11 8GG, UK
| | | | - Graeme Moore
- Scottish Water, Castle House, Dunfermline, KY11 8GG, UK
| | | | | |
Collapse
|
11
|
Meng LX, Sun YJ, Zhu L, Lin ZJ, Shuai XY, Zhou ZC, Chen H. Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153367. [PMID: 35085630 DOI: 10.1016/j.scitotenv.2022.153367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater.
Collapse
Affiliation(s)
- Ling-Xuan Meng
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Sun
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Chen L, Liu Q, Zhao X, Zhang H, Pang X, Yang H. Inactivation efficacies of lactic acid and mild heat treatments against Escherichia coli strains in organic broccoli sprouts. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Wan K, Zheng S, Ye C, Hu D, Zhang Y, Dao H, Chen S, Yu X. Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. WATER RESEARCH 2022; 209:117902. [PMID: 34910990 DOI: 10.1016/j.watres.2021.117902] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) in municipal drinking water may not be effectively removed during centralized treatment. To reduce potential health risks, water disinfection at the point-of-use scale is warranted. This study investigated the performance of boiling, a prevalent household water disinfection means, in response to ARGs contamination. We found that boiling was more efficient in inactivating both Escherichia coli and environmental bacteria compared to chlorination and pasteurization. Boiling of environmental bacteria suspension removed a much broader spectrum of ARGs and mobile genetic elements (up to 141 genes) than chlorination (up to 13 genes), such better performance was largely attributed to a stronger inactivation of chlorine-tolerant bacteria including Acinetobacter and Bacillus. Accumulation of extracellular ARGs was found during low-temperature heating (≤ 80°C) and in the initial stage of chlorination (first 3 min when initial chlorine was 5 mg/L and first 12 min when initial chlorine was 1 mg/L). These extracellular ARGs as well as the intracellular ARGs got removed as the heating temperature increased or the chlorination time prolonged. Under the same treatment time (30 min), high-temperature heating (≥ 90.1°C) damaged the DNA structure more thoroughly than chlorination (5 mg/L). Taking into account the low transferability of ARGs after DNA melting, boiling may provide an effective point-of-use approach to attenuating bacterial ARGs in drinking water and is still worth promoting in the future.
Collapse
Affiliation(s)
- Kun Wan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dong Hu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haosha Dao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shaohua Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
14
|
Klasinc R, Reiter M, Digruber A, Tschulenk W, Walter I, Kirschner A, Spittler A, Stockinger H. A Novel Flow Cytometric Approach for the Quantification and Quality Control of Chlamydia trachomatis Preparations. Pathogens 2021; 10:1617. [PMID: 34959572 PMCID: PMC8706156 DOI: 10.3390/pathogens10121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogenic bacterium with a biphasic developmental cycle manifesting two distinct morphological forms: infectious elementary bodies (EBs) and replicative intracellular reticulate bodies (RBs). Current standard protocols for quantification of the isolates assess infectious particles by titering inclusion-forming units, using permissive cell lines, and analyzing via immunofluorescence. Enumeration of total particle counts is achieved by counting labeled EBs/RBs using a fluorescence microscope. Both methods are time-consuming with a high risk of observer bias. For a better assessment of C. trachomatis preparations, we developed a simple and time-saving flow cytometry-based workflow for quantifying small particles, such as EBs with a size of 300 nm. This included optimization of gain and threshold settings with the addition of a neutral density filter for small-particle discrimination. The nucleic acid dye SYBR® Green I (SGI) was used together with propidium iodide and 5(6)-carboxyfluorescein diacetate to enumerate and discriminate between live and dead bacteria. We found no significant differences between the direct particle count of SGI-stained C. trachomatis preparations measured by microscopy or flow cytometry (p > 0.05). Furthermore, we completed our results by introducing a cell culture-independent viability assay. Our measurements showed very good reproducibility and comparability to the existing state-of-the-art methods, indicating that the evaluation of C. trachomatis preparations by flow cytometry is a fast and reliable method. Thus, our method facilitates an improved assessment of the quality of C. trachomatis preparations for downstream applications.
Collapse
Affiliation(s)
- Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
| | - Michael Reiter
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
| | - Astrid Digruber
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Waltraud Tschulenk
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (W.T.); (I.W.)
| | - Ingrid Walter
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (W.T.); (I.W.)
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
- Division Water Quality & Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry and Department of Surgery, Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria;
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (M.R.); (A.K.); (H.S.)
| |
Collapse
|
15
|
da Costa Lima M, Magnani M, Dos Santos Lima M, de Sousa CP, Dubreuil JD, de Souza EL. Phenolic-rich extracts from acerola, cashew apple and mango by-products cause diverse inhibitory effects and cell damages on enterotoxigenic Escherichia coli. Lett Appl Microbiol 2021; 75:565-577. [PMID: 34687563 PMCID: PMC9539876 DOI: 10.1111/lam.13586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the inhibitory effects of phenolic-rich extracts from acerola (Malpighia emarginata D.C., PEA), cashew apple (Anacardium occidentale L., PEC) and mango (Mangifera indica L., PEM) by-products on distinct enterotoxigenic Escherichia coli (ETEC) strains. The capability of PEA and PEC of impairing various physiological functions of ETEC strains was investigated with multiparametric flow cytometry. Procyanidin B2 , myricetin and p-coumaric acid were the major phenolic compounds in PEA, PEC and PEM, respectively. PEA and PEC had lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (MIC: 31·25 mg ml-1 ; MBC: 62·5 mg ml-1 ) on ETEC strains than PEM (MIC and MIC: >1000 mg ml-1 ). PEA and PEC (15·6, 31·2, 62·5 mg ml-1 ) caused viable count reductions (P < 0·05) on ETEC strains after 24 h of exposure, notably the ≥3 log reductions caused by 62·5 mg ml-1 . The 24 h exposure of ETEC strains to PEA and PEC (31·2, 62·5 mg ml-1 ) led to high sizes of cell subpopulations with concomitant impairments in cell membrane polarization and permeability, as well as in enzymatic, respiratory and efflux activities. PEA and PEC are effective in inhibiting ETEC through a multi-target action mode with disturbance in different physiological functions.
Collapse
Affiliation(s)
- M da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Pernambuco, Brazil
| | - C P de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - J D Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - E L de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
16
|
Putri RE, Kim LH, Farhat N, Felemban M, Saikaly PE, Vrouwenvelder JS. Evaluation of DNA extraction yield from a chlorinated drinking water distribution system. PLoS One 2021; 16:e0253799. [PMID: 34166448 PMCID: PMC8224906 DOI: 10.1371/journal.pone.0253799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
Desalination technology based on Reverse Osmosis (RO) membrane filtration has been resorted to provide high-quality drinking water. RO produced drinking water is characterized by a low bacterial cell concentration. Monitoring microbial quality and ensuring membrane-treated water safety has taken advantage of the rapid development of DNA-based techniques. However, the DNA extraction process from RO-based drinking water samples needs to be evaluated regarding the biomass amount (filtration volume) and residual disinfectant such as chlorine, as it can affect the DNA yield. We assessed the DNA recovery applied in drinking water microbiome studies as a function of (i) different filtration volumes, (ii) presence and absence of residual chlorine, and (iii) the addition of a known Escherichia coli concentration into the (sterile and non-sterile, chlorinated and dechlorinated) tap water prior filtration, and directly onto the (0.2 μm pore size, 47 mm diameter) mixed ester cellulose membrane filters without and after tap water filtration. Our findings demonstrated that the co-occurrence of residual chlorine and low biomass/cell density water samples (RO-treated water with a total cell concentration ranging between 2.47 × 102-1.5 × 103 cells/mL) failed to provide sufficient DNA quantity (below the threshold concentration required for sequencing-based procedures) irrespective of filtration volumes used (4, 20, 40, 60 L) and even after performing dechlorination. After exposure to tap water containing residual chlorine (0.2 mg/L), we observed a significant reduction of E. coli cell concentration and the degradation of its DNA (DNA yield was below detection limit) at a lower disinfectant level compared to what was previously reported, indicating that free-living bacteria and their DNA present in the drinking water are subject to the same conditions. The membrane spiking experiment confirmed no significant impact from any potential inhibitors (e.g. organic/inorganic components) present in the drinking water matrix on DNA extraction yield. We found that very low DNA content is likely to be the norm in chlorinated drinking water that gives hindsight to its limitation in providing robust results for any downstream molecular analyses for microbiome surveys. We advise that measurement of DNA yield is a necessary first step in chlorinated drinking water distribution systems (DWDSs) before conducting any downstream omics analyses such as amplicon sequencing to avoid inaccurate interpretations of results based on very low DNA content. This study expands a substantial source of bias in using DNA-based methods for low biomass samples typical in chlorinated DWDSs. Suggestions are provided for DNA-based research in drinking water with residual disinfectant.
Collapse
Affiliation(s)
- Ratna E. Putri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lan Hee Kim
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nadia Farhat
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mashael Felemban
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E. Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johannes S. Vrouwenvelder
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
17
|
Cao R, Wan Q, Tan L, Xu X, Wu G, Wang J, Xu H, Huang T, Wen G. Evaluation of the vital viability and their application in fungal spores' disinfection with flow cytometry. CHEMOSPHERE 2021; 269:128700. [PMID: 33127110 DOI: 10.1016/j.chemosphere.2020.128700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 05/14/2023]
Abstract
More attention was focused on fungi contamination in drinking water. Most researches about the inactivation of fungal spores has been conducted on disinfection efficiency and the leakage of intracellular substances. However, the specific structural damage of fungal spores treated by different disinfectants is poorly studied. In this study, the viability assessment methods of esterase activities and intracellular reactive oxygen species (ROS) were optimized, and the effects of chlorine-based disinfectants on fungal spores were evaluated by flow cytometry (FCM) and plating. The optimal staining conditions for esterase activity detection were as follows: fungal spores (106 cells/mL) were stained with 10 μM carboxyfluorescein diacetate and 50 mM ethylene diamine tetraacetic acid at 33 °C for 10 min (in dark). The optimal staining conditions for intracellular ROS detection were as follows: dihydroethidium (the final concentration of 2 μg/mL) was added into fungal suspensions (106 cells/mL), and then samples were incubated at 35 °C for 20 min (in dark). The cell culturability, membrane integrity, esterase activities, and intracellular ROS were examined to reveal the structural damage of fungal spores and underlying inactivation mechanisms. Disinfectants would cause the loss of the cell viability via five main steps: altered the morphology of fungal spores; increased the intracellular ROS levels; decreased the culturability, esterase activities and membrane integrity, thus leading to the irreversible death. It is appropriate to assess the effects of disinfectants on fungal spores and investigate their inactivation mechanisms using FCM.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
18
|
Sciuto EL, Laganà P, Filice S, Scalese S, Libertino S, Corso D, Faro G, Coniglio MA. Environmental Management of Legionella in Domestic Water Systems: Consolidated and Innovative Approaches for Disinfection Methods and Risk Assessment. Microorganisms 2021; 9:577. [PMID: 33799845 PMCID: PMC8001549 DOI: 10.3390/microorganisms9030577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Legionella is able to remain in water as free-living planktonic bacteria or to grow within biofilms that adhere to the pipes. It is also able to enter amoebas or to switch into a viable but not culturable (VBNC) state, which contributes to its resistance to harsh conditions and hinders its detection in water. Factors regulating Legionella growth, such as environmental conditions, type and concentration of available organic and inorganic nutrients, presence of protozoa, spatial location of microorganisms, metal plumbing components, and associated corrosion products are important for Legionella survival and growth. Finally, water treatment and distribution conditions may affect each of these factors. A deeper comprehension of Legionella interactions in water distribution systems with the environmental conditions is needed for better control of the colonization. To this purpose, the implementation of water management plans is the main prevention measure against Legionella. A water management program requires coordination among building managers, health care providers, and Public Health professionals. The review reports a comprehensive view of the state of the art and the promising perspectives of both monitoring and disinfection methods against Legionella in water, focusing on the main current challenges concerning the Public Health sector.
Collapse
Affiliation(s)
- Emanuele Luigi Sciuto
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
| | - Pasqualina Laganà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Messina, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica 3p, AOU ‘G. Martino, Via C. Valeria, s.n.c., 98125 Messina, Italy;
| | - Simona Filice
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Silvia Scalese
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Sebania Libertino
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Domenico Corso
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Giuseppina Faro
- Azienda Sanitaria Provinciale di Catania, Via S. Maria La Grande 5, 95124 Catania, Italy;
| | - Maria Anna Coniglio
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Catania, Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Sofia 87, 95123 Catania, Italy
| |
Collapse
|
19
|
Wen G, Cao R, Wan Q, Tan L, Xu X, Wang J, Huang T. Development of fungal spore staining methods for flow cytometric quantification and their application in chlorine-based disinfection. CHEMOSPHERE 2020; 243:125453. [PMID: 31995893 DOI: 10.1016/j.chemosphere.2019.125453] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Fungal contamination in drinking water has been becoming a hot topic. The routine enumeration method of fungal spores is heterotrophic plate counts (HPC). However, this method is time-consuming and labor-intensive and there is also the difficulty of enumerating viable but non-culturable cells. In this study, a rapid, simple and accurate method for quantifying fungal spores and discriminating their viability in water was established using flow cytometry (FCM) combined with fluorescence dyes. The optimal staining conditions are as follows: spores suspensions are sonicated at 495 W for 5 min as pretreatment, and then 10 μL of SYBR Green I (100×) and 30 mM Ethylene diamine tetraacetic acid are added to a 500 μL water sample, which incubate at 35 °C for 20 min in dark. The concentration of fungal spores measured by FCM was highly correlated with HPC results and microscope observations, with correlation coefficient of 0.996 and 0.988, respectively. This staining method can be widely applied to the enumeration and viability evaluation of fungal spores. In addition, chlorine-based inactivation of three genera of fungal spores was assessed by plating and FCM. The result showed that all three genera of fungal spores lost culturability firstly and then membrane integrity decreased, preliminarily revealing the inactivation mechanism. The inactivation rate constants of membrane damage varied in the following order: chlorine dioxide > chlorine > chloramine. This study concluded that FCM is an appropriate and alternative tool to detect fungal spores' viability and can be used for evaluating the fungal inactivation by disinfectants.
Collapse
Affiliation(s)
- Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
20
|
Yin T, Wu Y, Shi P, Li A, Xu B, Chu W, Pan Y. Anion-exchange resin adsorption followed by electrolysis: A new disinfection approach to control halogenated disinfection byproducts in drinking water. WATER RESEARCH 2020; 168:115144. [PMID: 31605830 DOI: 10.1016/j.watres.2019.115144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Bromide and natural organic matter (NOM) are both precursors of halogenated disinfection byproducts (DBPs) in drinking water. During drinking water treatment process, chloride-form anion-exchange resin adsorption is expected to be capable of removing these DBP precursors and in the meantime releasing chloride ions. The released chloride as well as the chloride initially present in source water could be oxidized through electrolysis to generate free chlorine for disinfection. Based on the above assumptions, we developed a new disinfection approach using chloride-form anion-exchange resin adsorption followed by electrolysis to control halogenated DBPs. Parameter setup and optimization were performed for resin adsorption and electrolysis processes. Results showed that 93.7% of NOM and 90% of bromide could be removed at a resin dose of 20 mL per 2 L of simulated source water sample with a contact time of 1 h. Meanwhile, 49.5 mg/L of chloride was released from the resin to the water sample via anion-exchange, and the released chloride was further oxidized by electrolysis (Ti/RuO2-IrO2 anode and graphite cathode, current intensity of 0.4 A) to generate free chlorine (5 mg/L as Cl2) within 192 s. With this new approach, formation of total organic halogen, four trihalomethanes, and five haloacetic acids was reduced by 86.4%, 98.5%, and 93.2%, respectively, compared with chemical chlorination alone. Although the new approach might enhance the formation of some phenolic DBPs by decreasing bromide levels in source water, the overall cytotoxicity of the water samples treated with the new approach was significantly decreased by 68.8% according to a human hepatoma cell cytotoxicity assay. Notably, disinfection ability evaluation showed that the new approach achieved 3.36-log10 reductions of three seeded bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) in 19 s, suggesting that it was not only effective to E. coli but also effective to the chlorine-resistant bacteria (P. aeruginosa and S. aureus).
Collapse
Affiliation(s)
- Tong Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
21
|
Rapid and Sensitive Detection of Viable but Non-culturable Salmonella Induced by Low Temperature from Chicken Using EMA-Rti-LAMP Combined with BCAC. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Sanitising efficacy of lactic acid combined with low-concentration sodium hypochlorite on Listeria innocua in organic broccoli sprouts. Int J Food Microbiol 2019; 295:41-48. [DOI: 10.1016/j.ijfoodmicro.2019.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/18/2022]
|
23
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
24
|
Detection and Evaluation of Viable but Non-culturable Escherichia coli O157:H7 Induced by Low Temperature with a BCAC-EMA-Rti-LAMP Assay in Chicken Without Enrichment. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1377-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Schrammel B, Cervero-Aragó S, Dietersdorfer E, Walochnik J, Lück C, Sommer R, Kirschner A. Differential development of Legionella sub-populations during short- and long-term starvation. WATER RESEARCH 2018; 141:417-427. [PMID: 29685632 DOI: 10.1016/j.watres.2018.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Legionellae are among the most important waterborne pathogens in industrialized countries. Monitoring and surveillance of Legionella in engineered water systems is usually performed with culture-based methods. Since the advent of culture-independent techniques, it has become clear that Legionella concentrations are often several orders of magnitude higher than those measured by culture-based techniques and that a variable proportion of these non-culturable cells are viable. In engineered water systems, the formation of these viable but non-culturable (VBNC) cells can be caused by different kinds of stress, such as, and most importantly, nutrient starvation, oxidative stress and heat. In this study, the formation of VBNC cells of six Legionella strains under conditions of starvation was monitored in mono-species microcosms for up to one year using a combination of different viability indicators. Depending on the strain, complete loss of culturability was observed from 11 days to 8 weeks. During the starvation process, three distinct phases and different sub-populations of VBNC cells were identified. Until complete loss of culturability, the number of membrane-intact cells decreased rapidly to 5.5-69% of the initial cell concentration. The concentration of the sub-population with low esterase activity dropped to 0.03-55%, and the concentration of the highly esterase-active sub-population dropped to 0.01-1.2% of the initial concentration; these sub-populations remained stable for several weeks to months. Only after approximately 200 days of starvation, the number of VBNC cells started to decrease below detection limits. The most abundant VBNC sub-populations were characterized by partially damaged membranes and low esterase-activity. With this study, we showed that upon starvation, a stable VBNC Legionella community may be present over several months in a strain-dependent manner even under harsh conditions. Even after one year of starvation, a small proportion of L. pneumophila cells with high esterase-activity was detected. We speculate that this highly active VBNC subpopulation is able to infect amoebae and human macrophages.
Collapse
Affiliation(s)
- Barbara Schrammel
- Institute for Hygiene and Applied Immunology, Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Sílvia Cervero-Aragó
- Institute for Hygiene and Applied Immunology, Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria; Interuniversity Cooperation Centre for Water and Health, Austria
| | - Elisabeth Dietersdorfer
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Julia Walochnik
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Christian Lück
- Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Technical University Dresden, Germany
| | - Regina Sommer
- Institute for Hygiene and Applied Immunology, Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria; Interuniversity Cooperation Centre for Water and Health, Austria
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology, Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria; Interuniversity Cooperation Centre for Water and Health, Austria.
| |
Collapse
|
26
|
Searching for Activity Markers that Approximate (VBNC) Legionella pneumophila Infectivity in Amoeba after Ultraviolet (UV) Irradiation. WATER 2018. [DOI: 10.3390/w10091219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legionella pneumophila is an increasingly recognized threat to public health via aerosol exposures; with a variety of control measures including: water temperature/flow management and free chlorine used to reduce the risk of infection within healthcare centers. Despite these efforts, L. pneumophila often recolonizes plumbing systems after specific treatments, which prompted us to examine ultraviolet (UV) irradiation for a point-of-use, secondary control measure. Currently, there is no data on the efficacy of high (>254 nm) wavelength UV-C (100–280 nm) light inactivation of L. pneumophila with resuscitation of viable but non-culturable (VBNC) cells. We report for the first time L. pneumophila dose-responses for 268.6 nm and 288.6 nm UV-C, as compared to 256 nm, and demonstrate UV induced VBNC L. pneumophila remaining infectious to Acanthamoeba polyphaga during co-culture experiments. Findings were correlated to molecular-based activity assays to identify additional measures of L. pneumophila viability following UV disinfection compared to culture. A collection of viability markers may provide a more representative measure of risk compared to current culture-based detection, since UV-C irradiated L. pneumophila lose culturability, yet retain activity, increased ATP production, and the ability to be resuscitated by amoeba co-culture. This finding is significant as it identifies potential concern from VBNC cells following UV-C disinfection and the need for further research into the efficacy of UV inactivation as a point-of-use application for L. pneumophila control and management.
Collapse
|
27
|
Han D, Hung YC, Wang L. Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Afari GK, Hung YC. Detection and Verification of the Viable but Nonculturable (VBNC) State of Escherichia coli O157:H7 and Listeria monocytogenes Using Flow Cytometry and Standard Plating. J Food Sci 2018; 83:1913-1920. [PMID: 29905952 DOI: 10.1111/1750-3841.14203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/12/2023]
Abstract
The use of electrolyzed oxidizing (EO) water to inactivate microorganisms on foods has been extensively studied and shown to be effective. However, the prospect of the formation of "viable but nonculturable" (VBNC) cells in pathogens after low free chlorine concentration (FCC) treatments under high organic loads presents safety concerns. This study investigated the effect of EO water FCC on inducing Escherichia coli O157:H7 and Listeria monocytogenes into the VBNC state and studied possible resuscitation triggering procedures of the VBNC cells. A 5-strain cocktail of each pathogen (106 colony forming units [CFU]/mL) was exposed to EO water (FCC of 20, 10, 5, 2.5, 1.25, 0.625 mg/L) and allowed to stand for 1 and 5 min, followed by the addition of neutralizing broth. Treated samples were plated on nonselective agar and analyzed using flow cytometry. For resuscitation, samples treated with identified VBNC induction conditions were exposed to elevated temperatures (37 °C) as well as addition of sodium pyruvate (SP) and Tween® 20 (T20) solutions. The initial culturing procedures suggested complete inactivation of both pathogens at 2.5 and 1.25 mg/L FCC in the growth medium. However, flow cytometry profiles showed VBNC cells were present. Subjecting samples to the recovery procedures further proved that VBNC E. coli O157:H7 can be resuscitated after exposure to SP and T20 at 37 °C, while L. monocytogenes did not resuscitate. These findings show that treating pathogens at low FCC can induce the VBNC state, and culturability of E. coli O157:H7 can be restored under appropriate conditions. PRACTICAL APPLICATION VBNC induction conditions for foodborne pathogens during chlorine washing treatment were determined in a broth system and the information can serve as a basis for future studies that address the prevention of VBNC formation during produce wash treatments.
Collapse
Affiliation(s)
- George Kwabena Afari
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment St., Griffin, GA, 30223-1797, U.S.A
| | - Yen-Con Hung
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment St., Griffin, GA, 30223-1797, U.S.A
| |
Collapse
|
29
|
Mao G, Song Y, Bartlam M, Wang Y. Long-Term Effects of Residual Chlorine on Pseudomonas aeruginosa in Simulated Drinking Water Fed With Low AOC Medium. Front Microbiol 2018; 9:879. [PMID: 29774019 PMCID: PMC5943633 DOI: 10.3389/fmicb.2018.00879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/16/2018] [Indexed: 11/17/2022] Open
Abstract
Residual chlorine is often required to remain present in public drinking water supplies during distribution to ensure water quality. It is essential to understand how bacteria respond to long-term chlorine exposure, especially with the presence of assimilable organic carbon (AOC). This study aimed to investigate the effects of chlorination on Pseudomonas aeruginosa in low AOC medium by both conventional plating and culture-independent methods including flow cytometry (FCM) and quantitative PCR (qPCR). In a simulated chlorinated system using a bioreactor, membrane damage and DNA damage were measured by FCM fluorescence fingerprint. The results indicated membrane permeability occurred prior to DNA damage in response to chlorination. A regrowth of P. aeruginosa was observed when the free chlorine concentration was below 0.3 mg/L. The bacterial response to long-term exposure to a constant low level of free chlorine (0.3 mg/L) was subsequently studied in detail. Both FCM and qPCR data showed a substantial reduction during initial exposure (0–16 h), followed by a plateau where the cell concentration remained stable (16–76 h), until finally all bacteria were inactivated with subsequent continuous chlorine exposure (76–124 h). The results showed three-stage inactivation kinetics for P. aeruginosa at a low chlorine level with extended exposure time: an initial fast inactivation stage, a relatively stable middle stage, and a final stage with a slower rate than the initial stage. A series of antibiotic resistance tests suggested long-term exposure to low chlorine level led to the selection of antibiotic-resistant P. aeruginosa. The combined results suggest that depletion of residual chlorine in low AOC medium systems could reactivate P. aeruginosa, leading to a possible threat to drinking water safety.
Collapse
Affiliation(s)
- Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yuhao Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
30
|
Huai W, Deng Z, Lin W, Chen Q. Enhanced killing of Escherichia coli using a combination of polyhexamethylene biguanide hydrochloride and 1-bromo-3-chloro-5,5- dimethylimidazolidine-2,4-dione. FEMS Microbiol Lett 2017; 364:4329275. [PMID: 29029044 DOI: 10.1093/femsle/fnx210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/29/2017] [Indexed: 11/15/2022] Open
Abstract
The bactericidal activities of polyhexamethylene biguanide hydrochloride (PHMB), 1-bromo-3-chloro-5,5-dimethylimidazolidine-2,4-dione (BCDMH) and the combination of the two (designated as PB) were compared using Escherichia coli as the test organism. PB exhibited strong bactericidal activity: 10 mg/L PHMB combined with 8 mg/L BCDMH resulted in approximately 5.74 log10 reduction (LR), whereas 320 mg/L PHMB or 20 mg/L BCDMH was about 5.53 and 6.56 LR, respectively. Analyses using scanning electron microscopy, flow cytometry and atomic absorption spectroscopy indicated that PB, PHMB and BCDMH disrupted cell membranes and changed membrane structure and permeability, resulting in the leakage of intracellular soluble proteins and ions. PB exerted stronger effects on potassium and magnesium leakage, membrane potential and permeability than BCDMH did. PB caused less protein leakage than PHMB did. These results suggest that at a relatively low concentration, PB exhibited good bactericidal activity and physiological effect on E. coli.
Collapse
Affiliation(s)
- Wan Huai
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Zhirui Deng
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Wenshu Lin
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Qin Chen
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
31
|
Synergistic Effects of Micro-electrolysis-Photocatalysis on Water Treatment and Fish Performance in Saline Recirculating Aquaculture System. Sci Rep 2017; 7:45066. [PMID: 28345583 PMCID: PMC5366865 DOI: 10.1038/srep45066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/17/2017] [Indexed: 01/30/2023] Open
Abstract
A new physico-chemical process for TAN (total ammonia nitrogen) removal and disinfection is introduced in saline recirculating aquaculture system (RAS), in which the biofilter is replaced with an integrated electrolysis cell and an activated carbon filter. The electrolysis cell which is based on micro current electrolysis combined with UV-light was self-designed. After the fundamental research, a small pilot scale RAS was operated for 30 days to verify the technical feasibility. The system was stocked by 42 GIFT tilapia (Oreochromis niloticus) fish with the rearing density of 13 kg/m3. During the experiments, the TAN concentration remained below 1.0 mg/L. The nitrite concentration was lower than 0.2 mg/L and the nitrate concentration had increased continuously to 12.79 mg/L at the end. Furthermore, the concentration of residual chlorine in culture ponds remained below 0.3 mg/L, ORP maintained slight fluctuations in the range of 190~240 mV, and pH of the water showed the downtrend. Tilapia weight increased constantly to 339.3 ± 10 g. For disinfection, the active chlorine generated by electrochemical treatment caused Escherichia coli inactivation. Enzyme activity assay indicated that the activity of glutamate dehydrogenase, carbonic anhydrase and glutamic pyruvic transaminase increased within the normal range. The preliminary feasibility was verified by using this physico-chemical technology in the RAS.
Collapse
|
32
|
Cossu A, Le P, Young GM, Nitin N. Assessment of sanitation efficacy against Escherichia coli O157:H7 by rapid measurement of intracellular oxidative stress, membrane damage or glucose active uptake. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Kramer B, Wunderlich J, Muranyi P. Impact of pulsed light on cellular activity of Salmonella enterica. J Appl Microbiol 2016; 121:988-97. [PMID: 27409040 DOI: 10.1111/jam.13231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was a comprehensive characterization of physiological changes of Salmonella enterica induced by intense broad spectrum pulsed light (PL). After exposing the bacteria to this nonthermal decontamination technology on a gel surface, multiple viability parameters beyond culturability were assessed. METHODS AND RESULTS By applying flow cytometry, a luciferin-luciferase bioluminescence assay and a microplate assay to measure the current redox activity, the impact of pulsed light on the membrane potential, membrane integrity, esterase activity, efflux pump activity, expression of the green fluorescent protein (GFP), respiration activity and ATP-content of Salm. enterica ATCC BAA-1045 was determined. These culture-independent methods for assessing the bacterial activity were compared to the ability to grow on tryptic soy agar. It is shown that this strain is rather sensitive to PL considering colony count reductions, while on the other hand unculturable bacteria still exhibit significant cellular energetic functions. However, this residual activity after PL exposure significantly decreases during sample storage in buffer for 24 h. This study also shows that the GFP expression of PL-treated cells which have rendered unculturable is severely reduced. CONCLUSIONS This study reveals that although not all cellular functions of Salm. enterica are immediately shut down after PL exposure, the synthesis of new GFP is strongly reduced and affected to a similar extent as the culturability. SIGNIFICANCE AND IMPACT OF THE STUDY It is shown for the first time, that even there is significant bacterial activity measurable after PL exposure, it is likely that nongrowing pathogenic bacteria like Salm. enterica are unable to express proteins, which is of great importance regarding their pathogenicity.
Collapse
Affiliation(s)
- B Kramer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.
| | - J Wunderlich
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - P Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
34
|
Kirschner AK. Determination of viable legionellae in engineered water systems: Do we find what we are looking for? WATER RESEARCH 2016; 93:276-288. [PMID: 26928563 PMCID: PMC4913838 DOI: 10.1016/j.watres.2016.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health.
Collapse
Affiliation(s)
- Alexander K.T. Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water & Health, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene Kinderspitalgasse 16, A-1090 Vienna, Austria . URL: http://www.waterandhealth.at
| |
Collapse
|
35
|
Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J Microbiol Methods 2016; 123:24-30. [DOI: 10.1016/j.mimet.2016.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
|
36
|
Callewaert C, Van Nevel S, Kerckhof FM, Granitsiotis MS, Boon N. Bacterial Exchange in Household Washing Machines. Front Microbiol 2015; 6:1381. [PMID: 26696989 PMCID: PMC4672060 DOI: 10.3389/fmicb.2015.01381] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/20/2015] [Indexed: 02/01/2023] Open
Abstract
Household washing machines (WMs) launder soiled clothes and textiles, but do not sterilize them. We investigated the microbial exchange occurring in five household WMs. Samples from a new cotton T-shirt were laundered together with a normal laundry load. Analyses were performed on the influent water and the ingoing cotton samples, as well as the greywater and the washed cotton samples. The number of living bacteria was generally not lower in the WM effluent water as compared to the influent water. The laundering process caused a microbial exchange of influent water bacteria, skin-, and clothes-related bacteria and biofilm-related bacteria in the WM. A variety of biofilm-producing bacteria were enriched in the effluent after laundering, although their presence in the cotton sample was low. Nearly all bacterial genera detected on the initial cotton sample were still present in the washed cotton samples. A selection for typical skin- and clothes-related microbial species occurred in the cotton samples after laundering. Accordingly, malodour-causing microbial species might be further distributed to other clothes. The bacteria on the ingoing textiles contributed for a large part to the microbiome found in the textiles after laundering.
Collapse
Affiliation(s)
- Chris Callewaert
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Sam Van Nevel
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Frederiek-Maarten Kerckhof
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Michael S. Granitsiotis
- Research Unit Environmental Genomics, Department of Environmental Science, Helmholtz Zentrum MünchenNeuherberg, Germany
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
37
|
Electrochemically active biofilm and photoelectrocatalytic regeneration of the titanium dioxide composite electrode for advanced oxidation in water treatment. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Le P, Zhang L, Lim V, McCarthy MJ, Nitin N. A novel approach for measuring resistance of Escherichia coli and Listeria monocytogenes to hydrogen peroxide using label-free magnetic resonance imaging and relaxometry. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Zhang S, Ye C, Lin H, Lv L, Yu X. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1721-1728. [PMID: 25584685 DOI: 10.1021/es505211e] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in bacteria may dramatically underestimate the health risks associated with drinking water. Therefore, the potential for UV treatment to induce a VBNC state in Escherichia coli and Pseudomonas aeruginosa was investigated. UV disinfection effectively reduced the culturability of E. coli and P. aeruginosa, with the destruction of nucleic acids demonstrated using gadA long gene fragment qPCR amplification. Following UV radiation, copy numbers for the high transcriptional levels of the 16S rRNA gene varied insignificantly in both strains, confirming results from plate counting assays indicating that VBNC states were induced in both strains. Furthermore, the virulence genes gadA and oprL remained highly expressed, suggesting that the VBNC bacteria still displayed pathogenicity. Propidium monoazide qPCR indicated that cell membranes remained intact even at a UV dose of 300 mJ/cm(2). The RT-qPCR results after UV and chlorine treatments in E. coli were significantly different (8.41 and 5.59 log units, respectively), further confirming the induction of VBNC bacteria induced by UV radiation. Finally, resuscitation was achieved, with E. coli showing greater resuscitation ability than P. aeruginosa. These results systematically revealed the potential health risks of UV disinfection and strongly suggest a combined disinfection strategy.
Collapse
Affiliation(s)
- Shenghua Zhang
- Institute of Urban Environment, Chinese Academy of Science , Xiamen, 361021, P. R. China
| | | | | | | | | |
Collapse
|
40
|
Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria. Front Public Health 2014; 2:103. [PMID: 25133139 PMCID: PMC4116801 DOI: 10.3389/fpubh.2014.00103] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 11/07/2022] Open
Abstract
Under stress conditions, many species of bacteria enter into starvation mode of metabolism or a physiologically viable but non-culturable (VBNC) state. Several human pathogenic bacteria have been reported to enter into the VBNC state under these conditions. The pathogenic VBNC bacteria cannot be grown using conventional culture media, although they continue to retain their viability and express their virulence. Though there have been debates on the VBNC concept in the past, several molecular studies have shown that not only can the VBNC state be induced under in vitro conditions but also that resuscitation from this state is possible under appropriate conditions. The most notable advance in resuscitating VBNC bacteria is the discovery of resuscitation-promoting factor (Rpf), which is a bacterial cytokines found in both Gram-positive and Gram-negative organisms. VBNC state is a survival strategy adopted by the bacteria, which has important implication in several fields, including environmental monitoring, food technology, and infectious disease management; and hence it is important to investigate the association of bacterial pathogens under VBNC state and the water/foodborne outbreaks. In this review, we describe various aspects of VBNC bacteria, which include their proteomic and genetic profiles under the VBNC state, conditions of resuscitation, methods of detection, antibiotic resistance, and observations on Rpf.
Collapse
Affiliation(s)
| | - Amit Ghosh
- National Institute of Cholera and Enteric Diseases (NICED) , Kolkata , India
| | - Gururaja P Pazhani
- National Institute of Cholera and Enteric Diseases (NICED) , Kolkata , India
| | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED , Kolkata , India
| |
Collapse
|
41
|
Arends JBA, Van Denhouwe S, Verstraete W, Boon N, Rabaey K. Enhanced disinfection of wastewater by combining wetland treatment with bioelectrochemical H(2)O(2) production. BIORESOURCE TECHNOLOGY 2014; 155:352-358. [PMID: 24463414 DOI: 10.1016/j.biortech.2013.12.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
A highly-loaded constructed wetland (up to 44±21gCODm(-2)d(-1)) was connected to a bioelectrochemical system (BES) to produce hydrogen peroxide for disinfection purposes. The anode delivered a current from the wetland effluent up to 3.5Am(-2) (maximum 62% anodic efficiency) but was limited in the supply of organic carbon. Hydrogen peroxide could be produced in situ in wetland effluent. Production rates were tested at various current densities with a maximum rate of 2.7gmelectrode(-2)h(-1) (4h at 10Am(-2), 41% cathodic efficiency). Little difference was observed between production rate in wetland effluent or a 0.3% NaCl solution. The resulting hydrogen peroxide (0.1%) was used to disinfect wetland effluent successfully (<75CFUml(-1) after 1h contact time). The combination of wetland water treatment with peroxide production in a BES thus enables generating higher water qualities, including disinfected water, without external input of chemicals.
Collapse
Affiliation(s)
- J B A Arends
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - S Van Denhouwe
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - W Verstraete
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - N Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - K Rabaey
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
42
|
Chao Y, Ma L, Yang Y, Ju F, Zhang XX, Wu WM, Zhang T. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment. Sci Rep 2013; 3:3550. [PMID: 24352003 PMCID: PMC6506563 DOI: 10.1038/srep03550] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022] Open
Abstract
The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in ‘oxidative stress’ and ‘detoxification’ subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.
Collapse
Affiliation(s)
- Yuanqing Chao
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Liping Ma
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ying Yang
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Feng Ju
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xu-Xiang Zhang
- 1] Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China [2] State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Tong Zhang
- Environmental Biotechnology Lab, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
43
|
Kramer B, Muranyi P. Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. J Appl Microbiol 2013; 116:596-611. [PMID: 24238364 DOI: 10.1111/jam.12394] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 01/05/2023]
Abstract
AIMS The application of broad-spectrum intense light pulses is an innovative nonthermal technology for the decontamination of packaging materials, liquids or foodstuffs. The objective of this study was the fundamental investigation of the cellular impact of a pulsed light treatment on Listeria innocua and Escherichia coli. METHODS AND RESULTS Flow cytometry in combination with different fluorescent stains, conventional plate count technique and a viability assay were applied to investigate the effects of a pulsed light treatment on the physiological properties of L. innocua and E. coli. The results showed that loss of cultivability occurred at considerably lower fluences than the shutdown of cellular functions such as the depolarization of cell membranes, the loss of metabolic, esterase and pump activities or the occurrence of membrane damage. Therefore, a considerable proportion of cells appeared to have entered the viable but nonculturable (VBNC) state after the pulsed light treatment. A high percentage of L. innocua was able to maintain certain cellular vitality functions after storage overnight, whereas a further decrease in vitality was observed in case of E. coli. The loss of culturability was on the other hand directly accompanied by the formation of reactive oxygen species (ROS) and DNA damages, which were assessed by the ROS-sensitive probe DCFH-DA and RAPD-PCR, respectively. CONCLUSIONS A significant discrepancy between conventional plate counts and different viability staining parameters was observed, which shows that a pulsed light treatment does not cause an immediate shutdown of vitality functions even when the number of colony-forming units already decreased for more than 6 log10 sample(-1) . Oxidative stress with concomitant damage to the DNA molecule showed to be directly responsible for the loss of cultivability due to pulsed light rather than a direct rupture of cell membranes or inactivation of intracellular enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY The presented results suggest an UV light-induced photochemical rather than a photothermal or photophysical inactivation of bacterial cells by pulsed light under the applied experimental conditions. Flow cytometry in combination with different viability stains proved to be a suitable technique to gain deeper insight into the cellular response of bacteria to inactivation processes like a pulsed light treatment.
Collapse
Affiliation(s)
- B Kramer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | | |
Collapse
|
44
|
Van Nevel S, De Roy K, Boon N. Bacterial invasion potential in water is determined by nutrient availability and the indigenous community. FEMS Microbiol Ecol 2013; 85:593-603. [DOI: 10.1111/1574-6941.12145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/27/2013] [Accepted: 05/06/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Sam Van Nevel
- Laboratory of Microbial Ecology and Technology (LabMET); Ghent University; Gent Belgium
| | - Karen De Roy
- Laboratory of Microbial Ecology and Technology (LabMET); Ghent University; Gent Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET); Ghent University; Gent Belgium
| |
Collapse
|
45
|
Xiao XL, Tian C, Yu YG, Wu H. Detection of viable but nonculturable Escherichia coli O157:H7 using propidium monoazide treatments and qPCR. Can J Microbiol 2013; 59:157-63. [DOI: 10.1139/cjm-2012-0577] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli O157:H7 can enter into a viable but nonculturable (VBNC) state under stress conditions. The aims of the present study were to examine the influences of environmental factors on the survivability and culturability of E. coli O157:H7 and to develop an approach for accurate detection of VBNC E. coli O157:H7. The E. coli O157:H7 strain ATCC 6589 was inoculated into 3 induction microcosm models: (i) Luria–Bertani broth, (ii) sterilized tap water, and (iii) sterilized physiological saline solution. Our results showed that low temperature and nutritional starvation significantly impacted on the survivability of E. coli O157:H7 cells and that the in-vitro-induced VBNC cells were capable of resuscitating under normal temperature and appropriate nutrients. We tested the effectiveness of an approach combining propidium monoazide (PMA) treatment with real-time polymerase chain reaction (PMA–qPCR) for accurate quantification of total, viable, dead, and VBNC cells under different induction microcosm models. Our results indicated different threshold cycle (Ct) values for PMA-treated cells and untreated cells (ΔCt = 4.97, 4.29, and 3.30 for Luria–Bertani broth, sterilized tap water, and sterilized physiological saline solution, respectively). We determined the quantification limit of this PMA–qPCR approach to be 1 × 102 cells·mL–1, providing sufficient sensitivity for detection of VBNC E. coli O157:H7 cells to no less than 100 cells·mL–1. This study clearly demonstrated the feasibility and effectiveness of using PMA–qPCR to accurately quantify E. coli O157:H7 in a VBNC state.
Collapse
Affiliation(s)
- Xing-long Xiao
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| | - Cong Tian
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| | - Yi-gang Yu
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| | - Hui Wu
- Research Center of Food Safety and Detection, College of Light Industry and Food Sciences, South China University of Technology, Wusan Road 381, Tianhe District, Guangzhou, 510640, People’s Republic of China
| |
Collapse
|
46
|
Doiron K, Linossier I, Fay F, Yong J, Abd Wahid E, Hadjiev D, Bourgougnon N. Dynamic approaches of mixed species biofilm formation using modern technologies. MARINE ENVIRONMENTAL RESEARCH 2012; 78:40-47. [PMID: 22542567 DOI: 10.1016/j.marenvres.2012.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 01/25/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Bacteria and diatoms exist in sessile communities and develop as biofilm on all surfaces in aqueous environments. The interaction between these microorganisms in biofilm was investigated with a bacterial genus Pseudoalteromonas sp. (strain 3J6) and two benthic diatoms Amphora coffeaeformis and Cylindrotheca closterium. Each biofilm was grown for 22 days. Images from the confocal microscopy show a difference of adhesion between Pseudoalteromonas 3J6 and diatoms. Indeed, a stronger adhesion is found with C. closterium suggesting cohabitation between Pseudoalteromonas 3J6 and C. closterium compared at an adaptation for bacteria and A. coffeaeformis. The cellular attachment and the growth evolution in biofilm formation depend on each species of diatoms in the biofilm. Behaviour of microalgae in presence of bacteria demonstrates the complexity of the marine biofilm.
Collapse
Affiliation(s)
- Kim Doiron
- Laboratoire de Biotechnologie et Chimie Marines-LBCM, Université Européenne de Bretagne, EA 3884, Université de Bretagne-Sud, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Van Nevel S, Hennebel T, De Beuf K, Du Laing G, Verstraete W, Boon N. Transparent exopolymer particle removal in different drinking water production centers. WATER RESEARCH 2012; 46:3603-3611. [PMID: 22537844 DOI: 10.1016/j.watres.2012.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/13/2012] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
Transparent exopolymer particles (TEP) have recently gained interest in relation to membrane fouling. These sticky, gel-like particles consist of acidic polysaccharides excreted by bacteria and algae. The concentrations, expressed as xanthan gum equivalents L⁻¹ (μg X(eq) L⁻¹), usually reach hundred up to thousands μg X(eq) L⁻¹ in natural waters. However, very few research was performed on the occurrence and fate of TEP in drinking water, this far. This study examined three different drinking water production centers, taking in effluent of a sewage treatment plant (STP), surface water and groundwater, respectively. Each treatment step was evaluated on TEP removal and on 13 other chemical and biological parameters. An assessment on TEP removal efficiency of a diverse range of water treatment methods and on correlations between TEP and other parameters was performed. Significant correlations between particulate TEP (>0.4 μm) and viable cell concentrations were found, as well as between colloidal TEP (0.05-0.4 μm) and total COD, TOC, total cell or viable cell concentrations. TEP concentrations were very dependent on the raw water source; no TEP was detected in groundwater but the STP effluent contained 1572 μg X(eq) L⁻¹ and the surface water 699 μg X(eq) L⁻¹. Over 94% of total TEP in both plants was colloidal TEP, a fraction neglected in nearly every other TEP study. The combination of coagulation and sand filtration was effective to decrease the TEP levels by 67%, while the combination of ultrafiltration and reverse osmosis provided a total TEP removal. Finally, in none of the installations TEP reached the final drinking water distribution system at significant concentrations. Overall, this study described the presence and removal of TEP in drinking water systems.
Collapse
Affiliation(s)
- Sam Van Nevel
- Faculty of Bioscience Engineering, Laboratory of Microbial Ecology and Technology-LabMET, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
López-Gálvez F, Posada-Izquierdo GD, Selma MV, Pérez-Rodríguez F, Gobet J, Gil MI, Allende A. Electrochemical disinfection: an efficient treatment to inactivate Escherichia coli O157:H7 in process wash water containing organic matter. Food Microbiol 2012; 30:146-56. [PMID: 22265295 DOI: 10.1016/j.fm.2011.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
The efficacy of an electrochemical treatment in water disinfection, using boron-doped diamond electrodes, was studied and its suitability for the fresh-cut produce industry analyzed. Tap water (TW), and tap water supplemented with NaCl (NaClW) containing different levels of organic matter (Chemical Oxygen Demand (COD) around 60, 300, 550 ± 50 and 750 ± 50 mg/L) obtained from lettuce, were inoculated with a cocktail of Escherichia coli O157:H7 at 10⁵ cfu/mL. Changes in levels of E. coli O157:H7, free, combined and total chlorine, pH, oxidation-reduction potential, COD and temperature were monitored during the treatments. In NaClW, free chlorine was produced more rapidly than in TW and, as a consequence, reductions of 5 log units of E. coli O157:H7 were achieved faster (0.17, 4, 15 and 24 min for water with 60, 300, 500 and 750 mg/L of COD, respectively) than in TW alone (0.9, 25, 60 min and 90 min for water with 60, 300, 600 and 800 mg/L of COD, respectively). Nonetheless, the equipment showed potential for water disinfection and organic matter reduction even without adding NaCl. Additionally, different mathematical models were assessed to account for microbial inactivation curves obtained from the electrochemical treatments.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Espinardo, Murcia, E-30100, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Hoefman S, Van Hoorde K, Boon N, Vandamme P, De Vos P, Heylen K. Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. PLoS One 2012; 7:e34196. [PMID: 22539945 PMCID: PMC3335116 DOI: 10.1371/journal.pone.0034196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/23/2012] [Indexed: 11/18/2022] Open
Abstract
Knowledge on long-term preservation of micro-organisms is limited and research in the field is scarce despite its importance for microbial biodiversity and biotechnological innovation. Preservation of fastidious organisms such as methane-oxidizing bacteria (MOB) has proven difficult. Most MOB do not survive lyophilization and only some can be cryopreserved successfully for short periods. A large-scale study was designed for a diverse set of MOB applying fifteen cryopreservation or lyophilization conditions. After three, six and twelve months of preservation, the viability (via live-dead flow cytometry) and culturability (via most-probable number analysis and plating) of the cells were assessed. All strains could be cryopreserved without a significant loss in culturability using 1% trehalose in 10-fold diluted TSB (TT) as preservation medium and 5% DMSO as cryoprotectant. Several other cryopreservation and lyophilization conditions, all of which involved the use of TT medium, also allowed successful preservation but showed a considerable loss in culturability. We demonstrate here that most of these non-culturables survived preservation according to viability assessment indicating that preservation induces a viable but non-culturable (VBNC) state in a significant fraction of cells. Since this state is reversible, these findings have major implications shifting the emphasis from survival to revival of cells in a preservation protocol. We showed that MOB cells could be significantly resuscitated from the VBNC state using the TT preservation medium.
Collapse
Affiliation(s)
- Sven Hoefman
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Koenraad Van Hoorde
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- Faculty of Applied Bioscience Engineering, University College Ghent, Gent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Paul De Vos
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- BCCM/LMG Bacteria Collection, Gent, Belgium
| | - Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| |
Collapse
|
50
|
Safeguarding bacterial resources promotes biotechnological innovation. Appl Microbiol Biotechnol 2012; 94:565-74. [DOI: 10.1007/s00253-011-3797-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 10/28/2022]
|