1
|
Hurtado-Rios JJ, Carrasco-Navarro U, Almanza-Pérez JC, Rincón-Guevara MA, Ponce-Alquicira E. Transcriptional Analysis and Identification of a Peptidoglycan Hydrolase (PGH) and a Ribosomal Protein with Antimicrobial Activity Produced by Lactiplantibacillus paraplantarum. Int J Mol Sci 2024; 25:12650. [PMID: 39684362 DOI: 10.3390/ijms252312650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The growing challenge of antibiotic resistance has intensified the search for new antimicrobial agents. Promising alternatives include peptidoglycan hydrolases (PGHs) and certain ribosomal proteins, both of which exhibit antimicrobial activity. This study focuses on a Lactiplantibacillus paraplantarum strain, isolated from fermented meat, capable of inhibiting pathogens such as Listeria innocua, Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus, and Weissella viridescens. The highest growth and antimicrobial activity were observed at a high nitrogen concentration (5.7 g/L). Two antimicrobial proteins were identified: the 50S ribosomal protein L14 (RP uL14) and 6-phospho-N-acetylmuramidase (MupG), a PGH. Partial purification and characterization of these proteins were achieved using SDS-PAGE, zymography, and LC-MS/MS. Transcriptional data (RT-qPCR) showed that higher nitrogen concentrations enhanced MupG expression, while increased carbon concentrations boosted RP uL14 expression. These findings highlight the importance of nutritional sources in maximizing the production of novel antimicrobial proteins, offering a potential path to develop effective alternatives against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jessica J Hurtado-Rios
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Julio Cesar Almanza-Pérez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Monica A Rincón-Guevara
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico
| |
Collapse
|
2
|
He J, Xu P, Chen R, Chen M, Wang B, Xie Y, Yang Q, Sun D, Ji M. Exploiting the Zebrafish Model for Sepsis Research: Insights into Pathophysiology and Therapeutic Potentials. Drug Des Devel Ther 2024; 18:5333-5349. [PMID: 39600867 PMCID: PMC11590671 DOI: 10.2147/dddt.s500276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis, a severe condition instigated by infections, continues to be a primary global cause of death, typified by systemic inflammation and advancing immune dysfunction. Comprehending the complex pathological processes that underlie sepsis is integral to the creation of efficacious treatments. Despite the inability of animal models to entirely reproduce the clinical intricacies related to sepsis, they are invaluable instruments for the exploration and development of therapeutic approaches. Within this context, the zebrafish model is particularly noteworthy due to its genetic tractability, transparency, and appropriateness for high-throughput screening of genetic mutants and therapeutic compounds. This scholarly review emphasizes the crucial role that the zebrafish disease model plays in enhancing our comprehension of sepsis, by exploring its applications in deciphering immune and inflammatory responses, evaluating the consequences of genetic alterations, and examining novel therapeutic agents. The Insights derived from zebrafish research not only augment our understanding of the underlying mechanisms of sepsis, but also possess considerable potential for the transference of these discoveries into clinical therapies, thus potentially transforming the approach to sepsis management. The objective of this scholarly article is to underscore the importance of zebrafish in the realm of biomedical research pertaining to sepsis, and to delineate forthcoming opportunities for utilizing this model in clinical applications.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, People’s Republic of China
| | - Mengyan Chen
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yilun Xie
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| |
Collapse
|
3
|
Antenucci L, Virtanen S, Thapa C, Jartti M, Pitkänen I, Tossavainen H, Permi P. Reassessing the substrate specificities of the major Staphylococcus aureus peptidoglycan hydrolases lysostaphin and LytM. eLife 2024; 13:RP93673. [PMID: 39495121 PMCID: PMC11534333 DOI: 10.7554/elife.93673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.
Collapse
Affiliation(s)
- Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Salla Virtanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
| | - Chandan Thapa
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Minne Jartti
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Ilona Pitkänen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
- Department of Chemistry, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| |
Collapse
|
4
|
Wang M, Li X, Cavallo FM, Yedavally H, Piersma S, Raineri EJM, Vera Murguia E, Kuipers J, Zhang Z, van Dijl JM, Buist G. Functional profiling of CHAP domain-containing peptidoglycan hydrolases of Staphylococcus aureus USA300 uncovers potential targets for anti-staphylococcal therapies. Int J Med Microbiol 2024; 316:151632. [PMID: 39142057 DOI: 10.1016/j.ijmm.2024.151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus employs a thick cell wall for protection against physical and chemical insults. This wall requires continuous maintenance to ensure strength and barrier integrity, but also to permit bacterial growth and division. The main cell wall component is peptidoglycan. Accordingly, the bacteria produce so-called peptidoglycan hydrolases (PGHs) that cleave glycan strands to facilitate growth, cell wall remodelling, separation of divided cells and release of exported proteins into the extracellular milieu. A special class of PGHs contains so-called 'cysteine, histidine-dependent amidohydrolase/peptidase' (CHAP) domains. In the present study, we profiled the roles of 11 CHAP PGHs encoded by the core genome of S. aureus USA300 LAC. Mutant strains lacking individual CHAP PGHs were analysed for growth, cell morphology, autolysis, and invasion and replication inside human lung epithelial cells. The results show that several investigated CHAP PGHs contribute to different extents to extracellular and intracellular growth and replication of S. aureus, septation of dividing cells, daughter cell separation once the division process is completed, autolysis and biofilm formation. In particular, the CHAP PGHs Sle1 and SAUSA300_2253 control intracellular staphylococcal replication and the resistance to β-lactam antibiotics like oxacillin. This makes the S. aureus PGHs in general, and the Sle1 and SAUSA300_2253 proteins in particular, attractive targets for future prophylactic or therapeutic anti-staphylococcal interventions. Alternatively, these cell surface-exposed enzymes, or particular domains of these enzymes, could be applied in innovative anti-staphylococcal therapies.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Xiaofang Li
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Francis M Cavallo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Harita Yedavally
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Sjouke Piersma
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zhenhua Zhang
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands.
| |
Collapse
|
5
|
Sluga J, Tomašič T, Anderluh M, Rambaher MH, Bajc G, Sevšek A, Martin NI, Pieters RJ, Novič M, Venko K. Targeting N-Acetylglucosaminidase in Staphylococcus aureus with Iminosugar Inhibitors. Antibiotics (Basel) 2024; 13:751. [PMID: 39200051 PMCID: PMC11350809 DOI: 10.3390/antibiotics13080751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new effective antibacterial agents is extremely important to solve the increasing problem of bacterial resistance. The bacteriolytic enzyme autolysin E (AtlE) is a promising new drug target as it plays a key role in the degradation of peptidoglycan in the bacterial cell wall. Consequently, disruption of function can have an immense impact on bacterial growth and survival. An in silico and in vitro evaluation of iminosugar derivatives as potent inhibitors of S. aureus (AtlE) was performed. Three promising hit compounds (1, 3 and 8) were identified as AtlE binders in the micromolar range as measured by surface plasmon resonance. The most potent compound among the SPR response curve hits was 1, with a KD of 19 μM. The KD value for compound 8 was 88 μM, while compound 3 had a KD value of 410 μM.
Collapse
Affiliation(s)
- Janja Sluga
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (J.S.); (M.N.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.T.); (M.A.); (M.H.R.)
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.T.); (M.A.); (M.H.R.)
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.T.); (M.A.); (M.H.R.)
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.T.); (M.A.); (M.H.R.)
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 111, 1000 Ljubljana, Slovenia;
| | - Alen Sevšek
- Department of Chemical Biology & Drug Discovery, Utrecht University, Universiteitsweg 99, 3584 Utrecht, The Netherlands (N.I.M.); (R.J.P.)
| | - Nathaniel I. Martin
- Department of Chemical Biology & Drug Discovery, Utrecht University, Universiteitsweg 99, 3584 Utrecht, The Netherlands (N.I.M.); (R.J.P.)
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht University, Universiteitsweg 99, 3584 Utrecht, The Netherlands (N.I.M.); (R.J.P.)
| | - Marjana Novič
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (J.S.); (M.N.)
| | - Katja Venko
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (J.S.); (M.N.)
| |
Collapse
|
6
|
Abdulrehman T, Qadri S, Haik Y, Sultan A, Skariah S, Kumar S, Mendoza Z, Yadav KK, Titus A, Khader S. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol 2024; 206:288. [PMID: 38834761 DOI: 10.1007/s00203-024-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- eHealth Program, DeGroote School of Business, McMaster University, Hamilton, ON, Canada
- Health Policy, Management and Informatics, Allied Health, Credit Valley Hospital, Mississauga, ON, Canada
| | - Shahnaz Qadri
- School of Pharmacy, Texas A&M University, Kingsville, USA.
| | - Yousef Haik
- Department of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah, UAE.
| | - Ali Sultan
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sini Skariah
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shourya Kumar
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Zachary Mendoza
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Kamlesh K Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Anoop Titus
- Department of Preventive Cardiology, Houston Methodist, Houston, TX, USA
| | - Shameer Khader
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Wei M, Knight SAB, Fazelinia H, Spruce L, Roof J, Chu E, Kim DY, Bhanap P, Walsh J, Flowers L, Zhu J, Grice EA. An exploration of mechanisms underlying Desemzia incerta colonization resistance to methicillin-resistant Staphylococcus aureus on the skin. mSphere 2024; 9:e0063623. [PMID: 38415632 PMCID: PMC10964421 DOI: 10.1128/msphere.00636-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Colonization of human skin and nares by methicillin-resistant Staphylococcus aureus (MRSA) leads to the community spread of MRSA. This spread is exacerbated by the transfer of MRSA between humans and livestock, particularly swine. Here, we capitalized on the shared features between human and porcine skin, including shared MRSA colonization, to study novel bacterial mediators of MRSA colonization resistance. We focused on the poorly studied bacterial species Desemzia incerta, which we found to exert antimicrobial activity through a secreted product and exhibited colonization resistance against MRSA in an in vivo murine skin model. Using parallel genomic and biochemical investigation, we discovered that D. incerta secretes an antimicrobial protein. Sequential protein purification and proteomics analysis identified 24 candidate inhibitory proteins, including a promising peptidoglycan hydrolase candidate. Aided by transcriptional analysis of D. incerta and MRSA cocultures, we found that exposure to D. incerta leads to decreased MRSA biofilm production. These results emphasize the value of exploring microbial communities across a spectrum of hosts, which can lead to novel therapeutic agents as well as an increased understanding of microbial competition.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) causes a significant healthcare burden and can be spread to the human population via livestock transmission. Members of the skin microbiome can prevent MRSA colonization via a poorly understood phenomenon known as colonization resistance. Here, we studied the colonization resistance of S. aureus by bacterial inhibitors previously identified from a porcine skin model. We identify a pig skin commensal, Desemzia incerta, that reduced MRSA colonization in a murine model. We employ a combination of genomic, proteomic, and transcriptomic analyses to explore the mechanisms of inhibition between D. incerta and S. aureus. We identify 24 candidate antimicrobial proteins secreted by D. incerta that could be responsible for its antimicrobial activity. We also find that exposure to D. incerta leads to decreased S. aureus biofilm formation. These findings show that the livestock transmission of MRSA can be exploited to uncover novel mechanisms of MRSA colonization resistance.
Collapse
Affiliation(s)
- Monica Wei
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Simon A. B. Knight
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hossein Fazelinia
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Lynn Spruce
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Jennifer Roof
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Emily Chu
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Y. Kim
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Preeti Bhanap
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jasmine Walsh
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurice Flowers
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Zhu
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Grice
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Pantiora PD, Georgakis ND, Premetis GE, Labrou NE. Metagenomic analysis of hot spring soil for mining a novel thermostable enzybiotic. Appl Microbiol Biotechnol 2024; 108:163. [PMID: 38252132 PMCID: PMC10803476 DOI: 10.1007/s00253-023-12979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The misuse and overuse of antibiotics have contributed to a rapid emergence of antibiotic-resistant bacterial pathogens. This global health threat underlines the urgent need for innovative and novel antimicrobials. Endolysins derived from bacteriophages or prophages constitute promising new antimicrobials (so-called enzybiotics), exhibiting the ability to break down bacterial peptidoglycan (PG). In the present work, metagenomic analysis of soil samples, collected from thermal springs, allowed the identification of a prophage-derived endolysin that belongs to the N-acetylmuramoyl-L-alanine amidase type 2 (NALAA-2) family and possesses a LysM (lysin motif) region as a cell wall binding domain (CWBD). The enzyme (Ami1) was cloned and expressed in Escherichia coli, and its bactericidal and lytic activity was characterized. The results indicate that Ami1 exhibits strong bactericidal and antimicrobial activity against a broad range of bacterial pathogens, as well as against isolated peptidoglycan (PG). Among the examined bacterial pathogens, Ami1 showed highest bactericidal activity against Staphylococcus aureus sand Staphylococcus epidermidis cells. Thermostability analysis revealed a melting temperature of 64.2 ± 0.6 °C. Overall, these findings support the potential that Ami1, as a broad spectrum antimicrobial agent, could be further assessed as enzybiotic for the effective treatment of bacterial infections. KEY POINTS: • Metagenomic analysis allowed the identification of a novel prophage endolysin • The endolysin belongs to type 2 amidase family with lysin motif region • The endolysin displays high thermostability and broad bactericidal spectrum.
Collapse
Affiliation(s)
- Panagiota D Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos D Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
9
|
Golosova NN, Khlusevich YA, Morozova VV, Matveev AL, Kozlova YN, Tikunov AY, Panina EA, Tikunova NV. Characterization of a Thermostable Endolysin of the Aeribacillus Phage AeriP45 as a Potential Staphylococcus Biofilm-Removing Agent. Viruses 2024; 16:93. [PMID: 38257793 PMCID: PMC10819204 DOI: 10.3390/v16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Multidrug-resistant Gram-positive bacteria, including bacteria from the genus Staphylococcus, are currently a challenge for medicine. Therefore, the development of new antimicrobials is required. Promising candidates for new antistaphylococcal drugs are phage endolysins, including endolysins from thermophilic phages against other Gram-positive bacteria. In this study, the recombinant endolysin LysAP45 from the thermophilic Aeribacillus phage AP45 was obtained and characterized. The recombinant endolysin LysAP45 was produced in Escherichia coli M15 cells. It was shown that LysAP45 is able to hydrolyze staphylococcal peptidoglycans from five species and eleven strains. Thermostability tests showed that LysAP45 retained its hydrolytic activity after incubation at 80 °C for at least 30 min. The enzymatically active domain of the recombinant endolysin LysAP45 completely disrupted biofilms formed by multidrug-resistant S. aureus, S. haemolyticus, and S. epidermidis. The results suggested that LysAP45 is a novel thermostable antimicrobial agent capable of destroying biofilms formed by various species of multidrug-resistant Staphylococcus. An unusual putative cell-binding domain was found at the C-terminus of LysAP45. No domains with similar sequences were found among the described endolysins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (N.N.G.); (V.V.M.); (A.L.M.); (Y.N.K.); (A.Y.T.); (E.A.P.)
| |
Collapse
|
10
|
Vergoz D, Le H, Bernay B, Schaumann A, Barreau M, Nilly F, Desriac F, Tahrioui A, Giard JC, Lesouhaitier O, Chevalier S, Brunel JM, Muller C, Dé E. Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2023; 13:8. [PMID: 38275318 PMCID: PMC10812528 DOI: 10.3390/antibiotics13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Benoit Bernay
- Univ Caen Normandie, Proteogen Platform, US EMERODE, F-14000 Caen, France;
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Magalie Barreau
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Flore Nilly
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Florie Desriac
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Ali Tahrioui
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Olivier Lesouhaitier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Cécile Muller
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| |
Collapse
|
11
|
Pitkänen I, Tossavainen H, Permi P. 1H, 13C, and 15N NMR chemical shift assignment of LytM N-terminal domain (residues 26-184). BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:257-263. [PMID: 37742292 PMCID: PMC10630248 DOI: 10.1007/s12104-023-10151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
Antibiotic resistance is a growing problem and a global threat for modern healthcare. New approaches complementing the traditional antibiotic drugs are urgently needed to secure the ability to treat bacterial infections also in the future. Among the promising alternatives are bacteriolytic enzymes, such as the cell wall degrading peptidoglycan hydrolases. Staphylococcus aureus LytM, a Zn2+-dependent glycyl-glycine endopeptidase of the M23 family, is one of the peptidoglycan hydrolases. It has a specificity towards staphylococcal peptidoglycan, making it an interesting target for antimicrobial studies. LytM hydrolyses the cell wall of S. aureus, a common pathogen with multi-resistant strains that are difficult to treat, such as the methicillin-resistant S. aureus, MRSA. Here we report the 1H, 15N and 13C chemical shift assignments of S. aureus LytM N-terminal domain and linker region, residues 26-184. These resonance assignments can provide the basis for further studies such as elucidation of structure and interactions.
Collapse
Affiliation(s)
- Ilona Pitkänen
- Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland.
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, FI-40014, Jyvaskyla, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
12
|
Shin D, Ha E, Kong M, Ryu S. Characterization of thermostable bacteriophage CPD2 and its endolysin LysCPD2 as biocontrol agents against Clostridium perfringens. Food Sci Biotechnol 2023; 32:2069-2077. [PMID: 37860732 PMCID: PMC10581990 DOI: 10.1007/s10068-023-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridium perfringens is one of the major foodborne pathogens in humans and animals. With the prevalence of antibiotic-resistant C. perfringens strains, bacteriophages and their endolysins have received considerable attention as promising alternatives to antibiotics. In this study, C. perfringens phage CPD2 was isolated from retail chicken samples. CPD2 belongs to the Podoviridae family and exhibits remarkable thermostability. While CPD2 has narrow host specificity, its endolysin LysCPD2 showed a broader lytic range, killing not only C. perfringens strains but other Gram-positive bacteria, such as B. cereus and B. subtilis. In addition, due to its exceptional thermal stability, LysCPD2 showed significant antibacterial ability against germinating C. perfringens spores during the heat activation process (75 °C for 20 min). Taken together, these results indicate that both thermostable phage CPD2 and its endolysin LysCPD2 can be used as efficient antimicrobial agents to control C. perfringens during thermal processing of foods.
Collapse
Affiliation(s)
- Daeun Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
13
|
Tao Z, Ke K, Shi D, Zhu L. Development of a dual fluorescent reporter system to identify inhibitors of Staphylococcus aureus virulence factors. Appl Environ Microbiol 2023; 89:e0097823. [PMID: 37889047 PMCID: PMC10686081 DOI: 10.1128/aem.00978-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is a formidable pathogen responsible for a wide range of infections, and the emergence of antibiotic-resistant strains has posed significant challenges in treating these infections. In this study, we have established a novel dual reporter system capable of concurrently monitoring the activities of two critical virulence regulators in S. aureus. By incorporating both reporters into a single screening platform, we provide a time- and cost-efficient approach for assessing the activity of compounds against two distinct targets in a single screening round. This innovative dual reporter system presents a promising strategy for the identification of molecules capable of modulating virulence gene expression in S. aureus, potentially expediting the development of antivirulence therapies.
Collapse
Affiliation(s)
- Zhanhua Tao
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, China
| | - Ke Ke
- Guangxi Academy of Sciences, Nanning, China
| | | | - Libo Zhu
- Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
14
|
Yue Y, Chen K, Sun C, Ahmed S, Ojha SC. Antimicrobial peptidase lysostaphin at subinhibitory concentrations modulates staphylococcal adherence, biofilm formation, and toxin production. BMC Microbiol 2023; 23:311. [PMID: 37884887 PMCID: PMC10601153 DOI: 10.1186/s12866-023-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The ability of antimicrobial agents to affect microbial adherence to eukaryotic cell surfaces is a promising antivirulence strategy for combating the global threat of antimicrobial resistance. Inadequate use of antimicrobials has led to widespread instances of suboptimal antibiotic concentrations around infection sites. Therefore, we aimed to examine the varying effect of an antimicrobial peptidase lysostaphin (APLss) on staphylococcal adherence to host cells, biofilm biomass formation, and toxin production as a probable method for mitigating staphylococcal virulence. RESULTS Initially, soluble expression in E. coli and subsequent purification by immobilized-Ni2+ affinity chromatography (IMAC) enabled us to successfully produce a large quantity of highly pure ~ 28-kDa His-tagged mature APLss. The purified protein exhibited potent inhibitory effects against both methicillin-sensitive and methicillin-resistant staphylococcal strains, with minimal inhibitory concentrations (MICs) ranging from 1 to 2 µg/mL, and ultrastructural analysis revealed that APLss-induced concentration-specific changes in the morphological architecture of staphylococcal surface membranes. Furthermore, spectrophotometric and fluorescence microscopy revealed that incubating staphylococcal strains with sub-MIC and MIC of APLss significantly inhibited staphylococcal adherence to human vaginal epithelial cells and biofilm biomass formation. Ultimately, transcriptional investigations revealed that APLss inhibited the expression of agrA (quorum sensing effector) and other virulence genes related to toxin synthesis. CONCLUSIONS Overall, APLss dose-dependently inhibited adhesion to host cell surfaces and staphylococcal-associated virulence factors, warranting further investigation as a potential anti-staphylococcal agent with an antiadhesive mechanism of action using in vivo models of staphylococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, China
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, USA
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
15
|
Gómez-Arrebola C, Hernandez SB, Culp EJ, Wright GD, Solano C, Cava F, Lasa I. Staphylococcus aureus susceptibility to complestatin and corbomycin depends on the VraSR two-component system. Microbiol Spectr 2023; 11:e0037023. [PMID: 37646518 PMCID: PMC10581084 DOI: 10.1128/spectrum.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 09/01/2023] Open
Abstract
The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb. IMPORTANCE Although Staphylococcus aureus is a common colonizer of the skin and digestive tract of humans and many animals, it is also a versatile pathogen responsible for causing a wide variety and number of infections. Treatment of these infections requires the bacteria to be constantly exposed to antibiotic treatment, which facilitates the selection of antibiotic-resistant strains. The development of new antibiotics is, therefore, urgently needed. In this paper, we investigated the role of the sensory system of S. aureus in susceptibility to two new antibiotics: corbomycin and complestatin. The results shed light on the cell-wall synthesis processes that are affected by the presence of the antibiotic and the sensory system responsible for coordinating their activity.
Collapse
Affiliation(s)
- Carmen Gómez-Arrebola
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Sara B. Hernandez
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Elizabeth J. Culp
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D. Wright
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| |
Collapse
|
16
|
Charoenjotivadhanakul S, Sakdee S, Imtong C, Li HC, Angsuthanasombat C. Conserved loop residues-Tyr 270 and Asn 372 near the catalytic site of the lysostaphin endopeptidase are essential for staphylolytic activity toward pentaglycine binding and catalysis. Biochem Biophys Res Commun 2023; 668:111-117. [PMID: 37245291 DOI: 10.1016/j.bbrc.2023.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Lysostaphin endopeptidase cleaves pentaglycine cross-bridges found in staphylococcal cell-wall peptidoglycans and proves very effective in combatting methicillin-resistant Staphylococcus aureus. Here, we revealed the functional importance of two loop residues, Tyr270 in loop 1 and Asn372 in loop 4, which are highly conserved among the M23 endopeptidase family and are found close to the Zn2+-coordinating active site. Detailed analyses of the binding groove architecture together with protein-ligand docking showed that these two loop residues potentially interact with the docked ligand-pentaglycine. Ala-substituted mutants (Y270A and N372A) were generated and over-expressed in Escherichia coli as a soluble form at levels comparable to the wild type. A drastic decrease in staphylolytic activity against S. aureus was observed for both mutants, suggesting an essential role of the two loop residues in lysostaphin function. Further substitutions with an uncharged polar Gln side-chain revealed that only the Y270Q mutation caused a dramatic reduction in bioactivity. In silico predicting the effect of binding site mutations revealed that all mutations displayed a large ΔΔGbind value, signifying requirements of the two loop residues for efficient binding to pentaglycine. Additionally, MD simulations revealed that Y270A and Y270Q mutations induced large flexibility of the loop 1 region, showing markedly increased RMSF values. Further structural analysis suggested that Tyr270 conceivably participated in the oxyanion stabilization of the enzyme catalysis. Altogether, our present study disclosed that two highly conserved loop residues, loop 1-Tyr270 and loop 4-Asn372, located near the lysostaphin active site are crucially involved in staphylolytic activity toward binding and catalysis of pentaglycine cross-links.
Collapse
Affiliation(s)
- Sathapat Charoenjotivadhanakul
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Somsri Sakdee
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Chompounoot Imtong
- Laboratory of Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50110, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
17
|
Premetis GE, Georgakis ND, Stathi A, Labrou NE. Metaviromics analysis of marine biofilm reveals a glycoside hydrolase endolysin with high specificity towards Acinetobacter baumannii. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140918. [PMID: 37150474 DOI: 10.1016/j.bbapap.2023.140918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Multidrug-resistant (MDR) bacteria are a growing threat to the public health. Among them, the Gram-negative Acinetobacter baumannii is considered today as the most dangerous MDR pathogen. Phage-derived endolysins are peptidoglycan (PG) hydrolytic enzymes that can function as effective tools in the fight against MDR bacteria. In the present work, the viral diversity of a marine environmental sample (biofilm), formed near an industrial zone, was mined for the identification of a putative endolysin (AbLys2) that belongs to the glycoside hydrolase family 24 (GH24, EC 3.2.1.17). The coding sequence of AbLys2 was cloned and expressed in E. coli. The lytic activity and specificity of the recombinant enzyme were evaluated against suspensions of a range of Gram-positive and Gram-negative human pathogens using turbidity assays. AbLys2 displayed enhanced selectivity towards A. baumannii cells, compared to other bacteria. Kinetics analysis was carried out to characterize the dependence of its lytic activity on pH and showed that the enzyme exhibits its maximal activity at pH 5.5. Thermostability analysis showed that AbLys2 displays melting temperature Tm 47.1 °C. Florescence microscopy and cell viability assays established that AbLys2 is active towards live cultures of A. baumannii cells with an inhibitory concentration IC50 3.41 ± 0.09 μM. Molecular modeling allowed the prediction of important amino acid residues involved in catalysis. The results of the present study suggest that AbLys2 provides efficient lytic and antimicrobial activity towards A. baumannii cells and therefore is a promising new antimicrobial against this pathogen.
Collapse
Affiliation(s)
- Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 -Athens, Greece
| | - Nikolaos D Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 -Athens, Greece
| | - Angeliki Stathi
- Department of Microbiology, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 -Athens, Greece.
| |
Collapse
|
18
|
Shestak NV, Grishin AV, Lyashchuk AM, Lunin VG, Anna SK. The choice of chromatographic resin for the purification of recombinant lysostaphin affects its activity. Protein Expr Purif 2023; 207:106274. [PMID: 37084838 DOI: 10.1016/j.pep.2023.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lysostaphin is a zinc-dependent endopeptidase that is effective against both antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus aureus. Lysostaphin is typically purified on cation-exchange or metal-chelate affinity resins, and there are data indicating potential influence of the chromatographic resin on the lysostaphin activity. In this study, we systematically investigated the impact of the resin used to purify the recombinant lysostaphin on its activity. To this end, recombinant lysostaphin with an additional histidine tag at the C-terminus was purified using a cation-exchange resin, three types of nickel-chelate resins with different strength of metal ion binding, or a zinc-chelate resin. Lysostaphin samples purified on the cation-exchange resin (WorkBeads 40S), the nickel-chelate resin with the strong nickel ion binding (WorkBeads NiMAC), and the zinc-chelate resin (WorkBeads NTA with immobilized zinc ions) had equal activity. On the contrary, the activity of lysostaphin preparations purified on nickel-chelate resins with medium (WorkBeads Ni-NTA) and relatively weak (WorkBeads Ni-IDA) nickel ion binding was significantly reduced. The decrease in activity can be explained by the interaction of lysostaphin with the nickel ions leached from the resin and is caused by either the exchange of the zinc ion in the lysostaphin active center with a nickel ion from the resin, or binding of an additional ion that inhibits the enzymatic activity. Removal of metal ions from the active site of lysostaphin and subsequent incorporation of the native zinc ions lead to complete restoration of the activity of the enzyme.
Collapse
Affiliation(s)
- Nikita V Shestak
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation.
| | - Alexander V Grishin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation.
| | - Alexander M Lyashchuk
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation
| | - Vladimir G Lunin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation
| | - S Karyagina Anna
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation; A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation
| |
Collapse
|
19
|
Serrapeptase impairs biofilm, wall, and phospho-homeostasis of resistant and susceptible Staphylococcus aureus. Appl Microbiol Biotechnol 2023; 107:1373-1389. [PMID: 36635396 PMCID: PMC9898353 DOI: 10.1007/s00253-022-12356-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Staphylococcus aureus biofilms are implicated in hospital infections due to elevated antibiotic and host immune system resistance. Molecular components of cell wall including amyloid proteins, peptidoglycans (PGs), and lipoteichoic acid (LTA) are crucial for biofilm formation and tolerance of methicillin-resistant S. aureus (MRSA). Significance of alkaline phosphatases (ALPs) for biofilm formation has been recorded. Serrapeptase (SPT), a protease of Serratia marcescens, possesses antimicrobial properties similar or superior to those of many antibiotics. In the present study, SPT anti-biofilm activity was demonstrated against S. aureus (ATCC 25923, methicillin-susceptible strain, methicillin-susceptible S. aureus (MSSA)) and MRSA (ST80), with IC50 values of 0.67 μg/mL and 7.70 μg/mL, respectively. SPT affected bacterial viability, causing a maximum inhibition of - 46% and - 27%, respectively. Decreased PGs content at [SPT] ≥ 0.5 μg/mL and ≥ 8 μg/mL was verified for MSSA and MRSA, respectively. In MSSA, LTA levels decreased significantly (up to - 40%) at lower SPT doses but increased at the highest dose of 2 μg/mL, a counter to spectacularly increased cellular and secreted LTA levels in MRSA. SPT also reduced amyloids of both strains. Additionally, intracellular ALP activity decreased in both MSSA and MRSA (up to - 85% and - 89%, respectively), while extracellular activity increased up to + 482% in MSSA and + 267% in MRSA. Altered levels of DING proteins, which are involved in phosphate metabolism, in SPT-treated bacteria, were also demonstrated here, implying impaired phosphorus homeostasis. The differential alterations in the studied molecular aspects underline the differences between MSSA and MRSA and offer new insights in the treatment of resistant bacterial biofilms. KEY POINTS: • SPT inhibits biofilm formation in methicillin-resistant and methicillin-susceptible S. aureus. • SPT treatment decreases bacterial viability, ALP activity, and cell wall composition. • SPT-treated bacteria present altered levels of phosphate-related DING proteins.
Collapse
|
20
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
21
|
Wang M, Deng Z, Li Y, Ma Y, Wang J. Design and characterization of a novel lytic protein against Clostridium difficile. Appl Microbiol Biotechnol 2022; 106:4511-4521. [PMID: 35699735 PMCID: PMC9194777 DOI: 10.1007/s00253-022-12010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Abstract Clostridium difficile (C. difficile) is a Gram-positive, spore-forming, toxin-producing anaerobe that can cause nosocomial antibiotic-associated intestinal disease. Autolysin is a lytic enzyme that hydrolyzes peptidoglycans of the bacterial cell wall, with a catalytic domain and cell wall–binding domains, proven to be involved in bacterial cell wall remodeling and cell division. Although autolysins in C. difficile have been reported, the autolysins have failed to yield impressive results when used as exogenous lytic agents. In this study, we expressed and characterized the binding domains (Cwp19-BD and Acd-BD) and catalytic domains (Cwp19-CD, Acd-CD, and Cwl-CD) of C. difficile autolysins, and the domains with the best binding specificity and lytic activity were selected towards C. difficile to design a novel lytic protein Cwl-CWB2. Cwl-CWB2 showed good biosafety with significantly low hemolysis and without cytotoxicity. The results of fluorescence analysis and lytic assay demonstrated that Cwl-CWB2 has higher binding specificity and stronger lytic activity with a minimum inhibitory concentration at 13.39 ± 5.80 μg/mL against living C. difficile cells, which is significantly stronger than commercial lysozyme (3333.33 ± 1443.37 μg/mL) and other reported C. difficile autolysins. Besides, Cwl-CWB2 exhibited good stability as about 75% of the lytic activity was still retained when incubated at 37 °C for 96 h, which is considered to be a potential antimicrobial agent to combat C. difficile. Key points • Several binding domains and catalytic domains, deriving from several Clostridium difficile autolysins, were expressed, purified, and functionally characterized. • A novel C. difficile lytic protein Cwl-CWB2 was designed from C. difficile autolysins. • The binding specificity and lytic activity of Cwl-CWB2 against C. difficile showed advantages compared with other reported C. difficile autolysins. • Cwl-CWB2 exhibited significantly low hemolysis and cytotoxicity against normal-derived colon mucosa 460 cell. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12010-0.
Collapse
Affiliation(s)
- Meng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zifeng Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
23
|
Hioki T, Yamashita D, Tohata M, Endo K, Kawahara A, Okuda M. Heterologous production of active form of beta-lytic protease by Bacillus subtilis and improvement of staphylolytic activity by protein engineering. Microb Cell Fact 2021; 20:231. [PMID: 34963446 PMCID: PMC8715609 DOI: 10.1186/s12934-021-01724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Most of the proteases classified into the M23 family in the MEROPS database exhibit staphylolytic activity and have potential as antibacterial agents. The M23 family is further classified into two subfamilies, M23A and M23B. Proteases of the M23A subfamily are thought to lack the capacity for self-maturation by auto-processing of a propeptide, which has been a challenge in heterologous production and application research. In this study, we investigated the heterologous expression, in Bacillus subtilis, of the Lysobacter enzymogenes beta-lytic protease (BLP), a member of the M23A subfamily. Results We found that B. subtilis can produce BLP in its active form. Two points were shown to be important for the production of BLP in B. subtilis. The first was that the extracellular proteases produced by the B. subtilis host are essential for BLP maturation. When the host strain was deficient in nine extracellular proteases, pro-BLP accumulated in the supernatant. This observation suggested that BLP lacks the capacity for self-maturation and that some protease from B. subtilis contributes to the cleavage of the propeptide of BLP. The second point was that the thiol-disulfide oxidoreductases BdbDC of the B. subtilis host are required for efficient secretory production of BLP. We infer that intramolecular disulfide bonds play an important role in the formation of the correct BLP conformation during secretion. We also achieved efficient protein engineering of BLP by utilizing the secretory expression system in B. subtilis. Saturation mutagenesis of Gln116 resulted in a Q116H mutant with enhanced staphylolytic activity. The minimum bactericidal concentration (MBC) of the wild-type BLP and the Q116H mutant against Staphylococcus aureus NCTC8325 was 0.75 μg/mL and 0.375 μg/mL, respectively, and the MBC against Staphylococcus aureus ATCC43300 was 6 μg/mL and 3 μg/mL, respectively. Conclusions In this study, we succeeded in the secretory production of BLP in B. subtilis. To our knowledge, this work is the first report of the successful heterologous production of BLP in its active form, which opens up the possibility of industrial use of BLP. In addition, this study proposes a new strategy of using the extracellular proteases of B. subtilis for the maturation of heterologous proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01724-x.
Collapse
Affiliation(s)
- Takahiro Hioki
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
| | - Daichi Yamashita
- Biological Science Research, Kao Corporation, Haga , Tochigi, 2606 Akabane, Ichikai321-3497, Japan
| | - Masatoshi Tohata
- Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Keiji Endo
- Biological Science Research, Kao Corporation, Haga , Tochigi, 2606 Akabane, Ichikai321-3497, Japan
| | - Akihito Kawahara
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Mitsuyoshi Okuda
- Biological Science Research, Kao Corporation, Haga , Tochigi, 2606 Akabane, Ichikai321-3497, Japan
| |
Collapse
|
24
|
Hong W, Nyaruaba R, Li X, Liu H, Yang H, Wei H. In-situ and Real-Time Monitoring of the Interaction Between Lysins and Staphylococcus aureus Biofilm by Surface Plasmon Resonance. Front Microbiol 2021; 12:783472. [PMID: 34917062 PMCID: PMC8670000 DOI: 10.3389/fmicb.2021.783472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus can produce a multilayered biofilm embedded in extracellular polymeric matrix. This biofilm is difficult to remove, insensitive to antibiotics, easy to develop drug-resistant strains and causes enormous problems to environments and health. Phage lysin which commonly consists of a catalytic domain (CD) and a cell-wall binding domain (CBD) is a powerful weapon against bacterial biofilm. However, the real-time interaction between lysin and S. aureus biofilm is still not fully understood. In this study, we monitored the interactions of three lysins (ClyF, ClyC, PlySs2) against culture-on-chip S. aureus biofilm, in real-time, based on surface plasmon resonance (SPR). A typical SPR response curve showed that the lysins bound to the biofilm rapidly and the biofilm destruction started at a longer time. By using 1:1 binding model analysis, affinity constants (KD) for ClyF, ClyC, and PlySs2 were found to be 3.18 ± 0.127 μM, 1.12 ± 0.026 μM, and 15.5 ± 0.514 μM, respectively. The fact that ClyF and PlySs2 shared the same CBD but showed different affinity to S. aureus biofilm suggested that, not only CBD, but also CD affects the binding activity of the entire lysin. The SPR platform can be applied to improve our understanding on the complex interactions between lysins and bacterial biofilm including association (adsorption) and disassociation (destruction).
Collapse
Affiliation(s)
- Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Far BE, Ragheb M, Rahbar R, Mafakher L, Nojookambari NY, Achinas S, Yazdansetad S. Cloning and expression of Staphylococcus simulans lysostaphin enzyme gene in Bacillus subtilis WB600. AIMS Microbiol 2021; 7:271-283. [PMID: 34708172 PMCID: PMC8500799 DOI: 10.3934/microbiol.2021017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Lysostaphin is a glycylglycine endopeptidase, secreted by Staphylococcus simulans, capable of specifically hydrolyzing pentaglycine crosslinks present in the peptidoglycan of the Staphylococcus aureus cell wall. In this paper, we describe the cloning and expression of the lysostaphin enzyme gene in Bacillus subtilis WB600 host using pWB980 expression system. Plasmid pACK1 of S. simulans was extracted using the alkaline lysis method. Lysostaphin gene was isolated by PCR and cloned into pTZ57R/T-Vector, then transformed into Escherichia coli DH5α. The amplified gene fragment and uncloned pWB980 vector were digested using PstI and XbaІ enzymes and purified. The restricted gene fragment was ligated into the pWB980 expression vector by the standard protocols, then the recombinant plasmid was transformed into B. subtilis WB600 using electroporation method. The recombinant protein was evaluated by the SDS-PAGE method and confirmed by western immunoblot. Analysis of the target protein showed a band corresponding to 27-kDa r-lysostaphin. Protein content was estimated 91 mg/L by Bradford assay. The recombinant lysostaphin represented 90% of its maximum activity at 40 °C and displayed good thermostability by keeping about 80% of its maximum activity at 45 °C. Heat residual activity assay of recombinant lysostaphin demonstrated that the enzyme stability was up to 40 °C and showed good stability at 40 °C for 16 h incubation.
Collapse
Affiliation(s)
- Babak Elyasi Far
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Ragheb
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbar
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ladan Mafakher
- Medical Plant Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Neda Yousefi Nojookambari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Sajjad Yazdansetad
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
26
|
Rahmani B, Astani A, Zarei Jaliani H, Kheirandish MH, Mosaddegh A. Evaluation of kinetic stability and anti-staphylococcal activity of recombinant LasA protein produced in Escherichia coli. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:851-855. [PMID: 34630963 PMCID: PMC8487604 DOI: 10.22038/ijbms.2021.54563.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
Objective(s): Staphylococcus aureus has become a major clinical concern due to the growing prevalence of multi-drug resistant (MDR) strains. Enzybioticts are peptidoglycan hydrolases that are recently introduced as an alternative agent to confront the MDR strains with a more effective mechanism than conventional antibiotics. In this regard, our study aimed to evaluate the kinetic stability of LasA protease as a potent enzybiotic in the specific destruction of the S. aureus cell wall. Materials and Methods: The catalytic domain of the Codon-optimized LasA gene was sub-cloned into pET28a vector, and BL21 DE3 cells were used for protein expression. Recombinant LasA protein was affinity purified by Ni-NTA column and staphylolytic activity of the LasA protein against methicillin-resistant strains was evaluated by disk diffusion and MIC test. The kinetic stability was evaluated in different temperatures during 48 hr. Results: Our results revealed that LasA protein can completely prevent the growth of Methicillin-resistant S. aureus (MRSA) strain and inhibit the examined strain at the amount of 4 µg. furthermore, the catalytic domain of LasA protein can tolerate higher temperatures as well. Conclusion: With regard to the failure of conventional antibiotics in treatment of MRSA infections, novel agents to combat multidrug-resistant strains are needed. The present study shows that LasA protein can eradicate MRSA strains, so it can be promising for the treatment of antibiotic-resistant staphylococci infection. The kinetic stability of LasA has also confirmed the possibility of industrial-scale manufacturing for the subsequent use of the enzyme clinically.
Collapse
Affiliation(s)
- Behnaz Rahmani
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Kheirandish
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Mosaddegh
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
27
|
Structural Investigations on the SH3b Domains of Clostridium perfringens Autolysin through NMR Spectroscopy and Structure Simulation Enlighten the Cell Wall Binding Function. Molecules 2021; 26:molecules26185716. [PMID: 34577187 PMCID: PMC8470621 DOI: 10.3390/molecules26185716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens autolysin (CpAcp) is a peptidoglycan hydrolase associated with cell separation, division, and growth. It consists of a signal peptide, ten SH3b domains, and a catalytic domain. The structure and function mechanisms of the ten SH3bs related to cell wall peptidoglycan binding remain unclear. Here, the structures of CpAcp SH3bs were studied through NMR spectroscopy and structural simulation. The NMR structure of SH3b6 was determined at first, which adopts a typical β-barrel fold and has three potential ligand-binding pockets. The largest pocket containing eight conserved residues was suggested to bind with peptide ligand in a novel model. The structures of the other nine SH3bs were subsequently predicted to have a fold similar to SH3b6. Their ligand pockets are largely similar to those of SH3b6, although with varied size and morphology, except that SH3b1/2 display a third pocket markedly different from those in other SH3bs. Thus, it was supposed that SH3b3-10 possess similar ligand-binding ability, while SH3b1/2 have a different specificity and additional binding site for ligand. As an entirety, ten SH3bs confer a capacity for alternatively binding to various peptidoglycan sites in the cell wall. This study presents an initial insight into the structure and potential function of CpAcp SH3bs.
Collapse
|
28
|
Obořilová R, Šimečková H, Pastucha M, Klimovič Š, Víšová I, Přibyl J, Vaisocherová-Lísalová H, Pantůček R, Skládal P, Mašlaňová I, Farka Z. Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria. NANOSCALE 2021; 13:13538-13549. [PMID: 34477758 DOI: 10.1039/d1nr02921e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
30
|
Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, Pathak M, Karthik K, Khurana SK, Singh R, Puvvala B, Amarpal, Singh R, Singh KP, Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021; 41:107-136. [PMID: 33509059 PMCID: PMC7906113 DOI: 10.1080/01652176.2021.1882713] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mastitis (intramammary inflammation) caused by infectious pathogens is still considered a devastating condition of dairy animals affecting animal welfare as well as economically incurring huge losses to the dairy industry by means of decreased production performance and increased culling rates. Bovine mastitis is the inflammation of the mammary glands/udder of bovines, caused by bacterial pathogens, in most cases. Routine diagnosis is based on clinical and subclinical forms of the disease. This underlines the significance of early and rapid identification/detection of etiological agents at the farm level, for which several diagnostic techniques have been developed. Therapeutic regimens such as antibiotics, immunotherapy, bacteriocins, bacteriophages, antimicrobial peptides, probiotics, stem cell therapy, native secretory factors, nutritional, dry cow and lactation therapy, genetic selection, herbs, and nanoparticle technology-based therapy have been evaluated for their efficacy in the treatment of mastitis. Even though several strategies have been developed over the years for the purpose of managing both clinical and subclinical forms of mastitis, all of them lacked the efficacy to eliminate the associated etiological agent when used as a monotherapy. Further, research has to be directed towards the development of new therapeutic agents/techniques that can both replace conventional techniques and also solve the problem of emerging antibiotic resistance. The objective of the present review is to describe the etiological agents, pathogenesis, and diagnosis in brief along with an extensive discussion on the advances in the treatment and management of mastitis, which would help safeguard the health of dairy animals.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Bhavani Puvvala
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
31
|
Li X, Wang S, Nyaruaba R, Liu H, Yang H, Wei H. A Highly Active Chimeric Lysin with a Calcium-Enhanced Bactericidal Activity against Staphylococcus aureus In Vitro and In Vivo. Antibiotics (Basel) 2021; 10:antibiotics10040461. [PMID: 33921682 PMCID: PMC8074178 DOI: 10.3390/antibiotics10040461] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/21/2023] Open
Abstract
Lysins, including chimeric lysins, have recently been explored as novel promising alternatives to failing antibiotics in treating multi-drug resistant (MDR) pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Herein, by fusing the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain from the Ply187 lysin with the non-SH3b cell-wall binding domain from the LysSA97 lysin, a new chimeric lysin ClyC was constructed with Ca2+-enhanced bactericidal activity against all S. aureus strains tested, including MRSA. Notably, treating S. aureus with 50 μg/mL of ClyC in the presence of 100 μM Ca2+ lead to a reduction of 9 Log10 (CFU/mL) in viable bacterial number, which was the first time to observe a lysin showing such a high activity. In addition, the effective concentration of ClyC could be decreased dramatically from 12 to 1 μg/mL by combination with 0.3 μg/mL of penicillin G. In a mouse model of S. aureus bacteremia, a single intraperitoneal administration of 0.1 mg/mouse of ClyC significantly improved the survival rates and reduced 2 Log10 (CFU/mL) of the bacterial burdens in the organs of the infected mice. ClyC was also found stable after lyophilization without cryoprotectants. Based on the above observations, ClyC could be a promising candidate against S. aureus infections.
Collapse
Affiliation(s)
- Xiaohong Li
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Wang
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Huan Liu
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- Correspondence: (H.Y.); (H.W.); Tel.: +86-27-51861078 (H.Y.); +86-27-51861077 (H.W.)
| | - Hongping Wei
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (X.L.); (S.W.); (R.N.); (H.L.)
- Correspondence: (H.Y.); (H.W.); Tel.: +86-27-51861078 (H.Y.); +86-27-51861077 (H.W.)
| |
Collapse
|
32
|
Chen K, Ojha SC, Imtong C, Linn AK, Li HC, Thonabulsombat C, Angsuthanasombat C. Molecular Insights into Zn 2+ Inhibition of the Antibacterial Endopeptidase Lysostaphin from Staphylococcus simulans. Protein Pept Lett 2021; 28:140-148. [PMID: 32533816 DOI: 10.2174/0929866527666200613221359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mature lysostaphin (~28-kDa Lss) from Staphylococcus simulans proves effective in killing methicillin-resistant Staphylococcus aureus (MRSA) which is endemic in hospitals worldwide. Lss is Zn2+-dependent endopeptidase, but its bacteriolytic activity could be affected by exogenously added Zn2+. OBJECTIVE To gain greater insights into structural and functional impacts of Zn2+and Ni2+on Lss-induced bioactivity. METHODS Lss purified via immobilized metal ion-affinity chromatography was assessed for bioactivity using turbidity reduction assays. Conformational change of metal ion-treated Lss was examined by circular dichroism and intrinsic fluorescence spectroscopy. Co-sedimentation assay was performed to study interactions between Zn2+-treated Lss and S. aureus peptidoglycans. Metal ionbinding prediction and intermolecular docking were used to locate an extraneous Zn2+-binding site. RESULTS A drastic decrease in Lss bioactivity against S. aureus and MRSA was revealed only when treated with Zn2+, but not Ni2+, albeit no negative effect of diethyldithiocarbamate-Zn2+-chelator on Lss-induced bioactivity. No severe conformational change was observed for Lss incubated with exogenous Zn2+ or Ni2+. Lss pre-treated with Zn2+ efficiently bound to S. aureus cell-wall peptidoglycans, suggesting non-interfering effect of exogenous metal ions on cell-wall targeting (CWT) activity. In silico analysis revealed that exogenous Zn2+, but not Ni2+, preferably interacted with a potential extraneous Zn2+-binding site (His253, Glu318 and His323) placed near the Zn2+-coordinating Lssactive site within the catalytic (CAT) domain. CONCLUSION Our present data signify the adverse influence of exogenous Zn2+ ions on Lss-induced staphylolytic activity through the exclusive presence within the CAT domain of an extraneous inhibitory Zn2+-binding site, without affecting the CWT activity.
Collapse
Affiliation(s)
- Ke Chen
- Department of Anatomy, Faculty of Science, Mahidol University, Payatai Campus, Bangkok, Thailand
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affliliated Hospital of Southwest Medical University, Luzhou, China
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, Thailand
| | - Aung Khine Linn
- Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Chanan Angsuthanasombat
- Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, Thailand
| |
Collapse
|
33
|
Sharma N, Chhillar AK, Dahiya S, Punia A, Choudhary P, Gulia P, Behl A, Dangi M. Chemotherapeutic Strategies for Combating Staphylococcus aureus Infections. Mini Rev Med Chem 2021; 22:26-42. [PMID: 33797362 DOI: 10.2174/1389557521666210402150325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen that causes nosocomial and community acquired infections. The accelerating emergence and prevalence of staphylococcal infections have grotesque health consequences which are mostly due to its anomalous capability to acquire drug resistance and scarcity of novel classes of antibacterials. Many combating therapies are centered on primary targets of S. aureus which are cell envelope, ribosomes and nucleic acids. This review describes various chemotherapeutic strategies for combating S. aureus infections which includes monotherapy, combination drug therapy, phage endolysin therapy, lysostaphins and antibacterial drones. Monotherapy has dwindled in due course of time but combination therapy, endolysin therapy, lysostaphin and antibacterial drones are emerging alternatives which efficiently conquer the shortcomings of monotherapy. Combinations of more than one antibiotic agents or combination of adjuvant with antibiotics provide a synergistic approach to combat infections causing pathogenic strains. Phage endolysin therapy and lysostaphin are also presents as possible alternatives to conventional antibiotic therapies. Antibacterial Drones goes a step further by specifically targeting the virulence genes in bacteria giving them a certain advantage over existing antibacterial strategies. But the challenge remains on the better understanding of these strategies for executing and implementing them in health sector. In this day and age, most of the S. aureus strains are resistant to ample number of antibiotics, so there is an urgent need to overcome such multidrug resistant strains for the welfare of our community.
Collapse
Affiliation(s)
| | | | | | - Aruna Punia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Prity Gulia
- Centre for Biotechnology, MDU, Rohtak 124001. India
| | | | - Mehak Dangi
- Centre for Bioinformatics, MDU, Rohtak 124001. India
| |
Collapse
|
34
|
Devlin H, Fulaz S, Hiebner DW, O’Gara JP, Casey E. Enzyme-Functionalized Mesoporous Silica Nanoparticles to Target Staphylococcus aureus and Disperse Biofilms. Int J Nanomedicine 2021; 16:1929-1942. [PMID: 33727807 PMCID: PMC7954034 DOI: 10.2147/ijn.s293190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Staphylococcus aureus biofilms pose a unique challenge in healthcare due to their tolerance to a wide range of antimicrobial agents. The high cost and lengthy timeline to develop novel therapeutic agents have pushed researchers to investigate the use of nanomaterials to deliver antibiofilm agents and target biofilm infections more efficiently. Previous studies have concentrated on improving the efficacy of antibiotics by deploying nanoparticles as nanocarriers. However, the dispersal of the extracellular polymeric substance (EPS) matrix in biofilm-associated infections is also critical to the development of novel nanoparticle-based therapies. METHODS This study evaluated the efficacy of enzyme-functionalized mesoporous silica nanoparticles (MSNs) against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) biofilms. MSNs were functionalized with the enzyme lysostaphin, which causes cell lysis of S. aureus bacteria. This was combined with two other enzyme functionalized MSNs, serrapeptase and DNase I which will degrade protein and eDNA in the EPS matrix, to enhance eradication of the biofilm. Cell viability after treatment with enzyme-functionalized MSNs was assessed using a MTT assay and CLSM, while crystal violet staining was used to assess EPS removal. RESULTS The efficacy of all three enzymes against S. aureus cells and biofilms was significantly improved when they were immobilized onto MSNs. Treatment efficacy was further enhanced when the three enzymes were used in combination against both MRSA and MSSA. Regardless of biofilm maturity (24 or 48 h), near-complete dispersal and killing of MRSA biofilms were observed after treatment with the enzyme-functionalized MSNs. Disruption of mature MSSA biofilms with a polysaccharide EPS was less efficient, but cell viability was significantly reduced. CONCLUSION The combination of these three enzymes and their functionalization onto nanoparticles might extend the therapeutic options for the treatment of S. aureus infections, particularly those with a biofilm component.
Collapse
Affiliation(s)
- Henry Devlin
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Stephanie Fulaz
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Dishon Wayne Hiebner
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - James P O’Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Eoin Casey
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Raven KE, Girgis ST, Akram A, Blane B, Leek D, Brown N, Peacock SJ. A common protocol for the simultaneous processing of multiple clinically relevant bacterial species for whole genome sequencing. Sci Rep 2021; 11:193. [PMID: 33420120 PMCID: PMC7794230 DOI: 10.1038/s41598-020-80031-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/09/2020] [Indexed: 12/02/2022] Open
Abstract
Whole-genome sequencing is likely to become increasingly used by local clinical microbiology laboratories, where sequencing volume is low compared with national reference laboratories. Here, we describe a universal protocol for simultaneous DNA extraction and sequencing of numerous different bacterial species, allowing mixed species sequence runs to meet variable laboratory demand. We assembled test panels representing 20 clinically relevant bacterial species. The DNA extraction process used the QIAamp mini DNA kit, to which different combinations of reagents were added. Thereafter, a common protocol was used for library preparation and sequencing. The addition of lysostaphin, lysozyme or buffer ATL (a tissue lysis buffer) alone did not produce sufficient DNA for library preparation across the species tested. By contrast, lysozyme plus lysostaphin produced sufficient DNA across all 20 species. DNA from 15 of 20 species could be extracted from a 24-h culture plate, while the remainder required 48-72 h. The process demonstrated 100% reproducibility. Sequencing of the resulting DNA was used to recapitulate previous findings for species, outbreak detection, antimicrobial resistance gene detection and capsular type. This single protocol for simultaneous processing and sequencing of multiple bacterial species supports low volume and rapid turnaround time by local clinical microbiology laboratories.
Collapse
Affiliation(s)
- Kathy E Raven
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK
| | - Sophia T Girgis
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK
| | - Asha Akram
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK
| | - Beth Blane
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK
| | - Danielle Leek
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK
| | - Nicholas Brown
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK.
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK.
| |
Collapse
|
36
|
Ye G, Huang J, Li G, Zhang J, Sun Y, Zeng D, Bao W, Zhong J, Huang Q. Clinical efficacy of intravaginal recombinant lysostaphin administration on endometritis in sows. Vet Med Sci 2021; 7:746-754. [PMID: 33389826 PMCID: PMC8136942 DOI: 10.1002/vms3.417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Recombinant lysostaphin has been used for the treatment of cow endometritis and mastitis in China. To our knowledge, no scientific effort has been made to evaluate the efficacy of lysostaphin in sows with clinical endometritis. Lysostaphin, loaded in effervescent tablets that were completely foamed and dissolved within 30 min in the presence of water or body fluids and released active lysostaphin, were administered vaginally on endometritis sows in this study. The clinical recovery, bacterial clearance and reproductive performance of sows with endometritis were investigated. We found that the 400U dosage (400U lysostaphin/pill/time, repeat once on the third day, a total of two times, with 10% oxytetracycline uterine injection as a control) is the most effective treatment. Staphylococcus aureus was the most prevalent finding (34%, n = 188), followed by Streptococcus (32%, n = 181), Escherichia coli (19%, n = 104) and other bacilli (15%, n = 83) before treatment by drugs. Administration of lysostaphin resulted in an extremely significant (p < .01) reduction in S. aureus (0.18 ± 0.25 from 4.57 ± 0.33) and Streptococcus (0.11 ± 0.14 from 3.88 ± 0.29), as well as a significant (p < .05) reduction in E. coli (0.55 ± 0.42 from 3.11 ± 0.14). Mixed infections (83%) were predominant before treatment, in contrast to single infections (61%) after treatment. Large‐scale trials were conducted to verify the clinical efficacy of lysostaphin on sow endometritis. The average cure rate of 400u lysostaphin on sow endometritis(82.5%) was higher than the antibiotic group(72.17%). In addition, our results revealed that intravaginal administration of lysostaphin had no adverse effect on the reproductive performance of sows. Thus, this lysostaphin has potential application value as a new method alternative to antibiotics to treat endometritis in sows.
Collapse
Affiliation(s)
- Guizi Ye
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R.China.,Kunshan Bio-Green Biotechnology Co., Ltd, Kunshan, P.R.China
| | - Jinjiang Huang
- Kunshan Bio-Green Biotechnology Co., Ltd, Kunshan, P.R.China.,Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai, China
| | - Guodong Li
- Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai, China
| | - Jien Zhang
- Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai, China
| | - Yongxue Sun
- Laboratory of Veterinary Pharmacology South, China Agricultural University, Guangzhou, P.R.China
| | - Dongping Zeng
- Laboratory of Veterinary Pharmacology South, China Agricultural University, Guangzhou, P.R.China
| | - Wenbin Bao
- Yangzhou University, Yangzhou, P.R.China
| | - Jiang Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R.China
| | - Qingshan Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R.China
| |
Collapse
|
37
|
Gandhi D, Chanalia P, Bansal P, Dhanda S. Peptidoglycan Hydrolases of Probiotic Pediococcus acidilactici NCDC 252: Isolation, Physicochemical and In Silico Characterization. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Binte Muhammad Jai HS, Dam LC, Tay LS, Koh JJW, Loo HL, Kline KA, Goh BC. Engineered Lysins With Customized Lytic Activities Against Enterococci and Staphylococci. Front Microbiol 2020; 11:574739. [PMID: 33324362 PMCID: PMC7724435 DOI: 10.3389/fmicb.2020.574739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of multidrug-resistant bacteria has made minor bacterial infections incurable with many existing antibiotics. Lysins are phage-encoded peptidoglycan hydrolases that have demonstrated therapeutic potential as a novel class of antimicrobials. The modular architecture of lysins enables the functional domains – catalytic domain (CD) and cell wall binding domain (CBD) – to be shuffled to create novel lysins. The CD is classically thought to be only involved in peptidoglycan hydrolysis whereas the CBD dictates the lytic spectrum of a lysin. While there are many studies that extended the lytic spectrum of a lysin by domain swapping, few have managed to introduce species specificity in a chimeric lysin. In this work, we constructed two chimeric lysins by swapping the CBDs of two parent lysins with different lytic spectra against enterococci and staphylococci. We showed that these chimeric lysins exhibited customized lytic spectra distinct from the parent lysins. Notably, the chimeric lysin P10N-V12C, which comprises a narrow-spectrum CD fused with a broad-spectrum CBD, displayed species specificity not lysing Enterococcus faecium while targeting Enterococcus faecalis and staphylococci. Such species specificity can be attributed to the narrow-spectrum CD of the chimeric lysin. Using flow cytometry and confocal microscopy, we found that the E. faecium cells that were treated with P10N-V12C are less viable with compromised membranes yet remained morphologically intact. Our results suggest that while the CBD is a major determinant of the lytic spectrum of a lysin, the CD is also responsible in the composition of the final lytic spectrum, especially when it pertains to species-specificity.
Collapse
Affiliation(s)
- Hana Sakina Binte Muhammad Jai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Lowella Servito Tay
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Jodi Jia Wei Koh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Hooi Linn Loo
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Kimberly A Kline
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Boon Chong Goh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| |
Collapse
|
39
|
Enzybiotics LYSSTAPH-S and LYSDERM-S as Potential Therapeutic Agents for Chronic MRSA Wound Infections. Antibiotics (Basel) 2020; 9:antibiotics9080519. [PMID: 32824115 PMCID: PMC7459665 DOI: 10.3390/antibiotics9080519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Antibacterial antibiotic therapy has played an important role in the treatment of bacterial infections for almost a century. The increasing resistance of pathogenic bacteria to antibiotics leads to an attempt to use previously neglected antibacterial therapies. Here we provide information on the two recombinantly modified antistaphylococcal enzymes derived from lysostaphin (LYSSTAPH-S) and endolysin (LYSDERM-S) derived from kayvirus 812F1 whose target sites reside in the bacterial cell wall. LYSSTAPH-S showed a stable antimicrobial effect over 24-h testing, even in concentrations lower than 1 µg/mL across a wide variety of epidemiologically important sequence types (STs) of methicillin-resistant Staphylococcus aureus (MRSA), especially in the stationary phase of growth (status comparable to chronic infections). LYSDERM-S showed a less potent antimicrobial effect that lasted only a few hours at concentrations of 15 μg/mL and higher. Our data indicate that these antimicrobial enzymes could be of substantial help in the treatment of chronic MRSA wound infections.
Collapse
|
40
|
Zhou Y, Liu Y, Luo Y, Zhong H, Huang T, Liang W, Xiao J, Wu W, Li L, Chen M. Large-scale profiling of the proteome and dual transcriptome in Nile tilapia (Oreochromis niloticus) challenged with low- and high-virulence strains of Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 100:386-396. [PMID: 32165249 DOI: 10.1016/j.fsi.2020.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a common pathogen in aquatic animals, especially tilapia, that hinders aquaculture development and leads to serious economic losses. Previously, a S. agalactiae strain named HN016 was identified from infected tilapia, and the attenuated strain YM001 was subsequently obtained by continuous passaging in Tryptic Soy Broth (TSB) medium. YM001 has been demonstrated as a safe vaccine for S. agalactiae infection in tilapia. To understand the molecular bases of the virulence of these two strains, we performed proteomic and transcriptomic analysis to reveal the protein and gene expression changes in the liver and intestine during the infection process. HN016 significantly decreased the contents of white blood cells (WBCs), neutrophils (NEUs), red blood cells (RBCs) and hematocrit (HCT) and increased the levels of total protein (TP), albumin (ALB) and globulin (GLO), while no such significant differences were observed when comparing the control with YM001. During the infection process, pathogenic peptidoglycan hydrolase, CSPA and membrane proteins were significantly differentially expressed between YM001 and HN016. Furthermore, both proteome and transcriptome data showed that the complement and coagulation cascades pathway and the antigen processing and presentation pathway were stimulated in the liver and intestine, respectively, by YM001 infection compared to HN016 infection. The interaction network analysis of key virulence genes from pathogens suggested that CSPA, as a key node, affects the expression of DOLPP1, MIPEP, PA2G4, OCIAD1, G3BP1 and CLIC5 with a positive correlation. The present evidence suggests that during the infection process, CSPA was the key genes contributing to low virulence in YM001.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yu Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wanwen Liang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wende Wu
- Animal Science and Technology College, Guangxi University, Nanning, 530005, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Ming Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
41
|
Zvarych V, Stasevych M, Novikov V, Rusanov E, Vovk M, Szweda P, Grecka K, Milewski S. Anthra[1,2- d][1,2,3]triazine-4,7,12(3 H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation. Molecules 2019; 24:molecules24244581. [PMID: 31847306 PMCID: PMC6943585 DOI: 10.3390/molecules24244581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The development and spread of resistance of human pathogenic bacteria to the action of commonly used antibacterial drugs is one of the key problems in modern medicine. One of the especially dangerous and easily developing antibiotic resistant bacterial species is Staphylococcus aureus. Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones 22-38 have been developed as novel effective antistaphylococcal agents. These compounds have been obtained by sequential conversion of 1-amino-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (1) and 1-amino-4-bromo-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (2) into the corresponding amides 5-21, followed by subsequent endo-cyclization under the influence of sodium nitrite in acetic acid. Evaluation of the antimicrobial activity of the synthesized compounds against selected species of Gram-positive and Gram-negative bacteria as well as pathogenic yeasts of the Candida genus has been carried out by the serial dilution method. It has been established that anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones exhibit selective antibacterial activity against Gram-positive bacteria. Eight, six and seven, out of seventeen compounds tested, effectively inhibited the growth of S. aureus ATCC 25923, S. aureus ATCC 29213 and S. epidermidis ATCC12228, respectively, at a concentration equal to 1 µg/mL or lower. The high antistaphylococcal potential of the most active compounds has been also confirmed against clinical isolates of S. aureus, including the MRSA strains. However, bacteria of the Staphylococcus genus have demonstrated apparent resistance to the novel compounds when grown as a biofilm. None of the four selected compounds 3234 and 36 at a concentration of 64 µg/mL (128 or 256 × MIC-against planktonic cells) has caused any decrease in the metabolic activity of the staphylococcal cells forming the biofilm. The kinetic time-kill assay revealed some important differences in the activity of these substances. Compound 33 is bacteriostatic, while the other three demonstrate bactericidal activity.
Collapse
Affiliation(s)
- Viktor Zvarych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Politechnic National University, 13, 79013 Lviv, Ukraine
| | - Maryna Stasevych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Politechnic National University, 13, 79013 Lviv, Ukraine
- Correspondence: ; Tel.: +38-032-258-22-09
| | - Volodymyr Novikov
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Politechnic National University, 13, 79013 Lviv, Ukraine
| | - Eduard Rusanov
- Department of Mechanism of Organic Reactions, Institute of Organic Chemistry of National Academy of Sciences of Ukraine, 02660 Kyiv, Ukraine
| | - Mykhailo Vovk
- Department of Mechanism of Organic Reactions, Institute of Organic Chemistry of National Academy of Sciences of Ukraine, 02660 Kyiv, Ukraine
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Katarzyna Grecka
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Slawomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
42
|
Taheri-Anganeh M, Khatami SH, Jamali Z, Movahedpour A, Ghasemi Y, Savardashtaki A, Mostafavi-Pour Z. LytU-SH3b fusion protein as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2019; 8:151-158. [PMID: 32042832 PMCID: PMC6995334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a challenging infectious agent worldwide. The ever growing antibiotic resistance has made the researchers to look for new anti-staphylococcal agents. Autolysins are staphylococcal enzymes that lyse bacterial cell wall for cell division. Autolysins can be used as novel enzybiotics (enzymes have antibiotic effects) for staphylococcal infections. LytU is a newly explored autolysin. SH3b is a potent cell wall binding domain that can be fused to lytic enzymes to increase their activity. The aim of this study was to design a novel and efficient fusion enzybiotic that could lyse staphylococcal cell wall peptidoglycan by disrupting the bacteria. LytU-SH3b fusion construct was synthesized and LytU was amplified through the construct, using overhang PCR. The fusion and native forms that had his-tag were synthesized by recombinant technology in Escherichia coli BL21 (DE3) strain and purified utilizing Ni-NTA agarose beads. LytU and LytU-SH3b activity and potency were assessed using plate lysis assay, turbidity reduction assay and minimal inhibitory concentration (MIC) tests. All these tests showed that LytU-SH3b has more activity and potency than LytU. LytU-SH3b has MIC 421 fold lesser than LytU. Finally, LytU-SH3b is a novel and efficient recombinant enzybiotic that can lyse MRSA as an alternative to chemical small molecule antibiotics.
Collapse
Affiliation(s)
- Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Corresponding Author: Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-713 2303029; Fax: +98-713 2303029
| |
Collapse
|
43
|
Vermassen A, Talon R, Andant C, Provot C, Desvaux M, Leroy S. Cell-Wall Hydrolases as Antimicrobials against Staphylococcus Species: Focus on Sle1. Microorganisms 2019; 7:microorganisms7110559. [PMID: 31726796 PMCID: PMC6921076 DOI: 10.3390/microorganisms7110559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Some staphylococcal species are opportunistic pathogens of humans and/or animals with Staphylococcus epidermidis as one of the most important. It causes a broad spectrum of diseases in humans and animals. This species is able to form biofilms and has developed antibiotic resistance, which has motivated research on new antibacterial agents. Cell-wall hydrolases (CWHs) can constitute a potential alternative. Following a hijacking strategy, we inventoried the CWHs of S. epidermidis. The lytic potential of representative CWHs that could be turned against staphylococci was explored by turbidity assays which revealed that cell wall glycosidases were not efficient, while cell wall amidases and cell wall peptidases were able to lyse S. epidermidis. Sle1, which is encoded by chromosomal gene and composed of three anchoring LysM domains and a C-terminal CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain, was one of the most active CWHs. The phylogeny of Sle1 revealed seven clusters mostly identified among staphylococci. Sle1 was able to lyse several staphylococcal species, including Staphylococcus aureus, both in planktonic and sessile forms, but not Micrococcus.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Régine Talon
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Carine Andant
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Christian Provot
- BioFilm Control, Biopôle Clermont Limagne, F-63360 Saint-Beauzire, France;
| | - Mickaël Desvaux
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
| | - Sabine Leroy
- Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; (A.V.); (R.T.); (C.A.); (M.D.)
- Correspondence:
| |
Collapse
|
44
|
Ehsani G, Fahmide F, Norouzian D, Atyabi SM, Ehsani P. Bioactivity Determination of Recombinant lysostaphin Immobilized on Glass Surfaces Modified by Cold Atmospheric Plasma on Staphylococcus aureus. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.4.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
45
|
G C B, Sahukhal GS, Elasri MO. Role of the msaABCR Operon in Cell Wall Biosynthesis, Autolysis, Integrity, and Antibiotic Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:e00680-19. [PMID: 31307991 PMCID: PMC6761503 DOI: 10.1128/aac.00680-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen in both community and health care settings. One of the challenges with S. aureus as a pathogen is its acquisition of antibiotic resistance. Previously, we showed that deletion of the msaABCR operon reduces cell wall thickness, resulting in decreased resistance to vancomycin in vancomycin-intermediate S. aureus (VISA). In this study, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR mutant cells had decreased cross-linking in both strains. This defect is typically due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased protease activity in mutant cells. The defect was enhanced by a decrease in teichoic acid content in the msaABCR mutant. Therefore, we propose that deletion of the msaABCR operon results in decreased peptidoglycan cross-linking, leading to increased susceptibility toward cell wall-targeting antibiotics, such as β-lactams and vancomycin. Moreover, we also observed significantly downregulated transcription of early cell wall-synthesizing genes, supporting the finding that msaABCR mutant cells have decreased peptidoglycan synthesis. More specifically, the msaABCR mutant in the USA300 LAC strain (MRSA) showed significantly reduced expression of the murA gene, whereas the msaABCR mutant in the Mu50 strain (VISA) showed significantly reduced expression of glmU, murA, and murD Thus, we conclude that the msaABCR operon controls the balance between cell wall synthesis and cell wall hydrolysis, which is required for maintaining a robust cell wall and acquiring resistance to cell wall-targeting antibiotics, such as vancomycin and the β-lactams.
Collapse
Affiliation(s)
- Bibek G C
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Gyan S Sahukhal
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Mohamed O Elasri
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
46
|
Roles of lytic transglycosylases in biofilm formation and β-lactam resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2019:AAC.01277-19. [PMID: 31570396 DOI: 10.1128/aac.01277-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is responsible for numerous community outbreaks and is one of the most frequent causes of nosocomial infections with significant morbidity and mortality. While the function of lytic transglycosylases (LTs) in relation to cell division, biofilm formation, and antibiotic resistance has been determined for several bacteria, their role in S. aureus remains largely unknown. The only known LTs in S. aureus are immunodominant staphylococcal antigen A (IsaA) and Staphylococcus epidermidis D protein (SceD). Our study demonstrates that, in a strain of methicillin-resistant S. aureus (MRSA), IsaA and SceD contribute differently to biofilm formation and β-lactam resistance. Deletion of isaA, but not sceD, led to decreased biofilm formation. Additionally, in isaA-deleted strains, β-lactam resistance was significantly decreased compared to that of wild-type strains. Plasmid-based expression of mecA, a major determinant of β-lactam resistance in MRSA, in an isaA-deleted strain did not restore β-lactam resistance, demonstrating that the β-lactam susceptibility phenotype is exhibited by isaA mutant regardless of the production level of PBP2a. Overall, our results suggest that IsaA is a potential therapeutic target for MRSA infections.
Collapse
|
47
|
Production of Lysostaphin by Nonproprietary Method Utilizing a Promoter from Toxin–Antitoxin System. Mol Biotechnol 2019; 61:774-782. [DOI: 10.1007/s12033-019-00203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Imanishi I, Uchiyama J, Tsukui T, Hisatsune J, Ide K, Matsuzaki S, Sugai M, Nishifuji K. Therapeutic Potential of an Endolysin Derived from Kayvirus S25-3 for Staphylococcal Impetigo. Viruses 2019; 11:v11090769. [PMID: 31443379 PMCID: PMC6784202 DOI: 10.3390/v11090769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Impetigo is a contagious skin infection predominantly caused by Staphylococcus aureus. Decontamination of S. aureus from the skin is becoming more difficult because of the emergence of antibiotic-resistant strains. Bacteriophage endolysins are less likely to invoke resistance and can eliminate the target bacteria without disturbance of the normal microflora. In this study, we investigated the therapeutic potential of a recombinant endolysin derived from kayvirus S25-3 against staphylococcal impetigo in an experimental setting. First, the recombinant S25-3 endolysin required an incubation period of over 15 minutes to exhibit efficient bactericidal effects against S. aureus. Second, topical application of the recombinant S25-3 endolysin decreased the number of intraepidermal staphylococci and the size of pustules in an experimental mouse model of impetigo. Third, treatment with the recombinant S25-3 endolysin increased the diversity of the skin microbiota in the same mice. Finally, we revealed the genus-specific bacteriolytic effect of recombinant S25-3 endolysin against staphylococci, particularly S. aureus, among human skin commensal bacteria. Therefore, topical treatment with recombinant S25-3 endolysin can be a promising disease management procedure for staphylococcal impetigo by efficient bacteriolysis of S. aureus while improving the cutaneous bacterial microflora.
Collapse
Affiliation(s)
- Ichiro Imanishi
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Toshihiro Tsukui
- Nippon Zenyaku Kogyo Co. Ltd., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima 963-0196, Japan
| | - Junzo Hisatsune
- Department of Bacteriology, Graduate school of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kaori Ide
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shigenobu Matsuzaki
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Motoyuki Sugai
- Department of Bacteriology, Graduate school of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Koji Nishifuji
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
49
|
Pennone V, Sanz-Gaitero M, O'Connor P, Coffey A, Jordan K, van Raaij MJ, McAuliffe O. Inhibition of L. monocytogenes Biofilm Formation by the Amidase Domain of the Phage vB_LmoS_293 Endolysin. Viruses 2019; 11:v11080722. [PMID: 31390848 PMCID: PMC6723838 DOI: 10.3390/v11080722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous Gram-positive bacterium that is a major concern for food business operators because of its pathogenicity and ability to form biofilms in food production environments. Bacteriophages (phages) have been evaluated as biocontrol agents for L. monocytogenes in a number of studies and, indeed, certain phages have been approved for use as anti-listerial agents in food processing environments (ListShield and PhageGuard Listex). Endolysins are proteins produced by phages in the host cell. They cleave the peptidoglycan cell wall, thus allowing release of progeny phage into the environment. In this study, the amidase domain of the phage vB_LmoS_293 endolysin (293-amidase) was cloned and expressed in Escherichia. coli (E. coli). Muralytic activity at different concentrations, pH and temperature values, lytic spectrum and activity against biofilms was determined for the purified 293-amidase protein. The results showed activity on autoclaved cells at three different temperatures (20 °C, 37 °C and 50 °C), with a wider specificity (L. monocytogenes 473 and 3099, a serotype 4b and serogroup 1/2b-3b-7, respectively) compared to the phage itself, which targets only L. monocytogenes serotypes 4b and 4e. The protein also inhibits biofilm formation on abiotic surfaces. These results show the potential of using recombinant antimicrobial proteins against pathogens in the food production environment.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland
| | - Marta Sanz-Gaitero
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland
| | - Paula O'Connor
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Aidan Coffey
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland.
| | - Kieran Jordan
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Mark J van Raaij
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Olivia McAuliffe
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
50
|
Grecka K, Kuś PM, Okińczyc P, Worobo RW, Walkusz J, Szweda P. The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts. Molecules 2019; 24:molecules24091732. [PMID: 31058881 PMCID: PMC6540221 DOI: 10.3390/molecules24091732] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
The principal objective of this study was to determine the anti-staphylococcal potential of ethanol extracts of propolis (EEPs). A total of 20 samples of propolis collected from apiaries located in different regions of Poland were used in the study. The two-fold broth microdilution method revealed some important differences in the antimicrobial activity of investigated EEPs. Up to the concentration of 4096 µg/mL no activity was observed against Gram-negative bacteria (E. coli and P. aeruginosa). Staphylococci exhibited much higher susceptibility. The highest efficiency observed for EEP12 and EEP20 (MIC values ranged between 32 and 256 µg/mL). However, the achievement of bactericidal effect usually required higher concentrations. In the case of clinical isolates of S. aureus MBC values for EEP12 and EEP20 ranged from 512 to 1024 µg/mL. The HPLC analysis revealed that these two products contained a higher concentration of flavonoids (flavonols, flavones, and flavanones) compared to other investigated EEPs. In checkerboard test, a synergistic anti-staphylococcal effect was observed for the action of EEP20 in combination with amikacin, kanamycin, gentamycin, tetracycline, and fusidic acid (all these antibiotics inhibit protein synthesis). Moreover, the investigated EEPs effectively eradicated staphylococcal biofilm. The obtained results clearly confirm the high anti-staphylococcal potential of propolis harvested in Polish apiaries.
Collapse
Affiliation(s)
- Katarzyna Grecka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr M Kuś
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Justyna Walkusz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|