1
|
Tang Y, Zhang Y, Yang N, Shi H, Fu Y, Bai B, Li B, Yang B, Liu G. TGEV NSP1 enhances viral replication through antagonizing stress granule formation. Vet Microbiol 2025; 305:110502. [PMID: 40239441 DOI: 10.1016/j.vetmic.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Stress granules (SGs) are membrane-less organelles that form in response to adverse external stimuli. Upon viral invasion, SGs formation can serve as a cellular defence mechanism against infection. Transmissible gastroenteritis virus (TGEV), an α-coronavirus with a large positive-sense single-stranded RNA genome, causes diarrhoea, vomiting, dehydration, and even fatality in piglets. Previous studies have shown that coronaviruses employ various strategies to inhibit the SGs formation, thereby facilitating viral replication. However, the interplay between TGEV infection and the SGs formation remains unclear. In this study, we demonstrate that the SGs formation can enhance antiviral innate immunity mediated through the retinoic acid-inducible gene I (RIG-I) signaling pathway, thereby inhibiting TGEV replication. Nevertheless, TGEV counteracts the SGs formation by reducing the protein level of Ras-GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) to promote its own replication. Among the TGEV-encoded proteins, non-structural protein 1 (NSP1) exhibits the strongest inhibitory effect on the SGs formation. In summary, our study systematically elucidated the relationship between TGEV and the SGs formation, providing insights into the mechanism of TGEV pathogenesis and a theoretical foundation for identifying novel anti-coronavirus targets.
Collapse
Affiliation(s)
- Yutong Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Han Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingrong Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bin Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
2
|
Chen J, Wang Z, Lin S, Menglin G, Shao Y, Li S, Chen Q, Cui Y, Hu Y, Liu G. Insights into cross-species infection by coronavirus: Porcine epidemic diarrhea virus infections in the rodent. Virol Sin 2025:S1995-820X(25)00034-3. [PMID: 40157605 DOI: 10.1016/j.virs.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
The cross-species infection of coronaviruses has resulted in several major epidemics since 2003. Therefore, it is of great importance to explore the host ranges of coronaviruses and their features among different hosts. In this study, the porcine epidemic diarrhea virus (PEDV), with swine as the only natural reservoir, was detected in rat fecal samples collected from pig farms. Further animal tests showed PEDV can cause systemic infections in neonate mice and rats. The brain, lung intestine and spleen were all targets for PEDV in rodents in contrast to the intestine being targeted in pigs. Morbidity and mortality vary via different infection routes. PEDV was also detectable in feces after infection, suggesting that the infected rodents were potential infectious sources. Moreover, the cerebric tropism of PEDV was verified in piglets, which had not been identified before. In conclusion, our findings demonstrate that PEDV can cross the species barrier to infect mice and rats through different routes. Although it is highly devastating to piglets, PEDV changes the target organs and turns to be milder when meeting with new hosts. Based on these findings, more attention should be paid to the cross-species infection of PEDV to avoid the emergence of another zoonosis.
Collapse
Affiliation(s)
- Jianing Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zemei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengyu Lin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gao Menglin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yongheng Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuxian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qingbo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yaru Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Fan S, Zhang M, Li Y, Tian J, Xian J, Chen Q. A TaqMan probe-based multiplex real-time quantitative pcr for simultaneous detection of kobuvirus, parechovirus B, rosavirus B, and hunnivirus carried by murine rodents and shrews. Virol J 2025; 22:61. [PMID: 40050884 PMCID: PMC11883910 DOI: 10.1186/s12985-025-02671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/15/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Picornaviruses, common infectious agents in humans and various animal species, pose significant health threats. Conventional monoplex PCR is widely employed in laboratory diagnostics but is relatively time-intensive and laborious. RESULTS In this study, we developed a multiplex TaqMan probe-based real-time quantitative PCR (qPCR) assay for the rapid and simultaneous detection of kobuvirus, parechovirus B, rosavirus B and hunnivirus in murine rodent and shrew samples. The approach demonstrated high sensitivity and specificity, with detection limits of 1 × 102 copies/µL for kobuvirus, parechovirus B, and rosavirus B, and 50 copies/µL for hunnivirus. Evaluation using 149 clinical samples showed strong concordance with conventional PCR methods. CONCLUSIONS This work developed an effective multiplex qPCR method for the simultaneous detection of emerging picornaviruses particularly in rodents, including kobuvirus, parechovirus B, rosavirus B, and hunnivirus. Our findings contribute valuable insights into the monitoring and prevention of zoonotic diseases associated with these pathogens.
Collapse
Affiliation(s)
- Shunchang Fan
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yucheng Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jingli Tian
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Juxian Xian
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Zhuang L, Zhao Y, Shen J, Sun L, Hao P, Yang J, Zhang Y, Shen Q. Advances in porcine epidemic diarrhea virus research: genome, epidemiology, vaccines, and detection methods. DISCOVER NANO 2025; 20:48. [PMID: 40029472 DOI: 10.1186/s11671-025-04220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV). The economic impact of PEDV on the global pig industry has been significant, resulting in considerable losses. This paper presents a review of the latest research progress on PEDV genome, molecular epidemiology, vaccine development, and molecular detection methods. It was determined that the genetic diversity of the PEDV spike (S) gene was closely associated with the epidemiological trend of PEDV. The prevalence of S gene variants of different genotypes exhibited variability across regions and pig populations. Epidemiological analyses have demonstrated that PEDV can be transmitted via multiple routes, including direct contact, airborne aerosol, and water source contamination. With regard to vaccine research, the available vaccines can be classified into several categories, including live-attenuated vaccines, inactivated vaccines, subunit vaccines, bacterial vector vaccines, viral vector vaccines, mRNA vaccines, etc. Each of these has distinctive characteristics in terms of immunogenicity, protection efficiency, and safety. Molecular detection methods, including PCR-based methods, isothermal amplification techniques, immunological assays, and biosensors, play an important role in the diagnosis and monitoring of PEDV. Furthermore, this paper examines the current developments in PEDV research and identifies the key areas of future investigation. The objective of this paper is to establish a theoretical foundation for the prevention and control strategies of PED, and to provide a point of reference for further research on the genomics, epidemiology, vaccine development and detection methods of PEDV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Pan Hao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
5
|
Wang C, Zhang Y, Yang S, Savelkoul HFJ, Jansen CA, Liu G. Zn 2+ inhibits PEDV replication by inducing autophagy through the Akt-mTOR pathway. Vet Microbiol 2025; 301:110343. [PMID: 39708717 DOI: 10.1016/j.vetmic.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that induces diarrhea in pigs, leading to severe economic losses in the global pig industry. Currently, effective antiviral treatments for porcine epidemic diarrhea (PED) are rarely available for clinical use. Zinc (Zn2+), an essential mineral, is known to reduce diarrhea in piglets transitioning from milk to solid feed by modulating immune system activity. In this study, the role of Zn2+ in regulating PEDV infection was investigated to explore its potential for reducing diarrhea. Our findings show that Zn2+ inhibits PEDV replication in Vero-E6 cells by inducing autophagy. Notably, we demonstrated that autophagy negatively regulates PEDV infection, as confirmed by the use of autophagy inhibitor (3-MA) and activator (RAPA). Further analysis revealed that PEDV infection activates the Akt-mTOR signaling pathway, while Zn2+ inhibits this pathway in Vero-E6 cells. Additionally, overexpression of Akt and AktSer473 plasmids in Vero-E6 cells highlights the role of Akt phosphorylation in the Zn2+ induced autophagy that inhibits PEDV replication. In summary, this study identifies a mechanism by which Zn2+ suppresses PEDV infection through the Akt-mTOR pathway by mediating autophagy. These findings provide valuable insights into the potential use of Zn2+ as an effective antiviral agent in vivo.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanshan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
6
|
Xu M, Yang Z, Yang N, Li H, Ma H, Yi J, Hou H, Han F, Ma Z, Chen C. Development and Immunogenicity Study of Subunit Vaccines Based on Spike Proteins of Porcine Epidemic Diarrhea Virus and Porcine Transmissible Gastroenteritis Virus. Vet Sci 2025; 12:106. [PMID: 40005866 PMCID: PMC11860644 DOI: 10.3390/vetsci12020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are responsible for significant economic losses in the swine industry. The S1 proteins of these viruses serve as key targets for vaccine development. In this study, prokaryotic expression vectors for pCZN1-PEDV S1, pCZN1-TGEV S1, and pCZN1-PEDV S1-TGEV S1 were constructed. The corresponding proteins were expressed, purified, and used to prepare monovalent, bivalent, and mixed (PEDV S1 + TGEV S1) vaccines. Kunming (KM) mice were immunized with subunit vaccines, with PBS as the negative control (NC) and a commercial inactivated vaccine as the positive control (PC). Immune responses, including specific antibody (IgG, IgG1, IgG2a) levels, virus neutralization, and IFN-γ production, were evaluated. All vaccines induced high levels of specific IgG, IgG1, and IgG2a antibodies. At weeks 2 and 8, the PEDV S1 + TGEV S1 vaccine induced significantly higher levels of specific IgG and IgG1 compared to the PC (p < 0.001). The PEDV S1 vaccine also induced significantly higher specific IgG2a levels than the PC at week 4 (p < 0.0001). Virus neutralization assays demonstrated that the subunit vaccines induced neutralizing antibody levels comparable to or exceeding those of the PC. Furthermore, IFN-γ levels were significantly elevated in all vaccinated groups compared to the NC (p < 0.0001), indicating a robust immune response. These results suggest that the subunit vaccines are promising candidates for the safe and effective control of both PEDV and TGEV infections.
Collapse
Affiliation(s)
- Mingguo Xu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Zhonglian Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Ningning Yang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang 464000, China;
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Hailong Ma
- Department of Biotechnology, Linxia Modern Career Academy, Linxia 731100, China;
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Huilin Hou
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Fangfang Han
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.X.); (Z.Y.); (H.L.); (J.Y.); (H.H.)
| |
Collapse
|
7
|
Zhang Y, Zhang N, Zhang Y, Li Y, Yang N, Cai Y, Tan C, Zhao J, Li W, Liu Y, Rui X, Wu J, Fu Y, Liu G. Potassium molybdate blocks APN-dependent coronavirus entry by degrading receptor via PIK3C3-mediated autophagy. J Virol 2025; 99:e0144924. [PMID: 39641621 PMCID: PMC11784013 DOI: 10.1128/jvi.01449-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Swine enteric coronaviruses pose a significant challenge to the global pig industry, inflicting severe diarrhea and high mortality rates among piglets, and resulting in substantial economic losses. In our clinical practice, we observed that the addition of potassium molybdate (PM) to the feed could dramatically reduce diarrhea and diarrhea-related mortality in piglets. However, the underlying mechanisms remain elusive and merit further investigation. In this study, we revealed that PM effectively inhibited the infection of both aminopeptidase N (APN)-dependent coronaviruses, transmissible gastroenteritis virus (TGEV), and porcine respiratory coronavirus (PRCV), both in vitro and ex vivo. Specifically, PM was found to block TGEV and PRCV penetration by degrading the cell receptor APN through the upregulation of phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) expression. In addition, knockdown and knockout of PIK3C3 resulted in the attenuation of PM-induced autophagy, thereby rescuing APN expression and viral infection. Correspondingly, replenishment of PIK3C3 in PIK3C3-null ST cells restored PM-mediated APN degradation and successfully blocked viral entry. Furthermore, our findings demonstrated that PM promoted the assembly of the PIK3C3-BECN1-ATG14 complex, leading to induced autophagic degradation by upregulating PIK3C3 Ser249 phosphorylation. In vivo experiments further confirmed that PM-induced PIK3C3-mediated autophagic degradation of APN, thereby limiting the pathogenicity of TGEV. In summary, our study for the first time identified the mechanism by which PM blocked TGEV and PRCV internalization by degrading the cell receptor APN via PIK3C3-mediated autophagy. This study provides valuable insights and potential strategies for preventing APN-restricted coronavirus infection.IMPORTANCEAminopeptidase N (APN) is one of the most important host receptors of coronavirus. Modulating APN expression can represent a novel approach for controlling APN-dependent coronaviruses and their variants infection. Here we found that a chemical compound potassium molybdate (PM) negatively regulates APN expression by inducing phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3)-mediated autophagy against APN-dependent coronavirus internalization, including transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Furthermore, PM can promote PIK3C3-BECN1-ATG14 complex assembly to induce autophagic degradation of APN by upregulating PIK3C3 Ser249 phosphorylation. Lastly, results from pig experiments also confirmed that PM can trigger PIK3C3-mediated autophagic degradation of APN to restrict TGEV pathogenicity in vivo without toxicity. Our findings underscore the promising potential of PM as an effective agent against APN-dependent coronavirus and potentially emerging viral disease entry.
Collapse
Affiliation(s)
- Yunhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Na Zhang
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yifei Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Nutritional Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenjie Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuanyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xue Rui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Junfei Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
8
|
Yang N, Li Y, Cai Y, Liu Y, Zhang Y, Fu Y, Tan C, Willems L, Liu G. A mucus layer derived from porcine intestinal organoid air-liquid interface monolayer attenuates swine enteric coronavirus infection by antiviral activity of Muc2. BMC Biol 2024; 22:297. [PMID: 39716180 DOI: 10.1186/s12915-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The mucus layer provides the first defense that keeps the epithelium free from microorganisms. However, the effect of the small intestinal mucus layer on pathogen invasion is still poorly understood, especially for swine enteric coronavirus. To better understand virus‒mucus layer‒intestinal epithelium interactions, here, we developed a porcine intestinal organoid mucus‒monolayer model under air‒liquid interface (ALI) conditions. RESULTS We successfully established a differentiated intestinal organoid monolayer model comprising various differentiated epithelial cell types and a mucus layer under ALI conditions. Mass spectrometry analysis revealed that the mucus derived from the ALI monolayer shared a similar composition to that of the native small intestinal mucus. Importantly, our results demonstrated that the ALI monolayer exhibited lower infectivity of both TGEV and PEDV than did the submerged monolayer. To further confirm the impact of ALI mucus on coronavirus infection, mucus was collected from the ALI monolayer culture system and incubated with the viruses. These results indicated that ALI mucus treatment effectively reduced the infectivity of TGEV and PEDV. Additionally, Mucin 2 (Muc2), a major component of native small intestinal mucus, was found to be abundant in the mucus derived from the ALI monolayer, as determined by mass spectrometry analysis. Our study confirmed the potent antiviral activity of Muc2 against TGEV and PEDV infection. Considering the sialylation of Muc2 and the known sialic acid-binding activity of coronavirus, further investigations revealed that the sialic acid residues of Muc2 play a potential role in inhibiting coronavirus infection. CONCLUSIONS We established the porcine intestinal organoid mucus monolayer as a novel and valuable model for confirming the pivotal role of the small intestinal mucus layer in combating pathogen invasion. In addition, our findings highlight the significance of sialic acid modification of Muc2 in blocking coronavirus infections. This discovery opens promising avenues for the development of tailor-made drugs aimed at preventing porcine enteric coronavirus invasion.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liège, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yifei Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuanyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yunhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liège, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liège, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liège, Belgium
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
9
|
Wu L, Liang J, Teng P, Du Y, He Y, Liao S, Wang J, Zhang X, Wang Z, Zeng T, Wang Y, Zou S, Lu C, Jia A, Song Q, Huang B, Fang L, Cheng W, Tang Y. A filter pad design-based multiplexed lateral flow immunoassay for rapid simultaneous detection of PDCoV, TGEV, and PEDV in swine feces. Talanta 2024; 280:126712. [PMID: 39153256 DOI: 10.1016/j.talanta.2024.126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Swine Enteric Coronaviruses (SECoVs), with high lethality and infectiousness, are the main pathogens causing fatal and watery diarrhea in piglets and spreading globally. Moreover, these SECoVs can cause similar clinical manifestations and are often co-infected, requiring an accurate assay suitable for rapid, in situ, and differential detection. Here, we developed a multiplexed fluorescent-based lateral flow immunoassay (mFB-LFIA) for the detection of three SECoVs, including porcine delta coronaviruses (PDCoV), transmissible gastroenteritis virus (TGEV), and porcine epidemic diarrhea virus (PEDV), in swine fecal samples. Thanks to the filter pad design and reasonable optimization, the mFB-LFIA was achieved within 15 min for three SECoVs detection simultaneously and improved the tolerance of the strips for feces samples. The limit of detection (LoD) of detecting PDCoV, TGEV, and PEDV were 2.1 × 104 TCID50 mL-1, 3.4 × 102 TCID50 mL-1, and 3.6 × 102 TCID50 mL-1, respectively. Additionally, the proposed assay was successfully applied to the detection of PDCoV, TGEV, and PEDV in swine feces with high accuracy. Compared with the gold standard nucleic acid testing, the total coincidence rate of the proposed assay was more than 90 %. Moreover, the mFB-LFIA performed excellent stability and repeatability. The proposed mFB-LFIA allows for rapid, in situ, more cost-effective and simultaneous detection of PDCoV, TGEV, and PEDV compared with nucleic acid testing. To the best of our knowledge, this is the first report to describe a multiplexed point-of-care assay capable of detecting PDCoV, TGEV, and PEDV in swine fecal samples. We believe our approach has a great potential for application to pig farm.
Collapse
Affiliation(s)
- Lei Wu
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiajie Liang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peijun Teng
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yifan Du
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yong He
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shusen Liao
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Wang
- Guangdong Haid Institute of Animal Husbandry & Veterinary, Guangzhou, 511400, China
| | - Xiaoli Zhang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaoguang Wang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tengyue Zeng
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaqi Wang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Siyi Zou
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cheng Lu
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry & Veterinary, Guangzhou, 511400, China
| | - Qifang Song
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Boyan Huang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbial Resources Discovery and Utilization, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenli Cheng
- Department of Blood Transfusion,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510632, China.
| | - Yong Tang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Huang S, Du L, Liu S, Yang Q, Lei C, Wang H, Yang L, Yang X. Development and Validation of RAA-CRISPR/Cas12a-Based Assay for Detecting Porcine Rotavirus. Animals (Basel) 2024; 14:3387. [PMID: 39682353 DOI: 10.3390/ani14233387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Piglet diarrhea poses significant economic losses to the pig industry, posing a worldwide challenge that urgently needs to be addressed in pig breeding practices. Porcine rotavirus (PoRV) is an important viral diarrhea pathogen in piglets, with a high incidence rate and a tendency to cause growth retardation. To enhance the sensitivity and specificity of PoRV detection, we sequenced the NSP3 gene of G5 and G9 genotypes of rotavirus A (RVA), enabling simultaneous detection of the two serotypes. Subsequently, we developed a rapid PoRV detection method using a combination of recombinase-aided amplification (RAA) and CRISPR/Cas12a. In this method, Cas12a binds to RAA amplification products, guided by CRISPR-derived RNA (crRNA), which activates its cleavage activity and releases fluorescence by cutting FAM-BHQ-labeled single-stranded DNA (ssDNA). In the optimized reaction system, the recombinant plasmid PoRV can achieve a highly sensitive reaction within 30 min at 37 °C, with a detection limit as low as 2.43 copies/μL, which is ten times higher in sensitivity compared to the qPCR method. Results from specificity testing indicate that no cross-reactivity was observed between the RAA-CRISPR/Cas12a analysis of PoRV and other viral pathogens, including PoRV G3, PoRV G4, porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PDCoV), and porcine reproductive and respiratory syndrome virus (PRRSV). In the clinical sample detection using the RAA-CRISPR/Cas12a method and qPCR, Cohen's Kappa value reached as high as 0.952. Furthermore, this approach eliminates the need for large-scale instrumentation, offering a visual result under an ultraviolet lamp through fluorescence signal output.
Collapse
Affiliation(s)
- Siyu Huang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Longhuan Du
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Song Liu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingcheng Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Lu Y, Li S, Yang S, Wang C, Fu Y, Yu H, Huang X, Zhao J, Shao Y, Wang Z, Cui Y, Chen J, Guo Q, Kuang L, Liu G. Variation in innate immune responses to porcine epidemic diarrhea virus infection in piglets at different ages. Microb Pathog 2024; 196:106958. [PMID: 39303959 DOI: 10.1016/j.micpath.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) poses a significant threat to pigs, with piglets under seven days old facing a mortality rate of up to 100 %. This study aimed to explore the maturation of the immune system in piglets across different age groups and their corresponding immune responses to PEDV infection. Real-time quantitative PCR was employed to assess the relative mRNA expression of inflammation-related factors in infected pigs compared to non-infected counterparts at varying ages. Additionally, flow cytometry was utilized to analyze the relative counts of CD4+ and CD8+ T cells, as well as CD21+ B cells, in peripheral blood, spleen, mesenteric lymph nodes, and Peyer's patches of piglets at different developmental stages. Our findings revealed a notable increase in IFN-α and IFN-γ, a decrease in TNF-α, and elevated expression of IL-1β, IL-6, IL-10, and IL-17 following PEDV infection. Furthermore, the numbers of CD4+ and CD8+ T cells, along with CD21+ B cells, exhibited a gradual rise with the advancement of piglets' age. Overall, our study underscores the progressive enhancement of piglets' resistance to PEDV infection as their immune system matures over time.
Collapse
Affiliation(s)
- Yabin Lu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shuxian Li
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shanshan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yongheng Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zemei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yaru Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jianing Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ling Kuang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Guangliang Liu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Nammuang D, Shen YW, Ke CH, Kuan NL, Lin CN, Yeh KS, Chang YC, Chang CY, Chang HW. Isolation and evaluation of the pathogenicity of a hybrid shiga toxin-producing and Enterotoxigenic Escherichia coli in pigs. BMC Vet Res 2024; 20:480. [PMID: 39434059 PMCID: PMC11492512 DOI: 10.1186/s12917-024-04317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Porcine pathogenic Escherichia coli (E. coli), the globally recognized important pathogen, causes significant economic loss in the field. Enterotoxigenic E. coli (ETEC) causes porcine neonatal and post-weaning diarrhea (PWD), frequently carrying F4 adhesin, F18 adhesin, Heat-Stable toxin (ST), and Heat-Labile toxin (LT). Shiga Toxin-Producing E. coli (STEC) produces F18 adhesin and Shiga toxin type 2e (stx2e), majorly leading to systemic endothelial cell damage and edema disease. In this study, hemolytic pathogenic hybrid STEC/ETEC strains carrying ST and LT genes of ETEC and the Stx2e gene of STEC isolated from pigs with PWD in Taiwan were identified. The pathogenicity of a Taiwan hybrid STEC/ETEC strain was evaluated by oral inoculation in post-weaning pigs. RESULTS Next generation sequencing and multilocus sequence typing of two hybrid Taiwan porcine STEC/ETEC isolates indicated that these two isolates were closely related to the ST88 porcine hybrid STEC/ETEC isolated from pigs with watery diarrhea. Furthermore, the two hybrid Taiwan porcine STEC/ETEC isolates also displayed combinations of multiple resistance genes encoding mechanisms for target modification and antibiotic inactivation. Animal experiments confirmed that the Taiwan hybrid STEC/ETEC could cause watery diarrhea in post-weaning pigs with no signs of edema disease and minimal histopathological lesions. CONCLUSION To the best of the authors' knowledge, the present study is the first study demonstrating intestinal pathogenicity of the hybrid STEC/ETEC in pigs. The result suggests that the hybrid STEC/ETEC should be considered as a new emerging pathogen and a new target for vaccine development.
Collapse
Affiliation(s)
- Danaya Nammuang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yi-Wen Shen
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Nan-Ling Kuan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Biology Division, Veterinary Research Institute, Ministry of Agriculture, Tamsui, New Taipei City, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Yu Chang
- College of Veterinary Medicine, Department of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan.
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Wang H, Zhou G, Liu H, Peng R, Sun T, Li S, Chen M, Wang Y, Shi Q, Xie X. Detection of Porcine Circovirus (PCV) Using CRISPR-Cas12a/13a Coupled with Isothermal Amplification. Viruses 2024; 16:1548. [PMID: 39459882 PMCID: PMC11512303 DOI: 10.3390/v16101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed and primarily divided into two categories focusing on nucleic acid or serum antibody identification. The methodologies encompass conventional polymerase chain reaction (PCR), real-time fluorescence quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), loop-mediated isothermal amplification (LAMP), immunofluorescence assay (IFA), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). Despite their efficacy, these techniques are often impeded by the necessity for substantial investment in equipment, specialized knowledge, and intricate procedural steps, which complicate their application in real-time field detections. To surmount these challenges, a sensitive, rapid, and specific PCV detection method using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a/13a coupled with isothermal amplification, such as enzymatic recombinase amplification (ERA), recombinase polymerase amplification (RPA), and loop-mediated isothermal amplification (LAMP), has been developed. This novel method has undergone meticulous optimization for detecting PCV types 2, 3, and 4, boasting a remarkable sensitivity to identify a single copy per microliter. The specificity of this technique is exemplary, with no observable interaction with other porcine viruses such as PEDV, PRRSV, PRV, and CSFV. Its reliability has been validated with clinical samples, where it produced a perfect alignment with qPCR findings, showcasing a 100% coincidence rate. The elegance of merging CRISPR-Cas technology with isothermal amplification assays lies in its on-site testing without the need for expensive tools or trained personnel, rendering it exceptionally suitable for on-site applications, especially in resource-constrained swine farming environments. This review assesses and compares the process and characteristics inherent in the utilization of ERA/LAMP/RPA-CRISPR-Cas12a/Cas13a methodologies for the detection of PCV, providing critical insights into their practicality and effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.W.); (G.Z.); (H.L.); (R.P.); (T.S.); (S.L.); (M.C.); (Y.W.); (Q.S.)
| |
Collapse
|
14
|
Wei Y, Lin Y, Zhao J, Li D, Yang Z, Chen F, Han L. Development of a TaqMan probe-based multiplex real-time PCR for the simultaneous detection of four clinically important filamentous fungi. Microbiol Spectr 2024; 12:e0063424. [PMID: 39078160 PMCID: PMC11370266 DOI: 10.1128/spectrum.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Filamentous fungi present significant health hazards to immunocompromised individuals globally; however, the prompt and precise identification of them during infection remains challenging. In this study, a TaqMan probe-based multiplex real-time PCR (M-qPCR) assay was developed to detect simultaneously the target genes of four important pathogenic filamentous fungi: ANXC4 gene of Aspergillus fumigatus, EF1-α gene of Fusarium spp., mitochondrial rnl gene of Mucorales, and hcp100 gene of Histoplasma capsulatum. In this M-qPCR assay, the limit of detection (LoD) to all four kinds of fungi was 100 copies and the correlation coefficients (R2) were above 0.99. The specificity of this assay is 100%, and the minimum detection limit is 100 copies/reaction. In conclusion, an M-qPCR detection assay was well established with high specificity and sensitivity for rapid and simultaneous detection on four important filamentous fungi in the clinic. IMPORTANCE World Health Organization developed the first fungal priority pathogens list (WHO FPPL) in 2022. Aspergillus fumigatus, Mucorales, Fusarium spp., and Histoplasma spp. are the four types of pathogenic fungi with filamentous morphology in the critical priority group and high priority group of WHO FPPL. These four filamentous fungal infections have become more common and severe in immunocompromised patients with the increase in susceptible populations in recent decades, which resulted in a substantial burden on the public health system. However, prompt and precise identification of them during infection remains challenging. Our study established successfully a TaqMan probe-based multiplex real-time qPCR assay for four clinically important filamentous fungi, A. fumigatus, Fusarium spp., Mucorales, and Histoplasma capsulatum, with high sensitivity and specificity, which shows promising potential for prompt and precise diagnosis against fungal infection.
Collapse
Affiliation(s)
- Yutong Wei
- School of Public Health, Anhui Medical University, Anhui, China
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yangxuan Lin
- School of Public Health, Anhui Medical University, Anhui, China
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jingya Zhao
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Dingchen Li
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhankui Yang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
- Zhengzhou University, Zhengzhou, China
| | - Fangyan Chen
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- School of Public Health, Anhui Medical University, Anhui, China
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
15
|
Lim HJ, Ahn S, No JH, Park MY, Kim MJ, Sohn YH, Shin KS, Park JE, Yang YJ. Development of a Multiplex Real-Time PCR Assay for the Simultaneous Detection of Two Fungal Pathogens Causing Pneumonia. J Fungi (Basel) 2024; 10:619. [PMID: 39330379 PMCID: PMC11433024 DOI: 10.3390/jof10090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Infectious diseases caused by fungal sources are of great interest owing to their increasing prevalence. Invasive fungal infections, including invasive pulmonary aspergillosis caused by Aspergillus fumigatus, and Pneumocystis pneumonia caused by Pneumocystis jirovecii, are significant causes of morbidity and mortality among immunocompromised patients. The accurate and timely detection of these pathogens in this high-risk population is crucial for effective patient management. We developed a multiplex real-time polymerase chain reaction (PCR) assay, RF2 mRT-PCR, specifically designed to detect two respiratory fungi, P. jirovecii and A. fumigatus, and evaluated its performance in specimens of patients with lower respiratory tract infection. The performance was evaluated using 731 clinical samples, 55 reference species, and one synthetic DNA. The reproducibility test yielded a probit curve with a lower limit of detection of 19.82 copies/reaction for P. jirovecii and 64.20 copies/reaction for A. fumigatus. The RF2 mRT-PCR assay did not cross-react with non-A. fumigatus Aspergillus species or other common bacterial and viral species, and showed 100% in vitro sensitivity and specificity with reference assays. Additionally, it simultaneously detected A. fumigatus and P. jirovecii in co-infected samples. Therefore, the RF2 mRT-PCR assay is an efficient and reliable tool for in vitro diagnosis of A. fumigatus and P. jirovecii pulmonary infections.
Collapse
Affiliation(s)
- Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Seojin Ahn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Jee-Hyun No
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Min-Young Park
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Min-Jin Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Yong-Hak Sohn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jung-Eun Park
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| |
Collapse
|
16
|
Ren J, Li F, Yu X, Li Y, Li M, Sha Y, Li X. Development of a TaqMan-based multiplex real-time PCR for simultaneous detection of porcine epidemic diarrhea virus, Brachyspira hyodysenteriae, and Lawsonia intracellularis. Front Vet Sci 2024; 11:1450066. [PMID: 39205809 PMCID: PMC11349621 DOI: 10.3389/fvets.2024.1450066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction PEDV, Brachyspira hyodysenteriae, and Lawsonia intracellularis, are highly contagious diarrheal pathogens that have caused significant harm to the global swine industry. Co-infections with multiple pathogens are common, making it challenging to identify the actual causative agents depending only on clinical information. It is crucial to develop a reliable method to simultaneously detect and differentiate these pathogens. Methods Based on the conserved regions of the M gene of PEDV, NADH oxidase gene of B. hyodysenteriae, and the 16S rDNA gene of L. intracellularis, specific probes and primers for the multiplex real-time PCR assay were designed. The concentrations of primers and probes were optimized using a matrix method. Results The approach demonstrated high specificity and no cross-reactivity with major pathogens related to diarrheal diseases. It showed high sensitivity with a detection limit of 10 copies/μL for B. hyodysenteriae and L. intracellularis, and 100 copies/μL for PEDV, respectively. It also demonstrated high reproducibility and stability with low coefficients of variation. Results from the multiplex real-time PCR method were in complete agreement with the commercial singleplex real-time PCR kit for detecting PEDV, B. hyodysenteriae and L. intracellularis. Clinical data revealed single infection rates of 31.46% for PEDV, 58.43% for B. hyodysenteriae, and 98.6% for L. intracellularis. The co-infection rates were 16.85% for PEDV + B. hyodysenteriae, 31.46% for PEDV + L. intracellularis, 57.86% for B. hyodysenteriae + L. intracellularis, and 16.85% for PEDV + B. hyodysenteriae + L. intracellularis, respectively. Discussion The new multiplex real-time PCR method can simultaneously differentiate PEDV, B. hyodysenteriae and L. intracellularis, making it a valuable diagnostic tool for preventing and controlling infectious diseases, as well as aiding in epidemiological investigations.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Fujun Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Disease Purification, Shandong New Hope Liuhe Co., Ltd., Qingdao, China
| | - Xue Yu
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yang Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Disease Purification, Shandong New Hope Liuhe Co., Ltd., Qingdao, China
| | - Meng Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yujie Sha
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaowen Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Disease Purification, Shandong New Hope Liuhe Co., Ltd., Qingdao, China
| |
Collapse
|
17
|
Xin Z, Li S, Lu X, Liu L, Gao Y, Hu F, Yu K, Ma X, Li Y, Huang B, Wu J, Guo X. Development and Clinical Application of a Molecular Assay for Four Common Porcine Enteroviruses. Vet Sci 2024; 11:305. [PMID: 39057989 PMCID: PMC11281614 DOI: 10.3390/vetsci11070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA) are the four main pathogens that cause viral diarrhea in pigs, and they often occur in mixed infections, which are difficult to distinguish only according to clinical symptoms. Here, we developed a multiplex TaqMan-probe-based real-time RT-PCR method for the simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA for the first time. The specific primers and probes were designed for the M protein gene of PEDV, N protein gene of TGEV, N protein gene of PDCoV, and VP7 protein gene of PoRVA, and corresponding recombinant plasmids were constructed. The method showed extreme specificity, high sensitivity, and excellent repeatability; the limit of detection (LOD) can reach as low as 2.18 × 102 copies/μL in multiplex real-time RT-PCR assay. A total of 97 clinical samples were used to compare the results of the conventional reverse transcription PCR (RT-PCR) and this multiplex real-time RT-PCR for PEDV, TGEV, PDCoV, and PoRVA detection, and the results were 100% consistent. Subsequently, five randomly selected clinical samples that tested positive were sent for DNA sequencing verification, and the sequencing results showed consistency with the detection results of the conventional RT-PCR and our developed method in this study. In summary, this study developed a multiplex real-time RT-PCR method for simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA, and the results of this study can provide technical means for the differential diagnosis and epidemiological investigation of these four porcine viral diarrheic diseases.
Collapse
Affiliation(s)
- Zhonghao Xin
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Shiheng Li
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Xiao Lu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Liping Liu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Yuehua Gao
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Feng Hu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Kexiang Yu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Xiuli Ma
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Yufeng Li
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Bing Huang
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, Jinan 250100, China;
| | - Xiaozhen Guo
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| |
Collapse
|
18
|
Zhou J, Wu W, Wang D, Wang W, Chang X, Li Y, Li J, Fan B, Zhou J, Guo R, Zhu X, Li B. Development of a colloidal gold immunochromatographic strip for the simultaneous detection of porcine epidemic diarrhea virus and transmissible gastroenteritis virus. Front Microbiol 2024; 15:1418959. [PMID: 38962124 PMCID: PMC11220158 DOI: 10.3389/fmicb.2024.1418959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024] Open
Abstract
In recent years, porcine diarrhea-associated viruses have caused significant economic losses globally. These viruses present similar clinical symptoms, such as watery diarrhea, dehydration, and vomiting. Co-infections with porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are common. For the rapid and on-site preliminary diagnosis on the pig farms, this study aimed to develop a colloidal gold immunochromatography assay (GICA) strip for the detection of PEDV and TGEV simultaneously. The GICA kit showed that there was no cross-reactivity with the other five common porcine viruses. With visual observation, the lower limits were approximately 104 TCID50/mL and 104 TCID50/mL for PEDV and TGEV, respectively. The GICA strip could be stored at 4°C or 25°C for 12 months without affecting its efficacy. To validate the GICA strip, 121 clinical samples were tested. The positive rates of PEDV and TGEV were 42.9 and 9.9%, respectively, and the co-infection rate of the two viruses was 5.8% based on the duplex GICA strip. Thus, the established GICA strip is a rapid, specific, and stable tool for on-site preliminary diagnosis of PEDV- and TGEV-associated diarrhea.
Collapse
Affiliation(s)
- Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Wu
- Fujian Agricultural and Forestry University, Fuzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
19
|
Zhang Y, Yang N, Li Y, Tan C, Cai Y, Rui X, Liu Y, Fu Y, Liu G. Transmissible gastroenteritis virus induces inflammatory responses via RIG-I/NF-κB/HIF-1α/glycolysis axis in intestinal organoids and in vivo. J Virol 2024; 98:e0046124. [PMID: 38780247 PMCID: PMC11237398 DOI: 10.1128/jvi.00461-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV)-induced enteritis is characterized by watery diarrhea, vomiting, and dehydration, and has high mortality in newborn piglets, resulting in significant economic losses in the pig industry worldwide. Conventional cell lines have been used for many years to investigate inflammation induced by TGEV, but these cell lines may not mimic the actual intestinal environment, making it difficult to obtain accurate results. In this study, apical-out porcine intestinal organoids were employed to study TEGV-induced inflammation. We found that apical-out organoids were susceptible to TGEV infection, and the expression of representative inflammatory cytokines was significantly upregulated upon TGEV infection. In addition, retinoic acid-inducible gene I (RIG-I) and the nuclear factor-kappa B (NF-κB) pathway were responsible for the expression of inflammatory cytokines induced by TGEV infection. We also discovered that the transcription factor hypoxia-inducible factor-1α (HIF-1α) positively regulated TGEV-induced inflammation by activating glycolysis in apical-out organoids, and pig experiments identified the same molecular mechanism as the ex vivo results. Collectively, we unveiled that the inflammatory responses induced by TGEV were modulated via the RIG-I/NF-κB/HIF-1α/glycolysis axis ex vivo and in vivo. This study provides novel insights into TGEV-induced enteritis and verifies intestinal organoids as a reliable model for investigating virus-induced inflammation. IMPORTANCE Intestinal organoids are a newly developed culture system for investigating immune responses to virus infection. This culture model better represents the physiological environment compared with well-established cell lines. In this study, we discovered that inflammatory responses induced by TGEV infection were regulated by the RIG-I/NF-κB/HIF-1α/glycolysis axis in apical-out porcine organoids and in pigs. Our findings contribute to understanding the mechanism of intestinal inflammation upon viral infection and highlight apical-out organoids as a physiological model to mimic virus-induced inflammation.
Collapse
Affiliation(s)
- Yunhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yifei Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Nutritional Biology, Wageningen University and Research, Wageningen, the Netherlands
| | - Xue Rui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yuanyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
20
|
Kim JH, Park J, Lee DK, Kim WI, Lyoo YS, Park CK, Kim HR. Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms. Animals (Basel) 2024; 14:1698. [PMID: 38891745 PMCID: PMC11171391 DOI: 10.3390/ani14111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Porcine respiratory coronavirus (PRCV) is a member of the species Alphacoronavirus 1 within the genus Alphacoronavirus of the family Coronaviridae. A few studies have been conducted on the prevalence of PRCV since its first identification in 1997, but there have been no recent studies on the prevalence and genetic characterization of the virus in Korea. In this study, the seroprevalence of PRCV was determined in Korean pig farms using a commercially available TGEV/PRCV differential enzyme-linked immunosorbent assay kit. The farm-level seroprevalence of PRCV was determined to be 68.6% (48/70), similar to previous reports in Korea, suggesting that PRCV is still circulating in Korean pig herds nationwide. Among the 20 PRCV-seropositive farms tested in this study, PRCV RNAs were detected in 17 oral fluid samples (28.3%) from nine farms (45.0%), while TGEV RNAs were not detected in any sample. To investigate the genetic characteristics of Korean PRCV strains, genetic and phylogenetic analyses were conducted on PRCV spike gene sequences obtained in this study. The three Korean PRCV strains (KPRCV2401, KPRCV2402, and KPRCV2403) shared 98.5-100% homology with each other and 96.2-96.6% and 91.6-94.5% homology with European and American strains, respectively. A 224-amino acid deletion was found in the S gene of both Korean and European PRCVs but not in that of American PRCVs, suggesting a European origin for Korean PRCVs. Phylogenetic analysis showed that Korean PRCVs are more closely related to European PRCVs than American PRCVs but clustered apart from both, suggesting that Korean PRCV has evolved independently since its emergence in Korean PRCVs. The results of this study will help expand knowledge on the epidemiology and molecular biology of PRCV currently circulating in Korea.
Collapse
Affiliation(s)
- Ju-Han Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.K.); (Y.S.L.)
- Swine Medical Corporation, Sunjin Bridge Lab, Icheon 17332, Republic of Korea
| | - Jonghyun Park
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Dong-Kyu Lee
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.K.); (Y.S.L.)
| | - Choi-Kyu Park
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
| | - Hye-Ryung Kim
- Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (J.P.); (D.-K.L.); (C.-K.P.)
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| |
Collapse
|
21
|
Wang C, Lu Y, Yu H, Zhang Y, Savelkoul HFJ, Jansen CA, Liu G. TLR9 mediates IgA production in the porcine small intestine during PEDV infection. Vet Microbiol 2024; 293:110096. [PMID: 38636174 DOI: 10.1016/j.vetmic.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
22
|
Li S, Lu Y, Yang S, Wang C, Yang J, Huang X, Chen G, Shao Y, Li M, Yu H, Fu Y, Liu G. Porcine lung tissue slices: a culture model for PRCV infection and innate immune response investigations. AMB Express 2024; 14:57. [PMID: 38753111 PMCID: PMC11098997 DOI: 10.1186/s13568-024-01717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Respiratory coronaviruses (RCoVs) significantly threaten human health, necessitating the development of an ex vivo respiratory culture system for investigating RCoVs infection. Here, we successfully generated a porcine precision-cut lung slices (PCLSs) culture system, containing all resident lung cell types in their natural arrangement. Next, this culture system was inoculated with a porcine respiratory coronavirus (PRCV), exhibiting clinical features akin to humans who were infected by SARS-CoV-2. The results demonstrated that PRCV efficiently infected and replicated within PCLSs, targeting ciliated cells in the bronchioles, terminal bronchioles, respiratory bronchioles, and pulmonary alveoli. Additionally, through RNA-Seq analysis of the innate immune response in PCLSs following PRCV infection, expression levels of interferons, inflammatory cytokines and IFN stimulated genes were significantly upregulated. This ex vivo model may not only offer new insights into PRCV infection in the porcine respiratory tract but also serve as a valuable tool for studying human respiratory CoVs infection.
Collapse
Affiliation(s)
- Shuxian Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yabin Lu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Caiying Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Xin Huang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Guohui Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yongheng Shao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Maolin Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Haoyuan Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
23
|
Luo T, Li K, Li C, Xia C, Gao C. Development of a triplex quantitative reverse transcription-polymerase chain reaction for the detection of porcine epidemic diarrhea virus, porcine transmissible gastroenteritis virus, and porcine rotavirus A. Front Microbiol 2024; 15:1390328. [PMID: 38800746 PMCID: PMC11117717 DOI: 10.3389/fmicb.2024.1390328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Porcine viral diarrhea is caused by many pathogens and can result in watery diarrhea, dehydration and death. Various detection methods, such as polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR), have been widely used for molecular diagnosis. We developed a triplex real-time quantitative reverse transcription PCR (qRT-PCR) for the simultaneous detection of three RNA viruses potentially associated with porcine viral diarrhea: porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus A (PoRVA). The triplex qRT-PCR had R2 values of 0.999 for the standard curves of PEDV, TGEV and PoRVA. Importantly, the limits of detection for PEDV, TGEV and PoRVA were 10 copies/μL. The specificity test showed that the triplex qRT-PCR detected these three pathogens specifically, without cross-reaction with other pathogens. In addition, the approach had good repeatability and reproducibility, with intra-and inter-assay coefficients of variation <1%. Finally, this approach was evaluated for its practicality in the field using 256 anal swab samples. The positive rates of PEDV, TGEV and PoRVA were 2.73% (7/256), 3.91% (10/256) and 19.14% (49/256), respectively. The co-infection rate of two or more pathogens was 2.73% (7/256). The new triplex qRT-PCR was compared with the triplex RT-PCR recommended by the Chinese national standard (GB/T 36871-2018) and showed 100% agreement for PEDV and TGEV and 95.70% for PoRVA. Therefore, the triplex qRT-PCR provided an accurate and sensitive method for identifying three potential RNA viruses for porcine viral diarrhea that could be applied to diagnosis, surveillance and epidemiological investigation.
Collapse
Affiliation(s)
| | | | | | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
24
|
Zhang Y, Rui X, Li Y, Zhang Y, Cai Y, Tan C, Yang N, Liu Y, Fu Y, Liu G. Hypoxia inducible factor-1α facilitates transmissible gastroenteritis virus replication by inhibiting type I and type III interferon production. Vet Microbiol 2024; 292:110055. [PMID: 38513523 DOI: 10.1016/j.vetmic.2024.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Transmissible gastroenteritis virus (TGEV) is characterized by watery diarrhea, vomiting, and dehydration and is associated with high mortality especially in newborn piglets, causing significant economic losses to the global pig industry. Hypoxia inducible factor-1α (HIF-1α) has been identified as a key regulator of TGEV-induced inflammation, but understanding of the effect of HIF-1α on TGEV infection remains limited. This study found that TGEV infection was associated with a marked increase in HIF-1α expression in ST cells and an intestinal organoid epithelial monolayer. Furthermore, HIF-1α was shown to facilitate TGEV infection by targeting viral replication, which was achieved by restraining type I and type III interferon (IFN) production. In vivo experiments in piglets demonstrated that the HIF-1α inhibitor BAY87-2243 significantly reduced HIF-1α expression and inhibited TGEV replication and pathogenesis by activating IFN production. In summary, we unveiled that HIF-1α facilitates TGEV replication by restraining type I and type III IFN production in vitro, ex vivo, and in vivo. The findings from this study suggest that HIF-1α could be a novel antiviral target and candidate drug against TGEV infection.
Collapse
Affiliation(s)
- Yunhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, China
| | - Xue Rui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, China; College of Veterinary Medicine, Xinjiang Agricultural University, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Yifei Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, China; Nutritional Biology, Wageningen University and Research, Wageningen, the Netherlands
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, China
| | - Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, China
| | - Yuanyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, China; College of Veterinary Medicine, Xinjiang Agricultural University, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, China; College of Veterinary Medicine, Xinjiang Agricultural University, China.
| |
Collapse
|
25
|
Zhi S, Wu W, Ding Y, Zhang Y, Pan L, Liu G, Li W. Development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Front Chem 2024; 12:1381738. [PMID: 38694405 PMCID: PMC11061412 DOI: 10.3389/fchem.2024.1381738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: Most respiratory viruses can cause serious lower respiratory diseases at any age. Therefore, timely and accurate identification of respiratory viruses has become even more important. This study focused on the development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Methods: Multiplex fluorescent quantitative polymerase chain reaction (PCR) assays were developed and validated for the detection of respiratory pathogens including the novel coronavirus (SARS-CoV-2), influenza A virus (FluA), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). Results: The assays demonstrated high specificity and sensitivity, allowing for the simultaneous detection of multiple pathogens in a single reaction. These techniques offer a rapid and reliable method for screening, diagnosis, and monitoring of respiratory pathogens. Conclusion: The implementation of these techniques might contribute to effective control and prevention measures, leading to improved patient care and public health outcomes in China. Further research and validation are needed to optimize and expand the application of these techniques to a wider range of respiratory pathogens and to enhance their utility in clinical and public health settings.
Collapse
Affiliation(s)
- Shenshen Zhi
- Department of Blood Transfusion, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yan Ding
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yuanyuan Zhang
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Liyan Pan
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Guo Liu
- Zeal Dental, Chongqing, China
| | - Wei Li
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
26
|
Ren J, Zu C, Li Y, Li M, Gu J, Chen F, Li X. Establishment and application of a TaqMan-based multiplex real-time PCR for simultaneous detection of three porcine diarrhea viruses. Front Microbiol 2024; 15:1380849. [PMID: 38690365 PMCID: PMC11058560 DOI: 10.3389/fmicb.2024.1380849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Porcine viral diarrhea is a common clinical disease, which results in high mortality and economic losses in the pig industry. Porcine epidemic diarrhea virus (PEDV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are important diarrhea viruses in pig herds. The similarities of their clinical symptoms and pathological changes make it difficult to distinguish these three viruses clinically. Therefore, there is a need for a highly sensitive and specific method to simultaneously detect and differentiate these viruses. Methods A multiplex real-time PCR assay using TaqMan probes was developed to simultaneously detect PEDV, PoRV, and PDCoV. To assess the efficacy of the established assay, 30 clinical samples with diarrhea symptoms were used to compare the results obtained from the multiplex real-time PCR assay with those obtained from commercial singleplex real-time PCR kit. Importantly, a total of 4,800 diarrhea samples were tested and analyzed to validate the utility of the assay. Results This multiplex real-time PCR assay showed high sensitivity, specificity, and excellent repeatability with a detection limit of 1 × 102 copies/μL. Comparing the results of the commercial singleplex real-time PCR kit and the multiplex real-time PCR method for detecting PEDV, PoRV, and PDCoV, there was complete agreement between the two approaches. Clinical data revealed single infection rates of 6.56% for PEDV, 21.69% for PoRV, and 6.65% for PDCoV. The co-infection rates were 11.83% for PEDV + PoRV, 0.29% for PEDV + PDCoV, 5.71% for PoRV + PDCoV, and 1.29% for PEDV + PDCoV + PoRV, respectively. Discussion The multiplex real-time PCR method established in this study is a valuable diagnostic tool for simultaneously differentiating PEDV, PoRV, and PDCoV. This method is expected to significantly contribute to prevent and control the spread of infectious diseases, as well as aid in conducting epidemiological investigations.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Congcong Zu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| | - Yang Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| | - Meng Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jinyuan Gu
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Fengling Chen
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaowen Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| |
Collapse
|
27
|
Chen J, Tian L, Liu Y, Sun Y, Li Z, Cai X, Meng Q, Qiao J. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus in Xinjiang, China, from 2020 to 2022. Arch Virol 2024; 169:96. [PMID: 38619633 DOI: 10.1007/s00705-024-06029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/18/2024] [Indexed: 04/16/2024]
Abstract
In recent years, the pig industry in Xinjiang, China, has been severely impacted by outbreaks of porcine epidemic diarrhea (PED), despite vaccination efforts. In this study, we investigated the genetic characteristics of currently prevalent porcine epidemic diarrhea virus (PEDV) strains in the region. We collected 548 samples from animals with suspected PED on large-scale pig farms in Xinjiang. Of these, 258 tested positive for PEDV by RT-PCR, yielding an overall positivity rate of 47.08%. S1 gene sequencing and phylogenetic analysis were conducted on 23 randomly selected RT-PCR-positive samples. Three endemic strains of PEDV (PEDV/CH/XU/2020, PEDV/CH/XK/2020, and PEDV/CH/XA/2020) were isolated, and their complete genome sequences were analyzed for evidence of genetic recombination. Sequence comparison of the S gene indicated significant variations in the S1 gene of the Xinjiang strains compared to the vaccine strains CV777, AJ1102, and LWL, with 90.2%-98.5% nucleotide sequence identity. Notably, both the N-terminal and C-terminal domains of the S protein showed significant variation. Genetic evolutionary analysis identified the GIIa subtype as the dominant genotype among the epidemic strains in Xinjiang. Recombination analysis revealed inter-subtype recombination events in the PEDV/CH/XK/2020 and XJ1904-34 strains. These findings highlight the extensive genetic variation in the predominant GIIa genotype of PEDV in Xinjiang, which does not match the genotype of the currently used vaccine strains. These data may guide further efforts toward the development of effective vaccines for the control of PED.
Collapse
Affiliation(s)
- Jinlong Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Lulu Tian
- Xinjiang Agricultural Vocational and Technical College, Changji, 831100, Xinjiang, China
| | - Yucheng Liu
- Institute of Animal Science and Veterinary Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Yaoqiang Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Zhiyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xuepeng Cai
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
28
|
Zhu W, Xiao L, Yuan R, Lin Y, Wang T, Wen Z, Ding L, Wang K. Isothermal nucleic acid amplification combined with gold nanoparticles assisted electrochemical impedance for the sensitive and efficient porcine delta coronavirus detection. Talanta 2024; 266:125109. [PMID: 37633037 DOI: 10.1016/j.talanta.2023.125109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
The emergence of porcine delta coronavirus (PDCoV) has caused huge economic losses in the global pig industry. How to realize the sensitive and efficient detection for it is a difficult problem that need to be resolved. In this work, loop-mediated isothermal amplification (LAMP)-electrochemical impedance spectroscopy (EIS) detection platform for PDCoV based on nucleic acid level was constructed by combining the advantages of efficient amplification for LAMP and sensitive detection for EIS. Referring to a 159 bp fragment of PDCoV N gene (Genbank:KY078891, 641 bp-799 bp), primers (HS-FIP、BIP、F3、B3) were designed to screened and sulfhydryl groups were activated, and then loop-mediated isothermal amplification was carried out. Subsequently, gold nanoparticles were loaded on indium tin oxide glass by electrodeposition technology, and the amplified products were connected to the electrode surface through the formation of Au-S bonds. According to the difference of charge transfer resistance after double-stranded DNA was connected on the electrode surface, the detection platform can achieve valid detection of PDCoV in the concentration range of 102-107 copies/μL, the limit of detection is 28 copies/μL, and can be used for practical analysis of pig small intestine samples.
Collapse
Affiliation(s)
- Weiran Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Liting Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Ruishuang Yuan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Yuhang Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Tianshuo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Zuorui Wen
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Kun Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| |
Collapse
|
29
|
Gao L, Shen H, Zhao S, Chen S, Zhu P, Lin W, Chen F. Isolation and Pathogenicity Analysis of a G5P[23] Porcine Rotavirus Strain. Viruses 2023; 16:21. [PMID: 38257722 PMCID: PMC10819142 DOI: 10.3390/v16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Group A rotaviruses (RVAs) are the primary cause of severe intestinal diseases in piglets. Porcine rotaviruses (PoRVs) are widely prevalent in Chinese farms, resulting in significant economic losses to the livestock industry. However, isolation of PoRVs is challenging, and their pathogenicity in piglets is not well understood. (2) Methods: We conducted clinical testing on a farm in Jiangsu Province, China, and isolated PoRV by continuously passaging on MA104 cells. Subsequently, the pathogenicity of the isolated strain in piglets was investigated. The piglets of the PoRV-infection group were orally inoculated with 1 mL of 1.0 × 106 TCID50 PoRV, whereas those of the mock-infection group were fed with an equivalent amount of DMEM. (3) Results: A G5P[23] genotype PoRV strain was successfully isolated from one of the positive samples and named RVA/Pig/China/JS/2023/G5P[23](JS). The genomic constellation of this strain was G5-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Sequence analysis revealed that the genes VP3, VP7, NSP2, and NSP4 of the JS strain were closely related to human RVAs, whereas the remaining gene segments were closely related to porcine RVAs, indicating a reassortment between porcine and human strains. Furthermore, infection of 15-day-old piglets with the JS strain resulted in a diarrheal rate of 100% (8 of 8) and a mortality rate of 37.5% (3 of 8). (4) Conclusions: The isolated G5P[23] genotype rotavirus strain, which exhibited strong pathogenicity in piglets, may have resulted from recombination between porcine and human strains. It may serve as a potential candidate strain for developing vaccines, and its immunogenicity can be tested in future studies.
Collapse
Affiliation(s)
- Liguo Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Hanqin Shen
- Wen’s Food Group, Yunfu 527300, China;
- Guangdong Jingjie Inspection and Testing Co., Ltd., Yunfu 527300, China
| | - Sucan Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Sheng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Puduo Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| |
Collapse
|
30
|
Goto Y, Fukunari K, Tada S, Ichimura S, Chiba Y, Suzuki T. A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens associated with swine respiratory disease. J Appl Microbiol 2023; 134:lxad263. [PMID: 37951290 DOI: 10.1093/jambio/lxad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
AIMS Swine respiratory disease (SRD) is a major disease complex in pigs that causes severe economic losses. SRD is associated with several intrinsic and extrinsic factors such as host health status, viruses, bacteria, and environmental factors. Particularly, it is known that many pathogens are associated with SRD to date, but most of the test to detect those pathogens can be normally investigated only one pathogen while taking time and labor. Therefore, it is desirable to develop rapidly and efficiently detectable methods those pathogens to minimize the damage caused by SRD. METHODS AND RESULTS We designed a multiplex real-time RT-PCR (RT-qPCR) system to diagnose simultaneously 16 pathogens, including nine viruses and seven bacteria associated with SRD, on the basis of single qPCR and RT-qPCR assays reported in previous studies. Multiplex RT-qPCR system we designed had the same ability to single RT-qPCR without significant differences in detection sensitivity for all target pathogens at minimum to maximum genomic levels. Moreover, the primers and probes used in this system had highly specificity because the sets had not been detected pathogens other than the target and its taxonomically related pathogens. Furthermore, our data demonstrated that this system would be useful to detect a causative pathogen in the diagnosis using oral fluid from healthy pigs and lung tissue from pigs with respiratory disorders collected in the field. CONCLUSIONS The rapid detection of infected animals from the herd using our system will contribute to infection control and prompt treatment in the field.
Collapse
Affiliation(s)
- Yusuke Goto
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Kazuhiro Fukunari
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Shigekatsu Tada
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Satoki Ichimura
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Yuzumi Chiba
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
31
|
Cao L, Kong X, Li X, Suo X, Duan Y, Yuan C, Zhang Y, Zheng H, Wang Q. A Customized Novel Blocking ELISA for Detection of Bat-Origin Swine Acute Diarrhea Syndrome Coronavirus Infection. Microbiol Spectr 2023; 11:e0393022. [PMID: 37272819 PMCID: PMC10434073 DOI: 10.1128/spectrum.03930-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered emerging alphacoronavirus. SADS-CoV shares over 90% genome sequence identity with bat alphacoronavirus HKU2. SADS-CoV was associated with severe diarrhea and high mortality rates in piglets. Accurate serological diagnosis of SADS-CoV infection is key in managing the emerging SADS-CoV. However, thus far there have been no effective antibody-based diagnostic tests for diagnose of SADS-CoV exposure. Here, monoclonal antibody (MAb) 6E8 against SADS-CoV N protein accurately recognized SADS-CoV infection. Then, MAb 6E8 was utilized as a blocking antibody to develop blocking ELISA (bELISA). We customized the rN coating antigen with concentration 0.25 μg/mL. According to receiver operator characteristic curve analysis, the cutoff value of the bELISA was determined as 38.19% when the max Youden index was 0.955, and specificity was 100%, and sensitivity was 95.5%. Specificity testing showed that there was no cross-reactivity with other serum positive swine enteric coronaviruses, such as porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), porcine rotavirus (PoRV), and porcine sapelovirus (PSV). In conclusion, we customized a novel and high-quality blocking ELISA for detection of SADS-CoV infection, and the current bELISA will be linked to a clinical and epidemiological assessment of SADS-CoV infection. IMPORTANCE SADS-CoV was reported to be of high potential for dissemination among various of host species. Accurate serological diagnosis of SADS-CoV infection is key in managing the emerging SADS-CoV. However, thus far there have been no effective antibody-based diagnostic tests for diagnose of SADS-CoV exposure. We customed a novel and high-quality bELISA assay for detection of SADS-CoV N protein antibodies, and the current bELISA will be linked to a clinical and epidemiological assessment of SADS-CoV infection.
Collapse
Affiliation(s)
- Liyan Cao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangtong Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xuepeng Suo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yueyue Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
32
|
Chen J, Liu R, Liu H, Chen J, Li X, Zhang J, Zhou B. Development of a Multiplex Quantitative PCR for Detecting Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus Simultaneously in China. Vet Sci 2023; 10:402. [PMID: 37368788 DOI: 10.3390/vetsci10060402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) belong to the category of swine enteric coronavirus that cause acute diarrhea in piglets, which has resulted in massive losses to the pig husbandry. Therefore, a sensitive and rapid detection method which can differentially detect these viruses that lead to mixed infections in clinical cases, is urgently needed. According to the conserved regions of the PEDV M gene, TGEV S gene, and PDCoV N gene, and the reference gene of porcine (β-Actin), we designed new specific primers and probes for the multiplex qPCR assay capable of simultaneously detecting three RNA viruses. This method, with a great specificity, did not cross-react with the common porcine virus. Moreover, the limit of detection of the method we developed could reach 10 copies/μL ,and the intra- and inter-group coefficients of variation of it below 3%. Applying this assay to detect 462 clinical samples which were collected in 2022-2023, indicated that the discrete positive rates of PEDV, TGEV, and PDCoV were 19.70%, 0.87%, and 10.17%, respectively. The mixed infection rates of PEDV/TGEV, PEDV/PDCoV, TGEV/PDCoV, and PEDV/TGEV/PDCoV were 3.25%, 23.16%, 0.22%, and 11.90%, respectively. All in all, the multiplex qPCR assay we developed as a tool for differential and rapid diagnosing can be put on the active prevention and control of PEDV, TGEV, and PDCoV, , which can create great value in the diagnosis of swine diarrhea diseases.
Collapse
Affiliation(s)
- Jianpeng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongchao Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huaicheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Kim HR, Park J, Lee KK, Jeoung HY, Lyoo YS, Park SC, Park CK. Genetic Characterization and Evolution of Porcine Deltacoronavirus Isolated in the Republic of Korea in 2022. Pathogens 2023; 12:pathogens12050686. [PMID: 37242356 DOI: 10.3390/pathogens12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes diarrhea in nursing piglets. Since its first outbreak in the United States in 2014, this novel porcine coronavirus has been detected worldwide, including in Korea. However, no PDCoV case has been reported since the last report in 2016 in Korea. In June 2022, the Korean PDCoV strain KPDCoV-2201 was detected on a farm where sows and piglets had black tarry and watery diarrhea, respectively. We isolated the KPDCoV-2201 strain from the intestinal samples of piglets and sequenced the viral genome. Genetically, the full-length genome and spike gene of KPDCoV-2201 shared 96.9-99.2% and 95.8-98.8% nucleotide identity with other global PDCoV strains, respectively. Phylogenetic analysis suggested that KPDCoV-2201 belongs to G1b. Notably, the molecular evolutionary analysis indicated that KPDCoV-2201 evolved from a clade different from that of previously reported Korean PDCoV strains and is closely related to the emergent Peruvian and Taiwanese PDCoV strains. Furthermore, KPDCoV-2201 had one unique and two Taiwanese strain-like amino acid substitutions in the receptor-binding domain of the S1 region. Our findings suggest the possibility of transboundary transmission of the virus and expand our knowledge about the genetic diversity and evolution of PDCoV in Korea.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Jonghyun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
34
|
Cao L, Kong X, Zhang Y, Suo X, Li X, Duan Y, Yuan C, Zheng H, Wang Q. Development of a novel double-antibody sandwich quantitative ELISA for detecting SADS-CoV infection. Appl Microbiol Biotechnol 2023; 107:2413-2422. [PMID: 36809389 PMCID: PMC9942060 DOI: 10.1007/s00253-023-12432-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteric alphacoronavirus that can cause acute diarrhea, vomiting, dehydration, and death of newborn piglets. In this study, we developed a double-antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-qELISA) for detection of SADS-CoV by using an anti-SADS-CoV N protein rabbit polyclonal antibody (PAb) and a specific monoclonal antibody (MAb) 6E8 against the SADS-CoV N protein. The PAb was used as the capture antibodies and HRP-labeled 6E8 as the detector antibody. The detection limit of the developed DAS-qELISA assay was 1 ng/mL of purified antigen and 101.08TCID50/mL of SADS-CoV, respectively. Specificity assays showed that the developed DAS-qELISA has no cross-reactivity with other swine enteric coronaviruses, such as porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV). Three-day-old piglets were challenged with SADS-CoV and collected anal swab samples which were screened for the presence of SADS-CoV by using DAS-qELISA and reverse transcriptase PCR (RT-PCR). The coincidence rate of the DAS-qELISA and RT-PCR was 93.93%, and the kappa value was 0.85, indicating that DAS-qELISA is a reliable method for applying antigen detection of clinical samples. KEY POINTS: • The first double-antibody sandwich quantitative enzyme-linked immunosorbent assay for detection SADS-CoV infection. • The custom ELISA is useful for controlling the SADS-CoV spread.
Collapse
Affiliation(s)
- Liyan Cao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xuepeng Suo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangtong Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yueyue Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Qi Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| |
Collapse
|
35
|
Li Y, Niu JW, Zhou X, Chu PP, Zhang KL, Gou HC, Yang DX, Zhang JF, Li CL, Liao M, Zhai SL. Development of a multiplex qRT-PCR assay for the detection of porcine epidemic diarrhea virus, porcine transmissible gastroenteritis virus and porcine Deltacoronavirus. Front Vet Sci 2023; 10:1158585. [PMID: 37008344 PMCID: PMC10060962 DOI: 10.3389/fvets.2023.1158585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, porcine coronaviruses are prevalent in pigs, and due to the outbreak of COVID-19, porcine coronaviruses have become a research hotspot. porcine epidemic diarrhea virus (PEDV), Transmissible Gastroenteritis Virus (TGEV), and Porcine Deltacoronavirus (PDCoV) mentioned in this study mainly cause diarrhea in pigs. These viruses cause significant economic losses and pose a potential public health threat. In this study, specific primers and probes were designed according to the M gene of PEDV, the S gene of TGEV, and the M gene of PDCoV, respectively, and TaqMan probe-based multiplex real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was developed for the simultaneous detection of PEDV, TGEV, and PDCoV. This method has high sensitivity and specificity, and the detection limit of each virus can reach 2.95 × 100 copies/μl. An assay of 160 clinical samples from pigs with diarrhea showed that the positive rates of PEDV, TGEV, and PDCoV were 38.13, 1.88, and 5.00%; the coinfection rates of PEDV+TGEV, PEDV+PDCoV, TGEV+PDCoV, PEDV+TGEV+PDCoV were 1.25, 1.25, 0, 0.63%, respectively. The positive coincidence rates of the multiplex qRT-PCR and single-reaction qRT-PCR were 100%. This method is of great significance for clinical monitoring of the porcine enteric diarrhea virus and helps reduce the loss of the breeding industry and control the spread of the disease.
Collapse
Affiliation(s)
- Yan Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Jia-Wei Niu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Xia Zhou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Pin-Pin Chu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Kun-Li Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Hong-Chao Gou
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Dong-Xia Yang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Jian-Feng Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Chun-Ling Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| | - Ming Liao
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
- Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Shao-Lun Zhai
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Institute of Animal Health Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Dong H, Zhang K, Zhang J, Xiao Y, Zhang F, Wang M, Wang H, Zhao G, Xie S, Xie X, Hu W, Yin K, Gu L. A fast RT-qPCR system significantly shortens the time for SARS-CoV-2 nucleic acid test. Drug Discov Ther 2023; 17:37-44. [PMID: 36843076 DOI: 10.5582/ddt.2022.01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to global development. Rapid and accurate diagnosis is critical for containing the pandemic and treating patients in time. As the gold standard for SARS-CoV-2 diagnosis, the qualitative reverse transcription-PCR (RT-qPCR) test has long been criticized for its long detection time. In this study, we optimized the primers and probes targeting SARS-CoV-2 ORF1ab and N gene designed by the Chinese Center for Disease Control and Preventions (CDC) to increase their Tm values to meet the optimal elongation temperature of Taq DNA polymerase, thus greatly shortened the elongation time. The higher elongation temperature in turn narrowed the temperature range of the reaction and saved more time. In addition, by shortening the distance between the fluorophore at the 5' end and the quencher in the middle we got a probe with higher signal-to-noise ratio. Finally, by using all these measures and optimized RT-qPCR program we successfully reduced the time (nucleic acid extraction step is not included) for nucleic acid test from 74 min to 26 min.
Collapse
Affiliation(s)
- Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Yumeng Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Maofeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Shiling Xie
- Shandong Shtars Medical Technology Co. Ltd, Jinan, Shandong, China
| | - Xiaohong Xie
- Shandong Shtars Medical Technology Co. Ltd, Jinan, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
37
|
Diagnostic Approach to Enteric Disorders in Pigs. Animals (Basel) 2023; 13:ani13030338. [PMID: 36766227 PMCID: PMC9913336 DOI: 10.3390/ani13030338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The diagnosis of enteric disorders in pigs is extremely challenging, at any age. Outbreaks of enteric disease in pigs are frequently multifactorial and multiple microorganisms can co-exist and interact. Furthermore, several pathogens, such as Clostridium perfrigens type A, Rotavirus and Lawsonia intracellularis, may be present in the gut in the absence of clinical signs. Thus, diagnosis must be based on a differential approach in order to develop a tailored control strategy, considering that treatment and control programs for enteric diseases are pathogen-specific. Correct sampling for laboratory analyses is fundamental for the diagnostic work-up of enteric disease in pigs. For example, histology is the diagnostic gold standard for several enteric disorders, and sampling must ensure the collection of representative and optimal intestinal samples. The aim of this paper is to focus on the diagnostic approach, from sampling to the aetiological diagnosis, of enteric disorders in pigs due to different pathogens during the different phases of production.
Collapse
|
38
|
Luo S, Chen X, Yan G, Chen S, Pan J, Zeng M, Han H, Guo Y, Zhang H, Li J, Mo M, Liu M, Huang L. Emergence of human-porcine reassortment G9P[19] porcine rotavirus A strain in Guangdong Province, China. Front Vet Sci 2023; 9:1111919. [PMID: 36699335 PMCID: PMC9868962 DOI: 10.3389/fvets.2022.1111919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Group A rotaviruses of the family Reoviridae is one of the important intestinal pathogens causing diarrhea in piglets and humans. A human-porcine reassortment rotavirus, GDJM1, was identified from outbreak of diarrhea in suckling piglets and it associated with 60.00% (324/540) morbidity and 20.99% (68/324) mortality in Guangdong Province of China in 2022. Thus, to further characterize the evolutionary diversity of GDJM1, all gene segments were analyzed. The genome constellation was G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Nucleotide sequence identity and phylogenetic analyses showed that the VP6, VP7, NSP4 and NSP5 genes of GDJM1 were the most closely related to the respective genes of porcine strains, with the highest homology ranging from 95.65-98.55% identity. The remaining seven genes (VP1-VP4, NSP1-NSP3) were the most closely related to human strains, with the highest homology ranging from 91.83-96.69% similarity. Therefore, it is likely that GDJM1 emerged as the result of genetic reassortment between porcine and human rotaviruses. To our knowledge, this is the first report that a human-porcine reassortment G9P[19] RVA strain has been identified in mainland China, which providing important insights into evolutionary characterization of G9P[19] RVA strain, and reveals that the strain has a potential risk of cross-species transmission.
Collapse
Affiliation(s)
- Shicheng Luo
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xiuqiao Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Guangzhi Yan
- Guangdong Findergene Biotechnology Co., Ltd., Foshan, Guangdong Province, China
| | - Shengnan Chen
- Guangdong Findergene Biotechnology Co., Ltd., Foshan, Guangdong Province, China
| | - Jinghua Pan
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Mengyi Zeng
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Hui Han
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Yajing Guo
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Haoquan Zhang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Jiaming Li
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Meilian Mo
- Guangdong Findergene Biotechnology Co., Ltd., Foshan, Guangdong Province, China
| | - Mingjie Liu
- Guangdong Findergene Biotechnology Co., Ltd., Foshan, Guangdong Province, China
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China,*Correspondence: Liangzong Huang ✉
| |
Collapse
|
39
|
Zhou H, Shi K, Long F, Zhao K, Feng S, Yin Y, Xiong C, Qu S, Lu W, Li Z. A Quadruplex qRT-PCR for Differential Detection of Four Porcine Enteric Coronaviruses. Vet Sci 2022; 9:634. [PMID: 36423083 PMCID: PMC9695440 DOI: 10.3390/vetsci9110634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 10/28/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) are four identified porcine enteric coronaviruses. Pigs infected with these viruses show similar manifestations of diarrhea, vomiting, and dehydration. Here, a quadruplex real-time quantitative PCR (qRT-PCR) assay was established for the differential detection of PEDV, TGEV, PDCoV, and SADS-CoV from swine fecal samples. The assay showed extreme specificity, high sensitivity, and excellent reproducibility, with the limit of detection (LOD) of 121 copies/μL (final reaction concentration of 12.1 copies/μL) for each virus. The 3236 clinical fecal samples from Guangxi province in China collected between October 2020 and October 2022 were evaluated by the quadruplex qRT-PCR, and the positive rates of PEDV, TGEV, PDCoV, and SADS-CoV were 18.26% (591/3236), 0.46% (15/3236), 13.16% (426/3236), and 0.15% (5/3236), respectively. The samples were also evaluated by the multiplex qRT-PCR reported previously by other scientists, and the compliance rate between the two methods was more than 99%. This illustrated that the developed quadruplex qRT-PCR assay can provide an accurate method for the differential detection of four porcine enteric coronaviruses.
Collapse
Affiliation(s)
- Hongjin Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Kang Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Chenyong Xiong
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
40
|
Niu JW, Li JH, Guan JL, Deng KH, Wang XW, Li G, Zhou X, Xu MS, Chen RA, Zhai SL, He DS. Development of a multiplex RT-PCR method for the detection of four porcine enteric coronaviruses. Front Vet Sci 2022; 9:1033864. [PMID: 36425116 PMCID: PMC9679136 DOI: 10.3389/fvets.2022.1033864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 11/03/2023] Open
Abstract
Porcine enteric coronaviruses are pathogens that cause viral diarrhea in pigs and are widely prevalent worldwide. Moreover, studies have shown that some porcine enteric coronaviruses can infect humans and poultry. In order to effectively monitor these viruses, it is necessary to establish a multiple detection method to understand their prevalence and conduct in-depth research. Common porcine enteric coronaviruses include Porcine epidemic diarrhea virus (PEDV), Porcine transmissible gastroenteritis virus (TGEV), Porcine delta coronavirus (PDCoV), and Swine acute diarrhea syndrome coronavirus (SADS-CoV). Pigs infected with these viruses have the common clinical symptoms that are difficult to distinguish. A quadruplex RT-PCR (reverse transcription-polymerase chain reaction) method for the simultaneous detection of PEDV, PDCoV, TGEV and SADS-CoV was developed. Four pairs of specific primers were designed for the PEDV M gene, PDCoV N gene, TGEV S gene and SADS-CoV RdRp gene. Multiplex RT-PCR results showed that the target fragments of PDCoV, SADS-CoV, PEDV and TGEV could be amplified by this method. and the specific fragments with sizes of 250 bp, 368 bp, 616 bp and 801 bp were amplified, respectively. This method cannot amplify any fragment of nucleic acids of Seneca Valley virus (SVV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Atypical Porcine Pestivirus (APPV), and has good specificity. The lowest detection limits of PDCoV, PEDV, TGEV and SADS-CoV were 5.66 × 105 copies/μL, 6.48 × 105 copies/μL, 8.54 × 105 copies/μL and 7.79 × 106 copies/μL, respectively. A total of 94 samples were collected from pig farms were analyzed using this method. There were 15 positive samples for PEDV, 3 positive samples for mixed infection of PEDV and PDCoV, 2 positive samples for mixed infection of PEDV and TGEV, and 1 positive sample for mixed infection of PEDV, TGEV, and PDCoV. Multiplex RT-PCR method could detect four intestinal coronaviruses (PEDV, PDCoV, TGEV, and SADS-CoV) in pigs efficiently, cheaply and accurately, which can be used for clinical large-scale epidemiological investigation and diagnosis.
Collapse
Affiliation(s)
- Jia-Wei Niu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
| | - Jin-Hui Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
| | - Jin-Lian Guan
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
| | - Ke-Hui Deng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
| | - Xiu-Wu Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
| | - Gen Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
| | - Xia Zhou
- Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Min-Sheng Xu
- Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Rui-Ai Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Shao-Lun Zhai
- Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Dong-Sheng He
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine of South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
41
|
Zou J, Yu J, Mu Y, Xie X, Wang R, Wu H, Liu X, Xu F, Wang J, Wang Y. Development of a TaqMan-based multiplex real-time PCR for simultaneous detection of four feline diarrhea-associated viruses. Front Vet Sci 2022; 9:1005759. [PMID: 36406081 PMCID: PMC9669448 DOI: 10.3389/fvets.2022.1005759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Since their recent discovery, the prevalence of novel feline enteric viruses, including feline bocavirus 1 (FBoV-1), feline astrovirus (FeAstV), and feline kobuvirus (FeKoV), has been reported in China. Co-infections of these viruses with feline parvovirus (FPV) are common causes of diarrhea in cats. Viral co-infections are difficult to identify because of their non-specific clinical signs. To detect and identify these viruses, a quick and specific pathogen-testing approach is required. Here, we establish a real-time PCR (qPCR) based on multiple TaqMan probes for the simultaneous detection of FBoV-1, FeAstV, FeKoV, and FPV. Specific primers and TaqMan fluorescent probes were designed to ensure specificity. The results showed that the detection limit of single qPCR was up to 10 copies, and the detection limit of multiplex qPCR was up to 100 copies, with correlation coefficients >0.995 in all cases. Clinical sample detection revealed a 25.19% (34/135) total rate of co-infection among the viruses and a 1.48% (2/135) quadruple infection rate. Thus, this multiplex qPCR approach can serve as a quick, sensitive, and specific diagnostic tool for FBoV-1, FeAstV, FeKoV, and FPV identification, and it may be utilized for routine surveillance of these emerging and reemerging feline enteric viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
42
|
Cong X, Zhu Y, Liu X, Lian Y, Huang B, Luo Y, Gu Y, Wu M, Shi Y. Establishment of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of swine acute diarrhea syndrome coronavirus (SADS-CoV). BMC Vet Res 2022; 18:369. [PMID: 36221092 PMCID: PMC9552127 DOI: 10.1186/s12917-022-03465-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute vomiting and diarrhea in piglets, leading to significant financial losses for the pig industry. Recombinase polymerase amplification (RPA) is a rapid nucleic acid amplification technology used under constant temperature conditions. The study established a real-time reverse transcription (RT)-RPA assay for early diagnosis of SADS-CoV. RESULTS: The detection limit of the real-time RT-RPA was 74 copies/µL of SADS-CoV genomic standard recombinant plasmid in 95% of cases. The assay was performed in less than 30 min and no cross-reactions were observed with eight other common viruses that affect swine, including classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), pseudo rabies virus (PRV), swine influenza virus (SIV), seneca valley virus (SVA), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV). The coefficient of variation (C.V.) values of the two standards dilutions and three positive clinical sample ranged from 2.95% to 4.71%. A total of 72 clinical fecal samples from swine with diarrheal symptoms were analyzed with the developed RT-RPA and quantitative RT-PCR. There was 98.61% agreement between the RT-RPA and the quantitative real-time PCR results. CONCLUSIONS These results indicated that the developed RT-RPA assay had good specificity, sensitivity, stability and repeatability. The study successfully established a broadly reactive RT-RPA assay for SADS-CoV detection.
Collapse
Affiliation(s)
- Xiao Cong
- College of Animal Science, Anhui Science and Technology University and Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Xinchao Liu
- College of Animal Science, Anhui Science and Technology University and Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Bihong Huang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Yinzhu Luo
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University and Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China.
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China.
| | - Yue Shi
- Beijing Biaochizehui Biotechnology Company Limited Daxing District, Qingfengxilu No.29, Beijing, China.
| |
Collapse
|
43
|
A Review of Bioactive Compounds against Porcine Enteric Coronaviruses. Viruses 2022; 14:v14102217. [PMID: 36298772 PMCID: PMC9607050 DOI: 10.3390/v14102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.
Collapse
|
44
|
Transmissible Gastroenteritis Virus Infection Promotes the Self-Renewal of Porcine Intestinal Stem Cells via Wnt/β-Catenin Pathway. J Virol 2022; 96:e0096222. [PMID: 36073923 PMCID: PMC9517692 DOI: 10.1128/jvi.00962-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/β-catenin pathway by upregulating the accumulation and nuclear translocation of β-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/β-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/β-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.
Collapse
|
45
|
Olech M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens 2022; 11:pathogens11101074. [PMID: 36297131 PMCID: PMC9612268 DOI: 10.3390/pathogens11101074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and control of the spread of the disease. Many molecular assays have been developed for the detection of PEDV, including reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (qRT-PCR) and loop-mediated isothermal amplification assays. Additionally, several serological methods have been developed and are widely used for the detection of antibodies against PEDV. Some of them, such as the immunochromatography assay, can generate results very quickly and in field conditions. Molecular assays detect viral RNA in clinical samples rapidly, and with high sensitivity and specificity. Serological assays can determine prior immune exposure to PEDV, can be used to monitor the efficacy of vaccination strategies and may help to predict the duration of immunity in piglets. However, they are less sensitive than nucleic acid-based detection methods. Sanger and next-generation sequencing (NGS) allow the analysis of PEDV cDNA or RNA sequences, and thus, provide highly specific results. Furthermore, NGS based on nonspecific DNA cleavage in clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems promise major advances in the diagnosis of PEDV infection. The objective of this paper was to summarize the current serological and molecular PEDV assays, highlight their diagnostic performance and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
46
|
Zhang H, Laššáková S, Yan Z, Wang X, Šenkyřík P, Gaňová M, Chang H, Korabecna M, Neuzil P. Digital polymerase chain reaction duplexing method in a single fluorescence channel. Anal Chim Acta 2022; 1238:340243. [DOI: 10.1016/j.aca.2022.340243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
|
47
|
Development and Clinical Applications of a 5-Plex Real-Time RT-PCR for Swine Enteric Coronaviruses. Viruses 2022; 14:v14071536. [PMID: 35891517 PMCID: PMC9324624 DOI: 10.3390/v14071536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023] Open
Abstract
A PEDV/PDCoV/TGEV/SADS-CoV/XIPC 5-plex real-time RT-PCR was developed and validated for the simultaneous detection and differentiation of four swine enteric coronaviruses (PEDV, PDCoV, TGEV and SADS-CoV) in one PCR reaction (XIPC serves as an exogenous internal positive control). The 5-plex PCR had excellent analytical specificity, analytical sensitivity, and repeatability based on the testing of various viral and bacterial pathogens, serial dilutions of virus isolates, and in vitro transcribed RNAs. The 5-plex PCR had comparable diagnostic performance to a commercial PEDV/TGEV/PDCoV reference PCR, based on the testing of 219 clinical samples. Subsequently, 1807 clinical samples collected from various U.S. states during 2019–2021 were tested by the 5-plex PCR to investigate the presence of SADS-CoV in U.S. swine and the frequency of detecting swine enteric CoVs. All 1807 samples tested negative for SADS-CoV. Among the samples positive for swine enteric CoVs, there was a low frequency of detecting TGEV, an intermediate frequency of detecting PDCoV, and a high frequency of detecting PEDV. Although there is no evidence of SADS-CoV presence in the U.S. at present, the availability of the 5-plex PCR will enable us to conduct ongoing surveillance to detect and differentiate these viruses in swine samples and other host species samples as some of these coronaviruses can cause cross-species infection.
Collapse
|
48
|
Shen H, Wang S, Huang J, Lin Q, Zhang C, Liu Z, Zhang J, Liao M. A Novel, Cleaved Probe-Based Reverse Transcription Loop-Mediated Isothermal Amplification Method for Specific and Sensitive Detection of Porcine Deltacoronavirus. Front Vet Sci 2022; 9:896416. [PMID: 35812893 PMCID: PMC9261778 DOI: 10.3389/fvets.2022.896416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) causes watery diarrhea, vomiting, and 30–40% mortality in newborn piglets. A simple, rapid, and sensitive method for PDCoV detection is valuable in its surveillance and control. Here, we developed a novel, cleaved probe-based reverse transcription loop-mediated isothermal amplification (CP-RT-LAMP) method for PDCoV detection. A cleaved probe with a ribonucleotide insertion that targeted the N gene of PDCoV was designed. During the reaction, the enzyme ribonuclease H2 is activated only when the cleaved probe is perfectly complementary to the template, leading to the hydrolytic release of a quencher moiety and signal output. This method can be easily used on a real-time fluorescence quantitative equipment or an on-site isothermal instrument combined with a smartphone. The specificity assay showed no cross-reactivity with other porcine enteric pathogens. This method had a detection limit of 25 copies/μL, suggesting comparable sensitivity with reverse transcription quantitative PCR (RT-qPCR). In detecting 100 clinical samples (48 fecal swab specimens and 52 intestinal specimens), the detection rate of the CP-RT-LAMP method (26%) was higher than that of RT-qPCR (17%). Thus, it is a highly specific and sensitive diagnostic method for PDCoV, with a great application potential for monitoring PDCoV in the laboratory or point-of-care testing in the field.
Collapse
Affiliation(s)
- Haiyan Shen
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Songqi Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Huang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chunhong Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhicheng Liu
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianfeng Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Ming Liao
| | - Ming Liao
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Jianfeng Zhang
| |
Collapse
|
49
|
Detection of Four Porcine Enteric Coronaviruses Using CRISPR-Cas12a Combined with Multiplex Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay. Viruses 2022; 14:v14040833. [PMID: 35458562 PMCID: PMC9032155 DOI: 10.3390/v14040833] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Porcine enteric coronaviruses have caused immense economic losses to the global pig industry, and pose a potential risk for cross-species transmission. The clinical symptoms of the porcine enteric coronaviruses (CoVs) are similar, making it difficult to distinguish between the specific pathogens by symptoms alone. Here, a multiplex nucleic acid detection platform based on CRISPR/Cas12a and multiplex reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) was developed for the detection of four diarrhea CoVs: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). With this strategy, we realized a visual colorimetric readout visible to the naked eye without specialized instrumentation by using a ROX-labeled single-stranded DNA-fluorescence-quenched (ssDNA-FQ) reporter. Our method achieved single-copy sensitivity with no cross-reactivity in the identification and detection of the target viruses. In addition, we successfully detected these four enteric CoVs from RNA of clinical samples. Thus, we established a rapid, sensitive, and on-site multiplex molecular differential diagnosis technology for porcine enteric CoVs.
Collapse
|
50
|
Zhang Y, Li Y, Guan Z, Yang Y, Zhang J, Sun Q, Li B, Qiu Y, Liu K, Shao D, Ma Z, Wei J, Li P. Rapid Differential Detection of Japanese Encephalitis Virus and Getah Virus in Pigs or Mosquitos by a Duplex TaqMan Real-Time RT-PCR Assay. Front Vet Sci 2022; 9:839443. [PMID: 35464361 PMCID: PMC9023051 DOI: 10.3389/fvets.2022.839443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Both JEV (Japanese encephalitis virus) and GETV (Getah virus) pose huge threats to the safety of animals and public health. Pigs and mosquitoes play a primary role in JEV and GETV transmission. However, there is no way to quickly distinguish between JEV and GETV. In this study, we established a one-step duplex TaqMan RT-qPCR for rapid identification and detection of JEV and GETV. Primers and probes located in the NS1 gene of JEV and the E2 gene of GETV that could specifically distinguish JEV from GETV were selected for duplex TaqMan RT-qPCR. In duplex real-time RT-qPCR detection, the correlation coefficients (R2) of the two viruses were higher than 0.999. The RT-qPCR assay demonstrated high sensitivity, extreme specificity, and excellent repeatability. Detection of JEV and GETV in field mosquito and pig samples was 100 times and 10 times more sensitive than using traditional PCR, respectively. In addition, the new test took less time and could be completed in under an hour. Clinical sample testing revealed the prevalence of JEV and GETV in mosquitoes and pig herds in China. This complete duplex TaqMan RT-qPCR assay provided a fast, efficient, specific, and sensitive tool for the detection and differentiation of JEV and GETV.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qing Sun
- College of Animal Science, Yangtze University, Jingzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|