1
|
Zhang J, Fu L, Wang H, Yonemura A, Semba T, Yasuda-Yoshihara N, Nishimura A, Tajiri T, Tong Y, Yasuda T, Uchihara T, Yamazaki M, Okamoto Y, Yamasaki J, Nagano O, Baba H, Ishimoto T. RAC1-mediated integrin alpha-6 expression in E-cadherin-deficient gastric cancer cells promotes interactions with the stroma and peritoneal dissemination. Cancer Lett 2024; 591:216901. [PMID: 38641311 DOI: 10.1016/j.canlet.2024.216901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer that is prone to peritoneal dissemination, with poor patient prognosis. Although intercellular adhesion loss between cancer cells is a major characteristic of DGCs, the mechanism underlying the alteration in cell-to-extracellular matrix (ECM) adhesion is unclear. We investigated how DGCs progress and cause peritoneal dissemination through interactions between DGC cells and the tumour microenvironment (TME). P53 knockout and KRASG12V-expressing (GAN-KP) cells and Cdh1-deleted GAN-KP (GAN-KPC) cells were orthotopically transplanted into the gastric wall to mimic peritoneal dissemination. The GAN-KPC tumour morphology was similar to that of human DGCs containing abundant stroma. RNA sequencing revealed that pathways related to Rho GTPases and integrin-ECM interactions were specifically increased in GAN-KPC cells compared with GAN-KP cells. Notably, we found that Rac Family Small GTPase 1 (RAC1) induces Integrin Subunit Alpha 6 (ITGA6) trafficking, leading to its enrichment on the GC cell membrane. Fibroblasts activate the FAK/AKT pathway in GC cells by mediating extracellular matrix (ECM)-Itga6 interactions, exacerbating the malignant phenotype. In turn, GC cells induce abnormal expression of fibroblast collagen and its transformation into cancer-associated fibroblasts (CAFs), resulting in DGC-like subtypes. These findings indicate that Cdh1 gene loss leads to abnormal expression and changes in the subcellular localization of ITGA6 through RAC1 signalling. The latter, through interactions with CAFs, allows for peritoneal dissemination.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Huaitao Wang
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Semba
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiho Nishimura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takuya Tajiri
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yilin Tong
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaya Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuya Okamoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Juntaro Yamasaki
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Ageing, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Das S, Sahu S, Chakraborty A, Kamaleshwaran KK, Bannore TU, Damle A, Chakravarty R, Chakraborty S. A robust lyophilized kit for convenient one-step formulation of [ 68Ga]Ga-DOTA-E-[c(RGDfK)] 2 in hospital radiopharmacy for clinical PET imaging. Appl Radiat Isot 2023; 196:110725. [PMID: 36878089 DOI: 10.1016/j.apradiso.2023.110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The present article describes the development of robust lyophilized kit for convenient formulation of [68Ga]Ga-DOTA-E-[c(RGDfK)]2 (E = glutamic acid, R = arginine, G = glycine, D = aspartic acid, f = phenylalanine, K = lysine) radiopharmaceutical for clinical use in non-invasive monitoring of malignancies overexpressing integrin αvβ3 receptors. Five batches of the kit were prepared with optimized kit contents, all of which showed high 68Ga-radiolabeling yield (>98%). Pre-clinical evaluation of the [68Ga]Ga-radiotracer in SCID mice bearing FTC133 tumour exhibited significant accumulation in the tumor xenograft. Preliminary human clinical investigation carried out in a 60 year old male patient with metastatic lung cancer revealed high radiotracer uptake in the tumor along with satisfactory target to non-target contrast. The developed kit formulation also showed a long shelf-life of at least 12 months on storage at 0 °C. All these results point towards the promising attributes of the developed kit formulation for convenient preparation of [68Ga]Ga-DOTA-E-[c(RGDfK)]2 for routine clinical use.
Collapse
Affiliation(s)
- Soumen Das
- Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Mumbai, India; Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - K K Kamaleshwaran
- Department of Nuclear Medicine and PET, Kovai Medical Centre and Hospital, Coimbatore, India
| | | | - Archana Damle
- Homi Bhabha National Institute, Mumbai, India; Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Rubel Chakravarty
- Homi Bhabha National Institute, Mumbai, India; Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute, Mumbai, India; Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
3
|
RGD Forever!-Past, Present, and Future of a 3-Letter-Code in Radiopharmacy and Life Sciences. Pharmaceuticals (Basel) 2022; 16:ph16010056. [PMID: 36678553 PMCID: PMC9866491 DOI: 10.3390/ph16010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
"RGD" is frequently pictured as a ligand for αvβ3-integrin and useful for molecular targeting of angiogenesis-which is about as simplistic as the idea that laser beams are green or red and particularly useful for arming spaceships. There is, however, much more to RGD. In particular, targeting angiogenesis is likely not the most significant stronghold of RGD-comprising constructs. RGD is the one-letter code of a very short peptide sequence, arginine-lysine-aspartate, which is recognized by eight different integrins, namely, α(IIb)β3, α5β1, α8β1, and the five dimers that αv forms with β1, β3, β5, β6, and β8. These 8 RGD receptors form an own subset among the entire class of 24 known integrins, which furthermore comprises another three distinct groups (4 collagen receptors, 4 laminin receptors, and 8 leukocyte receptors). However, the 8 RGD-recognizing integrins are far from being alike. They do not even share the same tissue prevalences and functions, but are expressed on fundamentally different cell types and fulfill the most diverse biological tasks. For example, α(IIb)β3 is found on platelets and mediates thrombus formation, whereas αvβ6- and αvβ8-integrin are expressed on epithelial cells, activate TFG-β, and thus may promote cancer progression and invasion as well as fibrosis. Recent non-clinical experiments and clinical findings suggest that the highly specific expression of αvβ6-integrin by some carcinoma types, in combination with the availability of the corresponding small-molecule ligands, may open a multitude of new and promising avenues for improved cancer diagnosis and therapy, including, but not limited to, radiopharmaceutical approaches.
Collapse
|
4
|
Zhu J, Pan F, Cai H, Pan L, Li Y, Li L, Li Y, Wu X, Fan H. Positron emission tomography imaging of lung cancer: An overview of alternative positron emission tomography tracers beyond F18 fluorodeoxyglucose. Front Med (Lausanne) 2022; 9:945602. [PMID: 36275809 PMCID: PMC9581209 DOI: 10.3389/fmed.2022.945602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer has been the leading cause of cancer-related mortality in China in recent decades. Positron emission tomography-computer tomography (PET/CT) has been established in the diagnosis of lung cancer. 18F-FDG is the most widely used PET tracer in foci diagnosis, tumor staging, treatment planning, and prognosis assessment by monitoring abnormally exuberant glucose metabolism in tumors. However, with the increasing knowledge on tumor heterogeneity and biological characteristics in lung cancer, a variety of novel radiotracers beyond 18F-FDG for PET imaging have been developed. For example, PET tracers that target cellular proliferation, amino acid metabolism and transportation, tumor hypoxia, angiogenesis, pulmonary NETs and other targets, such as tyrosine kinases and cancer-associated fibroblasts, have been reported, evaluated in animal models or under clinical investigations in recent years and play increasing roles in lung cancer diagnosis. Thus, we perform a comprehensive literature review of the radiopharmaceuticals and recent progress in PET tracers for the study of lung cancer biological characteristics beyond glucose metabolism.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - YunChun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Department of Nuclear Medicine, The Second People’s Hospital of Yibin, Yibin, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Xiaoai Wu,
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hong Fan,
| |
Collapse
|
5
|
Li L, Chen X, Yu J, Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front Oncol 2022; 12:837952. [PMID: 35311120 PMCID: PMC8924613 DOI: 10.3389/fonc.2022.837952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a common feature of many physiological processes and pathological conditions. RGD-containing peptides can strongly bind to integrin αvβ3 expressed on endothelial cells in neovessels and several tumor cells with high specificity, making them promising molecular agents for imaging angiogenesis. Although studies of RGD-containing peptides combined with radionuclides, namely, 18F, 64Cu, and 68Ga for positron emission tomography (PET) imaging have shown high spatial resolution and accurate quantification of tracer uptake, only a few of these radiotracers have been successfully translated into clinical use. This review summarizes the RGD-based tracers in terms of accumulation in tumors and adjacent tissues, and comparison with traditional 18F-fluorodeoxyglucose (FDG) imaging. The value of RGD-based tracers for diagnosis, differential diagnosis, tumor subvolume delineation, and therapeutic response prediction is mainly discussed. Very low RGD accumulation, in contrast to high FDG metabolism, was found in normal brain tissue, indicating that RGD-based imaging provides an excellent tumor-to-background ratio for improved brain tumor imaging. However, the intensity of the RGD-based tracers is much higher than FDG in normal liver tissue, which could lead to underestimation of primary or metastatic lesions in liver. In multiple studies, RGD-based imaging successfully realized the diagnosis and differential diagnosis of solid tumors and also the prediction of chemoradiotherapy response, providing complementary rather than similar information relative to FDG imaging. Of most interest, baseline RGD uptake values can not only be used to predict the tumor efficacy of antiangiogenic therapy, but also to monitor the occurrence of adverse events in normal organs. This unique dual predictive value in antiangiogenic therapy may be better than that of FDG-based imaging.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Evaluation of Integrin α vβ 3 Expression in Murine Xenograft Models: [ 68Ga]Ga-DOTA-C(RGDfK) PET Study with Immunohistochemical Confirmation. Diagnostics (Basel) 2021; 11:diagnostics11071295. [PMID: 34359378 PMCID: PMC8307120 DOI: 10.3390/diagnostics11071295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor blood flow (TBF) is related to drug delivery and hypoxia, both of which can impact the efficacy of anti-cancer therapies. Although integrin αvβ3 expression is related to tumor angiogenesis, it remains unclear whether the degree of angiogenesis affects TBF. This study aimed to evaluate the expression of integrin αvβ3 in mouse tumor models using [68Ga]Ga-DOTA-c(RGDfK) peptide positron emission tomography (PET) and immunohistochemical staining. PET studies were conducted using mouse C6 glioma models and MIA PaCa-2 (n = 6 each). The [68Ga]Ga-DOTA-c(RGDfK) peptide was injected via the tail vein (2.17 ± 0.28 MBq), and 10 min static PET scans were performed. Immunohistochemical analysis was conducted using an integrin αVβ3 antibody. [68Ga]Ga-DOTA-c(RGDfK) peptide PET revealed higher uptake of the radiotracer in C6 gliomas than in MIA PaCa-2 tumors. The mean standardized uptake value was significantly higher in C6 gliomas (0.35 ± 0.058) than in MIA PaCa-2 tumors (0.17 ± 0.045). Histological analysis revealed intense integrin αVβ3 expression in the C6 gliomas, whereas the MIA PaCa-2 tumors had low expression levels. This study showed that the expression of integrin αvβ3 can be differentiated by the [68Ga]Ga-DOTA-c(RGDfK) peptide, suggesting the potential applicability of this peptide in the evaluation of the relationship between angiogenesis and TBF.
Collapse
|
7
|
Kumar K, Woolum K. A Novel Reagent for Radioiodine Labeling of New Chemical Entities (NCEs) and Biomolecules. Molecules 2021; 26:4344. [PMID: 34299619 PMCID: PMC8304513 DOI: 10.3390/molecules26144344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Radioiodine labeling of peptides and proteins is routinely performed by using various oxidizing agents such as Chloramine T, Iodobeads, and Iodogen reagent and radioactive iodide (I-), although some other oxidizing agents were also investigated. The main objective of the present study was to develop and test a novel reagent, inorganic monochloramine (NH2Cl), for radioiodine labeling of new chemical entities and biomolecules which is cost-effective, easy to make and handle, and is selective to label amino acids, peptides, and proteins. The data presented in this report demonstrate that the yields of the non-radioactive iodine labeling reactions using monochloramine are >70% for an amino acid (tyrosine) and a cyclic peptide (cyclo Arg-Gly-Asp-d-Tyr-Lys, cRGDyK). No evidence of the formation of N-chloro derivatives in cRGDyK was observed, suggesting that the reagent is selective in iodinating the tyrosine residue in the biomolecules. The method was successfully translated into radioiodine labeling of amino acid, a peptide, and a protein, Bovine Serum Albumin (BSA).
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH 43212, USA;
| | | |
Collapse
|
8
|
In Vivo Imaging of Biodegradable Implants and Related Tissue Biomarkers. Polymers (Basel) 2021; 13:polym13142348. [PMID: 34301105 PMCID: PMC8309526 DOI: 10.3390/polym13142348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.
Collapse
|
9
|
Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo‐Young Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Jae Yun Lee
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyunji Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Woo‐Jin Jeong
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| |
Collapse
|
10
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Chakraborty S, Das S, Chakravarty R, Sarma HD, Vatsa R, Shukla J, Mittal BR, Dash A. An improved kit formulation for one-pot synthesis of [ 99m Tc]Tc-HYNIC-E[c(RGDfK)] 2 for routine clinical use in cancer imaging. J Labelled Comp Radiopharm 2019; 62:823-834. [PMID: 31315149 DOI: 10.1002/jlcr.3786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/11/2019] [Indexed: 11/09/2022]
Abstract
Radiolabeled Arg-Gly-Asp (RGD) peptide derivatives have immense potential for non-invasive monitoring of malignancies overexpressing integrin αv β3 receptors. Easy availability of suitable radiotracers would augment the utility of this class of molecular imaging agents. Towards this, the present article describes the development of an improved lyophilized kit for the routine clinical formulation of [99m Tc]Tc complex of HYNIC-conjugated dimeric cyclic RGD peptide derivative E-[c(RGDfK)]2 (E = glutamic acid, f = phenyl alanine, K = lysine) without using Sn2+ and systematic evaluation of its efficacy. Five batches of the kits were prepared, and [99m Tc]Tc-HYNIC-E[c(RGDfK)]2 radiotracer was synthesized with high radiochemical purity (98.6 ± 0.5%) and specific activity (124.8 GBq/μmol) using the kits. Biodistribution studies in C57BL/6 mice bearing melanoma tumor exhibited significant accumulation of the radiotracer in tumor (5.32 ± 0.56 %ID/g at 60 min p.i.), and this uptake was also found to be receptor-specific by blocking studies. Preliminary human clinical investigations carried out in 10 breast cancer patients revealed high radiotracer uptake in the tumor along with good tumor-to-background contrast. The developed kit formulation showed an exceptionally high shelf-life of at least 18 months. These results demonstrated promising attributes of the developed kit formulation and warrant more extensive clinical investigations.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Soumen Das
- Homi Bhabha National Institute, Mumbai, India.,Radiopharmaceuticals Programme, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rakhee Vatsa
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Li X, Ma Z, Wang H, Ren L, Zhang D, Liang W, Zhang G, Zhang J, Yu D, Fang X. Screening, Identification, and Characterization of an Affinity Peptide Specific to MT1-MMP and Its Application in Tumor Imaging. Bioconjug Chem 2019; 30:1507-1517. [PMID: 30986050 DOI: 10.1021/acs.bioconjchem.9b00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) plays a crucial role in many physiological and pathological processes, especially in tumor invasion and metastasis. Bioimaging of this key molecule may find wide usage in various applications. MT-loop is a unique sequence of MT1-MMP and locates in the surface of the protein. In our previous studies, AF7p, an affinity peptide that targeting the MT-loop domain of MT1-MMP, was identified by screening a phage display (Ph.D.) peptide library. However, the target of AF7p is a synthetic sequence which lacked native conformation of the MT-loop region; thus, the binding affinity and specificity in reality may not be optimal. In this study, we considered the 3-dimensional (3-D) conformation of the MT-loop area in the MT1-MMP molecule and designed a novel strategy to screen the Ph.D. peptide library. The peptide we obtained showed a better binding affinity to WT-MT1-MMP than AF7p as observed through enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). The new peptide labeled and attached MT1-MMP expression cell lines HT1080 and did not show any toxicity to cells. Furthermore, for in vivo imaging, HT1080 tumor-bearing mice with higher MT1-MMP expression accumulated more Cy5.5-HS7 than mice with MT1-MMP low-expression cell lines A549 at tumor sites, and the half-life of HS7 was longer than that of AF7p, as confirmed by ex vivo imaging of the main organs. These results suggest the feasibility of using the subtraction biopanning strategy to screen the affinity peptide targeting MT-loop regions and HS7 is a superior probe for noninvasively imaging MT1-MMP expression in MT1-MMP-positive tumor models. It provides impetus for further studies to use HS7 in early diagnosis of tumors and in peptide-mediated drugs.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Zheng Ma
- Department of Thoracic Surgery , Qilu Hospital of Shandong University , 107 Wenhuaxi Road , Jinan 250012 , P. R. China
| | - Haoran Wang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Li Ren
- College of Food Science and Engineering , Jilin University , 5333 Xi'an Street , Changchun 130062 , P. R. China
| | - Dianwen Zhang
- Academy of Chinese Medical Sciences of Jilin Province , 155 Chuangju Street , Changchun 130015 , P. R. China
| | - Weiguo Liang
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences , 88 Keling Road , Suzhou 215163 , P. R. China
| | - Guangji Zhang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Jinrui Zhang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Dahai Yu
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xuexun Fang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| |
Collapse
|
13
|
Wang T, Hou Y, Bu B, Wang W, Ma T, Liu C, Lin L, Ma L, Lou X, Gao M. Timely Visualization of the Collaterals Formed during Acute Ischemic Stroke with Fe 3 O 4 Nanoparticle-based MR Imaging Probe. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800573. [PMID: 29665290 DOI: 10.1002/smll.201800573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Ischemic stroke is one of the major leading causes for long-term disability and mortality. Collateral vessels provide an alternative pathway to protect the brain against ischemic injury after arterial occlusion. Aiming at visualizing the collaterals occurring during acute ischemic stroke, an integrin αv β3 -specific Fe3 O4 -Arg-Gly-Asp (RGD) nanoprobe is prepared for magnetic resonance imaging (MRI) of the collaterals. Rat models are constructed by occluding the middle cerebral artery for imaging studies of cerebral ischemia and ischemia-reperfusion on 7.0 Tesla MRI using susceptibility-weighted imaging sequence. To show the binding specificity to the collaterals, the imaging results acquired with the Fe3 O4 -RGD nanoprobe and the Fe3 O4 mother nanoparticles, respectively, are carefully compared. In addition, an RGD blocking experiment is also carried out to support the excellent binding specificity of the Fe3 O4 -RGD nanoprobe. Following the above experiments, cerebral ischemia-reperfusion studies show the collateral dynamics upon reperfusion, which is very important for the prognosis of various revascularization therapies in the clinic. The current study has, for the first time, enabled the direct observation of collaterals in a quasi-real time fashion and further disclosed that the antegrade flow upon reperfusion dominates the blood supply of primary ischemic tissue during the early stage of infarction, which is significantly meaningful for clinical treatment of stroke.
Collapse
Affiliation(s)
- Ting Wang
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Yi Hou
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, P. R. China
| | - Bo Bu
- Department of Neurosurgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Wenxin Wang
- Department of Neurosurgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Tiancong Ma
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, P. R. China
| | - Lan Lin
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Mingyuan Gao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Angiogenesis PET Tracer Uptake ( 68Ga-NODAGA-E[(cRGDyK)]₂) in Induced Myocardial Infarction and Stromal Cell Treatment in Minipigs. Diagnostics (Basel) 2018; 8:diagnostics8020033. [PMID: 29772738 PMCID: PMC6023271 DOI: 10.3390/diagnostics8020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is considered integral to the reparative process after ischemic injury. The αvβ₃ integrin is a critical modulator of angiogenesis and highly expressed in activated endothelial cells. 68Ga-NODAGA-E[(cRGDyK)]₂ (RGD) is a positron-emission-tomography (PET) ligand targeted towards αvβ₃ integrin. The aim was to present data for the uptake of RGD and correlate it with histology and to further illustrate the differences in angiogenesis due to porcine adipose-derived mesenchymal stromal cell (pASC) or saline treatment in minipigs after induction of myocardial infarction (MI). Three minipigs were treated with direct intra-myocardial injection of pASCs and two minipigs with saline. MI was confirmed by 82Rubidium (82Rb) dipyridamole stress PET. Mean Standardized Uptake Values (SUVmean) of RGD were higher in the infarct compared to non-infarct area one week and one month after MI in both pASC-treated (SUVmean: 1.23 vs. 0.88 and 1.02 vs. 0.86, p < 0.05 for both) and non-pASC-treated minipigs (SUVmean: 1.44 vs. 1.07 and 1.26 vs. 1.04, p < 0.05 for both). However, there was no difference in RGD uptake, ejection fractions, coronary flow reserves or capillary density in histology between the two groups. In summary, indications of angiogenesis were present in the infarcted myocardium. However, no differences between pASC-treated and non-pASC-treated minipigs could be demonstrated.
Collapse
|
15
|
Kanno I, Seki C, Takuwa H, Jin ZH, Boturyn D, Dumy P, Furukawa T, Saga T, Ito H, Masamoto K. Positron emission tomography of cerebral angiogenesis and TSPO expression in a mouse model of chronic hypoxia. J Cereb Blood Flow Metab 2018; 38:687-696. [PMID: 28128020 PMCID: PMC5888851 DOI: 10.1177/0271678x16689800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study aimed to examine whether positron emission tomography (PET) could evaluate cerebral angiogenesis. Mice were housed in a hypoxic chamber with 8-9% oxygen for 4, 7, and 14 days, and the angiogenic responses were evaluated with a radiotracer, 64Cu-cyclam-RAFT-c(-RGDfK-)4, which targeted αVβ3 integrin and was imaged with PET. The PET imaging results showed little uptake during all of the hypoxic periods. Immunofluorescence staining of the β3 integrin, CD61, revealed weak expression, while the microvessel density assessed by CD31 staining increased with the hypoxic duration. These observations suggest that the increased vascular density originated from other types of vascular remodeling, unlike angiogenic sprouting. We then searched for any signs of vascular remodeling that could be detected using PET. PET imaging of 11C-PK11195, a marker of the 18-kDa translocator protein (TSPO), revealed a transient increase at day 4 of hypoxia. Because the immunofluorescence of glial markers showed unchanged staining over the early phase of hypoxia, the observed upregulation of TSPO expression probably originated from non-glial cells (e.g. vascular cells). In conclusion, a transient increase in TSPO probe uptake was detected with PET at only the early phase of hypoxia, which indicates an early sign of vascular remodeling induced by hypoxia.
Collapse
Affiliation(s)
- Iwao Kanno
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Chie Seki
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroyuki Takuwa
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Zhao-Hui Jin
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Didier Boturyn
- 2 Département de Chimie Moléculaire, Université Grenoble Alpes, Grenoble, France
| | - Pascal Dumy
- 3 Institut des Biomolécules Max Mousseron, École Nationale Supérieure de Chimie de Montpellier, Montpellier, France
| | - Takako Furukawa
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tsuneo Saga
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Ito
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Kazuto Masamoto
- 1 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.,4 Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
16
|
Kumar K, Ghosh A. 18F-AlF Labeled Peptide and Protein Conjugates as Positron Emission Tomography Imaging Pharmaceuticals. Bioconjug Chem 2018; 29:953-975. [PMID: 29463084 DOI: 10.1021/acs.bioconjchem.7b00817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The clinical applications of positron emission tomography (PET) imaging pharmaceuticals have increased tremendously over the past several years since the approval of 18fluorine-fluorodeoxyglucose (18F-FDG) by the Food and Drug Administration (FDA). Numerous 18F-labeled target-specific potential imaging pharmaceuticals, based on small and large molecules, have been evaluated in preclinical and clinical settings. 18F-labeling of organic moieties involves the introduction of the radioisotope by C-18F bond formation via a nucleophilic or an electrophilic substitution reaction. However, biomolecules, such as peptides, proteins, and oligonucleotides, cannot be radiolabeled via a C-18F bond formation as these reactions involve harsh conditions, including organic solvents, high temperature, and nonphysiological conditions. Several approaches, including 18F-labeled prosthetic groups, silicon, boron, and aluminum fluoride acceptor chemistry, and click chemistry have been developed, in the past, for 18F labeling of biomolecules. Linear and macrocyclic polyaminocarboxylates and their analogs and derivatives form thermodynamically stable and kinetically inert aluminum chelates. Hence, macrocyclic polyaminocarboxylates have been used for conjugation with biomolecules, such as folate, peptides, affibodies, and protein fragments, followed by 18F-AlF chelation, and evaluation of their targeting abilities in preclinical and clinical environments. The goal of this report is to provide an overview of the 18F radiochemistry and 18F-labeling methodologies for small molecules and target-specific biomolecules, a comprehensive review of coordination chemistry of Al3+, 18F-AlF labeling of peptide and protein conjugates, and evaluation of 18F-labeled biomolecule conjugates as potential imaging pharmaceuticals.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| | - Arijit Ghosh
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| |
Collapse
|
17
|
Liao Y, Yang L, Huang R, Wu J, Xie J, Bundhoo K, Liu Y, Hu G, Liu C, Bin J. Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo. Thromb Haemost 2017; 107:172-83. [DOI: 10.1160/th10-11-0701] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 09/28/2011] [Indexed: 12/17/2022]
Abstract
SummaryDespite immense potential, ultrasound molecular imaging (UMI) of arterial thrombi remains very challenging because the high-shear arterial flow limits binding of site-targeted microbubbles to the thrombi. The linear Arg-Gly-Asp (RGD) peptides have been successfully applied to evaluate venous, atrial, and arteriolar thrombi, but have thus far failed in the detection of arterial thrombi. Cyclic RGD (Arg-Gly-Asp-D-Phe-Cys) is a cyclic conformation of linear RGD peptides, which has much higher binding-affinity and selectivity for binding to the glycoprotein (GP) IIb/IIIa receptor than its linear counterpart and thus is likely to be an optimal targeted molecular probe for ultrasound molecular imaging of arterial thrombi. In this study, we sought to assess the feasibility of a novel microbubble conjugated with cyclic RGD (Mb-cyclic RGD) in UMI of arterial thrombi in vitro and in vivo. As expected, Mb-cyclic RGD had greater GP IIb/IIIa-targeted binding capability in all shear stress conditions. In addition, the shear stress at half-maximal detachment of Mb-cyclic RGD was 5.7-fold higher than that of microbubbles with nonspecific peptide (Mb-CON) (p<0.05). Mb-cyclic RGD enhanced the echogenicity of the platelet-rich thrombus in vitro whereas Mb-CON did not produce enhancement. In the in vivo setting, optimal signal enhancement of the abdominal aortic thrombus was displayed with Mb-cyclic RGD in all cases. Mean video intensity of the abdominal aortic thrombi with Mb-cyclic RGD was 3.2-fold higher than that with Mb-CON (p<0.05). The novel Mb-cyclic RGD facilitated excellent visualisation of arterial thrombi using UMI and showed great promise for clinical applications.
Collapse
|
18
|
Abstract
F18 Flurodeoxyglucose (FDG) is a nonspecific PET tracer representing tumor energy metabolism, with common false-positive and false-negative findings in clinical practice. Non-small cell lung cancer is highly heterogeneous histologically, biologically, and molecularly. Novel PET tracers designed to characterize a specific aspect of tumor biology or a pathway-specific molecular target have the potential to provide noninvasive key information in tumor heterogeneity for patient stratification and in the assessment of treatment response. Non-FDG PET tracers, including 68Ga-somatostatin analogs, and some PET tracers targeting tumor proliferation, hypoxia, angiogenesis, and pathway-specific targets are briefly reviewed in this article.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Niccoli Asabella A, Di Palo A, Altini C, Ferrari C, Rubini G. Multimodality Imaging in Tumor Angiogenesis: Present Status and Perspectives. Int J Mol Sci 2017; 18:ijms18091864. [PMID: 28846661 PMCID: PMC5618513 DOI: 10.3390/ijms18091864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is a complex biological process that plays a central role in progression of tumor growth and metastasis. It led to a search for antiangiogenic molecules, and to design antiangiogenic strategies for cancer treatment. Noninvasive molecular imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT), could be useful for lesion detection, to select patients likely to respond to antiangiogenic therapies, to confirm successful targeting, and dose optimization. Additionally, nuclear imaging techniques could also aid in the development of new angiogenesis-targeted drugs and their validation. Angiogenesis imaging can be categorized as targeted at three major cell types: (I) non-endothelial cell targets, (II) endothelial cell targets, and (III) extracellular matrix proteins and matrix proteases. Even if radiopharmaceuticals studying the metabolism and hypoxia can be also used for the study of angiogenesis, many of the agents used in nuclear imaging for this purpose are yet to be investigated. The purpose of this review is to describe the role of molecular imaging in tumor angiogenesis, highlighting the advances in this field.
Collapse
Affiliation(s)
- Artor Niccoli Asabella
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Alessandra Di Palo
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Corinna Altini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Cristina Ferrari
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
20
|
Doll S, Woolum K, Kumar K. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent. J Labelled Comp Radiopharm 2016; 59:462-6. [PMID: 27577980 PMCID: PMC6085888 DOI: 10.1002/jlcr.3431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/09/2022]
Abstract
A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite.
Collapse
Affiliation(s)
- Stephanie Doll
- Laboratory for Translational Research in Imaging Pharmaceuticals, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH, 43212, USA
| | - Karen Woolum
- Laboratory for Translational Research in Imaging Pharmaceuticals, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH, 43212, USA
| | - Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH, 43212, USA.
| |
Collapse
|
21
|
Daeichin V, Kooiman K, Skachkov I, Bosch JG, Theelen TL, Steiger K, Needles A, Janssen BJ, Daemen MJAP, van der Steen AFW, de Jong N, Sluimer JC. Quantification of Endothelial αvβ3 Expression with High-Frequency Ultrasound and Targeted Microbubbles: In Vitro and In Vivo Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2283-2293. [PMID: 27302657 DOI: 10.1016/j.ultrasmedbio.2016.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
Angiogenesis is a critical feature of plaque development in atherosclerosis and might play a key role in both the initiation and later rupture of plaques. The precursory molecular or cellular pro-angiogenic events that initiate plaque growth and that ultimately contribute to plaque instability, however, cannot be detected directly with any current diagnostic modality. This study was designed to investigate the feasibility of ultrasound molecular imaging of endothelial αvβ3 expression in vitro and in vivo using αvβ3-targeted ultrasound contrast agents (UCAs). In the in vitro study, αvβ3 expression was confirmed by immunofluorescence in a murine endothelial cell line and detected using the targeted UCA and ultrasound imaging at 18-MHz transmit frequency. In the in vivo study, expression of endothelial αvβ3 integrin in murine carotid artery vessels and microvessels of the salivary gland was quantified using targeted UCA and high-frequency ultrasound in seven animals. Our results indicated that endothelial αvβ3 expression was significantly higher in the carotid arterial wall containing atherosclerotic lesions than in arterial segments without any lesions. We also found that the salivary gland can be used as an internal positive control for successful binding of targeted UCA to αvβ3 integrin. In conclusion, αvβ3-targeted UCA allows non-invasive assessment of the expression levels of αvβ3 on the vascular endothelium and may provide potential insights into early atherosclerotic plaque detection and treatment monitoring.
Collapse
Affiliation(s)
- Verya Daeichin
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
| | - Klazina Kooiman
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Ilya Skachkov
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Johan G Bosch
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Thomas L Theelen
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | | | - Ben J Janssen
- Department of Pharmacology, MUMC, Maastricht, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; Shenzhen Institute of Advanced Technologies, Shenzhen, China
| | - Nico de Jong
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; Netherlands Heart Institute, Utrecht, The Netherlands
| | - Judith C Sluimer
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
22
|
Jin ZH, Furukawa T, Degardin M, Sugyo A, Tsuji AB, Yamasaki T, Kawamura K, Fujibayashi Y, Zhang MR, Boturyn D, Dumy P, Saga T. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4. Mol Cancer Ther 2016; 15:2076-85. [DOI: 10.1158/1535-7163.mct-16-0040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022]
|
23
|
Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, Cook GJ. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015; 70:1060-1082. [PMID: 26187890 DOI: 10.1016/j.crad.2015.06.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
Abstract
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.
Collapse
Affiliation(s)
- A Mahajan
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India.
| | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - S Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, 400 012, India
| | - R Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
| | - A J Weeks
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - M H Thakur
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India
| | - G J Cook
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Nuclear Medicine, Guy's and St Thomas NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
24
|
Máté G, Kertész I, Enyedi KN, Mező G, Angyal J, Vasas N, Kis A, Szabó É, Emri M, Bíró T, Galuska L, Trencsényi G. In vivo imaging of Aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer (68)Ga-NOTA-c(NGR). Eur J Pharm Sci 2015; 69:61-71. [PMID: 25592229 DOI: 10.1016/j.ejps.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Aminopeptidase N (APN/CD13) plays an important role in tumor neoangiogenic process and the development of metastases. Furthermore, it may serve as a potential target for cancer diagnosis and therapy. Previous studies have already shown that asparagine-glycine-arginine (NGR) peptides specifically bind to APN/CD13. The aim of the study was to synthesize and investigate the APN/CD13 specificity of a novel (68)Ga-labeled NOTA-c(NGR) molecule in vivo using miniPET. METHODS c[KNGRE]-NH2 peptide was conjugated with p-SCN-Bn-NOTA and was labeled with Ga-68 ((68)Ga-NOTA-c(NGR)). Orthotopic and heterotopic transplanted mesoblastic nephroma (NeDe) bearing Fischer-344 rats were prepared, on which biodistribution studies and miniPET scans were performed for both (68)Ga-NOTA-c(NGR) and ανβ3 integrin selective (68)Ga-NODAGA-[c(RGD)]2 tracers. APN/CD13 receptor expression of NeDe tumors and metastases was analyzed by western blot. RESULTS (68)Ga-NOTA-c(NGR) was produced with high specific activity (5.13-5.92GBq/μmol) and with excellent radiochemical purity (95%<), at all cases. Biodistribution studies in normal rats showed that uptake of the (68)Ga-NOTA-c(NGR) was significantly (p⩽0.05) lower in abdominal organs in comparison with (68)Ga-NODAGA-[c(RGD)]2. Both radiotracers were mainly excreted from the kidney. In NeDe tumor bearing rats higher (68)Ga-NOTA-c(NGR) accumulation was found in the tumors than that of the (68)Ga-NODAGA-[c(RGD)]2. Using orthotopic transplantation, metastases were developed which showed specific (68)Ga-NOTA-c(NGR) uptake. Western blot analysis confirmed the presence of APN/CD13 expression in NeDe tumors and metastases. CONCLUSION Our novel radiotracer (68)Ga-NOTA-c(NGR) showed specific binding to the APN/CD13 expressed ortho- and heterotopic transplanted NeDe tumors. Therefore, (68)Ga-NOTA-c(NGR) is a suitable tracer for the detection of APN/CD13 positive tumors and metastases in vivo.
Collapse
Affiliation(s)
- Gábor Máté
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - István Kertész
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - János Angyal
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Nikolett Vasas
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Adrienn Kis
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Éva Szabó
- Department of Periodontology, University of Debrecen, Debrecen, Hungary
| | - Miklós Emri
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - Tamás Bíró
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - László Galuska
- Department of Nuclear Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine, University of Debrecen, Hungary; Scanomed LTD, Debrecen, Hungary.
| |
Collapse
|
25
|
Park JA, Lee YJ, Ko IO, Kim TJ, Chang Y, Lim SM, Kim KM, Kim JY. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. Biochem Biophys Res Commun 2014; 455:246-50. [PMID: 25449282 DOI: 10.1016/j.bbrc.2014.10.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 11/16/2022]
Abstract
Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.
Collapse
Affiliation(s)
- Ji-Ae Park
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| | - Yong Jin Lee
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - In Ok Ko
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Tae-Jeong Kim
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yongmin Chang
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Kyeong Min Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Jung Young Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Park JA, Lee YJ, Lee JW, Lee KC, An GI, Kim KM, Kim BI, Kim TJ, Kim JY. Cyclic RGD Peptides Incorporating Cycloalkanes: Synthesis and Evaluation as PET Radiotracers for Tumor Imaging. ACS Med Chem Lett 2014; 5:979-82. [PMID: 25221652 DOI: 10.1021/ml500135t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
Two new bicyclic arginine-glycine-aspartic acid (RGD) peptides, c(RGD-ACP-K) (1a) and c(RGD-ACH-K) (1b), incorporating the aminocyclopentane (ACP) and aminocyclohexane (ACH) carboxylic acids, respectively, were synthesized by grafting the aminocycloalkane carboxylic acids onto the tetra-peptide RGDK sequence. These peptides and their conjugates with DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid) (2a-b) exhibit high affinity toward U87MG glioblastoma cells. Their affinity is greater than that exhibited by c(RGDyK). Labeling these conjugates with radiometal (64)Cu resulted in high radiochemical yields (>97%) of the corresponding complexes, abbreviated as c(RGD-ACP-K)-DOTA-(64)Cu (3a) and c(RGD-ACH-K)-DOTA-(64)Cu (3b). Both 3a and 3b are stable for 24 h in human and mouse serums and show high tumor uptake, as observed by positron emission tomography (PET). Blocking experiments with 3a and 3b by preinjection of c(RGDyK) confirmed their target specificity and demonstrated their promise as PET radiotracers for imaging ανβ3-positive tumors.
Collapse
Affiliation(s)
- Ji-Ae Park
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Yong Jin Lee
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Ji Woong Lee
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyo Chul Lee
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Gwang il An
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyeong Min Kim
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Byung il Kim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Tae-Jeong Kim
- Institute of Biomedical Engineering Research, Medical
School, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jung Young Kim
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| |
Collapse
|
27
|
Ceccaldi C, Bushkalova R, Alfarano C, Lairez O, Calise D, Bourin P, Frugier C, Rouzaud-Laborde C, Cussac D, Parini A, Sallerin B, Fullana SG. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomater 2014; 10:901-11. [PMID: 24211733 DOI: 10.1016/j.actbio.2013.10.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/20/2013] [Accepted: 10/25/2013] [Indexed: 11/15/2022]
Abstract
Three-dimensional (3D) scaffolds hold great potential for stem cell-based therapies. Indeed, recent results have shown that biomimetic scaffolds may enhance cell survival and promote an increase in the concentration of therapeutic cells at the injury site. The aim of this work was to engineer an original polymeric scaffold based on the respective beneficial effects of alginate and chitosan. Formulations were made from various alginate/chitosan ratios to form opposite-charge polyelectrolyte complexes (PECs). After freeze-drying, the resultant matrices presented a highly interconnected porous microstructure and mechanical properties suitable for cell culture. In vitro evaluation demonstrated their compatibility with mesenchymal stell cell (MSC) proliferation and their ability to maintain paracrine activity. Finally, the in vivo performance of seeded 3D PEC scaffolds with a polymeric ratio of 40/60 was evaluated after an acute myocardial infarction provoked in a rat model. Evaluation of cardiac function showed a significant increase in the ejection fraction, improved neovascularization, attenuated fibrosis as well as less left ventricular dilatation as compared to an animal control group. These results provide evidence that 3D PEC scaffolds prepared from alginate and chitosan offer an efficient environment for 3D culturing of MSCs and represent an innovative solution for tissue engineering.
Collapse
Affiliation(s)
- Caroline Ceccaldi
- Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, F-31062 Toulouse, France; INSERM, UMR 1048, F-31432 Toulouse, France.
| | - Raya Bushkalova
- Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, F-31062 Toulouse, France; INSERM, UMR 1048, F-31432 Toulouse, France
| | | | | | | | - Philippe Bourin
- EFS, Laboratoire de thérapie cellulaire, F-31027 Toulouse, France
| | | | - Charlotte Rouzaud-Laborde
- INSERM, UMR 1048, F-31432 Toulouse, France; CHU Toulouse, Service de Pharmacie Hospitalière, F-31432 Toulouse, France
| | - Daniel Cussac
- INSERM, UMR 1048, F-31432 Toulouse, France; Université de Toulouse, UPS, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse, France
| | - Angelo Parini
- INSERM, UMR 1048, F-31432 Toulouse, France; Université de Toulouse, UPS, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse, France; CHU Toulouse, Service de Pharmacie Hospitalière, F-31432 Toulouse, France
| | - Brigitte Sallerin
- INSERM, UMR 1048, F-31432 Toulouse, France; Université de Toulouse, UPS, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse, France; CHU Toulouse, Service de Pharmacie Hospitalière, F-31432 Toulouse, France
| | - Sophie Girod Fullana
- Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, F-31062 Toulouse, France
| |
Collapse
|
28
|
Nebuloni L, Kuhn GA, Vogel J, Müller R. A novel in vivo vascular imaging approach for hierarchical quantification of vasculature using contrast enhanced micro-computed tomography. PLoS One 2014; 9:e86562. [PMID: 24475146 PMCID: PMC3903581 DOI: 10.1371/journal.pone.0086562] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/11/2013] [Indexed: 01/08/2023] Open
Abstract
The vasculature of body tissues is continuously subject to remodeling processes originating at the micro-vascular level. The formation of new blood vessels (angiogenesis) is essential for a number of physiological and pathophysiological processes such as tissue regeneration, tumor development and the integration of artificial tissues. There are currently no time-lapsed in vivo imaging techniques providing information on the vascular network at the capillary level in a non-destructive, three-dimensional and high-resolution fashion. This paper presents a novel imaging framework based on contrast enhanced micro-computed tomography (micro-CT) for hierarchical in vivo quantification of blood vessels in mice, ranging from largest to smallest structures. The framework combines for the first time a standard morphometric approach with densitometric analysis. Validation tests showed that the method is precise and robust. Furthermore, the framework is sensitive in detecting different perfusion levels after the implementation of a murine ischemia-reperfusion model. Correlation with both histological data and micro-CT analysis of vascular corrosion casts confirmed accuracy of the method. The newly developed time-lapsed imaging approach shows high potential for in vivo monitoring of a number of different physiological and pathological conditions in angiogenesis and vascular development.
Collapse
Affiliation(s)
- Laura Nebuloni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Johannes Vogel
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Morais M, Paulo A, Gano L, Santos I, Correia JD. Target-specific Tc(CO)3-complexes for in vivo imaging. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Tracer level radiochemistry to clinical dose preparation of 177Lu-labeled cyclic RGD peptide dimer. Nucl Med Biol 2013; 40:946-54. [DOI: 10.1016/j.nucmedbio.2013.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022]
|
31
|
Moore SJ, Leung CL, Norton HK, Cochran JR. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One 2013; 8:e60498. [PMID: 23573262 PMCID: PMC3616073 DOI: 10.1371/journal.pone.0060498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cystine-knot miniproteins, also known as knottins, have shown great potential as molecular scaffolds for the development of targeted therapeutics and diagnostic agents. For this purpose, previous protein engineering efforts have focused on knottins based on the Ecballium elaterium trypsin inhibitor (EETI) from squash seeds, the Agouti-related protein (AgRP) neuropeptide from mammals, or the Kalata B1 uterotonic peptide from plants. Here, we demonstrate that Agatoxin (AgTx), an ion channel inhibitor found in spider venom, can be used as a molecular scaffold to engineer knottins that bind with high-affinity to a tumor-associated integrin receptor. METHODOLOGY/PRINCIPAL FINDINGS We used a rational loop-grafting approach to engineer AgTx variants that bound to αvβ3 integrin with affinities in the low nM range. We showed that a disulfide-constrained loop from AgRP, a structurally-related knottin, can be substituted into AgTx to confer its high affinity binding properties. In parallel, we identified amino acid mutations required for efficient in vitro folding of engineered integrin-binding AgTx variants. Molecular imaging was used to evaluate in vivo tumor targeting and biodistribution of an engineered AgTx knottin compared to integrin-binding knottins based on AgRP and EETI. Knottin peptides were chemically synthesized and conjugated to a near-infrared fluorescent dye. Integrin-binding AgTx, AgRP, and EETI knottins all generated high tumor imaging contrast in U87MG glioblastoma xenograft models. Interestingly, EETI-based knottins generated significantly lower non-specific kidney imaging signals compared to AgTx and AgRP-based knottins. CONCLUSIONS/SIGNIFICANCE In this study, we demonstrate that AgTx, a knottin from spider venom, can be engineered to bind with high affinity to a tumor-associated receptor target. This work validates AgTx as a viable molecular scaffold for protein engineering, and further demonstrates the promise of using tumor-targeting knottins as probes for in vivo molecular imaging.
Collapse
Affiliation(s)
- Sarah J. Moore
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Cheuk Lun Leung
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Heidi K. Norton
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Stanford Cancer Institute and Bio-X Program, Stanford, California, United States of America
| |
Collapse
|
32
|
Chakraborty S, Chakravarty R, Sarma HD, Dash A, Pillai M. The Practicality of Nanoceria-PAN-Based 68Ge/68Ga Generator Toward Preparation of 68Ga-Labeled Cyclic RGD Dimer as a Potential PET Radiotracer for Tumor Imaging. Cancer Biother Radiopharm 2013; 28:77-83. [DOI: 10.1089/cbr.2012.1252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - M.R.A. Pillai
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
33
|
Autio A, Jalkanen S, Roivainen A. Nuclear imaging of inflammation: homing-associated molecules as targets. EJNMMI Res 2013; 3:1. [PMID: 23281702 PMCID: PMC3557172 DOI: 10.1186/2191-219x-3-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/18/2012] [Indexed: 02/07/2023] Open
Abstract
The golden standard in nuclear medicine imaging of inflammation is the use of autologous radiolabeled leukocytes. Although their diagnostic accuracy is precise, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration (homing-associated molecules) could serve as targets for the development of imaging agents for inflammation. An excellent target would be a molecule that is absent or expressed at low levels in healthy tissues, but is present or upregulated at the sites of inflammation. In this paper, we will review the literature concerning the use of homing-associated molecules as imaging targets. We will especially concentrate on vascular adhesion protein-1 due to the promising results regarding its use as a target for the imaging of inflammation.
Collapse
Affiliation(s)
- Anu Autio
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, Turku, 20521, Finland.
| | | | | |
Collapse
|
34
|
Abstract
Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Gunter Wolf
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
35
|
Tsiapa I, Loudos G, Varvarigou A, Fragogeorgi E, Psimadas D, Tsotakos T, Xanthopoulos S, Mihailidis D, Bouziotis P, Nikiforidis GC, Kagadis GC. Biological evaluation of an ornithine-modified (99m)Tc-labeled RGD peptide as an angiogenesis imaging agent. Nucl Med Biol 2012; 40:262-72. [PMID: 23238128 DOI: 10.1016/j.nucmedbio.2012.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Radiolabeled RGD peptides that specifically target integrin α(ν)β(3) have great potential in early tumor detection through noninvasive monitoring of tumor angiogenesis. Based on previous findings of our group on radiopeptides containing positively charged aminoacids, we developed a new cyclic cRGDfK derivative, c(RGDfK)-(Orn)(3)-CGG. This new peptide availing the polar linker (Orn)(3) and the (99m)Tc-chelating moiety CGG (Cys-Gly-Gly) is appropriately designed for (99m)Tc-labeling, as well as consequent conjugation onto nanoparticles. METHODS A tumor imaging agent, c(RGDfK)-(Orn)(3)-[CGG-(99m)Tc], is evaluated with regard to its radiochemical, radiobiological and imaging characteristics. RESULTS The complex c(RGDfK)-(Orn)(3)-[CGG-(99m)Tc] was obtained in high radiochemical yield (>98%) and was stable in vitro and ex vivo. It presented identical to the respective, fully analytically characterized (185/187)Re complex retention time in RP-HPLC. In contrary to other RGD derivatives, we showed that the new radiopeptide exhibits kidney uptake and urine excretion due to the ornithine linker. High tumor uptake (3.87±0.48% ID/g at 60 min p.i.) was observed and was maintained relatively high even at 24 h p.i. (1.83±0.05 % ID/g), thus providing well-defined scintigraphic imaging. Accumulation in other organs was negligible. Blocking experiments indicated target specificity for integrin receptors in U87MG glioblastoma cells. CONCLUSION Due to its relatively high tumor uptake, renal elimination and negligible abdominal localization, the new (99m)Tc-RGD peptide is considered promising in the field of imaging α(ν)β(3)-positive tumors. However, the preparation of multifunctional SPECT/MRI contrast agents (RGD-conjugated nanoparticles) for dual modality imaging of integrin expressing tumors should be further investigated.
Collapse
Affiliation(s)
- Irene Tsiapa
- Department of Medical Physics, School of Medicine, University of Patras, P.O. BOX: 132 73, GR 265 04, Rion, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Angiogenesis is an integral part of tumor growth and invasion. This has led to the emergence of several antiangiogenic therapies and stimulated efforts to accurately evaluate the extent of angiogenesis before and in response to anticancer treatment. The most commonly used approach has been the assessment of new vessel formation in histological samples. However, it is becoming apparent that this is insufficient for a full understanding of tumor physiology and for in vivo guidance of cancer management. Imaging has the potential to provide noninvasive and repeatable assessment of the angiogenic process. Imaging approaches use a variety of modalities and are aimed at either assessment of the functional integrity of tumor vasculature or assessment of its molecular status. This review summarizes the aims and methods of clinical tumor angiogenesis imaging, including present technologies and ones that will be developed within the next 5-10 years.
Collapse
Affiliation(s)
- Neel Patel
- Department of Radiology, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK.
| | | | | | | |
Collapse
|
37
|
Zeng D, Desai AV, Ranganathan D, Wheeler TD, Kenis PJA, Reichert DE. Microfluidic radiolabeling of biomolecules with PET radiometals. Nucl Med Biol 2012; 40:42-51. [PMID: 23078875 DOI: 10.1016/j.nucmedbio.2012.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/31/2012] [Accepted: 08/23/2012] [Indexed: 12/24/2022]
Abstract
INTRODUCTION A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. METHODS The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. RESULTS Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules. CONCLUSIONS A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions.
Collapse
Affiliation(s)
- Dexing Zeng
- Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd., St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhao D, Jin X, Li F, Liang J, Lin Y. Integrin αvβ3 Imaging of Radioactive Iodine–Refractory Thyroid Cancer Using 99mTc-3PRGD2. J Nucl Med 2012; 53:1872-7. [DOI: 10.2967/jnumed.112.107821] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
39
|
Soloperto G, Casciaro S. Progress in atherosclerotic plaque imaging. World J Radiol 2012; 4:353-71. [PMID: 22937215 PMCID: PMC3430733 DOI: 10.4329/wjr.v4.i8.353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods.
Collapse
|
40
|
Laverman P, Sosabowski JK, Boerman OC, Oyen WJG. Radiolabelled peptides for oncological diagnosis. Eur J Nucl Med Mol Imaging 2012; 39 Suppl 1:S78-92. [PMID: 22388627 PMCID: PMC3304069 DOI: 10.1007/s00259-011-2014-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The 111In-labelled somatostatin analogue octreotide (OctreoScan™) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours.
Collapse
Affiliation(s)
- Peter Laverman
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Abstract
Patient management in oncology increasingly relies on imaging for diagnosis, response assessment, and follow-up. The clinical availability of combined functional/anatomical imaging modalities, which integrate the benefits of visualizing tumor biology with those of high-resolution structural imaging, revolutionized clinical management of oncologic patients. Conventional high-resolution anatomical imaging modalities such as computed tomography (CT) and MRI excel at providing details on lesion location, size, morphology, and structural changes to adjacent tissues; however, these modalities provide little insight into tumor physiology. With the increasing focus on molecularly targeted therapies, imaging radiolabeled compounds with PET and single-photon emission tomography (SPECT) is often carried out to provide insight into a tumor's biological functions and its surrounding microenvironment. Despite their high sensitivity and specificity, PET and SPECT alone are substantially limited by low spatial resolution and inability to provide anatomical detail. Integrating SPECT or PET with a modality capable of providing these (i.e. CT or MR) maximizes their separate strengths and provides anatomical localization of physiological processes with detailed visualization of a tumor's structure. The availability of multimodality (hybrid) imaging with PET/CT, SPECT/CT, and PET/MR improves our ability to characterize lesions and affect treatment decisions and patient management. We have just begun to exploit the truly synergistic capabilities of multimodality imaging. Continued advances in the development of instrumentation and imaging agents will improve our ability to noninvasively characterize disease processes. This review will discuss the evolution of hybrid imaging technology and provide examples of its current and potential future clinical uses.
Collapse
|
42
|
Jin ZH, Furukawa T, Claron M, Boturyn D, Coll JL, Fukumura T, Fujibayashi Y, Dumy P, Saga T. Positron emission tomography imaging of tumor angiogenesis and monitoring of antiangiogenic efficacy using the novel tetrameric peptide probe 64Cu-cyclam-RAFT-c(-RGDfK-)4. Angiogenesis 2012; 15:569-80. [PMID: 22644563 PMCID: PMC3496517 DOI: 10.1007/s10456-012-9281-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/08/2012] [Indexed: 02/06/2023]
Abstract
64Cu-cyclam-RAFT-c(-RGDfK-)4 is a novel multimeric positron emission tomography (PET) probe for αVβ3 integrin imaging. Its uptake and αVβ3 expression in tumors showed a linear correlation. Since αVβ3 integrin is strongly expressed on activated endothelial cells during angiogenesis, we aimed to determine whether 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used to image tumor angiogenesis and monitor the antiangiogenic effect of a novel multi-targeted tyrosine kinase inhibitor, TSU-68. Athymic nude mice bearing human hepatocellular carcinoma HuH-7 xenografts, which expressed negligible αVβ3 levels on the tumor cells, received intraperitoneal injections of TSU-68 or the vehicle for 14 days. Antiangiogenic effects were determined at the end of therapy in terms of 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake evaluated using PET, biodistribution assay, and autoradiography, and they were compared with microvessel density (MVD) determined by CD31 immunostaining. 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET enabled clear tumor visualization by targeting the vasculature, and the biodistribution assay indicated high tumor-to-blood and tumor-to-muscle ratios of 31.6 ± 6.3 and 6.7 ± 1.1, respectively, 3 h after probe injection. TSU-68 significantly slowed tumor growth and reduced MVD; these findings were consistent with a significant reduction in the tumor 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake. Moreover, a linear correlation was observed between tumor MVD and the corresponding standardized uptake value (SUV) (r = 0.829, P = 0.011 for SUVmean; r = 0.776, P = 0.024 for SUVmax) determined by quantitative PET. Autoradiography and immunostaining showed that the distribution of intratumoral radioactivity and tumor vasculature corresponded. We concluded that 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used for in vivo angiogenesis imaging and monitoring of tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Synthesis and comparative assessment of a labeled RGD peptide bearing two different ⁹⁹mTc-tricarbonyl chelators for potential use as targeted radiopharmaceutical. Bioorg Med Chem 2012; 20:2549-57. [PMID: 22445386 DOI: 10.1016/j.bmc.2012.02.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 01/26/2023]
Abstract
During the past decade radiolabeled RGD-peptides have been extensively studied to develop site-directed targeting vectors for integrins. Integrins are heterodimeric cell-surface adhesion receptors, which are upregulated in cancer cells and neovasculature during tumor angiogenesis and recognize the RGD aminoacid sequence. In the present study, we report the synthesis and development of two derivatives of the Nε-Lys derivatized cyclic Arg-Gly-Asp-D-Phe-Lys peptide, namely of cRGDfKHis and cRGDfK-CPA (CPA: 3-L-Cysteine Propionic Acid), radiolabeled via the [(99m)Tc(H(2)O)(3)(CO)(3)](+) metal aquaion at a high yield even at low concentrations of 10-5M (>87%) for cRGDfK-10-5M (>93%) for cRGDfK-CPA. Radiolabeled peptides were characterized with regard to their stability in saline, in His/Cys solutions, as well as in plasma, serum and tissue homogenates and were found to be practically stable. Internalization and efflux assays using αvβ3-receptor-positive MDA-MB 435 breast cancer cells showed a good percentage of quick internalization (29.1 ± 9.8% for (99m)Tc-HiscRGDfK and 37.0 ± 0.7% for (99m)Tc-CPA-cRGDfK at 15 min) and no retention of radioactivity for both derivatives. Their in vivo behavior was assessed in normal mice and pathological SCID mice bearing MDA-MB 435 ανβ3 positive breast tumors. Both presented fast blood clearance and elimination via both the urinary and hepatobiliary systems, with (99m)Tc-His-cRGDfK remaining for a longer time than (99m)Tc-CPA-cRGDfK in all organs examined. Tumor uptake 30 min pi was higher for (99m)Tc-CPAcRGDfK (4.2 ± 1.5% ID/g) than for (99m)Tc-His-cRGDfK (2.8 ± 1.5% ID/g). Dynamic scintigraphic studies showed that the tumor could be visualized better between 15 and 45 min pi for both radiolabeled compounds but low delineation occurred due to high abdominal background. It was finally noticed that the accumulated activity on the tumor site was depended on the size of the experimental tumor; the smaller the size, the higher was the radioactivity concentration.
Collapse
|
44
|
Amigues E, Schulz J, Szlosek-Pinaud M, Fernandez P, Silvente-Poirot S, Brillouet S, Courbon F, Fouquet E. [18F]Si-RiboRGD: From Design and Synthesis to the Imaging of αvβ3 Integrins in Melanoma Tumors. Chempluschem 2012. [DOI: 10.1002/cplu.201200022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Cheng C, Pan L, Dimitrakopoulou-Strauss A, Schäfer M, Wängler C, Wängler B, Haberkorn U, Strauss LG. Comparison between 68Ga-bombesin (68Ga-BZH3) and the cRGD tetramer 68Ga-RGD4 studies in an experimental nude rat model with a neuroendocrine pancreatic tumor cell line. EJNMMI Res 2011; 1:34. [PMID: 22214362 PMCID: PMC3292467 DOI: 10.1186/2191-219x-1-34] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/13/2011] [Indexed: 11/10/2022] Open
Abstract
Objectives Receptor scintigraphy gains more interest for diagnosis and treatment of tumors, in particular for neuroendocrine tumors (NET). We used a pan-Bombesin analog, the peptide DOTA-PEG2-[D-tyr6, β-Ala11, Thi13, Nle14] BN(6-14) amide (BZH3). BZH3 binds to at least three receptor subtypes: the BB1 (Neuromedin B), BB2 (Gastrin-releasing peptide, GRP), and BB3. Imaging of ανβ3 integrin expression playing an important role in angiogenesis and metastasis was accomplished with a 68Ga-RGD tetramer. The purpose of this study was to investigate the kinetics and to compare both tracers in an experimental NET cell line. Methods This study comprised nine nude rats inoculated with the pancreatic tumor cell line AR42J. Dynamic positron emission tomography (PET) scans using 68Ga-BZH3 and 68Ga-RGD tetramer were performed (68Ga-RGD tetramer: n = 4, 68Ga-BZH3: n = 5). Standardized uptake values (SUVs) were calculated, and a two-tissue compartmental learning-machine model (calculation of K1 - k4 vessel density (VB) and receptor binding potential (RBP)) as well as a non-compartmental model based on the fractal dimension was used for quantitative analysis of both tracers. Multivariate analysis was used to evaluate the kinetic data. Results The PET kinetic parameters showed significant differences when individual parameters were compared between groups. Significant differences were found in FD, VB, K1, and RBP (p = 0.0275, 0.05, 0.05, and 0.0275 respectively). The 56- to 60-min SUV for 68Ga-BZH3, with a range of 0.86 to 1.29 (median, 1.19) was higher than the corresponding value for the 68Ga-RGD tetramer, with a range of 0.78 to 1.31 (median, 0.99). Furthermore, FD, VB, K1, and RBP for 68Ga-BZH3 were generally higher than the corresponding values for the 68Ga-RGD tetramer, whereas k3 was slightly higher for 68Ga-RGD tetramer. Conclusions As a parameter that reflects receptor binding, the increase of K1 for 68Ga-BZH3 indicated higher expression of bombesin receptors than that of the ανβ3 integrin in neuroendocrine tumors. 68Ga-BZH3 seems better suited for diagnosis of NETs owing to higher global tracer uptake.
Collapse
Affiliation(s)
- Caixia Cheng
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tekabe Y, Klose A, Nizami S, Luma J, Lee FY, Johnson L. New application of optical agent to image angiogenesis in hindlimb ischemia. JOURNAL OF BIOPHOTONICS 2011; 4:859-865. [PMID: 22031282 DOI: 10.1002/jbio.201100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 05/31/2023]
Abstract
Optical agents targeting α(v)β₃ are potential tools to image the angiogenic response to limb ischemia. The left (L) femoral artery was ligated in 17 mice and sham surgery performed on the contralateral right (R) hindlimb. Seven days later, IntegriSense (2 nmol) was injected into 11 mice and 6 were probe controls. Six hours later, mice underwent optical imaging. Ratios of photon flux in the L/R limbs were calculated. Tissue was stained for α(v) , CD31, and lectin. The signal was increased in the ischemic limbs compared to contralateral legs and ratio of photon flux in L/R limb averaged 2.37. Control probe showed no hindlimb signal. IntegriSense colocalized with CD31 by dual fluorescent staining. Ratios for L/R hindlimbs correlated with quantitative lectin staining (r = 0.88, p = 0.003). Optical imaging can identify and quantify angiogenic response to hindlimb ischemia.
Collapse
Affiliation(s)
- Yared Tekabe
- Department of Medicine, Columbia University Medical Center, 650 W 168 St., New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Kurdziel KA, Lindenberg L, Choyke PL. Oncologic Angiogenesis Imaging in the clinic---how and why. IMAGING IN MEDICINE 2011; 3:445-457. [PMID: 22132017 PMCID: PMC3224985 DOI: 10.2217/iim.11.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to control the growth of new blood vessels would be an extraordinary therapeutic tool for many disease processes. Too often, the promises of discoveries in the basic science arena fail to translate to clinical success. While several anti angiogenic therapeutics are now FDA approved, the envisioned clinical benefits have yet to be seen. The ability to clinically non-invasively image angiogenesis would potentially be used to identify patients who may benefit from anti-angiogenic treatments, prognostication/risk stratification and therapy monitoring. This article reviews the current and future prospects of implementing angiogenesis imaging in the clinic.
Collapse
|
48
|
Bhojani MS, Ranga R, Luker GD, Rehemtulla A, Ross BD, Van Dort ME. Synthesis and investigation of a radioiodinated F3 peptide analog as a SPECT tumor imaging radioligand. PLoS One 2011; 6:e22418. [PMID: 21811604 PMCID: PMC3139646 DOI: 10.1371/journal.pone.0022418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/22/2011] [Indexed: 01/13/2023] Open
Abstract
A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[125I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [125I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C5 maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C2 maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [125I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [125I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [125I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques.
Collapse
Affiliation(s)
- Mahaveer S. Bhojani
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rajesh Ranga
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian D. Ross
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marcian E. Van Dort
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
49
|
Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13:81-97. [PMID: 21403835 DOI: 10.1593/neo.101102] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 12/13/2022] Open
Abstract
A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as (13)C or (15)N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism-poor sensitivity-while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care.
Collapse
|
50
|
Tekabe Y, Shen X, Luma J, Weisenberger D, Yan SF, Haubner R, Schmidt AM, Johnson L. Imaging the effect of receptor for advanced glycation endproducts on angiogenic response to hindlimb ischemia in diabetes. EJNMMI Res 2011; 1:3. [PMID: 22214528 DOI: 10.1186/2191-219x-1-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/07/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Receptor for advanced glycation endproducts (RAGE) expression contributes to the impaired angiogenic response to limb ischemia in diabetes. The aim of this study was to detect the effect of increased expression of RAGE on the angiogenic response to limb ischemia in diabetes by targeting αvβ3 integrin with 99mTc-labeled Arg-Gly-Asp (RGD). METHODS Male wild-type (WT) C57BL/6 mice were either made diabetic or left as control for 2 months when they underwent femoral artery ligation. Four groups were studied at days 3 to 7 after ligation: WT without diabetes (NDM) (n = 14), WT with diabetes (DM) (n = 14), RAGE-/- NDM (n = 16), and RAGE-/- DM (n = 14). Mice were injected with 99mTc-HYNIC-RGD and imaged. Count ratios for ischemic/non-ischemic limbs were measured. Muscle was stained for RAGE, αvβ3, and lectins. RESULTS There was no difference in count ratio between RAGE-/- and WT NDM groups. Mean count ratio was lower for WT DM (1.38 ± 0.26) vs. WT NDM (1.91 ± 0.34) (P<0.001). Mean count ratio was lower for the RAGE-/- DM group than for RAGE-/- NDM group (1.75 ± 0.22 vs. 2.02 ± 0.29) (P<0.001) and higher than for the WT DM group (P<0.001). Immunohistopathology supported the scan findings. CONCLUSIONS In vivo imaging of αvβ3 integrin can detect the effect of RAGE on the angiogenic response to limb ischemia in diabetes.
Collapse
Affiliation(s)
- Yared Tekabe
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|