1
|
Tulsian K, Thakker D, Vyas VK. Overcoming chimeric antigen receptor-T (CAR-T) resistance with checkpoint inhibitors: Existing methods, challenges, clinical success, and future prospects : A comprehensive review. Int J Biol Macromol 2025; 306:141364. [PMID: 39988153 DOI: 10.1016/j.ijbiomac.2025.141364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Immune checkpoint blockade is, as of today, the most successful form of cancer immunotherapy, with more than 43 % of cancer patients in the US eligible to receive it; however, only up to 12.5 % of patients respond to it. Similarly, adoptive cell therapy using bioengineered chimeric antigen receptorT (CAR-T) cells and T-cell receptor (TCR) cells has provided excellent responses against liquid tumours, but both forms of immunotherapy have encountered challenges within a tumour microenvironment that is both lacking in tumour-specific T-cells and is strongly immunosuppressive toward externally administered CAR-T and TCR cells. This review focuses on understanding approved checkpoint blockade and adoptive cell therapy at both biological and clinical levels before delving into how and why their combination holds significant promise in overcoming their individual shortcomings. The advent of next-generation checkpoint inhibitors has further strengthened the immune checkpoint field, and a special section explores how these inhibitors can address existing hurdles in combining checkpoint blockade with adoptive cell therapy and homing in on our cancer target for long-term immunity.
Collapse
Affiliation(s)
- Kartik Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Dhinal Thakker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
2
|
Jiramonai L, Liang XJ, Zhu M. Extracellular Vesicle-Based Strategies for Tumor Immunotherapy. Pharmaceutics 2025; 17:257. [PMID: 40006624 PMCID: PMC11859549 DOI: 10.3390/pharmaceutics17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Immunotherapy is one of the most promising approaches for cancer management, as it utilizes the intrinsic immune response to target cancer cells. Normally, the human body uses its immune system as a defense mechanism to detect and eliminate foreign objects, including cancer cells. However, cancers develop a 'switch off' mechanism, known as immune checkpoint proteins, to evade immune surveillance and suppress immune activation. Therefore, significant efforts have been made to develop the strategies for stimulating immune responses against cancers. Among these, the use of extracellular vesicles (EVs) to enhance the anti-tumor immune response has emerged as a particularly promising approach in cancer management. EVs possess several unique properties that elevate the potency in modulating immune responses. This review article provides a comprehensive overview of recent advances in this field, focusing on the strategic usage of EVs to overcome tumor-induced immune tolerance. We discuss the biogenesis and characteristics of EVs, as well as their potential applications in medical contexts. The immune mechanisms within the tumor microenvironment and the strategies employed by cancers to evade immune detection are explored. The roles of EVs in regulating the tumor microenvironment and enhancing immune responses for immunotherapy are also highlighted. Additionally, this article addresses the challenges and future directions for the development of EV-based nanomedicine approaches, aiming to improve cancer immunotherapy outcomes with greater precision and efficacy while minimizing off-target effects.
Collapse
Affiliation(s)
- Luksika Jiramonai
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Kulbay M, Tuli N, Mazza M, Jaffer A, Juntipwong S, Marcotte E, Tanya SM, Nguyen AXL, Burnier MN, Demirci H. Oncolytic Viruses and Immunotherapy for the Treatment of Uveal Melanoma and Retinoblastoma: The Current Landscape and Novel Advances. Biomedicines 2025; 13:108. [PMID: 39857692 PMCID: PMC11762644 DOI: 10.3390/biomedicines13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Intraocular malignant tumors are rare; however, they can cause serious life-threatening complications. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular tumors in adults and children, respectively, and come with a great disease burden. For many years, several different treatment modalities for UM and RB have been proposed, with chemotherapy for RB cases and plaque radiation therapy for localized UM as first-line treatment options. Extraocular extension, recurrence, and metastasis constitute the major challenges of conventional treatments. To overcome these obstacles, immunotherapy, which encompasses different treatment options such as oncolytic viruses, antibody-mediated immune modulations, and targeted immunotherapy, has shown great potential as a novel therapeutic tool for cancer therapy. These anti-cancer treatment options provide numerous advantages such as selective cancer cell death and the promotion of an anti-tumor immune response, and they prove useful in preventing vision impairment due to macular and/or optic disc involvement. Numerous factors such as the vector choice, route of administration, dosing, and patient characteristics must be considered when engineering an oncolytic virus or other forms of immunotherapy vectors. This manuscript provides an in-depth review of the molecular design of oncolytic viruses (e.g., virus capsid proteins and encapsulation technologies, vectors for delivery, cell targeting) and immunotherapy. The most recent advances in preclinical- and clinical-phase studies are further summarized. The recent developments in virus-like drug conjugates (i.e., AU011), oncolytic viruses for metastatic UM, and targeted immunotherapies have shown great results in clinical trials for the future clinical application of these novel technologies in the treatment algorithm of certain intraocular tumors.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Massimo Mazza
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Armaan Jaffer
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 2V5, Canada
- Research Excellence Cluster in Vision, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Sarinee Juntipwong
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Stuti Misty Tanya
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hakan Demirci
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Jiang J, Shu W, Yao Q. Research advances on TIL therapy for colorectal cancer. Clin Transl Oncol 2024; 26:2917-2923. [PMID: 38806995 DOI: 10.1007/s12094-024-03530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy. Tumor-infiltrating lymphocyte (TIL) therapy, a form of adoptive cellular therapy (ACT), involves isolating T lymphocytes from tumor tissues, in vitro expansion, and reintroduction into the body to target and eliminate tumor cells. This article presents an overview of the development and application of TIL therapy in CRC, as well as the associated challenges.
Collapse
Affiliation(s)
- Jiaojiao Jiang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenxi Shu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Němejcová K, Hájková N, Krkavcová E, Kendall Bártů M, Michálková R, Šafanda A, Švajdler M, Shatokhina T, Laco J, Matěj R, Hausnerová J, Škarda J, Náležinská M, Zima T, Dundr P. A molecular and immunohistochemical study of 37 cases of ovarian Sertoli-Leydig cell tumor. Virchows Arch 2024:10.1007/s00428-024-03984-5. [PMID: 39592485 DOI: 10.1007/s00428-024-03984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
This study provides an analysis of 37 ovarian Sertoli-Leydig cell tumors (SLCT), focusing on their morphological, immunohistochemical, and molecular features. The cohort was comprised of 9 well-differentiated, 25 moderately differentiated, and 3 poorly differentiated tumors. The immunohistochemical analysis was performed with 28 markers, including diagnostic markers and markers with possible predictive significance. The results showed high expression of sex cord markers (FOXL2, SF1, inhibin A, CD99, calretinin, ER, PR, AR), and variable expression of other markers such as CKAE1/3 (83%), CAIX (14%), and MUC4 (1%). Loss of PTEN expression was present in 14% of cases, and CTLA4 expression was seen in 43% of cases. All tumors were MMR proficient and HER2 and PD-L1 negative. The molecular analysis showed DICER1 mutations in 54.5% of cases, and a FOXL2 mutation in 6% of tumors. In addition, we detected 2 cases with TERT promoter mutation. RNA NGS sequencing identified significant differences in mRNA expression between DICER1MUT and DICER1WT tumors. The DICER1WT tumors showed increased expression of PRKCA, HNF1A, LDLR, and MAP2K5. On the contrary, the DICER1MUT cases showed increased expression of CDK6, NOTCH2, and FGFR2. The results of our study show that SLCTs exhibit distinct molecular features based on their degree of differentiation. We have confirmed that DICER1 mutations are characteristic of moderately and poorly differentiated SLCTs, while well-differentiated SLCTs may represent a distinct entity. DICER1MUT and DICER1WT tumors showed different mRNA expression profiles. The FOXL2 mutation is less common in these tumors and is mutually exclusive with the DICER1 mutation.
Collapse
Affiliation(s)
- Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Nikola Hájková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Krkavcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adam Šafanda
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tetiana Shatokhina
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 10034, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jozef Škarda
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Monika Náležinská
- Division of Gynecologic Oncology, Department of Surgical Oncology, Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Němejcová K, Šafanda A, Kendall Bártů M, Michálková R, Švajdler M, Shatokhina T, Laco J, Matěj R, Méhes G, Drozenová J, Hausnerová J, Špůrková Z, Náležinská M, Dundr P. An extensive immunohistochemical analysis of 290 ovarian adult granulosa cell tumors with 29 markers. Virchows Arch 2024; 485:427-437. [PMID: 38904760 DOI: 10.1007/s00428-024-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The current knowledge about the immunohistochemical features of adult granulosa cell tumor (AGCT) is mostly limited to the "traditional" immunohistochemical markers of sex cord differentiation, such as inhibin, calretinin, FOXL2, SF1, and CD99. Knowledge about the immunohistochemical markers possibly used for predictive purpose is limited. In our study, we focused on the immunohistochemical examination of 290 cases of AGCT classified based on strict diagnostic criteria, including molecular testing. The antibodies used included 12 of the "diagnostic" antibodies already examined in previous studies, 10 antibodies whose expression has not yet been examined in AGCT, and 7 antibodies with possible predictive significance, including the expression of HER2, PD-L1, CTLA4, and 4 mismatch repair (MMR) proteins. The results of our study showed expression of FOXL2, SF1, CD99, inhibin A, calretinin, ER, PR, AR, CKAE1/3, and CAIX in 98%, 100%, 90%, 78%, 45%, 41%, 94%, 82%, 26%, and 9% of AGCT, respectively. GATA3, SATB2, napsin A, MUC4, TTF1, and CD44 were all negative. PTEN showed a loss of expression in 71% of cases and DPC4 in 4% of cases. The aberrant staining pattern (overexpression) of p53 was found in 1% (3/268) of cases, 2 primary tumors, and 1 recurrent case. Concerning the predictive markers, the results of our study showed that AGCT is microsatellite stable, do not express PD-L1, and are HER2 negative. The CTLA4 expression was found in almost 70% of AGCT tumor cells.
Collapse
Affiliation(s)
- Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| | - Adam Šafanda
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tetiana Shatokhina
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Charles University, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 10034, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Jana Drozenová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, 10034, Prague, Czech Republic
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Zuzana Špůrková
- Department of Pathology, Bulovka University Hospital, Prague, Czech Republic
| | - Monika Náležinská
- Division of Gynecologic Oncology, Department of Surgical Oncology, Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| |
Collapse
|
7
|
Anand N, Srivastava P, Husain N, Agarwal D, Gupta A, Pradhan R. Evaluation of CTLA-4 and PD-L1 Expression in Thyroid Carcinoma and Its Prognostic Significance. Cureus 2024; 16:e67004. [PMID: 39286684 PMCID: PMC11403645 DOI: 10.7759/cureus.67004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-ligand 1 (PD-L1) have revolutionised treatment and improved outcomes in various malignancies. We aimed to evaluate CTLA-4 and PD-L1 immunoexpression in thyroid tumours and correlated them with clinicopathological parameters. Methods The study included 90 cases of thyroid malignancies comprising papillary thyroid carcinoma (PTC) (n = 64, 54.2%), follicular thyroid carcinoma (FTC) (n = 19, 16.1%), anaplastic thyroid carcinoma (ATC) (n = 3, 2.5%), and poorly differentiated carcinoma (n = 4, 3.4%), two cases (1.69%) of non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) along with 26 cases (22%) of benign thyroid lesions. CTLA-4 (UMAB249) and PD-L1 (SP263) expression were assessed in all the cases of thyroid tumours. Results were compared with clinicopathologic parameters and overall survival. Results PD-L1 was positive in all three cases of anaplastic thyroid carcinoma (ATC), 33% (n = 21) cases of PTC, and 16% (n = 3) cases of FTC. PD-L1 positivity was significantly associated at tumour proportion score (TPS) ≥1% with lymphovascular invasion and age ≤40 years and at TPS ≥50% with tumour necrosis and N-stage. Immune proportion score (IPS) did not correlate with any clinicopathological parameters except for the N-stage. CTLA-4 was positive in six cases of PTC (1-5%); five showed lymph node involvement (p = 0.032). IPS was positive in 14 cases, and a significant association was seen with lymph node metastasis, lymphocytic infiltration, and lymphovascular invasion. Three cases of PTC showed co-expression for PD-L1 and CTLA-4 in tumour cells. No significant association was seen between PD-L1 expression and survival. Conclusion The current data suggest that PD-L1 is expressed in differentiated thyroid carcinoma, mainly PTC and ATC, indicating higher responsiveness to immunotherapy. A subset of PTC showed co-expression of PD-L1 and CTLA-4. These findings suggest the need for further investigation to utilise combinational immunotherapy, including anti-PD-L1 and anti-CTLA-4.
Collapse
Affiliation(s)
- Nidhi Anand
- Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | - Pallavi Srivastava
- Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | - Nuzhat Husain
- Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | - Deeksha Agarwal
- Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | - Anurag Gupta
- Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| | - Roma Pradhan
- Endocrine Surgery, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, IND
| |
Collapse
|
8
|
Kaneko A, Kobayashi N, Miura K, Matsumoto H, Somekawa K, Hirose T, Kajita Y, Tanaka A, Teranishi S, Sairenji Y, Kawashima H, Yumoto K, Tsukahara T, Fukuda N, Nishihira R, Watanabe K, Horita N, Hara Y, Kudo M, Miyazawa N, Kaneko T. Real-world evidence of efficacy of pembrolizumab plus chemotherapy and nivolumab plus ipilimumab plus chemotherapy as initial treatment for advanced non-small cell lung cancer. Thorac Cancer 2024; 15:1208-1217. [PMID: 38602166 PMCID: PMC11128373 DOI: 10.1111/1759-7714.15304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND For advanced non-small cell lung cancer (NSCLC), combination therapies including a PD-1 inhibitor plus chemotherapy or a PD-1 inhibitor, CTLA-4 inhibitor, and chemotherapy are standard first-line options. However, data directly comparing these regimens are lacking. This study compared the efficacy of pembrolizumab plus chemotherapy (CP) against nivolumab plus ipilimumab and chemotherapy (CNI) in a real-world setting. METHODS In this multicenter retrospective study, we compared the efficacy and safety of CP and CNI as first-line therapies in 182 patients with stage IIIB-IV NSCLC. Primary outcomes were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included the response rate (RR) and safety profiles. Kaplan-Meier survival curves and Cox proportional hazards models were utilized for data analysis, adjusting for confounding factors such as age, gender, and PD-L1 expression. RESULTS In this study, 160 patients received CP, while 22 received CNI. The CP group was associated with significantly better PFS than the CNI group (median 11.7 vs. 6.6 months, HR 0.56, p = 0.03). This PFS advantage persisted after propensity score matching to adjust for imbalances. No significant OS differences were observed. Grade 3-4 adverse events occurred comparably, but immune-related adverse events were numerically more frequent in the CNI group. CONCLUSIONS In real-world practice, CP demonstrated superior PFS compared with CNI. These findings can inform treatment selection in advanced NSCLC.
Collapse
Affiliation(s)
- Ayami Kaneko
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Nobuaki Kobayashi
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kenji Miura
- Department of Respiratory MedicineYokohama Sakae Kyosai HospitalYokohamaJapan
| | - Hiromi Matsumoto
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kohei Somekawa
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Tomofumi Hirose
- Department of PulmonologyYokohama City University Medical CenterYokohamaJapan
| | - Yukihito Kajita
- Department of PulmonologyYokohama City University Medical CenterYokohamaJapan
| | - Anna Tanaka
- Department of PulmonologyYokohama City University Medical CenterYokohamaJapan
| | - Shuhei Teranishi
- Department of PulmonologyYokohama City University Medical CenterYokohamaJapan
| | - Yu Sairenji
- Department of Respiratory MedicineYokohama Sakae Kyosai HospitalYokohamaJapan
| | | | - Kentaro Yumoto
- Department of Respiratory MedicineYokohama Minami Kyosai HospitalYkohamaJapan
| | - Toshinori Tsukahara
- Department of Respiratory MedicineChigasaki Municipal HospitalChigasakiJapan
| | - Nobuhiko Fukuda
- Department of Respiratory MedicineFujisawa Municipal HospitalFujisawaJapan
| | | | - Keisuke Watanabe
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Nobuyuki Horita
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yu Hara
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Makoto Kudo
- Department of PulmonologyYokohama City University Medical CenterYokohamaJapan
| | - Naoki Miyazawa
- Department of Respiratory MedicineYokohama Nanbu HospitalYokohamaJapan
| | - Takeshi Kaneko
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
9
|
De Battista D, Yakymi R, Scheibe E, Sato S, Gerstein H, Markowitz TE, Lack J, Mereu R, Manieli C, Zamboni F, Farci P. Identification of Two Distinct Immune Subtypes in Hepatitis B Virus (HBV)-Associated Hepatocellular Carcinoma (HCC). Cancers (Basel) 2024; 16:1370. [PMID: 38611048 PMCID: PMC11011136 DOI: 10.3390/cancers16071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
HBV is the most common risk factor for HCC development, accounting for almost 50% of cases worldwide. Despite significant advances in immunotherapy, there is limited information on the HBV-HCC tumor microenvironment (TME), which may influence the response to checkpoint inhibitors. Here, we characterize the TME in a unique series of liver specimens from HBV-HCC patients to identify who might benefit from immunotherapy. By combining an extensive immunohistochemistry analysis with the transcriptomic profile of paired liver samples (tumor vs. nontumorous tissue) from 12 well-characterized Caucasian patients with HBV-HCC, we identified two distinct tumor subtypes that we defined immune-high and immune-low. The immune-high subtype, seen in half of the patients, is characterized by a high number of infiltrating B and T cells in association with stromal activation and a transcriptomic profile featuring inhibition of antigen presentation and CTL activation. All the immune-high tumors expressed high levels of CTLA-4 and low levels of PD-1, while PD-L1 was present only in four of six cases. In contrast, the immune-low subtype shows significantly lower lymphocyte infiltration and stromal activation. By whole exome sequencing, we documented that four out of six individuals with the immune-low subtype had missense mutations in the CTNNB1 gene, while only one patient had mutations in this gene in the immune-high subtype. Outside the tumor, there were no differences between the two subtypes. This study identifies two distinctive immune subtypes in HBV-associated HCC, regardless of the microenvironment observed in the surrounding nontumorous tissue, providing new insights into pathogenesis. These findings may be instrumental in the identification of patients who might benefit from immunotherapy.
Collapse
Affiliation(s)
- Davide De Battista
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Rylee Yakymi
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Evangeline Scheibe
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Shinya Sato
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Hannah Gerstein
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Roberto Mereu
- Department of Surgery, Liver Transplantation Center, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy; (R.M.); (F.Z.)
| | - Cristina Manieli
- Sevizio di Anatomia Patologica, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy;
| | - Fausto Zamboni
- Department of Surgery, Liver Transplantation Center, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy; (R.M.); (F.Z.)
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| |
Collapse
|
10
|
Mohamed Allam D, Kasem H, Hegazy A, Mahmoud SF. Role of CTLA4 and pSTAT3 Immunostaining in Prognosis and Treatment of the Colorectal Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:89-102. [PMID: 38864078 PMCID: PMC11164302 DOI: 10.30699/ijp.2024.2009619.3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/07/2023] [Indexed: 06/13/2024]
Abstract
Background & Objective Colorectal carcinoma (CRC) is the third leading cause of cancer-caused death worldwide and constitutes about 6.48% of all malignancies in Egypt. Studying the molecular profile of CRC is essential for developing targeted therapies. STAT3 and CTLA4 expression are considered as molecular abnormalities involved in the CRC progression and chemo-resistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate pSTAT3 and CTLA4 expression levels and their possible roles as prognostic and predictive biomarkers in CRC using immunohistochemistry (IHC). Methods This retrospective study included 113 CRC patients. Tissue microarrays were constructed, followed by pSTAT3 and CTLA4 antibodies immunostaining. Their expression was assessed and compared with the clinicopathological parameters and survival data. Results Both pSTAT3 and CTLA4 overexpression were significantly associated with poor prognostic parameters, such as the presence of distant metastasis (P=0.02 & 0.03), high grade (P<0.001 & 0.03), high mitotic count (P<0.001 & 0.03), high tumor budding group (P=0.008 & 0.04), infiltrating tumor border (P<0.001 & 0.007) respectively, and advanced pathological stage with pSTAT3 (P=0.02). A significant association was found between overexpression of both markers and short overall survival. Correlations between the H-score of pSTAT3 and CTLA4 in CRC showed a significant positive correlation (P<0.001). Conclusion STAT3 and CTLA4 positivity may be linked to the development and progression of the CRC, and they may provide potential prognostic indicators and therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Dina Mohamed Allam
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Hend Kasem
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Amira Hegazy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Egypt
| | - Shereen F Mahmoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
11
|
Krishnamurthy N, Nishizaki D, Lippman SM, Miyashita H, Nesline MK, Pabla S, Conroy JM, DePietro P, Kato S, Kurzrock R. High CTLA-4 transcriptomic expression correlates with high expression of other checkpoints and with immunotherapy outcome. Ther Adv Med Oncol 2024; 16:17588359231220510. [PMID: 38188465 PMCID: PMC10771755 DOI: 10.1177/17588359231220510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Background CTLA-4 impedes the immune system's antitumor response. There are two Food and Drug Administration-approved anti-CTLA-4 agents - ipilimumab and tremelimumab - both used together with anti-PD-1/PD-L1 agents. Objective To assess the prognostic implications and immunologic correlates of high CTLA-4 in tumors of patients on immunotherapy and those on non-immunotherapy treatments. Design/methods We evaluated RNA expression levels in a clinical-grade laboratory and clinical correlates of CTLA-4 and other immune checkpoints in 514 tumors, including 489 patients with advanced/metastatic cancers and full outcome annotation. A reference population (735 tumors; 35 histologies) was used to normalize and rank transcript abundance (0-100 percentile) to internal housekeeping gene profiles. Results The most common tumor types were colorectal (140/514, 27%), pancreatic (55/514, 11%), breast (49/514, 10%), and ovarian cancers (43/514, 8%). Overall, 87 of 514 tumors (16.9%) had high CTLA-4 transcript expression (⩾75th percentile rank). Cancers with the largest proportion of high CTLA-4 transcripts were cervical cancer (80% of patients), small intestine cancer (33.3%), and melanoma (33.3%). High CTLA-4 RNA independently/significantly correlated with high PD-1, PD- L2, and LAG3 RNA levels (and with high PD-L1 in univariate analysis). High CTLA-4 RNA expression was not correlated with survival from the time of metastatic disease [N = 272 patients who never received immune checkpoint inhibitors (ICIs)]. However, in 217 patients treated with ICIs (mostly anti-PD-1/anti-PD- L1), progression-free survival (PFS) and overall survival (OS) were significantly longer among patients with high versus non-high CTLA-4 expression [hazard ratio, 95% confidence interval: 0.6 (0.4-0.9) p = 0.008; and 0.5 (0.3-0.8) p = 0.002, respectively]; results were unchanged when 18 patients who received anti-CTLA-4 were omitted. Patients whose tumors had high CTLA-4 and high PD-L1 did best; those with high PD-L1 but non-high CTLA-4 and/or other expression patterns had poorer outcomes for PFS (p = 0.004) and OS (p = 0.009) after immunotherapy. Conclusion High CTLA-4, especially when combined with high PD-L1 transcript expression, was a significant positive predictive biomarker for better outcomes (PFS and OS) in patients on immunotherapy.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Scott M. Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Hirotaka Miyashita
- Dartmouth Cancer Center, Hematology and Medical Oncology, Lebanon, NH, USA
| | | | | | | | | | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- WIN Consortium, Paris, France
| |
Collapse
|
12
|
Xiao Y, Li ZZ, Zhong NN, Cao LM, Liu B, Bu LL. Charting new frontiers: Co-inhibitory immune checkpoint proteins in therapeutics, biomarkers, and drug delivery systems in cancer care. Transl Oncol 2023; 38:101794. [PMID: 37820473 PMCID: PMC10582482 DOI: 10.1016/j.tranon.2023.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer remains a major health concern globally. Immune checkpoint inhibitors (ICIs) target co-inhibitory immune checkpoint molecules and have received approval for treating malignancies like melanoma and non-small cell lung cancer. While CTLA-4 and PD-1/PD-L1 are extensively researched, additional targets such as LAG-3, TIGIT, TIM-3, and VISTA have also demonstrated effective in cancer therapy. Combination treatments, which pair ICIs with interventions such as radiation or chemotherapy, amplify therapeutic outcomes. However, ICIs can lead to diverse side effects, and their varies across patients and cancers. Hence, identifying predictive biomarkers to guide therapy is essential. Notably, expression levels of molecules like PD-1, CTLA-4, and LAG-3 have been linked to tumor progression and ICI therapy responsiveness. Recent advancements in drug delivery systems (DDSs) further enhance ICI therapy efficacy. This review explores predominant DDSs for ICI delivery, such as hydrogel, microparticle, and nanoparticle, which offer improved therapeutic effects and reduced toxicity. In summary, we discuss the future of immune therapy focusing on co-inhibitory checkpoint molecules, pinpoint challenges, and suggest avenues for developing efficient, safer DDSs for ICI transport.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
13
|
Meng L, Yang Y, Mortazavi A, Zhang J. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int J Mol Sci 2023; 24:14347. [PMID: 37762648 PMCID: PMC10531627 DOI: 10.3390/ijms241814347] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy has emerged as an important approach for cancer treatment, but its clinical efficacy has been limited in prostate cancer compared to other malignancies. This review summarizes key immunotherapy strategies under evaluation for prostate cancer, including immune checkpoint inhibitors, bispecific T cell-engaging antibodies, chimeric antigen receptor (CAR) T cells, therapeutic vaccines, and cytokines. For each modality, the rationale stemming from preclinical studies is discussed along with outcomes from completed clinical trials and strategies to improve clinical efficacy that are being tested in ongoing clinical trials. Imperative endeavors include biomarker discovery for patient selection, deciphering resistance mechanisms, refining cellular therapies such as CAR T cells, and early-stage intervention were reviewed. These ongoing efforts instill optimism that immunotherapy may eventually deliver significant clinical benefits and expand treatment options for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Araghi M, Mannani R, Heidarnejad maleki A, Hamidi A, Rostami S, Safa SH, Faramarzi F, Khorasani S, Alimohammadi M, Tahmasebi S, Akhavan-Sigari R. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int 2023; 23:162. [PMID: 37568193 PMCID: PMC10416536 DOI: 10.1186/s12935-023-02990-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer continues to be the leading cause of cancer-related death worldwide. In the last decade, significant advancements in the diagnosis and treatment of lung cancer, particularly NSCLC, have been achieved with the help of molecular translational research. Among the hopeful breakthroughs in therapeutic approaches, advances in targeted therapy have brought the most successful outcomes in NSCLC treatment. In targeted therapy, antagonists target the specific genes, proteins, or the microenvironment of tumors supporting cancer growth and survival. Indeed, cancer can be managed by blocking the target genes related to tumor cell progression without causing noticeable damage to normal cells. Currently, efforts have been focused on improving the targeted therapy aspects regarding the encouraging outcomes in cancer treatment and the quality of life of patients. Treatment with targeted therapy for NSCLC is changing rapidly due to the pace of scientific research. Accordingly, this updated study aimed to discuss the tumor target antigens comprehensively and targeted therapy-related agents in NSCLC. The current study also summarized the available clinical trial studies for NSCLC patients.
Collapse
Affiliation(s)
- Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Mannani
- Vascular Surgeon, Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Adel Hamidi
- Razi Vaccine and Serum Research Institute, Arak Branch, karaj, Iran
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahar Khorasani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Bushara O, Tidwell J, Wester JR, Miura J. The Current State of Neoadjuvant Therapy in Resectable Advanced Stage Melanoma. Cancers (Basel) 2023; 15:3344. [PMID: 37444454 DOI: 10.3390/cancers15133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The advent of effective immunotherapy and targeted therapy has significantly improved outcomes in advanced-stage resectable melanoma. Currently, the mainstay of treatment of malignant melanoma is surgery followed by adjuvant systemic therapies. However, recent studies have shown a potential role for neoadjuvant therapy in the treatment of advanced-stage resectable melanoma. Mechanistically, neoadjuvant immunotherapy may yield a more robust response than adjuvant immunotherapy, as the primary tumor serves as an antigen in this setting rather than only micrometastatic disease after the index procedure. Additionally, targeted therapy has been shown to yield effective neoadjuvant cytoreduction, and oncolytic viruses may also increase the immunogenicity of primary tumors. Effective neoadjuvant therapy may serve to decrease tumor size and thus reduce the extent of required surgery and thus morbidity. It also allows for assessment of pathologic response, facilitating prognostication as well as tailoring future therapy. The current literature consistently supports that neoadjuvant therapy, even as little as one dose, is associated with improved outcomes and is well-tolerated. Some patients with a complete pathological response may even avoid surgery completely. These results challenge the current paradigm of a surgery-first approach and provide further evidence supporting neoadjuvant therapy in advanced-stage resectable melanoma. Further research into the optimal treatment schedule and dose timing is warranted, as is the continued investigation of novel therapies and combinations of therapies.
Collapse
Affiliation(s)
- Omar Bushara
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerica Tidwell
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James R Wester
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Miura
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Talavera Guillén NC, Barboza de Nardi A, Noleto de Paiva F, Dias QC, Pinheiro Fantinatti A, Fávaro WJ. Clinical Implications of Immune Checkpoints and the RANK/RANK-L Signaling Pathway in High-Grade Canine Mast Cell Tumors. Animals (Basel) 2023; 13:1888. [PMID: 37370399 DOI: 10.3390/ani13121888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mast cell tumors (MCTs) are the most common malignant cutaneous tumors in dogs, and they present extremely variable biological behavior. The interaction between RANK, RANK-L, and immune checkpoints is frequently detected in the tumor microenvironment, and, together, they participate in every stage of cancer development. Thus, the aim of this study was to characterize the molecular profiles of PD-L1, CTLA-4, RANK/RANK-L signaling pathway, and IFN-γ in primary tumors and lymph node metastases. Formalin-fixed, paraffin-embedded slides of MCTs and metastatic lymph nodes of ten dogs were submitted to immunohistochemical investigations. The results demonstrated that the tumor microenvironment of the high-grade mast cell tumors showed moderate or intense immunolabeling of all proteins, and the lymph node metastases also showed moderate or intense immunolabeling of checkpoint proteins. In addition, MCTs larger than 3 cm were associated with intensified PD-L1 (p = 0.03) in metastatic lymph nodes and RANK-L (p = 0.049) immunoreactivity in the tumor. Furthermore, dogs with a survival time of less than 6 months showed higher PD-L1 immunoreactivity (p = 0.042). In conclusion, high-grade MCT is associated with an immunosuppressive microenvironment that exhibits elevated RANK/RANK-L signaling and enhanced immune checkpoint immunoreactivity, potentially facilitating intratumorally immune escape. These biomarkers show promise as clinical indicators of disease progression and might response to immunotherapy in dogs with high-grade MCTs, thus emphasizing their importance for guiding treatment decisions and improving outcomes.
Collapse
Affiliation(s)
- Noelia C Talavera Guillén
- Department of Veterinary Clinics and Surgery, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Andrigo Barboza de Nardi
- Department of Veterinary Clinics and Surgery, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Felipe Noleto de Paiva
- Department of Veterinary Clinics and Surgery, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil
| | - Queila Cristina Dias
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | | | - Wagner José Fávaro
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| |
Collapse
|
17
|
Wang L, Wu P, Shen Z, Yu Q, Zhang Y, Ye F, Chen K, Zhao J. An immune checkpoint-based signature predicts prognosis and chemotherapy response for patients with small cell lung cancer. Int Immunopharmacol 2023; 117:109827. [PMID: 36989973 DOI: 10.1016/j.intimp.2023.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/06/2023] [Accepted: 01/29/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Therapeutic options for small cell lung cancer (SCLC), a particularly lethal malignancy, remain limited. Members of the B7-CD28 family are compelling targets for immune checkpoint blockade strategies, which involve activating, inhibiting, and fine-tuning the T cell immune response. However, their clinical features and significance have not been explored comprehensively. METHOD We enrolled 228 patients with an initial diagnosis of SCLC, including 77 cases from Cbioportal and a validation cohort of 151 cases with qPCR data. Kaplan-Meier analysis and LASSO Cox model were used to identify a signature based on the B7-CD28 family, which was applied for accurate prediction of chemotherapy benefit and prognosis for SCLC patients. In addition, we applied bioinformatics analysis to explore potential signature-related molecular mechanisms and the immune landscape. RESULTS The mutation profiles of healthy tissues and SCLC tissues were distinct. A signature consisting of seven genes (CD86, ICOSLG, CD276, CD28, CTLA-4, PDCD1, and TMIGD2) was identified and applied to group patients based on risk level (high-risk and low-risk), producing two groups for which survival outcomes differed significantly (HR = 3.81, 95% CI: 2.16-6.74, P < 0.001). The immune checkpoint-based signature accurately predicted patient outcomes for the selected training and validation sets. Notably, low-risk patients were more likely to benefit from chemotherapy and showed greater immune activation. Additionally, time-dependent ROC curves and C-index analysis confirmed that the immune checkpoint-based signature has excellent predictive power for prognosis and chemotherapy benefit compared to clinically recognized parameters. Finally, multivariate analysis confirmed the identified signature as an independent risk factor for prognosis and chemotherapeutic response. CONCLUSION We systematically obtained a comprehensive molecular profile for B7-CD28 family members in SCLC patients, from which we produced a reliable and robust prognostic immune checkpoint-based signature with the potential to improve prognostic stratification and therapy strategies for SCLC patients.
Collapse
|
18
|
Miller AR. Checkpoint inhibitors are a basic science-based, transformative new treatment for lung cancer. Respirology 2023; 28:101-106. [PMID: 36535890 PMCID: PMC10107528 DOI: 10.1111/resp.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Alistair R Miller
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Internal Medicine, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Department of Medicine (RMH), Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Yin XK, Wang C, Feng LL, Bai SM, Feng WX, Ouyang NT, Chu ZH, Fan XJ, Qin QY. Expression Pattern and Prognostic Value of CTLA-4, CD86, and Tumor-Infiltrating Lymphocytes in Rectal Cancer after Neoadjuvant Chemo(radio)therapy. Cancers (Basel) 2022; 14:cancers14225573. [PMID: 36428666 PMCID: PMC9688334 DOI: 10.3390/cancers14225573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The synergistic effect of combining immune checkpoint inhibitors (ICIs) with neoadjuvant chemo(radio)therapy (nCRT) in colorectal cancer is still limited. We aimed to understand the impact of nCRT on the tumor microenvironment and to explore favorable immune markers of this combination. Herein, we investigated the expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), CD86, CD4, and CD8 after nCRT and its association with clinicopathological characteristics. Immunostaining of immune-related molecules was performed in 255 surgically resected specimens from rectal cancer patients treated with nCRT. CD4 and CD8 expression on the tumor (tCD4/CD8), stroma (sCD4/CD8), and invasive front (iCD4/CD8) was evaluated. The expression levels of immune-related molecules were significantly lower in the nCRT-treated group, except for CTLA-4 and sCD8. However, patients with higher sCD8+ cell density and CTLA-4 expression had better progression-free survival (PFS) and distant metastasis-free survival (DMFS). In addition, higher CD86 expression was associated with poorer overall survival (OS). Higher CTLA-4 expression was associated with higher tCD8+ cell density, whereas CD86 expression was correlated with the cell density of t/sCD8. Prognostic analysis confirmed that the relationships between CTLA-4 and DMFS as well as CD86 and OS were significantly correlated in low rather than high CD8+ cell density. Further the combination of CD8+ cell density and CD86 expression was shown to be an independent prognostic factor of OS, whereas the combination of CTLA-4 was not for DMFS. Together, these results demonstrate significant correlations between CD86 expression and t/sCD8+ cell density in rectal cancer after nCRT and could potentially have clinical implications for combining ICIs and nCRT.
Collapse
Affiliation(s)
- Xin-Ke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Li-Li Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Shao-Mei Bai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Wei-Xing Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Neng-Tai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhong-Hua Chu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qi-Yuan Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| |
Collapse
|
20
|
Anderson TS, Wooster AL, Piersall SL, Okpalanwaka IF, Lowe DB. Disrupting cancer angiogenesis and immune checkpoint networks for improved tumor immunity. Semin Cancer Biol 2022; 86:981-996. [PMID: 35149179 PMCID: PMC9357867 DOI: 10.1016/j.semcancer.2022.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have advanced the field of cancer immunotherapy in patients by sustaining effector immune cell activity within the tumor microenvironment. However, the approach in general is still faced with issues related to ICI response duration/resistance, treatment eligibility, and safety, which indicates a need for further refinements. As immune checkpoint upregulation is inextricably linked to cancer-induced angiogenesis, newer clinical efforts have demonstrated the feasibility of disrupting both tumor-promoting networks to mediate enhanced immune-driven protection. This review focuses on such key evidence stipulating the necessity of co-applying ICI and anti-angiogenic strategies in cancer patients, with particular interest in highlighting newer engineered antibody approaches that may provide theoretically superior multi-pronged and safe therapeutic combinations.
Collapse
Affiliation(s)
- Trevor S Anderson
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Amanda L Wooster
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Savanna L Piersall
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Izuchukwu F Okpalanwaka
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
21
|
Shan Q, Zhang Y, Liang Z. Clustering analysis and prognostic signature of lung adenocarcinoma based on the tumor microenvironment. Sci Rep 2022; 12:12059. [PMID: 35835908 PMCID: PMC9283441 DOI: 10.1038/s41598-022-15971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Because of immunotherapy failure in lung adenocarcinoma, we have tried to find new potential biomarkers for differentiating different tumor subtypes and predicting prognosis. We identified two subtypes based on tumor microenvironment-related genes in this study. We used seven methods to analyze the immune cell infiltration between subgroups. Further analysis of tumor mutation load and immune checkpoint expression among different subgroups was performed. The least absolute shrinkage and selection operator Cox regression was applied for further selection. The selected genes were used to construct a prognostic 14-gene signature for LUAD. Next, a survival analysis and time-dependent receiver operating characteristics were performed to verify and evaluate the model. Gene set enrichment analyses and immune analysis in risk groups was also performed. According to the expression of genes related to the tumor microenvironment, lung adenocarcinoma can be divided into cold tumors and hot tumors. The signature we built was able to predict prognosis more accurately than previously known models. The signature-based tumor microenvironment provides further insight into the prediction of lung adenocarcinoma prognosis and may guide individualized treatment.
Collapse
Affiliation(s)
- Qingqing Shan
- Department of Respiration, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Yifan Zhang
- Department of Respiration, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Zongan Liang
- Department of Respiration, West China Hospital of Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Cortiula F, Reymen B, Peters S, Van Mol P, Wauters E, Vansteenkiste J, De Ruysscher D, Hendriks LEL. Immunotherapy in unresectable stage III non-small-cell lung cancer: state of the art and novel therapeutic approaches. Ann Oncol 2022; 33:893-908. [PMID: 35777706 DOI: 10.1016/j.annonc.2022.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
The standard of care for patients with stage III non-small-cell lung cancer (NSCLC) is concurrent chemoradiotherapy (CCRT) followed by 1 year of adjuvant durvalumab. Despite the survival benefit granted by immunotherapy in this setting, only 1/3 of patients are alive and disease free at 5 years. Novel treatment strategies are under development to improve patient outcomes in this setting: different anti-programmed cell death protein 1/programmed death-ligand 1 [anti-PD-(L)1] antibodies after CCRT, consolidation immunotherapy after sequential chemoradiotherapy, induction immunotherapy before CCRT and immunotherapy concurrent with CCRT and/or sequential chemoradiotherapy. Cross-trial comparison is particularly challenging in this setting due to the different timing of immunotherapy delivery and different patients' inclusion and exclusion criteria. In this review, we present the results of clinical trials investigating immune therapy in unresectable stage III NSCLC and discuss in-depth their biological rationale, their pitfalls and potential benefits. Particular emphasis is placed on the potential mechanisms of synergism between chemotherapy, radiation therapy and different monoclonal antibodies, and how this affects the tumor immune microenvironment. The designs and questions tackled by ongoing clinical trials are also discussed. Last, we address open questions and unmet clinical needs, such as the necessity for predictive biomarkers (e.g. radiomics and circulating tumor DNA). Identifying distinct subsets of patients to tailor anticancer treatment is a priority, especially in a heterogeneous disease such as stage III NSCLC.
Collapse
Affiliation(s)
- F Cortiula
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands; Department of Medical Oncology, Udine University Hospital, Udine, Italy
| | - B Reymen
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| | - S Peters
- Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - P Van Mol
- Department of Respiratory Diseases KU Leuven, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - E Wauters
- Department of Respiratory Diseases KU Leuven, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - J Vansteenkiste
- Department of Respiratory Diseases KU Leuven, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium.
| | - D De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| | - L E L Hendriks
- Department of Pulmonary Diseases, Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| |
Collapse
|
23
|
Léger MA, Routy B, Juneau D. FDG PET/CT for Evaluation of Immunotherapy Response in Lung Cancer Patients. Semin Nucl Med 2022; 52:707-719. [DOI: 10.1053/j.semnuclmed.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
|
24
|
Qiang H, Li J, Chang Q, Shen Y, Qian J, Chu T. Mining GEO and TCGA Database for Immune Microenvironment of Lung Squamous Cell Carcinoma Patients With or Without Chemotherapy. Front Oncol 2022; 12:835225. [PMID: 35211415 PMCID: PMC8861363 DOI: 10.3389/fonc.2022.835225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 01/23/2023] Open
Abstract
Background Chemotherapy is the main treatment for patients with lung squamous cell carcinoma (LUSC). However, how chemotherapy affects their immune system is rarely reported. This study was aimed to compare the differences in the immune microenvironment of LUSC patients with or without chemotherapy. Methods A total of 494 LUSC samples were obtained from The Cancer Genome Atlas (TCGA) database. The immune cell infiltration was evaluated by the ssGSEA algorithm, and the tumor subtype was assayed by ConsensusClusterPlus. The differences in tumor mutation burden (TMB) and clinical information between the two types were then compared. Additionally, the differentially expressed genes (DEGs) between two types were analyzed and hub genes were validated in the GEO database. Results LSCC samples in TCGA were divided into three subtypes. Then, combining the tumor subtype and immune scores, the samples were divided into hot and cold tumors. Regardless of whether LUSC patients received chemotherapy, the survival of the hot tumor group was not significantly prolonged compared with that of the cold tumor group. For LUSC patients who received chemotherapy, the TMB value in hot tumor group was significantly higher. Total 501 DEGs were identified between two groups. The high expressions of hub genes CD19, CTLA4, FCGR3B, CD80, IL-10, etc. were also validated in the GSE37745 dataset. Conclusion Chemotherapy does not affect the survival and prognosis of LUSC patients, but it significantly increases the TMB value of patients with hot tumor. The DEGs, especially hub genes, such as CD19, CTLA4, and FCGR3B, may serve as biomarkers to distinguish cold and hot tumors in LUSC.
Collapse
Affiliation(s)
- Huiping Qiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Chang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinchen Shen
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Qian
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Bagbudar S, Karanlik H, Cabioglu N, Bayram A, Ibis K, Aydin E, Yavuz E, Onder S. Prognostic Implications of Immune Infiltrates in the Breast Cancer Microenvironment: The Role of Expressions of CTLA-4, PD-1, and LAG-3. Appl Immunohistochem Mol Morphol 2022; 30:99-107. [PMID: 34608875 DOI: 10.1097/pai.0000000000000978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
The assessment of immune infiltrate in invasive breast carcinomas (IBCs), most commonly referred to as tumor infiltrating lymphocytes (TILs), is gaining importance in the current quest for optimal biomarker selection and prediction of prognosis. In this study, the impact of intensity of TILs and expressions of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), and lymphocyte activation gene 3 (LAG-3) in a group of breast carcinomas with regards to the prognosis and conventional pathologic parameters was scrutinized. For this purpose, 238 patients with IBCs containing different proportions of TILs were included in the study. IBCs with higher proportion of TILs were usually grade III carcinomas and correlated with poor prognostic features like receptor negativity, nonluminal intrinsic subtype (P<0.001). Similarly, PD-1 and LAG-3 positivity in immune cells (IC) were more likely to be positive in grade III IBC cases (P=0.004). In addition, PD-1 positivity in IC was more frequent in estrogen receptor-negative tumors (P=0.011) whereas LAG-3 positivity increased in large sized, estrogen receptor and progesterone receptor-negative tumors (P=0.050, 0.023, 0.04, respectively). CTLA-4 positivity in IC was more frequent in large-sized tumors (P=0.040). These 3 markers were also significantly associated with one another and also with the amount of TILs. In survival analysis, cases with prominent-TILs especially displaying CTLA-4, PD-1, and LAG-3 positivity appeared to have longer disease-free and overall survival (CTLA-4: P=0.027, P=0.024; PD-1: P=0.030, P=0.026; LAG-3: P=0.006, P=0.012, respectively). We conclude that the high proportion of TILs and as well as high expression of CTLA-4, PD-1, and LAG-3 in TILs have positively contributed to the outcome despite their correlation with poor conventional pathologic features. We suggest that these 3 immune markers can be used for the determination of proper treatment as well as prediction of prognosis in IBCs with TILs.
Collapse
Affiliation(s)
| | | | - Neslihan Cabioglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University
| | | | | | - Esra Aydin
- Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | | | | |
Collapse
|
26
|
El Dein Mohameda AS, El-Rebey HS, AboElnasr LSA, Abdou AG. The role and relationship between programmed death ligand 1 and cytotoxic T lymphocyte-associated antigen-4 immunohistochemical expression in colorectal carcinoma patients: an impact on outcome. Ecancermedicalscience 2022; 15:1323. [PMID: 35047074 PMCID: PMC8723745 DOI: 10.3332/ecancer.2021.1323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 01/14/2023] Open
Abstract
Background Globally, colorectal carcinoma (CRC) is the third most common cancer diagnosed in both men and women. Programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are immune checkpoints that induce tumour immune escape. Aim This study aimed to evaluate the immunohistochemical expression of PD-L1 and CTLA-4 in CRC and their relationship with clinicopathological parameters and survival data. Result This study included 103 CRC, 22 adenoma and 21 non-neoplastic specimens. High PD-L1 epithelial expression was in favour of CRC and high-grade dysplastic adenoma compared to normal specimens. High PD-L1 epithelial expression was associated with larger sized tumours, perforation, advanced T stage, infiltrative tumour border configuration (TBC), high tumour budding (TB) score, low tumour-stroma ratio (TSR) and absence of peritumoural lymphocytes. High PD-L1+ tumour infiltrating lymphocytes (TILs) showed an association with absence of perforation, early T stage, pushing TBC, lower TB score, high TSR and presence of peritumoural lymphocytes. High epithelial CTLA-4 expression was in favour of adenocarcinoma, high-grade dysplastic adenoma and low-grade dysplastic adenoma compared to normal specimens. High CTLA-4 epithelial score showed an association with positive lymph nodes (LNs), presence of an infiltrative TBC and absence of peritumoural lymphocytes. Low CTLA-4+ TILs showed a significant association with advanced tumour stage and increased number of positive LNs. Prolonged survival was associated with low epithelial PD-L1 and CTLA-4, high PD-L1+ TILs and high CTLA-4+ TILs. By multivariate Cox regression analysis, PD-L1+ TILs immunoreactivity score (p = 0.020) and CTLA-4+ TILs H. score (p = 0.036) were independent prognostic factors affecting overall survival among the other prognostic factors. Conclusion PD-L1 and CTLA-4 expression by tumour cells could cooperate with each other in enhancing progression of CRC leading to poor patient outcome, while their expression by TILs could stand against tumour progression.
Collapse
Affiliation(s)
| | - Hala Said El-Rebey
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein Elkom, 32511, Egypt.,https://orcid.org/0000-0003-0869-6332
| | - Lamia Sabry Abdelsamed AboElnasr
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein Elkom, 32511, Egypt.,https://orcid.org/0000-0003-0869-6332
| | - Asmaa Gaber Abdou
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein Elkom, 32511, Egypt.,https://orcid.org/0000-0003-0869-6332
| |
Collapse
|
27
|
Kujtan L, Kancha RK, Gustafson B, Douglass L, Ward CR, Buzard B, Subramanian J. Squamous cell carcinoma of the lung: Improving the detection and management of immune-related adverse events. Expert Rev Anticancer Ther 2022; 22:203-213. [PMID: 35034561 DOI: 10.1080/14737140.2022.2029414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized treatment for patients with non-small lung cancer (NSCLC). Currently approved ICIs are monoclonal antibodies that target programmed death receptor 1 (PD-1), its ligand PD-L1, or CTLA-4. With ICIs comes a novel collection of toxicities: immune-related adverse events (IRAEs). Management of IRAEs requires multidisciplinary expertise. We review the biology of IRAEs and their management in patients with squamous NSCLC. AREAS COVERED We review the pathophysiology of ICIs and IRAEs. For IRAEs related to squamous NSCLC, Cochrane Central, EMBASE, and PubMed were queried for trials with patients with squamous cell carcinoma or adenocarcinoma histology, who were assessed for incidence rates of IRAEs. Thirteen trials met inclusion criteria. National guidelines are reviewed to outline management strategies for IRAEs. EXPERT OPINION IRAEs are unique compared to standard chemotherapy. As the role of ICIs expand across all stages of squamous cell NSCLC and with different combinations of antineoplastics, management of IRAEs will become crucial. Optimal management of IRAEs requires multidisciplinary teamwork. Further investigation into the pathophysiology of IRAEs can enhance current management strategies.
Collapse
Affiliation(s)
- Lara Kujtan
- University of Missouri-Kansas City, 2301 Holmes Street, MO 64108
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory -CPMB, Osmania University, Hyderabad -500007, India
| | - Beth Gustafson
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Lindsey Douglass
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Christopher Rh Ward
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Blake Buzard
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Janakiraman Subramanian
- Saint Luke's Cancer Institute/University of Missouri Kansas City, 4321 Washington St, Suite 4000, Kansas City, MO 64111
| |
Collapse
|
28
|
Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int 2022; 22:2. [PMID: 34980128 PMCID: PMC8725311 DOI: 10.1186/s12935-021-02407-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) therapy has become a promising therapeutic strategy with encouraging therapeutic outcomes due to their durable anti-tumor effects. Though, tumor inherent or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their clinical utility. Overall, about 60-70% of patients (e.g., melanoma and lung cancer) who received ICIs show no objective response to intervention. The resistance to ICIs mainly caused by alterations in the tumor microenvironment (TME), which in turn, supports angiogenesis and also blocks immune cell antitumor activities, facilitating tumor cells' evasion from host immunosurveillance. Thereby, it has been supposed and also validated that combination therapy with ICIs and other therapeutic means, ranging from chemoradiotherapy to targeted therapies as well as cancer vaccines, can capably compromise tumor resistance to immune checkpoint blocked therapy. Herein, we have focused on the therapeutic benefits of ICIs as a groundbreaking approach in the context of tumor immunotherapy and also deliver an overview concerning the therapeutic influences of the addition of ICIs to other modalities to circumvent tumor resistance to ICIs.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angelina O. Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramadhan Ado Khanamir
- Internal Medicine and Surgery Department, College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | | | | | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
29
|
Guo XJ, Lu JC, Zeng HY, Zhou R, Sun QM, Yang GH, Pei YZ, Meng XL, Shen YH, Zhang PF, Cai JB, Huang PX, Ke AW, Shi YH, Zhou J, Fan J, Chen Y, Yang LX, Shi GM, Huang XY. CTLA-4 Synergizes With PD1/PD-L1 in the Inhibitory Tumor Microenvironment of Intrahepatic Cholangiocarcinoma. Front Immunol 2021; 12:705378. [PMID: 34526987 PMCID: PMC8435712 DOI: 10.3389/fimmu.2021.705378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is highly invasive and carries high mortality due to limited therapeutic strategies. In other solid tumors, immune checkpoint inhibitors (ICIs) target cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD1), and the PD1 ligand PD-L1 has revolutionized treatment and improved outcomes. However, the relationship and clinical significance of CTLA-4 and PD-L1 expression in ICC remains to be addressed. Deciphering CTLA-4 and PD-L1 interactions in ICC enable targeted therapy for this disease. In this study, immunohistochemistry (IHC) was used to detect and quantify CTLA-4, forkhead box protein P3 (FOXP3), and PD-L1 in samples from 290 patients with ICC. The prognostic capabilities of CTLA-4, FOXP3, and PD-L1 expression in ICC were investigated with the Kaplan-Meier method. Independent risk factors related to ICC survival and recurrence were assessed by the Cox proportional hazards models. Here, we identified that CTLA-4+ lymphocyte density was elevated in ICC tumors compared with peritumoral hepatic tissues (P <.001), and patients with a high density of CTLA-4+ tumor-infiltrating lymphocytes (TILsCTLA-4 High) showed a reduced overall survival (OS) rate and increased cumulative recurrence rate compared with patients with TILsCTLA-4 Low (P <.001 and P = .024, respectively). Similarly, patients with high FOXP3+ TILs (TILsFOXP3 High) had poorer prognoses than patients with low FOXP3+ TILs (P = .021, P = .034, respectively), and the density of CTLA-4+ TILs was positively correlated with FOXP3+ TILs (Pearson r = .31, P <.001). Furthermore, patients with high PD-L1 expression in tumors (TumorPD-L1 High) and/or TILsCTLA-4 High presented worse OS and a higher recurrence rate than patients with TILsCTLA-4 LowTumorPD-L1 Low. Moreover, multiple tumors, lymph node metastasis, and high TumorPD-L1/TILsCTLA-4 were independent risk factors of cumulative recurrence and OS for patients after ICC tumor resection. Furthermore, among ICC patients, those with hepatolithiasis had a higher expression of CTLA-4 and worse OS compared with patients with HBV infection or undefined risk factors (P = .018). In conclusion, CTLA-4 is increased in TILs in ICC and has an expression profile distinct from PD1/PD-L1. TumorPD-L1/TILsCTLA-4 is a predictive factor of OS and ICC recurrence, suggesting that combined therapy targeting PD1/PD-L1 and CTLA-4 may be useful in treating patients with ICC.
Collapse
Affiliation(s)
- Xiao-Jun Guo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong Zhou
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Man Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Yan-Zi Pei
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Xian-Long Meng
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Peng-Fei Zhang
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Pei-Xin Huang
- Liver Cancer Institute, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Yi Chen
- Liver Cancer Institute, Fudan University, Shanghai, China
| | - Liu-Xiao Yang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People’s Republic of China, Shanghai, China
| |
Collapse
|
30
|
de Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet 2021; 252-253:6-24. [DOI: 10.1016/j.cancergen.2020.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/09/2023]
|
31
|
Holah NS. The Clinical Value of VDR and CTLA 4 in Evaluating the Prognosis of Invasive Duct Carcinoma of Egyptian Patients and their Benefit as a Target Therapy. Asian Pac J Cancer Prev 2021; 22:1183-1194. [PMID: 33906311 PMCID: PMC8325144 DOI: 10.31557/apjcp.2021.22.4.1183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Breast cancer represents the second most common female malignancies worldwide and the most common in Egypt. The nuclear vitamin D receptor plays a role in the biology of cancer by affecting inflammatory microenvironment. The aim of this study is to evaluate the role of VDR and CTLA 4 in invasive duct carcinoma of Egyptian patients. METHODS This is a retrospective study that included 70 invasive duct carcinoma specimens retrieved from the archival material of Pathology Department, Faculty of medicine, Menoufia University, Egypt, spanning the period between January 2010 and December 2017. All cases were stained for VDR and CTLA 4 antibodies. RESULTS There is significant association between high VDR expression in tumor cells and parameters of good prognosis as low tumor stage (T1) and (N0) stage. On the other hand, there is significant association between low CTLA4 tumor expression and good prognostic parameters as low tumor stage (T1) and absent vascular invasion. Regarding lymphocyte expression, there is significant association between positive CTLA4 expression in lymphocytes and parameters of good prognosis as absent metastasis. High VDR tumor expression is the most independent prognostic factor on overall survival of breast carcinoma patients. CONCLUSION high VDR expression in tumor cells is associated with good prognostic parameters and is the most independent prognostic factor on overall survival so it might be of benefit as a target therapy for Egyptian invasive duct carcinoma patients and VDR might augment the expression of CTLA-4, So tailored immunotherapy might have an impact on invasive duct carcinoma patients.<br />.
Collapse
Affiliation(s)
- Nanis Shawky Holah
- Department of Pathology, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
32
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
33
|
Liao Q, Zhou Y, Xia L, Cao D. Lipid Metabolism and Immune Checkpoints. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:191-211. [PMID: 33740251 DOI: 10.1007/978-981-33-6785-2_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immune checkpoints are essential for the regulation of immune cell functions. Although the abrogation of immunosurveillance of tumor cells is known, the regulators of immune checkpoints are not clear. Lipid metabolism is one of the important metabolic activities in organisms. In lipid metabolism, a large number of metabolites produced can regulate the gene expression and activation of immune checkpoints through various pathways. In addition, increasing evidence has shown that lipid metabolism leads to transient generation or accumulation of toxic lipids that result in endoplasmic reticulum (ER) stress and then regulate the transcriptional and posttranscriptional modifications of immune checkpoints, including transcription, protein folding, phosphorylation, palmitoylation, etc. More importantly, the lipid metabolism can also affect exosome transportation of checkpoints and the degradation of checkpoints by affecting ubiquitination and lysosomal trafficking. In this chapter, we mainly empathize on the roles of lipid metabolism in the regulation of immune checkpoints, such as gene expression, activation, and degradation.
Collapse
Affiliation(s)
- Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
34
|
Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M. Noninvasive Imaging of Cancer Immunotherapy. Nanotheranostics 2021; 5:90-112. [PMID: 33391977 PMCID: PMC7738948 DOI: 10.7150/ntno.50860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of several malignancies. Notwithstanding the encouraging results, many patients do not respond to treatments. Evaluation of the efficacy of treatments is challenging and robust methods to predict the response to treatment are not yet available. The outcome of immunotherapy results from changes that treatment evokes in the tumor immune landscape. Therefore, a better understanding of the dynamics of immune cells that infiltrate into the tumor microenvironment may fundamentally help in addressing this challenge and provide tools to assess or even predict the response. Noninvasive imaging approaches, such as PET and SPECT that provide whole-body images are currently seen as the most promising tools that can shed light on the events happening in tumors in response to treatment. Such tools can provide critical information that can be used to make informed clinical decisions. Here, we review recent developments in the field of noninvasive cancer imaging with a focus on immunotherapeutics and nuclear imaging technologies and will discuss how the field can move forward to address the challenges that remain unresolved.
Collapse
Affiliation(s)
- Omar Abousaway
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Taha Rakhshandehroo
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Annick D. Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Mohammad Rashidian
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
35
|
Madhukar G, Subbarao N. Current and Future Therapeutic Targets: A Review on Treating Head and Neck Squamous Cell Carcinoma. Curr Cancer Drug Targets 2020; 21:386-400. [PMID: 33372876 DOI: 10.2174/1568009620666201229120332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) continues to be a global public health burden even after a tremendous development in its treatment. It is a heterogeneous cancer of upper aero-digestive tract. The contemporary strategy to treat cancer is the use of anticancer drugs against proteins possessing abnormal expression. Targeted chemotherapy was found successful in HNSCC, but, there is still a stagnant improvement in the survival rates and high recurrence rates due to undesirable chemotherapy reactions, non-specificity of drugs, resistance against drugs and drug toxicity on non-cancerous tissues and cells. Various extensive studies lead to the identification of drug targets capable to treat HNSCC effectively. The current review article gives an insight into these promising anticancer targets along with knowledge of drugs under various phases of development. In addition, new potential targets that are not yet explored against HNSCC are also described. We believe that exploring and developing drugs against these targets might prove beneficial in treating HNSCC.
Collapse
Affiliation(s)
- Geet Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
36
|
Oyewole-Said D, Konduri V, Vazquez-Perez J, Weldon SA, Levitt JM, Decker WK. Beyond T-Cells: Functional Characterization of CTLA-4 Expression in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:608024. [PMID: 33384695 PMCID: PMC7770141 DOI: 10.3389/fimmu.2020.608024] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
The immune response consists of a finely-tuned program, the activation of which must be coupled with inhibitory mechanisms whenever initiated. This ensures tight control of beneficial anti-pathogen and anti-tumor responses while preserving tissue integrity, promoting tissue repair, and safeguarding against autoimmunity. A cogent example of this binary response is in the mobilization of co-stimulatory and co-inhibitory signaling in regulating the strength and type of a T-cell response. Of particular importance is the costimulatory molecule CD28 which is countered by CTLA-4. While the role of CD28 in the immune response has been thoroughly elucidated, many aspects of CTLA-4 biology remain controversial. The expression of CD28 is largely constrained to constitutive expression in T-cells and as such, teasing out its function has been somewhat simplified by a limited and specific expression profile. The expression of CTLA-4, on the other hand, while reported predominantly in T-cells, has also been described on a diverse repertoire of cells within both lymphoid and myeloid lineages as well as on the surface of tumors. Nonetheless, the function of CTLA-4 has been mostly described within the context of T-cell biology. The focus on T-cell biology may be a direct result of the high degree of amino acid sequence homology and the co-expression pattern of CD28 and CTLA-4, which initially led to the discovery of CTLA-4 as a counter receptor to CD28 (for which a T-cell-activating role had already been described). Furthermore, observations of the outsized role of CTLA-4 in Treg-mediated immune suppression and the striking phenotype of T-cell hyperproliferation and resultant disease in CTLA-4-/- mice contribute to an appropriate T-cell-centric focus in the study of CTLA-4. Complete elucidation of CTLA-4 biology, however, may require a more nuanced understanding of its role in a context other than that of T-cells. This makes particular sense in light of the remarkable, yet limited utility of anti-CTLA-4 antibodies in the treatment of cancers and of CTLA-4-Ig in autoimmune disorders like rheumatoid arthritis. By fully deducing the biology of CTLA-4-regulated immune homeostasis, bottlenecks that hinder the widespread applicability of CTLA-4-based immunotherapies can be resolved.
Collapse
Affiliation(s)
- Damilola Oyewole-Said
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Scott A. Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M. Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
37
|
The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:284. [PMID: 33317597 PMCID: PMC7734811 DOI: 10.1186/s13046-020-01749-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
The enthusiasm for immune checkpoint inhibitors (ICIs), an efficient tumor treatment model different from traditional treatment, is based on their unprecedented antitumor effect, but the occurrence of immune-related adverse events (irAEs) is an obstacle to the prospect of ICI treatment. IrAEs are a discrete toxicity caused by the nonspecific activation of the immune system and can affect almost all tissues and organs. Currently, research on biomarkers mainly focuses on the gastrointestinal tract, endocrine system, skin and lung. Several potential hypotheses concentrate on the overactivation of the immune system, excessive release of inflammatory cytokines, elevated levels of pre-existing autoantibodies, and presence of common antigens between tumors and normal tissues. This review lists the current biomarkers that might predict irAEs and their possible mechanisms for both nonspecific and organ-specific biomarkers. However, the prediction of irAEs remains a major clinical challenge to screen and identify patients who are susceptible to irAEs and likely to benefit from ICIs.
Collapse
|
38
|
Ariyarathna H, Thomson NA, Aberdein D, Perrott MR, Munday JS. Increased programmed death ligand (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) expression is associated with metastasis and poor prognosis in malignant canine mammary gland tumours. Vet Immunol Immunopathol 2020; 230:110142. [PMID: 33129194 DOI: 10.1016/j.vetimm.2020.110142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
Aberrant expression of immune check point molecules, programmed death ligand (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) has been reported in many human cancers with increased protein and gene expression correlated with an aggressive behaviour in some neoplasms. Additionally, PD-L1 blockade has been shown to be an effective therapy for some human cancers. Canine mammary gland tumours have previously been shown to produce PD-L1 protein, but there are no previous studies investigating CTLA-4 in these common canine neoplasms. The present study investigated protein and gene expression of PD-L1 and CTLA-4 using immunohistochemistry and RT-PCR in 41 histologically-malignant, outcome-known CMGTs. The PD-L1 and CTLA-4 immunostaining scores of the mammary gland tumours that subsequently metastasised were significantly higher than those of tumours which did not metastasise (PD-L1: p = 0.005, CTLA-4: p = 0.003). Gene expression of PD-L1 and CTLA-4 was also significantly higher in tumours which subsequently metastasised (PD-L1: p = 0.023, CTLA-4: p = 0.022). Further, higher PD-L1 or CTLA-4 immunostaining scores correlated with shorter survival times of dogs (PD-L1: rs = - 0.42, p = 0.008, CTLA-4: rs = - 0.4, p = 0.01) while PD-L1 immunostaining was independently prognostic of survival time (Δ F = 4.9, p = 0.035). These findings suggest that higher protein and gene expression of PD-L1 and CTLA-4 by tumour cells increases the chances of metastasis and measuring these proteins may predict likely neoplasm behaviour. Additionally, if increased expression of these proteins promotes metastasis, blocking PD-L1 or CTLA-4 may be beneficial to treat canine mammary gland tumours.
Collapse
Affiliation(s)
- Harsha Ariyarathna
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Neroli A Thomson
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Danielle Aberdein
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Matthew R Perrott
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - John S Munday
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
39
|
Sakamoto K, Fukihara J, Morise M, Hashimoto N. Clinical burden of immune checkpoint inhibitor-induced pneumonitis. Respir Investig 2020; 58:305-319. [PMID: 32713811 DOI: 10.1016/j.resinv.2020.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/01/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have been a breakthrough in medical oncology. However, many patients experience a novel type of adverse drug reaction that has a unique clinical presentation, called immune-related adverse events (irAEs). A breakdown of self-tolerance and an exaggerated autoimmune reaction by the host are assumed to be the underlying mechanisms. Therefore, special attention to the optimal diagnosis and management is required. Among the various effects of irAE, pneumonitis has been recognized as an important manifestation because of its high morbidity and mortality. As the application of ICIs is expanding to a wider variety of tumor types, as well as its use with cytotoxic agents and radiation, clinicians are highly likely to encounter this complication. In this review, we will summarize the current understanding of the underlying mechanisms, incidence, risk factors, optimal diagnostic workup, and management of ICI-related pneumonitis (IRP). We will also review fundamental information on drug-induced lung toxicity in the oncology setting. In addition, research perspectives focused on better risk stratification and management to avoid serious complications in the future are presented.
Collapse
Affiliation(s)
- Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550. Japan.
| | - Jun Fukihara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550. Japan.
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550. Japan.
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550. Japan.
| |
Collapse
|
40
|
The Profile and Role of Tumor-infiltrating Lymphocytes in Hepatocellular Carcinoma: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2020; 29:188-200. [PMID: 32769442 DOI: 10.1097/pai.0000000000000865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/03/2020] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Tumor-infiltrating lymphocytes (TILs) are a class of cells that form the tumor microenvironment and thus have an effect on carcinogenesis. The aim of this study was to investigate the immunohistochemical expression of CD8, CD4, cytotoxic T lymphocyte-associated protein-4 (CTLA-4), and granzyme B in HCC and their correlation with clinicopathologic parameters and prognosis. This study was carried out on 112 cases of HCC. High percentage of CD8+ TILs was associated with large tumors and adjacent noncirrhotic liver. High percentage of CD4+ TILs and high CD4 to CD8 ratio were associated with nonviral etiology, low alpha fetoprotein, and direct acting antiviral treatment. High percentage of CTLA-4-positive TILs tended to be associated with high-grade HCC, while a high percentage of CTLA-4 in tumor cells was associated with multiple lesions and low tumor grade. High percentage of granzyme B+ TILs was associated with low grade, early stage, and absence of tumor recurrence. High CD4 percentage and high CD4/CD8 ratio affected patients' overall survival. There is a dynamic interaction between the different subsets of lymphocytes in the environment of HCC manifested by coparallel expression of CD4 and CD8 augmenting the expression of CTLA-4, and only CD8 augments the expression of granzyme B. This opens the gate for the beneficial role of immunotherapy in the management of HCC, reducing recurrence and improving survival.
Collapse
|
41
|
Tripathi SK, Pandey K, Rengasamy KRR, Biswal BK. Recent updates on the resistance mechanisms to epidermal growth factor receptor tyrosine kinase inhibitors and resistance reversion strategies in lung cancer. Med Res Rev 2020; 40:2132-2176. [PMID: 32596830 DOI: 10.1002/med.21700] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have led to a substantial improvement in the prognosis of lung cancer patients by explicitly targeting the activating mutations within the EGFR. Initially, patients harboring tumors with EGFR mutations show progression-free survival and improvement in the response rates toward all-generation EGFR-TKIs; however, these agents fail to deliver the intended results in the long-term due to drug resistance. Therefore, it is necessary to recognize specific cardinal mechanisms that regulate the resistance phenomenon. Understanding the intricate mechanisms underlying EGFR-TKIs resistance in lung cancer could provide cognizance for more advanced targeted therapeutics. The present review features insights into current updates on the discrete mechanisms, including secondary or tertiary mutations, parallel and downstream signaling pathways, acquiring an epithelial-to-mesenchymal transition (EMT) signature, microRNAs (miRNAs), and epigenetic alterations, which lead to intrinsic and acquired resistance against EGFR-TKIs in lung cancer. In addition, this paper also reviews current possible strategies to overcome this issue using combination treatment of recently developed MET inhibitors, allosteric inhibitors or immunotherapies, transformation of EMT, targeting miRNAs, and epigenetic alterations in intrinsic and acquired EGFR-TKIs resistant lung cancer. In conclusion, multiple factors are responsible for intrinsic and acquired resistance to EGFR-TKIs and understanding of the detailed molecular mechanisms, and recent advancements in pharmacological studies are needed to develop new strategies to overcome intrinsic and acquired EGFR-TKIs resistance in lung cancer.
Collapse
Affiliation(s)
- Surya K Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Kamal Pandey
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
42
|
Cytotoxic T lymphocyte antigen-4 (CTLA-4) expression in chordoma and tumor-infiltrating lymphocytes (TILs) predicts prognosis of spinal chordoma. Clin Transl Oncol 2020; 22:2324-2332. [DOI: 10.1007/s12094-020-02387-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/10/2020] [Indexed: 12/26/2022]
|
43
|
Pistillo MP, Carosio R, Grillo F, Fontana V, Mastracci L, Morabito A, Banelli B, Tanda E, Cecchi F, Dozin B, Gualco M, Salvi S, Spagnolo F, Poggi A, Queirolo P. Phenotypic characterization of tumor CTLA-4 expression in melanoma tissues and its possible role in clinical response to Ipilimumab. Clin Immunol 2020; 215:108428. [PMID: 32344017 DOI: 10.1016/j.clim.2020.108428] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/21/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023]
Abstract
The expression of the immune checkpoint molecule CTLA-4 has been almost exclusively studied in the T cell lineage, but increasing evidence has shown its expression on tumors with implications for immunotherapy. To date, the degree of expression of CTLA-4 on tumor cells as a predictive biomarker of response to immune checkpoint inhibitors has not been studied. In this report, we analyzed this issue in melanoma patients treated with CTLA-4 inhibitor Ipilimumab (IPI). We show that the level of CTLA-4 expression on melanoma cells is higher than that on tumor infiltrating lymphocytes (TIL) and it is associated with clinical response to IPI therapy supporting the idea of its possible role as a predictive biomarker.
Collapse
Affiliation(s)
- Maria Pia Pistillo
- IRCCS Ospedale Policlinico San Martino, Tumor Epigenetics Unit, Genova, Italy.
| | - Roberta Carosio
- IRCCS Ospedale Policlinico San Martino, Tumor Epigenetics Unit, Genova, Italy
| | - Federica Grillo
- University of Genova, Department of Surgical Sciences and Integrated Diagnostics (DISC), Genova, Italy; IRCCS Ospedale Policlinico San Martino, Anatomic Pathology Unit, Genova, Italy
| | - Vincenzo Fontana
- IRCCS Ospedale Policlinico San Martino, Clinical Epidemiology Unit, Genova, Italy
| | - Luca Mastracci
- University of Genova, Department of Surgical Sciences and Integrated Diagnostics (DISC), Genova, Italy; IRCCS Ospedale Policlinico San Martino, Anatomic Pathology Unit, Genova, Italy
| | - Anna Morabito
- IRCCS Ospedale Policlinico San Martino, Tumor Epigenetics Unit, Genova, Italy
| | - Barbara Banelli
- IRCCS Ospedale Policlinico San Martino, Tumor Epigenetics Unit, Genova, Italy
| | - Enrica Tanda
- IRCCS Ospedale Policlinico San Martino, Skin Cancer Unit, Genova, Italy
| | - Federica Cecchi
- IRCCS Ospedale Policlinico San Martino, Skin Cancer Unit, Genova, Italy
| | - Beatrice Dozin
- IRCCS Ospedale Policlinico San Martino, Clinical Epidemiology Unit, Genova, Italy
| | - Marina Gualco
- Ospedale Villa Scassi, ASL3, Anatomic Pathology Unit, Genova, Italy
| | - Sandra Salvi
- IRCCS Ospedale Policlinico San Martino, Anatomic Pathology Unit, Genova, Italy
| | | | - Alessandro Poggi
- IRCCS Ospedale Policlinico San Martino, Molecular Oncology and Angiogenesis Unit, Genova, Italy
| | - Paola Queirolo
- IEO, Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
44
|
Koustas E, Sarantis P, Papavassiliou AG, Karamouzis MV. The Resistance Mechanisms of Checkpoint Inhibitors in Solid Tumors. Biomolecules 2020; 10:666. [PMID: 32344837 PMCID: PMC7277892 DOI: 10.3390/biom10050666] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of cancer immunotherapy has already shown some remarkable results, having changed the treatment strategy in clinical practice for solid tumors. Despite these promising long-term responses, patients seem to lack the ability to respond to immune checkpoint inhibitors, thus demonstrating a primary resistance to immunotherapy. Moreover, a significant number of patients who initially respond to treatment eventually acquire resistance to immunotherapy. Both resistance mechanisms are a result of a complex interaction among different molecules, pathways, and cellular processes. Several resistance mechanisms, such as tumor microenvironment modification, autophagy, genetic and epigenetic alterations, tumor mutational burden, neo-antigens, and modulation of gut microbiota have already been identified, while more continue to be uncovered. In this review, we discuss the latest milestones in the field of immunotherapy, resistance mechanisms against this type of therapy as well as putative therapeutic strategies to overcome resistance in solid tumors.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
- First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
45
|
de Vos L, Grünwald I, Bawden EG, Dietrich J, Scheckenbach K, Wiek C, Zarbl R, Bootz F, Landsberg J, Dietrich D. The landscape of CD28, CD80, CD86, CTLA4, and ICOS DNA methylation in head and neck squamous cell carcinomas. Epigenetics 2020; 15:1195-1212. [PMID: 32281488 DOI: 10.1080/15592294.2020.1754675] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CTLA-4 blocking therapeutic antibodies are currently under investigation in head and neck squamous cell carcinoma (HNSCC). A better understanding of the epigenetic regulation of the CD28 superfamily members CD28, CTLA-4, and ICOS and their B7 ligands, CD80 and CD86, could support the development of biomarkers for response prediction to anti-CTLA-4 immunotherapy. We investigated methylation of the encoding genes CD28, CTLA4, ICOS, CD80, and CD86 at single CpG resolution (51 CpG sites) in a cohort of HNSCC (N = 528) and normal adjacent tissue samples (N = 50) provided by The Cancer Genome Research Atlas, in isolated blood leukocytes from healthy individuals (N = 28), and HNSCC cell lines (N = 39). We analysed methylation levels with regard to mRNA expression, overall survival, mutational load, interferon-γ signature, and signatures of immune cell infiltrates. Depending on the location of the CpG sites (promoter, promoter flank, gene body, and intergenic sites), we found significant differences in methylation levels among isolated leukocytes, between leukocytes and HNSCC cell lines, and among HNSCCs. Methylation of all analysed genes correlated inversely or positively with mRNA expression, depending on the CpG site. CD28, CTLA4, and ICOS revealed almost identical correlation patterns. Furthermore, we found significant correlations with survival and features of response to immunotherapy, i.e. interferon-γ signature, signatures of tumour infiltrating immune cells, and mutational load. Our results suggest CD28, CTLA4, ICOS, CD80, and CD86 expression levels are epigenetically co-regulated by DNA methylation. This study provides rationale to test their DNA methylation as potential biomarker for prediction of response to CTLA-4 immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Luka de Vos
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn, Germany
| | - Ingela Grünwald
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn, Germany
| | - Emma Grace Bawden
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity , Melbourne, Australia
| | - Jörn Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn, Germany
| | - Kathrin Scheckenbach
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Düsseldorf , Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Düsseldorf , Düsseldorf, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn, Germany
| | - Friedrich Bootz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn, Germany
| |
Collapse
|
46
|
Urbano AC, Nascimento C, Soares M, Correia J, Ferreira F. Clinical Relevance of the serum CTLA-4 in Cats with Mammary Carcinoma. Sci Rep 2020; 10:3822. [PMID: 32123292 PMCID: PMC7052166 DOI: 10.1038/s41598-020-60860-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T lymphocyte associated antigen 4 (CTLA-4) serves an important role in breast cancer progression, which has led to the development of novel immunotherapies aimed at blocking tumor immune evasion. Although feline mammary carcinoma is increasingly recognized as a valuable cancer model, no studies on CTLA-4 function had been conducted in this species. The serum CTLA-4, TNF-α and IL-6 levels of 57 female cats with mammary carcinoma were determined by ELISA, and immunohistochemistry was performed to evaluate CTLA-4 and FoxP3 expression in tumor cells and interstitial lymphocytes. The results obtained show that serum CTLA-4 levels are increased in cats with mammary carcinoma (P = 0.022), showing an association with a number of clinicopathological features: smaller tumor size, P < 0.001; absence of tumor necrosis, P < 0.001; non-basal status, P < 0.02 and HER-2-positive status. Additionally, a strong positive correlation was found between serum CTLA-4 levels and serum TNF-α (R = 0.88, P < 0.001) and IL-6 levels (R = 0.72, P < 0.001). Concerning the CTLA-4 and FoxP3 expression, although detected in both interstitial lymphocytes and tumor cells, a positive association was found only between interstitial CTLA-4 and FoxP3 expressions (R = 0.387, P = 0.01), which is negatively associated with the serum CTLA-4 levels (P = 0.03). These findings provide a preliminary step in the characterization of immune profiles in feline mammary carcinoma, uncovering a molecular rationale for targeted therapy with CTLA-4 pathway inhibitors. Finally, by strengthening the hypothesis of an immunomodulatory role for this regulator, we further validate the utility of spontaneous feline mammary carcinoma as a model for human breast cancer.
Collapse
Affiliation(s)
- Ana Catarina Urbano
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Catarina Nascimento
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Maria Soares
- Research Center for Biosciences and Health Technologies (CBiOS), Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Lisboa, 1749-024, Portugal
| | - Jorge Correia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal
| | - Fernando Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal.
| |
Collapse
|
47
|
Wilky BA. Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol Rev 2020; 290:6-23. [PMID: 31355494 DOI: 10.1111/imr.12766] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized our approach to cancer treatment in the past decade. While monoclonal antibodies to CTLA-4 and PD-1/PD-L1 have produced remarkable and durable responses in a subset of patients, the majority of patients will still develop primary or adaptive resistance. With complex mechanisms of resistance limiting the efficacy of checkpoint inhibitor monotherapy, it is critical to develop combination approaches to allow more patients to benefit from immunotherapy. In this review, I approach the current landscape of ICI research from the perspective of sarcomas, a rare group of bone and soft tissue cancers that have had limited benefit from checkpoint inhibitor monotherapy, and little investigation of biomarkers to predict responses. By surveying the various mechanisms of resistance and treatment modalities being explored in other solid tumors, I outline how ICIs will undoubtedly serve as the critical foundation for future directions in modern immunotherapy.
Collapse
Affiliation(s)
- Breelyn A Wilky
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
48
|
Lütje S, Feldmann G, Essler M, Brossart P, Bundschuh RA. Immune Checkpoint Imaging in Oncology: A Game Changer Toward Personalized Immunotherapy? J Nucl Med 2020; 61:1137-1144. [PMID: 31924724 DOI: 10.2967/jnumed.119.237891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint blockade represents a promising approach in oncology, showing antitumor activities in various cancers. However, although being generally far better tolerated than classic cytotoxic chemotherapy, this treatment, too, may be accompanied by considerable side effects and not all patients benefit equally. Therefore, careful patient selection and monitoring of the treatment response is mandatory. At present, checkpoint-specific molecular imaging is being increasingly investigated as a tool for patient selection and response evaluation. Here, an overview of the current developments in immune checkpoint imaging is provided.
Collapse
Affiliation(s)
- Susanne Lütje
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany; and
| | - Georg Feldmann
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany; and
| | - Peter Brossart
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital Bonn, Bonn, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany; and
| |
Collapse
|
49
|
Liu F, Huang J, Liu X, Cheng Q, Luo C, Liu Z. CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int 2020; 20:7. [PMID: 31911758 PMCID: PMC6945521 DOI: 10.1186/s12935-019-1085-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background CTLA-4 is a well-studied immune checkpoint protein that negatively regulates T cell-mediated immune responses. However, the expression of CTLA-4 in glioma and the effects of CTLA-4 on prognosis in patients with glioma have not yet been examined. Methods We investigated the protein level of CTLA-4 in human glioma samples, extracted genetic and clinical data from 1024 glioma patients to characterize CTLA-4 expression and its relationship with immune functions in gliomas. R language was used for statistical analysis. Results Higher CTLA-4 expression was found in patients with higher grade, isocitrate dehydrogenase (IDH)-wild-type, and mesenchymal-molecular subtype gliomas than in patients with lower grade, IDH-mutant, and other molecular subtype gliomas. Further analysis showed that there was a strong positive correlation between CTLA-4 and the specific marker gene expression of immune cells, including CD8+ T cells, regulatory T cells, and macrophages in both databases, suggesting that higher CTLA-4 expression in the glioma microenvironment induced greater immune cell infiltration compared with that in gliomas with lower CTLA-4 expression. We further explored the associations between CTLA-4 and other immune-related molecules. Pearson correlation analysis showed that CTLA-4 was associated with PD-1, CD40, ICOS, CXCR3, CXCR6, CXCL12 and TIGIT. Patients with glioma with lower CTLA-4 expression exhibited significantly longer overall survival. Thus, these findings suggested that increased CTLA-4 expression conferred a worse outcome in glioma. Conclusions In summary, our findings revealed the expression patterns and clinical characteristics of CTLA-4 in glioma and may be helpful for expanding our understanding of antitumor immunotherapy in gliomas.
Collapse
Affiliation(s)
- Fangkun Liu
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| | - Jing Huang
- 2Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China.,3Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011 Hunan China
| | - Xuming Liu
- Intensive Care Unit, Hunan Provincial Hospital of Traditional Chinese Medicine, Zhuzhou, China
| | - Quan Cheng
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| | - Chengke Luo
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| | - Zhixiong Liu
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| |
Collapse
|
50
|
Karpathiou G, Chauleur C, Mobarki M, Peoc'h M. The immune checkpoints CTLA-4 and PD-L1 in carcinomas of the uterine cervix. Pathol Res Pract 2019; 216:152782. [PMID: 31862202 DOI: 10.1016/j.prp.2019.152782] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Evasion of immune control is a major feature of malignant tumors. This tumor aspect is poorly studied in cervical lesions. AIM OF THE STUDY To investigate the expression of PD-L1 and CTLA-4 in lesions of the uterine cervix. MATERIAL AND METHODS Sixty-three cervical lesions from 52 patients were immunohistochemically studied. The 63 lesions included 27 invasive adenocarcinomas, 19 squamous cell carcinomas (SCCs), 7 adenocarcinomas in situ, and 10 high-grade squamous intraepithelial lesions (CIN3). RESULTS CTLA-4 and PD-L1 tumor cell expression was found in 61.5 % and 26.9 % of the invasive cases, respectively. CTLA-4 tumor cell expression and PD-L1 tumor and immune cell expression were more often found in SCCs than in adenocarcinomas. CTLA-4 tumor cell expression was more often found in advanced FIGO tumors. PD-L1 and CTLA-4 immune cell expression was associated with lymph node metastasis. CTLA-4 expression did not affect survival. The prognosis was worse for PD-L1-expressing tumors. CONCLUSION CTLA-4 and PD-L1 are potential therapeutic targets in cervical cancer.
Collapse
Affiliation(s)
- Georgia Karpathiou
- Department of Pathology, North Hospital, University Hospital of St-Etienne, France.
| | - Celine Chauleur
- Department of Obstetrics and Gynecology, North Hospital, University Hospital of St-Etienne, France
| | - Mousa Mobarki
- Department of Pathology, North Hospital, University Hospital of St-Etienne, France; Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Michel Peoc'h
- Department of Pathology, North Hospital, University Hospital of St-Etienne, France
| |
Collapse
|