1
|
Mortezagholi S, Maghsood F, Shojaeian S, Shokri F, Amiri MM, Ghorbani A, Shabani M, Zarnani AH. Production and characterization of a panel of anti-mouse placenta-specific protein 1 (plac1) monoclonal antibodies. Anal Biochem 2025; 696:115682. [PMID: 39332465 DOI: 10.1016/j.ab.2024.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Placenta-Specific Protein 1 (PLAC1) is essential for normal placental and embryonic development. It is widely expressed in various types of cancer cells. We produced a panel of anti-mouse plac1 monoclonal antibodies (mAbs) with different applications. Two recombinant proteins were produced containing either the extracellular domain (ED) plus tetanus toxin P2, P30, pan-DR epitope (PADRE), and KDEL3 (main plac1) or ED plus KDEL3 (control plac1). Recombinant proteins were used for immunization and screening. Positive clones were selected by ELISA and flow cytometry. Purified mAbs were tested by ELISA, WB, flow cytometry, immunohistochemistry (IHC), and immunofluorescent (IF). A combination of bioinformatics tools was used to predict the target epitope(s) of the mAbs. Eight anti-mouse plac1 mAbs (all IgG1/κ1) were generated, all reacting with high affinity in ELISA. Seven clones recognized plac1 in both reduced and non-reduced Western blots, while one only recognized the non-reduced form. Cross-inhibition ELISA revealed that all mAbs recognized overlapping epitopes with a shared motif except for 5C9. Four clones reacted with the native antigen in flow cytometry, but none were functional in IF or IHC staining. The produced multifunctional mAbs can be used to investigate different aspects of PLAC1 biology in reproduction and cancer.
Collapse
Affiliation(s)
- Sahar Mortezagholi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Ahmadi Jazi S, Tajik F, Rezagholizadeh F, Taha SR, Shariat Zadeh M, Bouzari B, Madjd Z. Higher Expression of Talin-1 is Associated With Less Aggressive Tumor Behavior in Pancreatic Cancer. Appl Immunohistochem Mol Morphol 2024; 32:425-435. [PMID: 39258796 DOI: 10.1097/pai.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Talin-1 is one of the major scaffold proteins in focal adhesions playing a vital role in cell migration, metastasis, and cancer progression. Although studies regarding the importance of Talin-1 in cancer have rapidly developed, its prognostic and diagnostic value still remain unsatisfying in pancreatic cancer (PC). Therefore, the present study aims to investigate the expression, clinical significance, as well as the prognostic and diagnostic value of Talin-1 in different types of PC. Bioinformatic analysis was applied to determine the clinical importance and biological role of Talin-1 expression in PC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of Talin-1 were evaluated in tissue microarrays (TMAs) of 190 PC samples including 170 pancreatic ductal adenocarcinoma (PDAC), and 20 pancreatic neuroendocrine tumors (PNET), along with 24 adjacent normal tissues using immunohistochemistry (IHC). The results indicated that the expression of Talin-1 was upregulated in tumor cells compared with adjacent normal tissues. A statistically significant association was observed between the higher cytoplasmic expression of Talin-1 and lower histologic grade ( P <0.001) in PDAC samples. Further, our findings indicated an inverse significant correlation between cytoplasmic expression of Talin-1 and recurrence ( P =0.014) in PNET samples. No significant association was observed between the cytoplasmic expression of Talin-1 and survival outcomes as well as diagnostic accuracy. In conclusion, our observations demonstrated that a higher cytoplasmic level of Talin-1 protein was significantly associated with less aggressive tumor behaviors in PC samples. Nevertheless, further investigations are required to explore the prognostic plus diagnostic value, and mechanism of action of Talin-1 in pancreatic cancer.
Collapse
Affiliation(s)
- Samira Ahmadi Jazi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences
| | | | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lakpour N, Ghods R, Abolhasani M, Saeednejad Zanjani L, Saliminejad K, Kalantari E, Saki S, Ranjbar MM, Balay-Goli L, Sadeghi MR, Madjd Z. Higher expression of SALL4-A isoform is correlated with worse outcomes and progression of the disease in subtype of testicular germ cell tumours. Biomarkers 2024; 29:324-339. [PMID: 38808385 DOI: 10.1080/1354750x.2024.2361796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The transcription factor SALL4 is associated with embryonic pluripotency and has proposed as a novel immunohistochemistry (IHC) marker for diagnosing germ cell tumours. SALL4 comprises three isoforms, and SALL4-A being the full-length isoform. Studying its isoforms could revolutionize testicular cancer prognosis and subtype differentiation. METHODS The expression and clinical significance of isoform 'A' of SALL4 was evaluated in 124 testicular germ cell tumours (TGCTs) subtypes, adjacent 67 normal tissues and 22 benign tumours, using immunohistochemistry on tissue microarrays (TMA). RESULTS A statistically significant higher expression of nuclear and cytoplasmic SALL4-A was detected in TGCTs histological subtypes and benign tumours compared to the normal tissues. Seminoma and yolk sac tumours had the highest nuclear and cytoplasmic expression of SALL4-A. A significant correlation was detected between the higher nuclear expression of SALL4-A and increased pT stages (P = 0.026) in seminomas. Whereas in embryonal carcinomas, cytoplasmic expression of SALL4-A was associated with the tumour recurrence (P = 0.04) and invasion of the epididymis (P = 0.011). CONCLUSIONS SALL4-A isoform expression in the cytoplasm and nucleus of TGCTs may be associated with histological differentiation. In the seminoma subtype of TGCTs, higher expression of SALL4-A may be used as a predictive indicator of poorer outcomes and prognosis.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Saki
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Balay-Goli
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| |
Collapse
|
4
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Moradi L, Tajik F, Saeednejad Zanjani L, Panahi M, Gheytanchi E, Biabanaki ZS, Kazemi-Sefat GE, Hashemi F, Dehghan Manshadi M, Madjd Z. Clinical significance of CD166 and HER-2 in different types of gastric cancer. Clin Transl Oncol 2024; 26:664-681. [PMID: 37537510 DOI: 10.1007/s12094-023-03297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Cluster of differentiation 166 (CD166), a cancer stem cell (CSC) marker, and human epidermal growth factor receptor 2 (HER-2) are expressed in a diversity of malignancies and is associated with tumor progression. Although studies regarding the importance of CSC markers and HER-2 in gastric cancer (GC) have rapidly developed, their clinicopathological, prognosis, and diagnosis value still remain unsatisfying in GC. Therefore, the present study aims to investigate the clinical, prognostic, and diagnostic significance of CD166 and HER-2 in different histological types of GC. MATERIALS AND METHODS Bioinformatic analysis was applied to determine the clinical importance of CD166 and HER-2 expression based on their tissue localization in primary GC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of CD166 and HER-2 proteins in tissue microarrays (TMAs) of 206 GC samples, including Signet Ring Cell (SRC) and intestinal types and also 28 adjacent normal tissues were evaluated using immunohistochemistry (IHC). RESULTS The results indicated that the expression of CD166 (membranous and cytoplasmic) and HER-2 were significantly up-regulated in tumor cells compared to adjacent normal tissues (P = 0.010, P < 0.001, and P = 0.011, respectively). A statistically significant association was detected between a high level of membranous expression of CD166 and lymphovascular invasion (P = 0.006); We also observed a statistically significant association between high cytoplasmic expression of CD166 protein and more invasion of the subserosa (P = 0.040) in the SRC type. In contrast, there was no correlation between the expression of HER-2 and clinicopathologic characteristics. Both CD166 and HER-2 showed reasonable accuracy and high specificity as diagnostic markers. CONCLUSION Our results confirmed that increased membranous and cytoplasmic expression of CD166 showed clinical significance in the SRC type and is associated with the progression of the disease and more aggressive tumor behaviors. These findings can be used to assist in designating subgroups of patients that require different follow-up strategies, and also, they might be utilized as the prognostic or diagnostic biomarkers in these types of GC for prospective clinical application.
Collapse
Affiliation(s)
- Leila Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahshid Panahi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Biabanaki
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Peptide-functionalized graphene oxide quantum dots as colorectal cancer theranostics. J Colloid Interface Sci 2023; 630:698-713. [PMID: 36274405 DOI: 10.1016/j.jcis.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|
8
|
Bolouri MR, Ghods R, Zarnani K, Vafaei S, Falak R, Zarnani AH. Human amniotic epithelial cells exert anti-cancer effects through secretion of immunomodulatory small extracellular vesicles (sEV). Cancer Cell Int 2022; 22:329. [PMID: 36307848 PMCID: PMC9616706 DOI: 10.1186/s12935-022-02755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
We identified here mechanism by which hAECs exert their anti-cancer effects. We showed that vaccination with live hAEC conferred effective protection against murine colon cancer and melanoma but not against breast cancer in an orthotopic cancer cell inoculation model. hAEC induced strong cross-reactive antibody response to CT26 cells, but not against B16F10 and 4T1 cells. Neither heterotopic injection of tumor cells in AEC-vaccinated mice nor vaccination with hAEC lysate conferred protection against melanoma or colon cancer. Nano-sized AEC-derived small-extracellular vesicles (sEV) (AD-sEV) induced apoptosis in CT26 cells and inhibited their proliferation. Co-administration of AD-sEV with tumor cells substantially inhibited tumor development and increased CTL responses in vaccinated mice. AD-sEV triggered the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. Our results clearly showed that it is AD-sEV but not the cross-reactive immune responses against tumor cells that mediate inhibitory effects of hAEC on cancer development. Our results highlight the potential anti-cancer effects of extracellular vesicles derived from hAEC. Anti-cancer effects of hAEC depend on cancer type. Cross-reactive humoral responses do not mediate anti-cancer effects of hAEC. Anti-cancer effects of hAECs are mainly mediated by small-extracellular vesicles (sEV). hAEC-derived sEV (AD-sEV) trigger the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. AD-sEV substantially inhibits tumor development and increases survival and CTL responses.
Collapse
|
9
|
Kozlov AP. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infect Agent Cancer 2022; 17:2. [PMID: 35012580 PMCID: PMC8751115 DOI: 10.1186/s13027-021-00412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Earlier I hypothesized that hereditary tumors might participate in the evolution of multicellular organisms. I formulated the hypothesis of evolution by tumor neofunctionalization, which suggested that the evolutionary role of hereditary tumors might consist in supplying evolving multicellular organisms with extra cell masses for the expression of evolutionarily novel genes and the origin of new cell types, tissues, and organs. A new theory—the carcino-evo-devo theory—has been developed based on this hypothesis. Main text My lab has confirmed several non-trivial predictions of this theory. Another non-trivial prediction is that evolutionarily new organs if they originated from hereditary tumors or tumor-like structures, should recapitulate some tumor features in their development. This paper reviews the tumor-like features of evolutionarily novel organs. It turns out that evolutionarily new organs such as the eutherian placenta, mammary gland, prostate, the infantile human brain, and hoods of goldfishes indeed have many features of tumors. I suggested calling normal organs, which have many tumor features, the tumor-like organs. Conclusion Tumor-like organs might originate from hereditary atypical tumor organs and represent the part of carcino-evo-devo relationships, i.e., coevolution of normal and neoplastic development. During subsequent evolution, tumor-like organs may lose the features of tumors and the high incidence of cancer and become normal organs without (or with almost no) tumor features.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971. .,Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
| |
Collapse
|
10
|
Kalantari E, Ghods R, Zanjani LS, Rahimi M, Eini L, Razmi M, Asadi-Lari M, Madjd Z. Cytoplasmic expression of DCLK1-S, a novel DCLK1 isoform, is associated with tumor aggressiveness and worse disease-specific survival in colorectal cancer. Cancer Biomark 2021; 33:277-289. [DOI: 10.3233/cbm-210330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND: Isoform-specific function of doublecortin-like kinase 1 (DCLK1) has highlighted the key role of the DCLK1-S (short isoform) in the maintenance, progression, and invasion of the tumor. OBJECTIVE: This study was designed to produce an anti-DCLK1-S polyclonal antibody to evaluate DCLK1-S in human colorectal cancer (CRC) specifically. METHODS: The expression pattern and clinical significance of DCLK1-S were assessed in a well-defined tissue microarray (TMA) series of 348 CRC and 51 adjacent normal tissues during a follow-up period of 108 months. RESULTS: Expression of DCLK1-S was significantly higher in CRC samples compared to adjacent normal samples (P< 0.001). Cytoplasmic expression of DCLK1-S was significantly higher in the tumors at the advanced stage of cancer and with poorer differentiation (P< 0.001, P= 0.02). The patients with CRC whose tumors showed higher cytoplasmic expression of DCLK1-S had worse disease-specific survival (DSS) (log-rank test, P= 0.03) and 5-year DSS rates (P= 0.01). Additionally, an improved prognostic value was observed in the patients with CRC with high DCLK1-S expression vs. its moderate expression (HR: 2.70, 95% CI: 0.98–7.38; p= 0.04) by multivariate analysis. CONCLUSIONS: Our findings strongly supported that high cytoplasmic expression of DCLK1-S compared to its moderate expression could be considered an independent prognostic factor influencing DSS.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Division of Histology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
11
|
Devor EJ, Schickling BM, Lapierre JR, Bender DP, Gonzalez-Bosquet J, Leslie KK. The Synthetic Curcumin Analog HO-3867 Rescues Suppression of PLAC1 Expression in Ovarian Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090942. [PMID: 34577642 PMCID: PMC8465575 DOI: 10.3390/ph14090942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Elevated expression of placenta-specific protein 1 (PLAC1) is associated with the increased proliferation and invasiveness of a variety of human cancers, including ovarian cancer. Recent studies have shown that the tumor suppressor p53 directly suppresses PLAC1 transcription. However, mutations in p53 lead to the loss of PLAC1 transcriptional suppression. Small molecules that structurally convert mutant p53 proteins to wild-type conformations are emerging. Our objective was to determine whether the restoration of the wild-type function of mutated p53 could rescue PLAC1 transcriptional suppression in tumors harboring certain TP53 mutations. Ovarian cancer cells OVCAR3 and ES-2, both harboring TP53 missense mutations, were treated with the p53 reactivator HO-3867. Treatment with HO-3867 successfully rescued PLAC1 transcriptional suppression. In addition, cell proliferation was inhibited and cell death through apoptosis was increased in both cell lines. We conclude that the use of HO-3867 as an adjuvant to conventional therapeutics in ovarian cancers harboring TP53 missense mutations could improve patient outcomes. Validation of this conclusion must, however, come from an appropriately designed clinical trial.
Collapse
Affiliation(s)
- Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence:
| | - Brandon M. Schickling
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - Jace R. Lapierre
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - David P. Bender
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jesus Gonzalez-Bosquet
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kimberly K. Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep 2021; 24:800. [PMID: 34523695 PMCID: PMC8456314 DOI: 10.3892/mmr.2021.12440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is inversely associated with survival in several types of cancer. However, whether PLAC1 is involved in the progression of cervical cancer (CC) remains to be elucidated. Therefore, the present study aimed to evaluate the prognostic role of PLAC1 in CC by determining the relationship between clinicopathological factors, PLAC1 gene expression and survival prognosis using univariate and multivariate Cox proportional-hazards regression analyses. Similarly, Kaplan-Meier curves were evaluated with the log-rank test. Subsequently, gene set enrichment analysis was performed to compare the high- and low-PLAC1 expression phenotypes. Functional studies were further conducted in PLAC1-overexpressing HeLa cells and PLAC1-silenced MS751 cells, and western blotting was performed to determine whether PLAC1 promoted CC progression via epithelial-mesenchymal transition (EMT). The findings demonstrated that high expression of PLAC1 was associated with American Joint Committee on Cancer metastasis pathological score and suggested a poor overall survival. ‘mTOR complex 1 signaling’, ‘interferon α response’ and ‘hypoxia’ were differentially enriched in the high-PLAC1 phenotype. Furthermore, PLAC1 promoted the invasion of CC cells in vitro. E-cadherin expression was decreased in the PLAC1-overexpressing cells, accompanied by increased expression of the mesenchymal markers, Vimentin, MMP2 and Slug, and the opposite effects were observed in PLAC1-silenced cells. Taken together, the present results indicated that high expression of PLAC1 was associated with poor survival and PLAC1 promoted metastasis via EMT in CC.
Collapse
Affiliation(s)
- Rujun Chen
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chan Sheng
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ruyue Ma
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Liwen Zhang
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Lina Yang
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Yaping Chen
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
13
|
Liu D, Shi K, Fu M, Chen F. Placenta-specific protein 1 promotes cell proliferation via the AKT/GSK-3β/cyclin D1 signaling pathway in gastric cancer. IUBMB Life 2021; 73:1131-1141. [PMID: 34110086 DOI: 10.1002/iub.2514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a malignant tumor with a poor prognosis. Therefore, it is important to search for molecules that play a vital role in the development, diagnosis, and treatment of this disease. Placenta-specific 1 (PLAC1) is one of the cancer-testis antigens; it plays an important role in both placental development and tumorigenesis. However, the role of PLAC1 in gastric cancer has not been fully investigated, and its underlying mechanism needs further study. We first explored the expression and clinical relevance of PLAC1 in gastric cancer and performed gene set enrichment analysis of PLAC1-related genes using online databases. Subsequently, we studied the function and mechanism of PLAC1 in gastric cancer cells through in vitro experiments. Our results showed that PLAC1 is highly expressed in gastric cancer, is associated with poor prognosis, and can promote gastric cancer cell proliferation through the AKT/GSK-3β/cyclin D1 signaling pathway. Moreover, we discovered that AKTi attenuates the effect of PLAC1. Our study further revealed the role and mechanism of PLAC1 in gastric cancer and suggested that this antigen might be a useful molecular marker for gastric cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Dongyang Liu
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Ke Shi
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Mingshi Fu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Feng Chen
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| |
Collapse
|
14
|
Mahmoudi AR, Ghods R, Madjd Z, Abolhasani M, Saeednejad Zanjani L, Safaei M, Balaei Goli L, Vafaei S, Katouzian L, Soltanghoraei H, Shekarabi M, Zarnani AH. Expression profiling of RTL1 in human breast cancer tissues and cell lines. Exp Mol Pathol 2021; 121:104654. [PMID: 34087231 DOI: 10.1016/j.yexmp.2021.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/18/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is the most common cancer in females. In this regard, the identification of molecular alterations driving BC is an immediate need for developing effective immunotherapeutic tools. Here we investigated the expression of a placenta-specific protein, Retrotransposon-like 1 (RTL1) in a series of BC tissues and cell lines. RTL1-specific polyclonal antibody was generated and characterized. Using tissue microarray immunohistochemistry, expression of RTL1 in a total of 147 BC and 36 non-malignant breast tissues was investigated and the association of patient's clinicopathological parameters with RTL1 expression was then examined. Expression of RTL1 in four BC cells was assessed by flow cytometry, immunofluorescent staining and Western blotting. We observed a mixture pattern of nuclear and cytoplasmic RTL1 expression in most tissues examined, however nuclear expression was found to be dominant pattern of expression. The level of nuclear RTL1 expression was significantly higher in BC tissues (P < 0.001). A statistically significant association between nuclear RTL1 expression and histological grade and vascular invasion was found (P < 0.001 and P < 0.05). All cell lines expressed RTL1 with varying degrees at their surface. The most invasive BC cell line MDA-MB-231, compared to T-47D, SKBR3 and MCF7 expressed higher levels of RTL1 at their surface. Cells with a low level of surface expression, expressed high levels of intracellular RTL1 expression. Our antibody reacted with a specific band of about 125 KD in normal human placenta and all cell lines examined. In contrast to placenta, two additional bands were also observed in cancer cell lines. Our results showed for the first time that RTL1 is differentially expressed in BC compared to non-malignant breast tissues and is associated with a higher grade and vascular invasion. In BC cells with high metastatic and invasive potential, this antigen is mostly confined to cell surface compartment indicating the possibility of using antibody-based immunotherapy for advanced metastatic BC patients.
Collapse
Affiliation(s)
- Ahmad-Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoomeh Safaei
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Balaei Goli
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Leila Katouzian
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Soltanghoraei
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ma J, Li L, Du J, Pan C, Zhang C, Chen Y. Placenta-specific protein 1 enhances liver metastatic potential and is associated with the PI3K/AKT/NF-κB signaling pathway in colorectal cancer. Eur J Cancer Prev 2021; 30:220-231. [PMID: 32701605 PMCID: PMC8011505 DOI: 10.1097/cej.0000000000000611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022]
Abstract
To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cells with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. The expression of PLAC1 was detected by reverse transcriptase PCR, western blot, and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in-vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. PLAC1 was expressed in HT-29, WiDr, and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 not only enhanced significantly the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but also promoted the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on the activation of the PI3K/Akt/NF-κB pathway. The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.
Collapse
Affiliation(s)
- Jiachi Ma
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Lei Li
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Jun Du
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Chengwu Pan
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Chensong Zhang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Yuzhong Chen
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| |
Collapse
|
16
|
Gheytanchi E, Saeednejad Zanjani L, Ghods R, Abolhasani M, Shahin M, Vafaei S, Naseri M, Fattahi F, Madjd Z. High expression of tumor susceptibility gene 101 (TSG101) is associated with more aggressive behavior in colorectal carcinoma. J Cancer Res Clin Oncol 2021; 147:1631-1646. [PMID: 33616717 DOI: 10.1007/s00432-021-03561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Identification of genetic determinants such as exosomal content that drives progression and metastasis of colorectal cancer (CRC) has received considerable attention. The present study aims to identify a suitable biomarker in CRC tissues and exosomes based on bioinformatics data to evaluate its expression patterns in CRC tissues as well as its clinicopathological significance. MATERIALS AND METHODS Protein-protein interaction (PPI) network and enrichment analysis were applied to identify up-regulated genes that contributed in CRC exosomes to select the marker. The expression patterns and clinical significance of selected exosomal marker were evaluated in tissue microarrays (TMAs) of 445 CRC tumors and 39 adjacent normal tissues using immunohistochemistry method. RESULTS Based on bioinformatics data, TSG101 gene was prominent amongst the tumor tissues and exosomes. Expression of TSG101 was significantly up-regulated in tumor cells compared to adjacent normal tissues (p-value = 0.04). Moreover, higher expressions of TSG101 (cytoplasmic and nuclear) were significantly associated with tumor differentiation (p-value = 0.042) and distant metastasis (p-value = 0.027). A significant association was found in the cytoplasmic expression of TSG101 between well and moderate tumor differentiation (p-value = 0.005) as well as moderate and poor differentiation (p-value = 0.050). CONCLUSION These findings indicate that the exploration of crosstalk between exosome content and CRC may be valuable for the development of novel exosomal biomarkers. Increased expression of TSG101, as a promising exosome marker, is more associated with more aggressive tumor behaviors, metastasis, and progression of CRC, which paves the way for therapeutic strategies and CRC management. However, further investigations are warranted to clarify the molecular mechanisms of TSG101 in CRC.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran
| | - Roya Ghods
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Shahin
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Department of Molecular Medicine, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Tehran, 14496-14530, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Hayashi R, Nagato T, Kumai T, Ohara K, Ohara M, Ohkuri T, Hirata-Nozaki Y, Harabuchi S, Kosaka A, Nagata M, Yajima Y, Yasuda S, Oikawa K, Kono M, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Harabuchi Y, Kobayashi H. Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology 2020; 10:1856545. [PMID: 33457076 PMCID: PMC7781841 DOI: 10.1080/2162402x.2020.1856545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Placenta-specific 1 (PLAC1) is expressed primarily in placental trophoblasts but not in normal tissues and is a targetable candidate for cancer immunotherapy because it is a cancer testis antigen known to be up-regulated in various tumors. Although peptide epitopes capable of stimulating CD8 T cells have been previously described, there have been no reports of PLAC1 CD4 helper T lymphocyte (HTL) epitopes and the expression of this antigen in head and neck squamous cell carcinoma (HNSCC). Here, we show that PLAC1 is highly expressed in 74.5% of oropharyngeal and 51.9% of oral cavity tumors from HNSCC patients and in several HNSCC established cell lines. We also identified an HTL peptide epitope (PLAC131-50) capable of eliciting effective antigen-specific and tumor-reactive T cell responses. Notably, this peptide behaves as a promiscuous epitope capable of stimulating T cells in the context of more than one human leukocyte antigen (HLA)-DR allele and induces PLAC1-specific CD4 T cells that kill PLAC1-positive HNSCC cell lines in an HLA-DR-restricted manner. Furthermore, T-cells reactive to PLAC131-50 peptide were detected in the peripheral blood of HNSCC patients. These findings suggest that PLAC1 represents a potential target antigen for HTL based immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Hirata-Nozaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Syunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
18
|
Mahmoudi AR, Ghods R, Rakhshan A, Madjd Z, Bolouri MR, Mahmoudian J, Rahdan S, Shokri MR, Dorafshan S, Shekarabi M, Zarnani AH. Discovery of a potential biomarker for immunotherapy of melanoma: PLAC1 as an emerging target. Immunopharmacol Immunotoxicol 2020; 42:604-613. [PMID: 33106058 DOI: 10.1080/08923973.2020.1837865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Melanoma has increased in incidence worldwide prompting investigators to search for new biomarkers for targeted immunotherapy of this disease. Placenta specific 1 (PLAC1) is a new member of cancer-testis antigens with widespread expression in many types of cancer. Here, we aimed to study for the first time the expression pattern of PLAC1 in skin cancer samples including cutaneous melanoma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) in comparison to normal skin and nevus tissues and potential therapeutic effect of anti-PLAC1 antibody in melanoma cancer cell lines in vitro. MATERIALS AND METHODS Polyclonal and monoclonal antibodies were applied for immunohistochemical profiling of PLAC1 expression using tissue microarray. The cytotoxic action of anti-PLAC1 antibody alone or as an antibody drug conjugate (with anti-neoplastic agent SN38) was investigated in melanoma cell lines. RESULTS We observed that 100% (39 of 39) of melanoma tissues highly expressed PLAC1 with both cytoplasmic and surface expression pattern. Investigation of PLAC1 expression in BCC (n = 110) samples showed negative results. Cancer cells in SCC samples (n = 66) showed very weak staining. Normal skin tissues and nevus samples including congenital melanocytic nevus failed to express PLAC1. Anti-PLAC1-SN38 exerted a specific pattern of cytotoxicity in a dose- and time-dependent manner in melanoma cells expressing surface PLAC1. CONCLUSIONS Our findings re-inforce the concept of re-expression of embryonic/placental tissue antigens in cancer and highlight the possibility of melanoma targeted therapy by employing anti-PLAC1 antibodies. The data presented here should lead to the future research on targeted immunotherapy of patients with melanoma.
Collapse
Affiliation(s)
- Ahmad-Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rakhshan
- Department of Pathology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Bolouri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Shaghayegh Rahdan
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Dorafshan
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Tavasoli S, Eghtesadi S, Vafa M, Moradi-Lakeh M, Sadeghipour A, Zarnani AH. High Dose Pomegranate Extract Suppresses Neutrophil Myeloperoxidase and Induces Oxidative Stress in a Rat Model of Sepsis. INT J VITAM NUTR RES 2019; 89:271-284. [DOI: 10.1024/0300-9831/a000563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract. Introduction: The effect of using high dose pomegranate extract on sepsis and its safety is not clarified. Considering the fact that proper immune and inflammatory responses are needed to cope with infection, the aim of current study was to assess the effect of high dose pomegranate extract consumption on oxidative and inflammatory responses after disease induction in rat model of sepsis. Methods: Sepsis was induced by Cecal Ligation and Perforation (CLP) surgery. Adult male Wistar rats were divided into three groups of eight animals: Sham; CLP and POMx [consumed POMx (250 mg of pomegranate fruit extract/kg/day) for four weeks before CLP]. Results: Peritoneal neutrophil myeloperoxidase activity was significantly lower in POMx compared with Sham and CLP groups ( p < 0.01 and p < 0.05, respectively). Although antioxidant enzymes were higher in POMx group after sepsis induction, lower serum total antioxidant status (TAS) (p < 0.01 compared with both CLP and Sham groups) and higher liver thiobarbituric acid reactive species (TBARS) levels were observed in this group ( p < 0.01 and p < 0.05, compared with Sham and CLP groups, respectively). Conclusion: High dose POMx consumption prior to sepsis induction, suppressed the vital function of neutrophils in early hours after sepsis initiation, resulting in higher oxidative stress. These findings indicate that caution should be made in using high dose pomegranate products. The main message of current study is that such useful compounds as antioxidants including pomegranate juice which have beneficial effects on general health status may have detrimental effects if misused or used in high doses.
Collapse
Affiliation(s)
- Sanaz Tavasoli
- Research Institute for Islamic & Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahryar Eghtesadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Moradi-Lakeh
- Department of Community Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadeghipour
- Department of pathology, Rasoul-Akram Medical Complex, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Mahmoudian J, Ghods R, Nazari M, Jeddi-Tehrani M, Ghahremani MH, Ghaffari-Tabrizi-Wizsy N, Ostad SN, Zarnani AH. PLAC1: biology and potential application in cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1039-1058. [PMID: 31165204 PMCID: PMC11028298 DOI: 10.1007/s00262-019-02350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
The emergence of immunotherapy has revolutionized medical oncology with unprecedented advances in cancer treatment over the past two decades. However, a major obstacle in cancer immunotherapy is identifying appropriate tumor-specific antigens to make targeted therapy achievable with fewer normal cells being impaired. The similarity between placentation and tumor development and growth has inspired many investigators to discover antigens for effective immunotherapy of cancers. Placenta-specific 1 (PLAC1) is one of the recently discovered placental antigens with limited normal tissue expression and fundamental roles in placental function and development. There is a growing body of evidence showing that PLAC1 is frequently activated in a wide variety of cancer types and promotes cancer progression. Based on the restricted expression of PLAC1 in testis, placenta and a wide variety of cancers, we have designated this molecule with new terminology, cancer-testis-placenta (CTP) antigen, a feature that PLAC1 shares with many other cancer testis antigens. Recent reports from our lab provide compelling evidence on the preferential expression of PLAC1 in prostate cancer and its potential utility in prostate cancer immunotherapy. PLAC1 may be regarded as a potential CTP antigen for targeted cancer immunotherapy based on the available data on its promoting function in cancer development and also its expression in cancers of different histological origin. In this review, we will summarize current data on PLAC1 with emphasis on its association with cancer development and immunotherapy.
Collapse
Affiliation(s)
- Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran
| | | | - Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Nafisi Building, Enghelab St., Tehran, 1417613151, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Chi Soh JE, Abu N, Jamal R. The potential immune-eliciting cancer testis antigens in colorectal cancer. Immunotherapy 2018; 10:1093-1104. [DOI: 10.2217/imt-2018-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Li Y, Chu J, Li J, Feng W, Yang F, Wang Y, Zhang Y, Sun C, Yang M, Vasilatos SN, Huang Y, Fu Z, Yin Y. Cancer/testis antigen-Plac1 promotes invasion and metastasis of breast cancer through Furin/NICD/PTEN signaling pathway. Mol Oncol 2018; 12:1233-1248. [PMID: 29704427 PMCID: PMC6068355 DOI: 10.1002/1878-0261.12311] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022] Open
Abstract
Placenta‐specific protein 1 (Plac1) is a cancer/testis antigen that plays a critical role in promoting cancer initiation and progression. However, the clinical significance and mechanism of Plac1 in cancer progression remain elusive. Here, we report that Plac1 is an important oncogenic and prognostic factor, which physically interacts with Furin to drive breast cancer invasion and metastasis. We have shown that Plac1 expression positively correlates with clinical stage, lymph node metastasis, hormone receptor status, and overall patient survival. Overexpression of Plac1 promoted invasion and metastasis of breast cancer cells in vitro and in vivo. Co‐immunoprecipitation and immunofluorescence cell staining assays revealed that interaction of Plac1 and Furin degraded Notch1 and generated Notch1 intracellular domain (NICD) that could inhibit PTEN activity. These findings are consistent with the results of microarray study in MDA‐MB‐231 cells overexpressing Plac1. A rescue study showed that inhibition of Furin and overexpression of PTEN in Plac1 overexpression cells blocked Plac1‐induced tumor cell progression. Taken together, our findings suggest that functional interaction between Plac1 and Furin enhances breast cancer invasion and metastasis and the Furin/NICD/PTEN axis may act as an important therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China.,Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Wanting Feng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Yifan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Mengzhu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Shauna N Vasilatos
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China.,Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated of Nanjing Medical University, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| |
Collapse
|
23
|
Yuan H, Wang X, Shi C, Jin L, Hu J, Zhang A, Li J, Vijayendra N, Doodala V, Weiss S, Tang Y, Weiner LM, Glazer RI. Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance In Mammary Tumorigenesis. Sci Rep 2018; 8:5717. [PMID: 29632317 PMCID: PMC5890253 DOI: 10.1038/s41598-018-24022-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/22/2018] [Indexed: 01/09/2023] Open
Abstract
Plac1 is an X-linked trophoblast gene expressed at high levels in the placenta, but not in adult somatic tissues other than the testis. Plac1 however is re-expressed in several solid tumors and in most human cancer cell lines. To explore the role of Plac1 in cancer progression, Plac1 was reduced by RNA interference in EO771 mammary carcinoma cells. EO771 "knockdown" (KD) resulted in 50% reduction in proliferation in vitro and impaired tumor growth in syngeneic mice; however, tumor growth in SCID mice was equivalent to tumor cells expressing a non-silencing control RNA, suggesting that Plac1 regulated adaptive immunity. Gene expression profiling of Plac1 KD cells indicated reduction in several inflammatory and immune factors, including Cxcl1, Ccl5, Ly6a/Sca-1, Ly6c and Lif. Treatment of mice engrafted with wild-type EO771 cells with a Cxcr2 antagonist impaired tumor growth, reduced myeloid-derived suppressor cells and regulatory T cells, while increasing macrophages, dendritic cells, NK cells and the penetration of CD8+ T cells into the tumor bed. Cxcl1 KD phenocopied the effects of Plac1 KD on tumor growth, and overexpression of Cxcl1 partially rescued Plac1 KD cells. These results reveal that Plac1 modulates a tolerogenic tumor microenvironment in part by modulating the chemokine axis.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Xiaoyi Wang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Chunmei Shi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Lu Jin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Jianxia Hu
- Laboratory of Thyroid Diseases, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Alston Zhang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - James Li
- Department of Bioinformatics, Biostatistics and Biomathematics, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Nairuthya Vijayendra
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Venkata Doodala
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Spencer Weiss
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Yong Tang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Louis M Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Robert I Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
24
|
Tabatabaei M, Mosaffa N, Ghods R, Nikoo S, Kazemnejad S, Khanmohammadi M, Mirzadegan E, Mahmoudi AR, Bolouri MR, Falak R, Keshavarzi B, Ramezani M, Zarnani AH. Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma. Int J Cancer 2017; 142:1453-1466. [PMID: 29139122 DOI: 10.1002/ijc.31159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
Abstract
As a prophylactic cancer vaccine, human amniotic membrane epithelial cells (hAECs) conferred effective protection in a murine model of colon cancer. The immunized mice mounted strong cross-protective CTL and antibody responses. Tumor burden was significantly reduced in tumor-bearing mice after immunization with hAECs. Placental cancer immunotherapy could be a promising approach for primary prevention of cancer. In spite of being the star of therapeutic strategies for cancer treatment, the results of immunotherapeutic approaches are still far from expectations. In this regard, primary prevention of cancer using prophylactic cancer vaccines has gained considerable attention. The immunologic similarities between cancer development and placentation have helped researchers to unravel molecular mechanisms responsible for carcinogenesis and to take advantage of stem cells from reproductive organs to elicit robust anti-cancer immune responses. Here, we showed that vaccination of mice with human amniotic membrane epithelial cells (hAECs) conferred effective protection against colon cancer and led to expansion of systemic and splenic cytotoxic T cell population and induction of cross-protective cytotoxic responses against tumor cells. Vaccinated mice mounted tumor-specific Th1 responses and produced cross-reactive antibodies against cell surface markers of cancer cells. Tumor burden was also significantly reduced in tumor-bearing mice immunized with hAECs. Our findings pave the way for potential future application of hAECs as an effective prophylactic cancer vaccine.
Collapse
Affiliation(s)
- M Tabatabaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - S Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - M Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - E Mirzadegan
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - A R Mahmoudi
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - M R Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - R Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - B Keshavarzi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Ramezani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - A H Zarnani
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
25
|
Yang L, Zha TQ, He X, Chen L, Zhu Q, Wu WB, Nie FQ, Wang Q, Zang CS, Zhang ML, He J, Li W, Jiang W, Lu KH. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer. Oncol Rep 2017; 39:53-60. [PMID: 29138842 PMCID: PMC5783604 DOI: 10.3892/or.2017.6086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis.
Collapse
Affiliation(s)
- Li Yang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Tian-Qi Zha
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang He
- Department of Digestive, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Liang Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Bing Wu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Feng-Qi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Qian Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Chong-Shuang Zang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Mei-Ling Zhang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Jing He
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Jiang
- Department of Biochemistry, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Kai-Hua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
26
|
Nejadmoghaddam MR, Zarnani AH, Ghahremanzadeh R, Ghods R, Mahmoudian J, Yousefi M, Nazari M, Ghahremani MH, Abolhasani M, Anissian A, Mahmoudi M, Dinarvand R. Placenta-specific1 (PLAC1) is a potential target for antibody-drug conjugate-based prostate cancer immunotherapy. Sci Rep 2017; 7:13373. [PMID: 29042604 PMCID: PMC5645454 DOI: 10.1038/s41598-017-13682-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Our recent findings strongly support the idea of PLAC1 being as a potential immunotherapeutic target in prostate cancer (PCa). Here, we have generated and evaluated an anti-placenta-specific1 (PLAC1)-based antibody drug conjugate (ADC) for targeted immunotherapy of PCa. Prostate cancer cells express considerable levels of PLAC1. The Anti-PLAC1 clone, 2H12C12, showed high reactivity with recombinant PLAC1 and selectivity recognized PLAC1 in prostate cancer cells but not in LS180 cells, the negative control. PLAC1 binding induced rapid internalization of the antibody within a few minutes which reached to about 50% after 15 min and almost completed within an hour. After SN38 conjugation to antibody, a drug-antibody ratio (DAR) of about 5.5 was achieved without apparent negative effect on antibody affinity to cell surface antigen. The ADC retained intrinsic antibody activity and showed enhanced and selective cytotoxicity with an IC50 of 62 nM which was about 15-fold lower compared to free drug. Anti-PLAC1-ADC induced apoptosis in human primary prostate cancer cells and prostate cell lines. No apparent cytotoxic effect was observed in in vivo animal safety experiments. Our newly developed anti-PLAC1-based ADCs might pave the way for a reliable, efficient, and novel immunotherapeutic modality for patients with PCa.
Collapse
Affiliation(s)
- Mohammad-Reza Nejadmoghaddam
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran.
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Abolhasani
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Ali Anissian
- Veterinary department, Islamic Azad University, Abhar branch, Abhar, Iran
| | - Morteza Mahmoudi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Yin Y, Zhu X, Huang S, Zheng J, Zhang M, Kong W, Chen Q, Zhang Y, Chen X, Lin K, Ouyang X. Expression and clinical significance of placenta-specific 1 in pancreatic ductal adenocarcinoma. Tumour Biol 2017; 39:1010428317699131. [PMID: 28618924 DOI: 10.1177/1010428317699131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yin Yin
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Xu Zhu
- Department of Hepatobiliary Surgery, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Zheng
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Mengyun Zhang
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Wencui Kong
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Qun Chen
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Yan Zhang
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Xiong Chen
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Kerong Lin
- Department of Gastroenterology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Xuenong Ouyang
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Devor EJ, Gonzalez-Bosquet J, Warrier A, Reyes HD, Ibik NV, Schickling BM, Newtson A, Goodheart MJ, Leslie KK. p53 mutation status is a primary determinant of placenta-specific protein 1 expression in serous ovarian cancers. Int J Oncol 2017; 50:1721-1728. [PMID: 28339050 PMCID: PMC5403493 DOI: 10.3892/ijo.2017.3931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 12/04/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) expression is co-opted in numerous human cancers. As a consequence of PLAC1 expression, tumor cells exhibit enhanced proliferation and invasiveness. This characteristic is associated with increased aggressiveness and worse patient outcomes. Recently, the presence of the tumor suppressor p53 was shown in vitro to inhibit PLAC1 transcription by compromising the P1, or distal/cancer, promoter. We sought to determine if this phenomenon occurs in primary patient tumors as well. Furthermore, we wanted to know if p53 mutation influenced PLAC1 expression as compared with wild-type. We chose to study serous ovarian tumors as they are well known to have a high rate of p53 mutation. We report herein that the phenomenon of PLAC1 transcription repression does occur in serous ovarian carcinomas but only when TP53 is wild-type. We find that mutant or absent p53 protein de-represses PLAC1 transcription. We further propose that the inability of mutant p53 to repress PLAC1 transcription is due to the fact that the altered TP53 protein is unable to occupy a putative p53 binding site in the PLAC1 P1 promoter thus allowing transcription to occur. Finally, we show that PLAC1 transcript number is significantly negatively correlated with patient survival in our samples. Thus, we suggest that characterizing tumors for TP53 mutation status, p53 protein status and PLAC1 transcription could be used to predict likely prognosis and inform treatment options in patients diagnosed with serous ovarian cancer.
Collapse
Affiliation(s)
- Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jesus Gonzalez-Bosquet
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Akshaya Warrier
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Henry D Reyes
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Nonye V Ibik
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Brandon M Schickling
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andreea Newtson
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Michael J Goodheart
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine and The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Nazari M, Zarnani AH, Ghods R, Emamzadeh R, Najafzadeh S, Minai-Tehrani A, Mahmoudian J, Yousefi M, Vafaei S, Massahi S, Nejadmoghaddam MR. Optimized protocol for soluble prokaryotic expression, purification and structural analysis of human placenta specific-1(PLAC1). Protein Expr Purif 2017; 133:139-151. [PMID: 28315746 DOI: 10.1016/j.pep.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Placenta specific -1 (PLAC1) has been recently introduced as a small membrane-associated protein mainly involved in placental development. Expression of PLAC1 transcript has been documented in almost one hundred cancer cell lines standing for fourteen distinct cancer types. The presence of two disulfide bridges makes difficult to produce functional recombinant PLAC1 in soluble form with high yield. This limitation also complicates the structural studies of PLAC1, which is important for prediction of its physiological roles. To address this issue, we employed an expression matrix consisting of two expression vectors, five different E. coli hosts and five solubilization conditions to optimize production of full and truncated forms of human PLAC1. The recombinant proteins were then characterized using an anti-PLAC1-specific antibody in Western blotting (WB) and enzyme linked immunosorbent assay (ELISA). Structure of full length protein was also investigated using circular dichroism (CD). We demonstrated the combination of Origami™ and pCold expression vector to yield substantial amount of soluble truncated PLAC1 without further need for solubilization step. Full length PLAC1, however, expressed mostly as inclusion bodies with higher yield in Origami™ and Rosetta2. Among solubilization buffers examined, buffer containing Urea 2 M, pH 12 was found to be more effective. Recombinant proteins exhibited excellent reactivity as detected by ELISA and WB. The secondary structure of full length PLAC1 was considered by CD spectroscopy. Taken together, we introduced here a simple, affordable and efficient expression system for soluble PLAC1 production.
Collapse
Affiliation(s)
- Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Rahman Emamzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sam Massahi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Reza Nejadmoghaddam
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Wu Y, Lin X, Di X, Chen Y, Zhao H, Wang X. Oncogenic function of Plac1 on the proliferation and metastasis in hepatocellular carcinoma cells. Oncol Rep 2016; 37:465-473. [PMID: 27878289 DOI: 10.3892/or.2016.5272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
Abstract
Placenta-specific protein 1 (Plac1), which is selectively expressed in the placental syncytiotrophoblast in adult normal tissues, plays an essential role in normal placental and embryonic development. Accumulating evidence suggests that enhanced Plac1 expression is closely associated with the progression of human cancer. Whether Plac1 contributes to the pathophysiology of hepatocellular carcinoma (HCC) remains unclear. In the present study, our data revealed that the expression of Plac1 in human HCC tissues was upregulated, which significantly correlated with metastasis of HCC. Knockdown of Plac1 by small interfering RNA (siRNA) in Bel-7402 and HepG2 cells resulted in decreasing tumor cell proliferation and increasing apoptosis, which implied the oncogenic potential of Plac1. Moreover, silencing of Plac1 induced G1 cell cycle arrest through suppression of cyclin D1 and CDK4 expression. Furthermore, depletion of Plac1 repressed epithelial-mesenchymal transition (EMT), with decreased cell migration and invasion, supporting upregulated E-cadherin expression and downregulated vimentin, twist and snail expression that characterize EMT. Further study suggested that decreased Plac1 expression attenuated the phosphorylation of Akt. These findings have uncovered that Plac1 plays a pivotal role in the progression of HCC, and may serve as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaocong Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaoqing Di
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yonghua Chen
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hanning Zhao
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xin Wang
- Department of Microbiology and Immunology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
31
|
Expression of Cancer Testis Antigens in Colorectal Cancer: New Prognostic and Therapeutic Implications. DISEASE MARKERS 2016; 2016:1987505. [PMID: 27635108 PMCID: PMC5007337 DOI: 10.1155/2016/1987505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Background. While cancer/testis antigens (CTAs) are restricted in postnatal tissues to testes and germ line-derived cells, their role in cancer development and the clinical significance of their expression still remain to be better defined. Objective. The aim of this study was to investigate the level of CTA expression in colon samples from patients with colorectal cancer (CRC) in relation to patient clinical status. Methods. Forty-five patients with newly diagnosed colorectal cancer were included in the study. We selected a panel of 18 CTAs that were previously detected in CRC as well as some new gene candidates, and their expression was detected at the mRNA level by employing RQ-PCR. Additionally, we evaluated CTA expression in three colon cancer cell lines (CL-188, HTB-39, and HTB-37) after exposure to the DNA methylation-modifying drug 5-azacytidine. Results. We report that 6 out of 18 (33%) CTAs tested (MAGEA3, OIP5, TTK, PLU1, DKKL1, and FBXO39) were significantly (p < 0.05) overexpressed in tumor tissue compared with healthy colon samples isolated from the same patients. Conclusions. Moreover, we found that MAGEA3, PLU-1, and DKKL expression positively correlated with disease progression, evaluated according to the Dukes staging system. Finally, 5-azacytidine exposure significantly upregulated expression of CTAs on CRC cells, which indicates that this demethylation agent could be employed therapeutically to enhance the immune response against tumor cells.
Collapse
|
32
|
Liu F, Shen D, Kang X, Zhang C, Song Q. New tumour antigen PLAC1/CP1, a potentially useful prognostic marker and immunotherapy target for gastric adenocarcinoma. J Clin Pathol 2015; 68:913-6. [PMID: 26157147 DOI: 10.1136/jclinpath-2015-202978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/21/2015] [Indexed: 11/04/2022]
Abstract
AIM To evaluate protein expression and clinical significance of PLAC1/CP1 antigen in primary gastric adenocarcinoma. METHODS Protein expression of PLAC1/CP1 was analysed by tissue chip and immunohistochemistry in surgical specimens obtained from 119 patients with gastric cancer. The data were analysed using SPSS V.16.0 software applying the χ(2) test and Kaplan-Meier method. RESULTS The positive expression frequency of PLAC1/CP1 protein was 61.3% (73/119 patients). The overall survival of patients with PLAC1/CP1 protein-positive expression was significantly lower than that of patients with PLAC1/CP1 protein-negative expression (p<0.05). There was no significant relationship between PLAC1/CP1 expression and patient gender, age, tumour position, tumour size, differentiation, gross type, lymph node or TNM stage. CONCLUSIONS PLAC1/CP1 protein is expressed in over half of cases of primary gastric cancer, and PLAC1/CP1 protein expression is inversely correlated with patient survival. The data indicate that PLAC1/CP1 provides a marker for identifying gastric cancers with poor prognosis, and suggest that PLAC1/CP1 may provide a useful target for immunotherapy.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Danhua Shen
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Xiaoping Kang
- Department of Statistics Office, Peking University Health Science Center, Beijing, China
| | - Chunfang Zhang
- Department of Clinical Epidemiology, Peking University People's Hospital, Beijing, China
| | - Qiujing Song
- Department of Pathology, Peking University People's Hospital, Beijing, China
| |
Collapse
|