1
|
Yang Z, Guo J, Cheng M, Zhang Y, Chen Z, Wen J, Shan F. Association between vaccination, viral antibodies, and asthma prevalence in the U.S.: insights from NHANES (1999-2020). FRONTIERS IN ALLERGY 2025; 6:1456934. [PMID: 40191527 PMCID: PMC11968725 DOI: 10.3389/falgy.2025.1456934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Objective This investigation aimed to explore the differences in asthma prevalence among various demographic groups in the U.S., focusing on factors related to vaccination and viral antibodies. Methods The study analyzed data from 37,445 individuals collected through the National Health and Nutrition Examination Survey between 1998 and 2020. Employing weighted sampling methods, the analysis considered the stratification and clustering typical of the survey's design. It particularly examined how age, race, income, smoke, education, and gender factors influence both the prevalence and severity of asthma. Results This study aims to elucidate disparities in asthma prevalence across the U.S. population by examining the roles of demographic characteristics and factors related to vaccination and viral antibodies. It revealed a significant correlation between asthma prevalence and patient demographics, including age, gender, income, smoke, education, and race. We found that asthma patients were mostly found in participants with lower economic level (2.7 vs. 2.87). Non-Hispanic black women age exhibited a higher likelihood of asthma, at 17.7%, compared to non-Hispanic whites and Mexican Americans. Asthma prevalence peaks between the ages of 20 and 30 and has shown a rising trend over the years. Regarding vaccinations, hepatitis A, hepatitis B, pneumococcal, and HPV vaccines were associated with an increased risk of asthma. Conversely, patients testing positive for hepatitis A virus and core hepatitis B virus antibodies demonstrated a lower prevalence of asthma. Additionally, asthmatic patients showed lower average measles virus and rubella antibodies levels, at 0.53 and 3.32, respectively, compared to non-asthmatic individuals. Notably, asthma incidence was lower in herpesvirus I-positive patients (OR: 0.895, CI, 0.809%-0.991%), while herpesvirus II-positive patients displayed a higher incidence of asthma (OR: 1.102, CI, 0.974%-1.246%). Conclusion The study findings underscore the significant prevalence of asthma and its correlation with population demographics, vaccination rates, and serum viral antibodies. These results highlight the importance of implementing tailored public health interventions.
Collapse
Affiliation(s)
- Zonghui Yang
- Clinical Medical College, Jining Medical University, Jining, China
| | - Jia Guo
- Clinical Medical College, Jining Medical University, Jining, China
| | - Manman Cheng
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Youwen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhi Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jie Wen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Fenglian Shan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
2
|
Asashima H, Akao S, Matsumoto I. Emerging roles of checkpoint molecules on B cells. Immunol Med 2025:1-12. [PMID: 39819449 DOI: 10.1080/25785826.2025.2454045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules. These were originally thought to be only the markers for regulatory B cells which produce IL-10, but recent studies suggest that these molecules (especially T-cell immunoglobulin and mucin domain 1 (TIM-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and PD-1) can regulate intrinsic B-cell activation and functions. Here, we focus on these molecules and summarize their characteristics, ligands, and functions on B cells.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Akao
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Zhang L, Kitzmiller CE, Richard AS, Popli S, Choe H. The ability of human TIM1 to bind phosphatidylethanolamine enhances viral uptake and efferocytosis compared to rhesus and mouse orthologs. J Virol 2024; 98:e0164924. [PMID: 39475278 PMCID: PMC11575270 DOI: 10.1128/jvi.01649-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024] Open
Abstract
T-cell immunoglobulin and mucin (TIM) family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals, such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and viral infection. Here, we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE, and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.IMPORTANCEWe previously reported that human T-cell immunoglobulin and mucin protein 1 (TIM1) binds phosphatidylethanolamine (PE) as well as phosphatidylserine (PS), and that PE is exposed on the apoptotic cells and viral envelopes. Moreover, TIM1 recognition of PE contributes to phagocytic clearance of apoptotic cells and virus uptake. Here, we report that unlike human TIM1, murine and rhesus TIM1 orthologs bind only PS, and as a result, their ability to clear apoptotic cells or promote virus infection is less efficient. These findings are significant because they imply that the activity of TIM1 in humans is greater than what the studies conducted in common animal models would indicate.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| | - Claire E Kitzmiller
- Division of Infectious Disease, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Audrey S Richard
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| | - Sonam Popli
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, Florida, USA
| |
Collapse
|
4
|
Reyes Ballista JM, Hoover AJ, Noble JT, Acciani MD, Miazgowicz KL, Harrison SA, Tabscott GAL, Duncan A, Barnes DN, Jimenez AR, Brindley MA. Chikungunya virus release is reduced by TIM-1 receptors through binding of envelope phosphatidylserine. J Virol 2024; 98:e0077524. [PMID: 39007616 PMCID: PMC11334481 DOI: 10.1128/jvi.00775-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM-1 has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production. IMPORTANCE Chikungunya virus (CHIKV) is an enveloped alphavirus transmitted by the bites of infectious mosquitoes. Infection with CHIKV results in the development of fever, joint pain, and arthralgia that can become chronic and last for months after infection. Prevention of this disease is still highly focused on vector control strategies. In December 2023, a new live attenuated vaccine against CHIKV was approved by the FDA. We aimed to study the cellular factors involved in CHIKV release, to better understand CHIKV's ability to efficiently infect and spread among a wide variety of cell lines. We found that TIM-1 receptors can significantly abrogate CHIKV's ability to efficiently exit infected cells. This information can be beneficial for maximizing viral particle production in laboratory settings and during vaccine manufacturing.
Collapse
Affiliation(s)
- Judith M. Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ashley J. Hoover
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Joseph T. Noble
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Sarah A. Harrison
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Grace Andrea L. Tabscott
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Avery Duncan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Don N. Barnes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Zhang L, Kitzmiller CE, Richard AS, Popli S, Choe H. The ability of human TIM1 to bind phosphatidylethanolamine enhances viral uptake and efferocytosis compared to rhesus and mouse orthologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605603. [PMID: 39131348 PMCID: PMC11312472 DOI: 10.1101/2024.07.29.605603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
T-cell Immunoglobulin and Mucin (TIM)-family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and virus infection. Here we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Claire E. Kitzmiller
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Audrey S. Richard
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Sonam Popli
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Ballista JMR, Hoover AJ, Noble JT, Acciani MD, Miazgowicz KL, Harrison SA, Tabscott GAL, Duncan A, Barnes DN, Jimenez AR, Brindley MA. Chikungunya Virus Release is Reduced by TIM-1 Receptors Through Binding of Envelope Phosphatidylserine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577233. [PMID: 38328121 PMCID: PMC10849729 DOI: 10.1101/2024.01.25.577233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of Chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce Chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process that appears to be mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production.
Collapse
Affiliation(s)
- Judith M. Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ashley J. Hoover
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joseph T. Noble
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Sarah A. Harrison
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Grace Andrea L. Tabscott
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Avery Duncan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Don N. Barnes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Quinchia J, Blázquez-García M, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Serafín V, Rejas-González R, Montero-Calle A, Orozco J, Pingarrón JM, Barderas R, Campuzano S. Disposable electrochemical immunoplatform to shed light on the role of the multifunctional glycoprotein TIM-1 in cancer cells invasion. Talanta 2024; 267:125155. [PMID: 37696234 DOI: 10.1016/j.talanta.2023.125155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
Detecting overexpression of cancer biomarkers is an excellent tool for diagnostic/prognostic and follow-up of patients with cancer or their response to treatment. This work illustrates the relevance of interrogating the levels of T-cell immunoglobulin and mucin domain 1 (TIM-1) protein as a diagnostic/prognostic biomarker of high-prevalence breast and lung cancers by using an amperometric disposable magnetic microparticles-assisted immunoplatform. The developed method integrates the inherent advantages of carboxylic acid-functionalized magnetic beads (HOOC-MBs) as pre-concentrator support and the amperometric transduction at screen-printed carbon electrodes (SPCEs). The immunoplatform involves a sandwich-type immunoassay assembled on HOOC-MBs through the specific capture/labeling of TIM-1 using capture antibodies and horseradish peroxidase (HRP)-conjugated biotinylated detection antibodies as biorecognition elements. The magnetic immunoconjugates were confined onto the working electrode (WE) surface of the SPCEs for amperometric detection using the hydroquinone/hydrogen peroxide/HRP (HQ/H2O2/HRP) redox system. The method allows the selective detection of TIM-1 protein over the 87-7500 pg mL-1 concentration range in only 45 min, with a limit of detection of 26 pg mL-1. The developed bioplatform was successfully applied to the analysis of breast and lung cancer cell extracts, providing the first quantitative results of the target glycoprotein in these types of samples.
Collapse
Affiliation(s)
- Jennifer Quinchia
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain; Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia. Complejo Ruta N, Calle 67 No. 52-20, Medellín, 050010, Colombia
| | - Marina Blázquez-García
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Rebeca M Torrente-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Verónica Serafín
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | | | - Ana Montero-Calle
- UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia. Complejo Ruta N, Calle 67 No. 52-20, Medellín, 050010, Colombia
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Otsuka M, Kotani A. Recent advances in extracellular vesicles in gastrointestinal cancer and lymphoma. Cancer Sci 2023; 114:2230-2237. [PMID: 36851868 PMCID: PMC10236630 DOI: 10.1111/cas.15771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Extracellular vesicles (EVs) are intercellular communication agents that transfer microRNAs (miRNAs), other non-coding RNAs (ncRNAs), messenger RNAs (mRNAs), proteins, lipids, metabolites, and other molecules from donor cells (e.g., cancer cells) to recipient cells (e.g., stromal cells). In 2007, miRNAs were reported to be abundant among the ncRNAs present in EVs. Since then, many studies have investigated the functions of miRNAs and have attempted to apply these molecules to aid in the diagnosis and treatment of cancer. Research on EVs has expanded, particularly in the field of cancer, because cancer cells heavily secrete EVs. The cargo of these EVs, especially those in small EVs, such as exosomes, is assumed to work cooperatively and significantly in the tumor microenvironment and to promote metastasis. In this review, we first summarize recent studies on EVs in gastrointestinal cancer and highlight studies on human satellite II RNAs, which are a type of ncRNA found in EVs that possess repetitive sequences. Second, since several recent studies have revealed that phospholipids, which are components of EV membranes, play important roles in intercellular communication and the generation of lipid mediators in the tumor microenvironment, we review the reported roles of these molecules and discuss their potential use in the design of new cancer treatments.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology and HepatologyAcademic Field of Medicine, Density and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ai Kotani
- Department of Innovative Medical ScienceTokai University School of MedicineIseharaJapan
- Division of Hematological MalignancyInstitute of Medical SciencesTokai UniversityIseharaJapan
| |
Collapse
|
10
|
Kanannejad Z, Soleimanian S, Ghahramani Z, Sepahi N, Mohkam M, Alyasin S, Kheshtchin N. Immune checkpoint molecules in prevention and development of asthma. Front Immunol 2023; 14:1070779. [PMID: 36865540 PMCID: PMC9972681 DOI: 10.3389/fimmu.2023.1070779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Allergic asthma is a respiratory disease initiated by type-2 immune responses characterized by secretion of alarmins, interleukin-4 (IL-4), IL-5, and IL-13, eosinophilic inflammation, and airway hyperresponsiveness (AHR). Immune checkpoints (ICPs) are inhibitory or stimulatory molecules expressed on different immune cells, tumor cells, or other cell types that regulate immune system activation and maintain immune homeostasis. Compelling evidence indicates a key role for ICPs in both the progression and prevention of asthma. There is also evidence of asthma development or exacerbation in some cancer patients receiving ICP therapy. The aim of this review is to provide an updated overview of ICPs and their roles in asthma pathogenesis, and to assess their implications as therapeutic targets in asthma.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Kheshtchin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Zhang M, Wang X, Hu L, Zhang Y, Zheng H, Wu H, Wang J, Luo L, Xiao H, Qiao C, Li X, Huang W, Wang Y, Feng J, Chen G. TIM-1 Augments Cellular Entry of Ebola Virus Species and Mutants, Which Is Blocked by Recombinant TIM-1 Protein. Microbiol Spectr 2022; 10:e0221221. [PMID: 35384693 PMCID: PMC9241846 DOI: 10.1128/spectrum.02212-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yuting Zhang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Hang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Marques CR, Fiuza BSD, da Silva TM, Carneiro TCB, Costa RS, de Assis Silva MF, Viana WLL, Carneiro VL, Alcantara-Neves NM, Barreto ML, Figueiredo CA. Impact of FOXP3 gene polymorphisms and gene-environment interactions in asthma and atopy in a Brazilian population. Gene 2022; 838:146706. [PMID: 35772656 DOI: 10.1016/j.gene.2022.146706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Polymorphisms in genes related to the activation and development of regulatory T cells (Tregs), such as FOXP3, may be associated with asthma and atopy development. Additionally, environmental factors such as exposure to infections can modify the effect of these associations. This study evaluated the impact of polymorphisms in the FOXP3 on the risk of asthma and atopy as also gene-environment interactions in these outcomes. METHODS This study included 1,246 children from the SCAALA program, between 4 and 11 years of age. DNA was extracted from peripheral blood and eight SNPs (rs2280883, rs11465476, rs11465472, rs2232368, rs3761549, rs3761548, rs2232365 and rs2294021) were genotyped using the 2.5 HumanOmni Beadchip from Illumina (San Diego, California, USA) or TaqMan qRT-PCR. RESULTS The rs2232368 (Allele T) was positively associated with asthma symptoms (OR=1.95, CI=1.04 to 3.66, p = 0.040) and skin prick test (SPT) reactivity to aeroallergens (OR=2.31, CI=1.16 to 4.59, p = 0.017). The rs3761549 (Allele T) was positively associated with SPT reactivity (OR=1.44, CI=1.03 to 2.02, p = 0.034). The rs2280883 (Allele C) was negatively associated with specific IgE to aeroallergens (OR=0.83, CI=0.70 to 0.99, p = 0.040). Furthermore, the rs2280883 played a protective role in the development of atopy only in individuals seropositive to Epstein-Barr virus (EBV) infection (OR=0.74, CI=0.60 to 0.92, p = 0.003 and OR=0.74; 95% CI=0.61-0.91, p = 0.007 for SPT and slgE respectively), but not in individuals without EBV infection. CONCLUSION Polymorphisms in the FOXP3 gene were associated with the risk of atopy and asthma development in our population. In addition, EBV infection had an effect modifier of the observed association for rs2280883 variant.
Collapse
Affiliation(s)
| | | | | | | | - Ryan Santos Costa
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Dendritic cell-based cancer immunotherapy in the era of immune checkpoint inhibitors: From bench to bedside. Life Sci 2022; 297:120466. [PMID: 35271882 DOI: 10.1016/j.lfs.2022.120466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) can present tumoral antigens to T-cells and stimulate T-cell-mediated anti-tumoral immune responses. In addition to uptaking, processing, and presenting tumoral antigens to T-cells, co-stimulatory signals have to be established between DCs with T-cells to develop anti-tumoral immune responses. However, most of the tumor-infiltrated immune cells are immunosuppressive in the tumor microenvironment (TME), paving the way for immune evasion of tumor cells. This immunosuppressive TME has also been implicated in suppressing the DC-mediated anti-tumoral immune responses, as well. Various factors, i.e., immunoregulatory cells, metabolic factors, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules, have been implicated in developing the immunosuppressive TME. Herein, we aimed to review the biology of DCs in developing T-cell-mediated anti-tumoral immune responses, the significance of immunoregulatory cells in the TME, metabolic barriers contributing to DCs dysfunction in the TME, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules in DC-based cell therapy outcomes. With reviewing the ongoing clinical trials, we also proposed a novel therapeutic strategy to increase the efficacy of DC-based cell therapy. Indeed, the combination of DC-based cell therapy with monoclonal antibodies against novel immune checkpoint molecules can be a promising strategy to increase the response rate of patients with cancers.
Collapse
|
14
|
Lu X. Structure and functions of T-cell immunoglobulin-domain and mucin- domain protein 3 in cancer. Curr Med Chem 2021; 29:1851-1865. [PMID: 34365943 DOI: 10.2174/0929867328666210806120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling. METHODS This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types, and the rationale for TIM-3-targeted cancer immunotherapy. RESULTS TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models. CONCLUSION TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR. United Kingdom
| |
Collapse
|
15
|
Non-coding RNAs and lipids mediate the function of extracellular vesicles in cancer cross-talk. Semin Cancer Biol 2021; 74:121-133. [PMID: 34033894 DOI: 10.1016/j.semcancer.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Research on extracellular vesicles (EVs) has been expanded, especially in the field of cancer. The cargoes in EVs, especially those in small EVs such as exosomes include microRNAs (miRNAs), mRNA, proteins, and lipids, are assumed to work cooperatively in the tumor microenvironment. In 2007, it was reported that miRNAs were abundant among the non-coding RNAs present in exosomes. Since then, many studies have investigated the functions of miRNAs and have tried to apply these molecules to aid in the diagnosis of cancer. Accordingly, many reviews of non-coding RNAs in EVs have been published for miRNAs. This review focuses on relatively new cargoes, covering long noncoding (lnc) RNAs, circular RNAs, and repeat RNAs, among non-coding RNAs. These RNAs, regardless of EV or cell type, have newly emerged due to the innovation of sequencing technology. The poor conservation, low quantity, and technical difficulty in detecting these RNA types have made it difficult to elucidate their functions and expression patterns. We herein summarize a limited number of studies. Although lipids are major components of EVs, current research on EVs focuses on miRNA and protein biology, while the roles of lipids in exosomes have not drawn attention. However, several recent studies revealed that phospholipids, which are components of the EV membrane, play important roles in the intercommunication between cells and in the generation of lipid mediators. Here, we review the reported roles of these molecules, and describe their potential in cancer biology.
Collapse
|
16
|
Giemza-Stokłosa J, Islam MA, Kotyla PJ. Hyperferritinaemia: An Iron Sword of Autoimmunity. Curr Pharm Des 2020; 25:2909-2918. [PMID: 31686632 DOI: 10.2174/1381612825666190709202804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/30/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response. METHODS Different electronic databases were searched in a non-systematic way to find out the literature of interest. RESULTS The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still's diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm. CONCLUSION This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.
Collapse
Affiliation(s)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Przemysław J Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Faculty in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
| |
Collapse
|
17
|
Fillatreau S. Regulatory functions of B cells and regulatory plasma cells. Biomed J 2019; 42:233-242. [PMID: 31627865 PMCID: PMC6818159 DOI: 10.1016/j.bj.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
B cells critically contribute to health through the production of antibodies that provide a vital line of defence against infectious agents. In addition, B cells are known to play an integrative role in immunity, acting as crucial antigen-presenting cells for T cells, and being an important source of cytokines that can target multiple cell types including stromal cells, innate cells, and adaptive lymphocytes. This review focuses on the role of B cells as negative regulators of immunity through the production of interleukin-10 (IL-10) in autoimmune, infectious, and malignant diseases. It discusses the phenotypes of the B cell subsets most competent to produce IL-10 in vitro and to exert suppressive functions in vivo upon adoptive transfer in recipient mice, the signals and transcription factors regulating IL-10 expression in B cells, and the recent identification of plasmocytes, including short-lived plasmablasts and long-lived plasma cells, as an important source of IL-10 in secondary lymphoid organs and inflamed tissues in vivo during mouse and human diseases. With our increasing knowledge of this non-canonical B cell function a coherent framework starts emerging that will help monitoring and targeting this B cell function in health and disease.
Collapse
Affiliation(s)
- Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; Faculty of Medicine, Paris Descartes University, Paris-Sorbonne University, Paris, France; AP-HP Necker-Enfants Malades Hospital, Paris, France.
| |
Collapse
|
18
|
Diagnostic role of kidney injury molecule-1 in renal cell carcinoma. Int Urol Nephrol 2019; 51:1893-1902. [DOI: 10.1007/s11255-019-02231-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
19
|
Park M, Kang KW. Phosphatidylserine receptor-targeting therapies for the treatment of cancer. Arch Pharm Res 2019; 42:617-628. [PMID: 31172440 DOI: 10.1007/s12272-019-01167-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023]
Abstract
Asymmetric distribution of phospholipids across the plasma membrane is a unique characteristic of eukaryotic cells. Phosphatidylcholine and sphingomyelin are exposed in the outer leaflet, and phosphatidylserine (PS) is predominantly located in the inner leaflet. Redistribution of PS to the cell surface can be observed in several physiological conditions, such as apoptosis and platelet activation, or in pathological conditions, such as the release of microvesicles/exosomes from tumor tissues. PS binding to the phosphatidylserine receptor (PSR) on immune cells initiates immunosuppressive pathways that can lead to immune evasion by cancer cells. Conversely, PSR activation of cancer cells plays an important role in their survival, proliferation and metastasis. Herein, we briefly summarize both recent advances in our understanding of the pathological roles of PS and its receptor in cancer biology, as well as relevant pharmacological approaches.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
Nibona E, Xu G, Wu K, Shen H, Zhang R, Ke X, Al Hafiz A, Wang Z, Qi C, Zhao H. Identification, characterization, expression profiles of OlHavcr2 in medaka (Oryzias latipes). Gen Comp Endocrinol 2019; 277:30-37. [PMID: 30395804 DOI: 10.1016/j.ygcen.2018.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis A virus cellular receptor2 (Havcr2) also named T-cell immunoglobulin and mucin domain containing-3 (Tim-3) was initially described as a T helper 1-specific cell surface protein, a member of Tim family implicated in the regulating process of adaptive and innate immune responses. Here, medaka (Oryzias latipes) Havcr2 (OlHavcr2) was isolated and characterized. Unlike other Havcr2 proteins, OlHavcr2 possesses two Ig-like domains but lacks cytoplasmic and transmembrane domains. RT-PCR results revealed that OlHavcr2 mRNA was expressed strongly in the liver, moderately in the intestine, heart and ovary, and weakly in the muscle, gill, brain, eye, spleen, and testis. OlHavcr2 expression begun from gastrula stage and was maintained until hatching. The signal of OlHavcr2 was mainly identified in the blood system in the yolk sac by in situ hybridization. These results indicated that OlHavcr2 is expressed ubiquitously in adult tissues, and is a zygotic gene expressed from gastrula onwards in embryogenesis. OlHavcr2 may play a significant role in the blood system of medaka. In the immune organs, OlHavcr2 expression was affected by the immune stimulants, lipopolysaccharide and poly I:C, suggesting that OlHavcr2 was involved in innate immunity and adaptive immunity in medaka.
Collapse
Affiliation(s)
- Emile Nibona
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Kongyue Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Hao Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Runshuai Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xiaomei Ke
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Abdullah Al Hafiz
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zequn Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
21
|
Biomechanical characterization of TIM protein-mediated Ebola virus-host cell adhesion. Sci Rep 2019; 9:267. [PMID: 30670766 PMCID: PMC6342996 DOI: 10.1038/s41598-018-36449-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 01/19/2023] Open
Abstract
Since the most recent outbreak, the Ebola virus (EBOV) epidemic remains one of the world’s public health and safety concerns. EBOV is a negative-sense RNA virus that can infect humans and non-human primates, and causes hemorrhagic fever. It has been proposed that the T-cell immunoglobulin and mucin domain (TIM) family proteins act as cell surface receptors for EBOV, and that the interaction between TIM and phosphatidylserine (PS) on the surface of EBOV mediates the EBOV–host cell attachment. Despite these initial findings, the biophysical properties of the TIM-EBOV interaction, such as the mechanical strength of the TIM-PS bond that allows the virus-cell interaction to resist external mechanical perturbations, have not yet been characterized. This study utilizes single-molecule force spectroscopy to quantify the specific interaction forces between TIM-1 or TIM-4 and the following binding partners: PS, EBOV virus-like particle, and EBOV glycoprotein/vesicular stomatitis virus pseudovirion. Depending on the loading rates, the unbinding forces between TIM and ligands ranged from 40 to 100 pN, suggesting that TIM-EBOV interactions are mechanically comparable to previously reported adhesion molecule–ligand interactions. The TIM-4–PS interaction is more resistant to mechanical force than the TIM-1–PS interaction. We have developed a simple model for virus–host cell interaction that is driven by its adhesion to cell surface receptors and resisted by membrane bending (or tension). Our model identifies critical dimensionless parameters representing the ratio of deformation and adhesion energies, showing how single-molecule adhesion measurements relate quantitatively to the mechanics of virus adhesion to the cell.
Collapse
|
22
|
Niu J, Jiang Y, Xu H, Zhao C, Zhou G, Chen P, Cao R. TIM-1 Promotes Japanese Encephalitis Virus Entry and Infection. Viruses 2018; 10:E630. [PMID: 30441759 PMCID: PMC6265761 DOI: 10.3390/v10110630] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 01/23/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne Flavivirus, the leading cause of viral-induced encephalitis. Several host molecules have been identified as the JEV attachment factor; however, the molecules involved in JEV entry remain poorly understood. In the present study, we demonstrate that TIM-1 is important for efficient infection by JEV. Firstly, three TIM-1 variants (V1, V2, and V3) were cloned from A549 cells, and we revealed that only ectopically TIM-1 V2 expression in 293T cells significantly promotes JEV attachment, entry and infection. Point mutation of phosphatidylserine (Ptdser) binding pocket in the TIM-1 IgV domain dampened JEV entry, indicating that TIM-1-mediated JEV infection is Ptdser-dependent. Furthermore, we found the cytoplasmic domain of TIM-1 is also required for enhancing JEV entry. Additionally, knock down of TIM-1 expression in A549 cells impaired JEV entry and infection, but not attachment, suggesting that additional factors exist in A549 cells that allow the virus to bind. In conclusion, our findings demonstrate that TIM-1 promotes JEV infection as an entry cofactor, and the polymorphism of TIM-1 is associated with JEV susceptibility to host cells.
Collapse
Affiliation(s)
- Jichen Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ya Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hao Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changjing Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guodong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Puyan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J Virol 2018; 92:JVI.00093-18. [PMID: 29875238 DOI: 10.1128/jvi.00093-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor α-dystroglycan (αDG). However, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrated that the phosphatidylserine (PtdSer)-binding receptors Axl and Tyro3 along with C-type lectin receptors mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP)-pseudotyped virion entry into αDG-knocked-out HEK 293T and wild-type (WT) Vero cells, which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Furthermore, the human TIM-1 IgV domain-binding monoclonal antibody ARD5 blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline-rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates the entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer-binding pocket of TIM-1.IMPORTANCE PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through the binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate the entry of all enveloped viruses, yet LASV GP-pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here, we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1 but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high-affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why previous studies performed with α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake.
Collapse
|
24
|
Zhang X, Liu Q, Wang J, Li G, Weiland M, Yu FS, Mi QS, Gu J, Zhou L. TIM-4 is differentially expressed in the distinct subsets of dendritic cells in skin and skin-draining lymph nodes and controls skin Langerhans cell homeostasis. Oncotarget 2018; 7:37498-37512. [PMID: 27224924 PMCID: PMC5122327 DOI: 10.18632/oncotarget.9546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
T cell immunoglobulin and mucin-4 (TIM-4), mainly expressed on dendritic cells (DC) and macrophages, plays an essential role in regulating immune responses. Langerhans cells (LC), which are the sole DC subpopulation residing at the epidermis, are potent mediators of immune surveillance and tolerance. However, the significance of TIM-4 on epidermal LCs, along with other cutaneous DCs, remains totally unexplored. For the first time, we discovered that epidermal LCs expressed TIM-4 and displayed an increased level of TIM-4 expression upon migration. We also found that dermal CD207+ DCs and lymph node (LN) resident CD207−CD4+ DCs highly expressed TIM-4, while dermal CD207− DCs and LN CD207−CD4− DCs had limited TIM-4 expressions. Using TIM-4-deficient mice, we further demonstrated that loss of TIM-4 significantly upregulated the frequencies of epidermal LCs and LN resident CD207−CD4+ DCs. In spite of this, the epidermal LCs of TIM-4-deficient mice displayed normal phagocytic and migratory abilities, comparable maturation status upon the stimulation as well as normal repopulation under the inflamed state. Moreover, lack of TIM-4 did not affect dinitrofluorobenzene-induced contact hypersensitivity response. In conclusion, our results indicated that TIM-4 was differentially expressed in the distinct subsets of DCs in skin and skin-draining LNs, and specifically regulated epidermal LC and LN CD207−CD4+ DC homeostasis.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Queping Liu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Guihua Li
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Matthew Weiland
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Fu-Shin Yu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Jun Gu
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| |
Collapse
|
25
|
Zhang H, Xiang R, Wu B, Li J, Luo G. T-cell immunoglobulin mucin-3 expression in invasive ductal breast carcinoma: Clinicopathological correlations and association with tumor infiltration by cytotoxic lymphocytes. Mol Clin Oncol 2017; 7:557-563. [PMID: 28855989 PMCID: PMC5574202 DOI: 10.3892/mco.2017.1360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
As a negative regulatory molecule, T-cell immunoglobulin and mucin domain-3 (Tim-3) is closely associated with tumor immunological tolerance. The aim of this study was to investigate Tim-3 expression in invasive ductal breast cancer (IDC), its effect on clinicopathological parameters and its association with cytotoxic lymphocyte infiltration. Tim-3 protein expression was measured in 150 paraffin-embedded IDC specimens and 100 paired normal breast tissue specimens by immunohistochemistry. It was demonstrated that the infiltration of the tumor by CD8+ T cells was significantly higher compared with that of normal tissue, and the Tim-3 expression on CD8+ T cells was higher in IDC tissue compared with that in normal tissue; the differences were statistically significant (both P-values=0.000). The median expression level of Tim-3 on tumor cells was significantly associated with clinicopathological parameters such as age, axillary lymph node metastasis and TNM stage (P=0.015, 0.001 and 0.027, respectively). The expression of Tim-3 on CD8+ T cells was correlated with lymph node metastasis, World Health Organization (WHO) grade and molecular classification (P=0.000, 0.004 and 0.000, respectively). Additionally, the number of tumor-infiltrating CD8+ T cells was associated with primary tumor size, lymph node metastasis, WHO grade, Ki-67 and molecular classification (P=0.017, 0.002, 0.007, 0.003 and 0.000, respectively). Thus, Tim-3 may promote the development and progression of breast cancer and affect the tumor microenvironment; thus, it may be used as an independent prognostic factor for IDC patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of General Surgery, The Fourth People's Hospital of Sichuan, Chengdu, Sichuan 610000, P.R. China
| | - Rong Xiang
- Department of Medicine, Nan Kai University, Tianjin 300071, P.R. China
| | - Bin Wu
- Department of Breast Surgery, Southwest Medical University Affiliated Hospital, Luzhou, Sichuan 646000, P.R. China
| | - Jinlong Li
- Department of General Surgery, The Fourth People's Hospital of Sichuan, Chengdu, Sichuan 610000, P.R. China
| | - Guilin Luo
- Department of General Surgery, The Fourth People's Hospital of Sichuan, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
26
|
Liu B, Liu W, Wang R, Shu Q, Zhang X, Fan X, Zhang Q, Liang X, Ma C, Gao L. Promoter polymorphisms of the TIM-4 gene are correlated with disease activity in patients with systemic lupus erythematosus. Int J Immunogenet 2017; 44:122-128. [PMID: 28371471 DOI: 10.1111/iji.12316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/17/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023]
Abstract
Although the TIM gene family plays important roles in immune responses, little is known about TIM regulation in the development of systemic lupus erythematosus (SLE). This study aimed to investigate the association of two TIM-4 single nucleotide polymorphisms (SNPs) rs6874202 (-1419G>A) and rs62382402 (-1609G>A) with SLE susceptibility in a Chinese Han population. The results showed no significant differences between patients with SLE and control group for rs6874202 and rs62382402 (p = .72, .53 respectively). However, the anti-dsDNA levels in serum from SLE patients with GG genotype of TIM-4 gene at -1419 site were significantly higher than those with GA and AA genotype (p = .0335), and C3 levels of SLE patients with GG and GA genotype were much lower than those with AA genotypes (p = .0187). Moreover, the apoptotic cell levels of SLE patients with AA and GG genotypes were significantly higher than those with GA genotypes in patients with SLE (p = .0393). In addition, the C3 concentration of SLE patients with the GG genotype of TIM-4 gene at -1609 site was found to be significantly higher than those with the GA genotype (p = .0129). The results imply that GG genotype of the TIM-4 gene at -1419 site might be associated with the disease activity of SLE.
Collapse
Affiliation(s)
- B Liu
- Department of Immunology, Shandong University School of Medicine, Jinan, China.,Internal Medicine department ward 19, Fuding Hospital, Fuding, China
| | - W Liu
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - R Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Q Shu
- Department of Rheumatism, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - X Zhang
- Department of Quality Control, Jinan Blood Centre of Shandong Province, Jinan, China
| | - X Fan
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital affiliated to Shandong University, Jinan, China
| | - Q Zhang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - X Liang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - C Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - L Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
27
|
Grabiec AM, Hussell T. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Semin Immunopathol 2016; 38:409-23. [PMID: 26957481 PMCID: PMC4896990 DOI: 10.1007/s00281-016-0555-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022]
Abstract
Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called ‘efferocytosis’. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released ‘damage associated molecular patterns’ (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections.
Collapse
Affiliation(s)
- Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, The University of Manchester, 46 Grafton Street, M13 9NT, Manchester, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, The University of Manchester, 46 Grafton Street, M13 9NT, Manchester, UK.
| |
Collapse
|
28
|
Xu XG, Hu JF, Ma JX, Nie L, Shao T, Xiang LX, Shao JZ. Essential Roles of TIM-1 and TIM-4 Homologs in Adaptive Humoral Immunity in a Zebrafish Model. THE JOURNAL OF IMMUNOLOGY 2016; 196:1686-99. [PMID: 26792807 DOI: 10.4049/jimmunol.1501736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023]
Abstract
TIM-1 and TIM-4 proteins have become increasingly attractive for their critical functions in immune modulation, particularly in CD4(+) Th2 cell activation. Thus, these proteins were hypothesized to regulate adaptive humoral immunity. However, further evidence is needed to validate this hypothesis. This study describes the molecular and functional characteristics of TIM-1 and TIM-4 homologs from a zebrafish (Danio rerio) model (D. rerio TIM [DrTIM]-1 and DrTIM-4). DrTIM-1 and DrTIM-4 were predominantly expressed in CD4(+) T cells and MHC class II(+) APCs under the induction of Ag stimulation. Blockade or knockdown of both DrTIM-1 and DrTIM-4 significantly decreased Ag-specific CD4(+) T cell activation, B cell proliferation, Ab production, and vaccinated immunoprotection against bacterial infection. This result suggests that DrTIM-1 and DrTIM-4 serve as costimulatory molecules required for the full activation of adaptive humoral immunity. DrTIM-1 was detected to be a trafficking protein located in the cytoplasm of CD4(+) T cells. It can translocate onto the cell surface under stimulation by TIM-4-expressing APCs, which might be a precise regulatory strategy for CD4(+) T cells to avoid self-activation before APCs stimulation. Furthermore, a unique alternatively spliced soluble DrTIM-4 variant was identified to exert a negative regulatory effect on the proliferation of CD4(+) T cells. The above findings highlight a novel costimulatory mechanism underlying adaptive immunity. This study enriches the current knowledge on TIM-mediated immunity and provides a cross-species understanding of the evolutionary history of costimulatory systems throughout vertebrate evolution.
Collapse
Affiliation(s)
- Xiao-Gang Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jing-Fang Hu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jun-Xia Ma
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
29
|
Ebrahimi M, Kazemi T, Ganjalikhani-hakemi M, Majidi J, khanahmad H, Rahimmanesh I, Homayouni V, Kohpayeh S. Development of a Stable Cell Line, Overexpressing Human T-cell Immunoglobulin Mucin 1. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:25-31. [PMID: 28959306 PMCID: PMC5492232 DOI: 10.15171/ijb.1350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/12/2015] [Accepted: 11/24/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recent researches have demonstrated that human T-cell immunoglobulin mucin 1 (TIM-1) glycoprotein plays important roles in regulation of autoimmune and allergic diseases, as well as in tumor immunity and response to viral infections. Therefore, targeting TIM-1 could be a potential therapeutic approach against such diseases. OBJECTIVES In this study, we aimed to express TIM-1 protein on Human Embryonic kidney (HEK) 293T cell line in order to have an available source of the TIM-1 antigen. MATERIALS AND METHODS The cDNA was synthesized after RNA extraction from peripheral blood mononuclear cells (PBMC) and TIM-1 cDNA was amplified by PCR with specific primers. The PCR product was cloned in pcDNA™3.1/Hygro (+) and transformed in Escherichia coli TOP 10 F'. After cloning, authenticity of DNA sequence was checked and expressed in HEK 293T cells. Finally, expression of TIM-1 was analyzed by flow cytometry and real-time PCR. RESULTS The result of DNA sequencing demonstrated correctness of TIM-1 DNA sequence. The flow cytometry results indicated that TIM-1 was expressed in about 90% of transfected HEK 293T cells. The real-time PCR analysis showed TIM-1 mRNA expression increased 195-fold in transfected cells compared with un-transfected cells. CONCLUSIONS Findings of present study demonstrated the successful cloning and expression of TIM-1 on HEK 293T cells. These cells could be used as an immunogenic source for production of specific monoclonal antibodies, nanobodies and aptamers against human TIM-1.
Collapse
Affiliation(s)
- Mina Ebrahimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jafar Majidi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein khanahmad
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Homayouni
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kohpayeh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Brooks CR, Yeung MY, Brooks YS, Chen H, Ichimura T, Henderson JM, Bonventre JV. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 2015; 34:2441-64. [PMID: 26282792 DOI: 10.15252/embj.201489838] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
Phagocytosis of apoptotic cells by both professional and semi-professional phagocytes is required for resolution of organ damage and maintenance of immune tolerance. KIM-1/TIM-1 is a phosphatidylserine receptor that is expressed on epithelial cells and can transform the cells into phagocytes. Here, we demonstrate that KIM-1 phosphorylation and association with p85 results in encapsulation of phagosomes by lipidated LC3 in multi-membrane organelles. KIM-1-mediated phagocytosis is not associated with increased ROS production, and NOX inhibition does not block LC3 lipidation. Autophagy gene expression is required for efficient clearance of apoptotic cells and phagosome maturation. KIM-1-mediated phagocytosis leads to pro-tolerogenic antigen presentation, which suppresses CD4 T-cell proliferation and increases the percentage of regulatory T cells in an autophagy gene-dependent manner. Taken together, these data reveal a novel mechanism of epithelial biology linking phagocytosis, autophagy and antigen presentation to regulation of the inflammatory response.
Collapse
Affiliation(s)
- Craig R Brooks
- Department of Medicine, Renal Division, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
| | - Melissa Y Yeung
- Department of Medicine, Renal Division, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA Transplantation Research Center, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
| | - Yang S Brooks
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Takaharu Ichimura
- Department of Medicine, Renal Division, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
31
|
Li J, Zhao X, Liu X, Liu H. Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells. Mol Immunol 2015; 66:117-25. [PMID: 25771178 DOI: 10.1016/j.molimm.2015.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/30/2022]
|
32
|
Shirzade H, Meshkat R, Ganjalikhani-Hakemi M, Mosayebian A, Ghasemi R, Deress F, Parchami Barjui S, Sadri M, Salehi R. Association analysis of -416 G>C polymorphism of T-cell immunoglobulin and mucin domain-1 gene with asthma in Iran. Int J Immunogenet 2015; 42:265-269. [PMID: 26041148 DOI: 10.1111/iji.12209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/10/2015] [Accepted: 05/08/2015] [Indexed: 02/05/2023]
Abstract
TIM (T-cell immunoglobulin (Ig) and mucin domain)-1, one of the members of TIM family, expresses on Th2 cells and promotes the production of Th2 signature cytokines. This can increase a series of responses in these cells which could be one of the causes of asthma or asthma-related phenotypes. The aim of this study was to investigate whether a TIM-1 promoter single nucleotide polymorphism (SNP), -416 G>C, is associated with asthma in Iranian population. In this case-control study, existence of the -416 G>C polymorphism was assessed using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) in 300 patients with asthma (97 atopic, 203 nonatopic) and 309 healthy volunteers. Additionally, the relationship between these polymorphism genotypes and total serum IgE levels in this Iranian population was evaluated. We discovered a significant association between the -416 G>C polymorphism and atopic asthma susceptibility in the population, but this SNP showed no connection with nonatopic asthma (P < 0.05). However, our results showed significant relation between this polymorphism and serum IgE level (P < 0.05). Our results suggest that -416 G>C polymorphism in TIM-1 gene could be a predisposing factor for atopic asthma in Iranian population, and CC genotype of this SNP can be associated with increased level of IgE in patients with asthma in the same population.
Collapse
Affiliation(s)
- H Shirzade
- Department of Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - R Meshkat
- Department of Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - M Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular & Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Mosayebian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Ghasemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - F Deress
- Department of Statistics, School of health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - S Parchami Barjui
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - M Sadri
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Salehi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus. J Virol 2015; 89:6481-93. [PMID: 25855742 DOI: 10.1128/jvi.03156-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 04/03/2015] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Multiple host molecules are known to be involved in the cellular entry of filoviruses, including Ebola virus (EBOV); T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) have been identified as attachment and fusion receptors, respectively. However, the molecular mechanisms underlying the entry process have not been fully understood. We found that TIM-1 and NPC1 colocalized and interacted in the intracellular vesicles where EBOV glycoprotein (GP)-mediated membrane fusion occurred. Interestingly, a TIM-1-specific monoclonal antibody (MAb), M224/1, prevented GP-mediated membrane fusion and also interfered with the binding of TIM-1 to NPC1, suggesting that the interaction between TIM-1 and NPC1 is important for filovirus membrane fusion. Moreover, MAb M224/1 efficiently inhibited the cellular entry of viruses from all known filovirus species. These data suggest a novel mechanism underlying filovirus membrane fusion and provide a potential cellular target for antiviral compounds that can be universally used against filovirus infections. IMPORTANCE Filoviruses, including Ebola and Marburg viruses, cause rapidly fatal diseases in humans and nonhuman primates. There are currently no approved vaccines or therapeutics for filovirus diseases. In general, the cellular entry step of viruses is one of the key mechanisms to develop antiviral strategies. However, the molecular mechanisms underlying the entry process of filoviruses have not been fully understood. In this study, we demonstrate that TIM-1 and NPC1, which serve as attachment and fusion receptors for filovirus entry, interact in the intracellular vesicles where Ebola virus GP-mediated membrane fusion occurs and that this interaction is important for filovirus infection. We found that filovirus infection and GP-mediated membrane fusion in cultured cells were remarkably suppressed by treatment with a TIM-1-specific monoclonal antibody that interfered with the interaction between TIM-1 and NPC1. Our data provide new insights for the development of antiviral compounds that can be universally used against filovirus infections.
Collapse
|
34
|
Liu X, Cui X, Yuan D, Li Y, Shan NN, Wang X, Hu Y. Altered expression of T cell Immunoglobulin-Mucin (Tim) molecules in peripheral blood mononuclear cells in aplastic anemia. Cancer Cell Int 2014; 14:144. [PMID: 25548541 PMCID: PMC4278261 DOI: 10.1186/s12935-014-0144-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
To evaluate the balance between T-cell immunoglobulin and mucin domain (Tim) molecules(Tim)-1 and Tim-3 in patients with aplastic anemia (AA), plasma IFN-γ and IL-4 levels were measured in patients with active AA (n = 41), AA in remission (n = 29) and in healthy subjects (n = 40) by enzyme linked immunosorbent assay (ELISA). Using real-time quantitative polymerase chain reaction (RT-PCR), the mRNA expression of IFN-γ, IL-4, Tim-1 and Tim-3 were studied in all subjects. The results showed that the expression of Tim-3 in newly diagnosed patients was significantly deceased, compared with the controls. Meanwhile, Tim-1 mRNA expression in the active AA group was not significantly reduced, which resulted in a declined ratio of Tim-3/Tim-1 in patients with active disease. During the remission stages, the levels of these transcription factors were comparable with those observed in the healthy controls. These findings are the first data on the expression of the Tim-1 and Tim-3 molecules in AA. The reduced levels of Tim-3/Tim-1 in PBMCs during the active stages of disease suggest that they may play a possible role in the pathogenesis and course of AA.
Collapse
Affiliation(s)
- Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Road, Jinan, Shandong 250021 China
| | - Xin Cui
- Department of Internal Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Road, Jinan, Shandong 250021 China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Road, Jinan, Shandong 250021 China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Road, Jinan, Shandong 250021 China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Road, Jinan, Shandong 250021 China
| | - Yu Hu
- Haematology Oncology Centre, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
35
|
Regulation of T cell trafficking by the T cell immunoglobulin and mucin domain 1 glycoprotein. Trends Mol Med 2014; 20:675-84. [DOI: 10.1016/j.molmed.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
|
36
|
Sinha S, Singh J, Jindal SK. Protective association of TIM1-1454G>a polymorphism with asthma in a North Indian population. Lung 2014; 193:31-8. [PMID: 25331534 DOI: 10.1007/s00408-014-9653-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE TIM1 is a key regulator of Th2-dominated immune responses, including allergy, asthma, autoimmunity, and response to the pathogens. They are mainly expressed by hepatocytes and lymphoid cells. Analysis of the sequence of TIM1 was found to have range of SNPs which increases the transcriptional activity of the TIM1 gene. METHODS A case-control study was conducted with a total of 964 subjects, including 483 healthy controls and 481 asthma patients in the present study. DNA samples were extracted from blood, and genotyping was done using polymerase chain reaction-restriction fragment length polymorphism method. RESULTS Statistical analysis revealed that both heterozygous (GA) as well as the mutant (AA) genotype of -1454G>A (rs41297579) polymorphism shows resistance toward asthma with OR = 0.74, 95 % CI (0.55-0.98), p = 0.029 and OR = 0.43, 95 % CI (0.28-0.65), p = 0.000, respectively. The mutant (A) allele was also found to be highly protective toward asthma with OR = 0.68, 95 % CI (0.56-0.82) p = 0.000. However, no statistical difference was found between the TIM1-416G>C (rs9313422) polymorphism and asthma patients (p > 0.05). CONCLUSIONS This is the first study conducted in India conferring -1454G>A polymorphism provides resistance toward asthma while lack of association was found between -416G>C polymorphism and asthma in the studied North Indian population.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
37
|
Moller-Tank S, Maury W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 2014; 468-470:565-580. [PMID: 25277499 PMCID: PMC4252826 DOI: 10.1016/j.virol.2014.09.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/15/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022]
Abstract
A variety of both RNA and DNA viruses envelop their capsids in a lipid bilayer. One of the more recently appreciated benefits this envelope is incorporation of phosphatidylserine (PtdSer). Surface exposure of PtdSer disguises viruses as apoptotic bodies; tricking cells into engulfing virions. This mechanism is termed apoptotic mimicry. Several PtdSer receptors have been identified to enhance virus entry and we have termed this group of proteins PtdSer-mediated virus entry enhancing receptors or PVEERs. These receptors enhance entry of a range of enveloped viruses. Internalization of virions by PVEERs provides a broad mechanism of entry with little investment by the virus itself. PVEERs may allow some viruses to attach to cells, thereby making viral glycoprotein/cellular receptor interactions more probable. Alternatively, other viruses may rely entirely on PVEERs for internalization into endosomes. This review provides an overview of PtdSer receptors that serve as PVEERs and the biology behind virion/PVEER interaction. Phosphatidylserine (PtdSer) receptors can mediate entry of enveloped viruses. PtdSer is present on the outer leaflet of the virion envelope. PtdSer receptors are expressed on a variety of primary cells and cell lines. Characteristics of PtdSer receptors that mediate virus entry are defined.
Collapse
Affiliation(s)
- Sven Moller-Tank
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Wendy Maury
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
38
|
Zheng K, Xu G, Lu X, Zhang J, Zhang P. Expression and polymorphisms of T cell immunoglobulin domain and mucin domain protein-1 in thymoma with or without myasthenia gravis. Oncol Lett 2014; 8:317-322. [PMID: 24959269 PMCID: PMC4063586 DOI: 10.3892/ol.2014.2090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/27/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression and association of the single-nucleotide polymorphism (SNP) -1637A/G in the promoter region of the T cell immunoglobulin domain and mucin domain protein-1 (Tim-1) gene in patients diagnosed with thymoma with or without myasthenia gravis (MG). The expression of Tim-1 was detected using the streptavidin peroxidase immunohistochemical staining method on tissues obtained from thymoma patients with (n=58) and without (n=62) MG. The Tim-1 gene -1637A/G polymorphism was detected using the single allele-specific primer polymerase chain reaction. The positive rate of Tim-1 expression in thymoma patients with MG was 62.1% (32/58), which was significantly higher compared with that in thymoma patients without MG (33.9%, 21/62) (P=0.002). The genotype frequencies of GG, GA and AA in the -1637A/G polymorphism were 0.7931, 0.2069 and 0, respectively, in thymoma patients with MG, and 0.6129, 0.3871 and 0, respectively, in thymoma patients without MG. A significant difference in the genotypes between the thymoma patients with MG and those without MG was found (P=0.031). In addition, a significant difference in allele frequencies between thymoma patients with MG and those without MG (P=0.024) was observed. The high expression of Tim-1 in thymoma tissues may play an important role in the development of thymoma with MG. The -1637A/G polymorphism site of the promoter region in Tim-1 may be associated with thymoma with MG. These findings provide a basis for further genetic research of thymoma with MG.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Guowu Xu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xing Lu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
39
|
Abstract
UNLABELLED T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs.
Collapse
|
40
|
Schweigert O, Dewitz C, Möller-Hackbarth K, Trad A, Garbers C, Rose-John S, Scheller J. Soluble T cell immunoglobulin and mucin domain (TIM)-1 and -4 generated by A Disintegrin And Metalloprotease (ADAM)-10 and -17 bind to phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:275-87. [DOI: 10.1016/j.bbamcr.2013.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/28/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023]
|
41
|
Dewitz C, Möller-Hackbarth K, Schweigert O, Reiss K, Chalaris A, Scheller J, Rose-John S. T-cell immunoglobulin and mucin domain 2 (TIM-2) is a target of ADAM10-mediated ectodomain shedding. FEBS J 2013; 281:157-74. [PMID: 24164679 DOI: 10.1111/febs.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/21/2022]
Abstract
T-cell immunoglobulin and mucin domain (TIM)-2 is expressed on activated B cells. Here, we provide evidence that murine TIM-2 is a target of ADAM10-mediated ectodomain shedding, resulting in the generation of a soluble form of TIM-2. We identified ADAM10 but not ADAM17 as the major sheddase of TIM-2, as shown by pharmacological ADAM10 inhibition and with ADAM10-deficient and ADAM17-deficient murine embryonic fibroblasts. Ionomycin-induced or 2'(3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt-induced shedding of TIM-2 was abrogated by deletion of 10 juxtamembrane amino acids from the stalk region but not by deletion of two further N-terminally located blocks of 10 amino acids, indicating a membrane-proximal cleavage site. TIM-2 lacking the intracellular domain was cleaved after ionomycin or 2' (3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt treatment, indicating that this domain was not involved in the regulation of ectodomain shedding. Moreover, TIM-2 shedding was negatively controlled by calmodulin. Shed and soluble TIM-2 interacted with H-ferritin. In summary, we describe TIM-2 as a novel target for ADAM10-mediated ectodomain shedding, and reveal the involvement of ADAM proteases in cellular iron homeostasis.
Collapse
Affiliation(s)
- Christin Dewitz
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Möller-Hackbarth K, Dewitz C, Schweigert O, Trad A, Garbers C, Rose-John S, Scheller J. A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are major sheddases of T cell immunoglobulin and mucin domain 3 (Tim-3). J Biol Chem 2013; 288:34529-44. [PMID: 24121505 DOI: 10.1074/jbc.m113.488478] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T cell immunoglobulin and mucin domain 3 (Tim-3) dampens the response of CD4(+) and CD8(+) effector T cells via induction of cell death and/or T cell exhaustion and enhances the ability of macrophages to clear pathogens via binding to galectin 9. Here we provide evidence that human Tim-3 is a target of A disintegrin and metalloprotease (ADAM)-mediated ectodomain shedding resulting in a soluble form of Tim-3. We identified ADAM10 and ADAM17 as major sheddases of Tim-3 as shown by ADAM-specific inhibitors and the ADAM10 pro-domain in HEK293 cells and ADAM10/ADAM17-deficient murine embryonic fibroblasts. PMA-induced shedding of Tim-3 was abrogated by deletion of amino acids Glu(181)-Asp(190) of the stalk region and Tim-3 lacking the intracellular domain was not efficiently cleaved after PMA stimulation. Surprisingly, a single lysine residue within the intracellular domain rescues shedding of Tim-3. Shedding of endogenous Tim-3 was found in primary human CD14(+) monocytes after PMA and ionomycin stimulation. Importantly, the recently described down-regulation of Tim-3 from Toll-like receptor-activated CD14(+) monocytes was caused by ADAM10- and ADAM17-mediated shedding. Inhibition of Tim-3 shedding from lipopolysaccharide-induced monocytes did not influence lipopolysaccharide-induced TNFα and IL-6 but increases IL-12 expression. In summary, we describe Tim-3 as novel target for ADAM-mediated ectodomain shedding and suggest a role of Tim-3 shedding in TLR-mediated immune responses of CD14(+) monocytes.
Collapse
Affiliation(s)
- Katja Möller-Hackbarth
- From the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24098 Kiel, Germany and
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence.
Collapse
|
44
|
Huang B, Liu M, Huang S, Wu B, Guo H, Su XZ, Lu F. Expression of Tim-1 and Tim-3 in Plasmodium berghei ANKA infection. Parasitol Res 2013; 112:2713-9. [PMID: 23653017 DOI: 10.1007/s00436-013-3442-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Cerebral malaria (CM) is a serious and often fatal complication of Plasmodium falciparum infections; however, the precise mechanisms leading to CM is poorly understood. Mouse malaria models have provided insight into the key events in pathogenesis of CM. T-cell immune response is known to play an important role in malaria infection, and members of the T-cell immunoglobulin- and mucin-domain-containing molecule (Tim) family have roles in T-cell-mediated immune responses. Tim-1 and Tim-3 are expressed on terminally differentiated Th2 and Th1 cells, respectively, and participate in the regulation of Th immune response. Until now, the role of Tim family proteins in Plasmodium infection remains unclear. In the present study, the mRNA levels of Tim-1, Tim-3, and some key Th1 and Th2 cytokines in the spleen of Kunming outbred mice infected with Plasmodium berghei ANKA (PbANKA) were determined using real-time polymerase chain reaction (qRT-PCR). Compared with uninfected controls, Tim-1 expression was significantly decreased in infected mice with CM at day 10 postinfection (p.i.) but significantly increased in infected mice with non-CM at day 22 p.i.; in contrast, Tim-3 expression was significantly increased in infected mice both with CM at day 10 p.i. and with non-CM at day 22 p.i. The expressions of IFN-γ, TNF-α, IL-10, and IL-12 were significantly increased but IL-4 was significantly decreased in infected mice with CM at days 10 p.i., whereas the expressions of IFN-γ, TNF-α, IL-4, IL-10, and TGF-β were significantly increased but IL-12 was significantly decreased in infected mice with non-CM at days 22 p.i. Furthermore, the expression of Tim-1 and Tim-3 could reflect Th2 and Th1 immune response in the spleen of PbANKA-infected mice, respectively. Our data suggest that PbANKA infection could inhibit the differentiation of T lymphocytes toward Th2 cells, promote the Th1 cell differentiation, and induce Th1-biased immune response in the early infective stage, whereas the infection could promote Th2 cell differentiation and induce Th2-biased immune response in the late infective stage. Our data indicate that both Tim-1 and Tim-3 may play a role in the process of PbANKA infection, which may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Bo Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | | | | | | | | | | | | |
Collapse
|
45
|
TIM-4, expressed by medullary macrophages, regulates respiratory tolerance by mediating phagocytosis of antigen-specific T cells. Mucosal Immunol 2013; 6:580-90. [PMID: 23149665 PMCID: PMC4230569 DOI: 10.1038/mi.2012.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Respiratory exposure to antigen induces T cell tolerance via several overlapping mechanisms that limit the immune response. While the mechanisms involved in the development of Treg cells have received much attention, those that result in T cell deletion are largely unknown. Herein, we show that F4/80(+) lymph node medullary macrophages expressing TIM-4, a phosphatidylserine receptor, remove antigen-specific T cells during respiratory tolerance, thereby reducing secondary T cell responses. Blockade of TIM-4 inhibited the phagocytosis of antigen-specific T cells by TIM-4 expressing lymph node medullary macrophages, resulting in an increase in the number of antigen-specific T cells and the abrogation of respiratory tolerance. Moreover, specific depletion of medullary macrophages inhibited the induction of respiratory tolerance, highlighting the key role of TIM-4 and medullary macrophages in tolerance. Therefore, TIM-4-mediated clearance of antigen specific T cells represents an important previously unrecognized mechanism regulating respiratory tolerance.
Collapse
|
46
|
Lim AI, Tang SCW, Lai KN, Leung JCK. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J Cell Physiol 2013; 228:917-24. [PMID: 23086807 DOI: 10.1002/jcp.24267] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
Regardless of the original causes and etiology, the progression to renal function declines follows a final common pathway associated with tubulointerstitial injury, in which the proximal tubular epithelial cells (PTEC) are instrumental. Kidney injury molecule-1 (KIM-1) is an emerging biomarker, and its expression and release are induced in PTEC upon injury. KIM-1 plays the role as a double-edged sword and implicates in the process of kidney injury and healing. Expression of KIM-1 is also associated with tubulointerstitial inflammation and fibrosis. More importantly, KIM-1 expressing PTEC play the role as the residential phagocytes, contribute to the removal of apoptotic cells and facilitate the regeneration of injured tubules. The precise mechanism of KIM-1 and its sheded ectodomain on restoration of tubular integrity after injury is not fully understood. Other than PTEC, macrophages (Mø) also implicate in tubular repair. Understanding the crosstalk between Mø and the injured PTEC is essential for designing appropriate methods for controlling the sophisticated machinery in tubular regeneration and healing. This article will review the current findings of KIM-1, beginning with its basic structure, utility as a biomarker, and possible functions, with focus on the role of KIM-1 in regeneration and healing of injured PTEC.
Collapse
Affiliation(s)
- Ai Ing Lim
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
47
|
Status of TIM-1 exon 4 haplotypes and CD4+T cell counts in HIV-1 seroprevalent North Indians. Hum Immunol 2013; 74:163-5. [DOI: 10.1016/j.humimm.2012.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022]
|
48
|
Chen JP, Zhao WL, He NH, Gui Q, Xiong JP, Zhou HM, Wang Y, Chen S, Zhou P. Association of Hepatitis A exposure and TIM-1 with childhood allergic asthma. J Asthma 2012; 49:697-702. [PMID: 22857392 DOI: 10.3109/02770903.2012.694539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hepatitis A virus (HAV) receptor (TIM-1) polymorphism plays an important role in asthma and autoimmune diseases. Objective. To analyze the association of TIM-1 polymorphism and HAV infection with childhood allergic asthma in Southwest China. METHODS TIM-1 exon 4 (157insMTTTVP) and two polymorphism loci, -416G>C and -1454G>A, in the HAV receptor promoter region were studied. Polymerase chain reaction (PCR) was used to test the genotypes of three polymorphism loci among 579 cases of asthma and 524 controls. The HAV infection status was determined in a case-control study with stratified analysis. RESULTS HAV exposure associated with childhood allergic asthma in the study population was compared with controls (odds ratio (OR) = 0.181, 95% confidence interval (CI) 0.126-0.260, p < .001). The -416G>C polymorphism was associated with asthma (OR = 1.384, 95% CI 1.148-1.669, p < .001), but the insertion variant 157delMTTTVP of exon 4 and the -1454G>A polymorphism were not. CONCLUSION Our results indicated that the -416G>C polymorphism of the TIM-1 gene is associated with childhood allergic asthma, providing a better understanding of the pathogenesis of the allergic asthma among children aged below 15 years in Southwest China.
Collapse
Affiliation(s)
- Jian-Ping Chen
- Department of Pediatrics, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc Natl Acad Sci U S A 2012; 109:12105-10. [PMID: 22773818 DOI: 10.1073/pnas.1120914109] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tim-1, a type I transmembrane glycoprotein, consists of an IgV domain and a mucin domain. The IgV domain is essential for binding Tim-1 to its ligands, but little is known about the role of the mucin domain, even though genetic association of TIM-1 with atopy/asthma has been linked to the length of mucin domain. We generated a Tim-1-mutant mouse (Tim-1(Δmucin)) in which the mucin domain was deleted genetically. The mutant mice showed a profound defect in IL-10 production from regulatory B cells (Bregs). Associated with the loss of IL-10 production in B cells, older Tim-1(Δmucin) mice developed spontaneous autoimmunity associated with hyperactive T cells, with increased production of IFN-γ and elevated serum levels of Ig and autoantibodies. However, Tim-1(Δmucin) mice did not develop frank systemic autoimmune disease unless they were crossed onto the Fas-mutant lpr mice on a C57BL/6 background. Tim-1(Δmucin)lpr mice developed accelerated and fulminant systemic autoimmunity with accumulation of abnormal double-negative T cells and autoantibodies to a number of lupus-associated autoantigens. Thus, Tim-1 plays a critical role in maintaining suppressive Breg function, and our data also demonstrate an unexpected role of the Tim-1 mucin domain in regulating Breg function and maintaining self-tolerance.
Collapse
|
50
|
Ohtani H, Naruse TK, Iwasaki Y, Akari H, Ishida T, Matano T, Kimura A. Lineage-specific evolution of T-cell immunoglobulin and mucin domain 1 gene in the primates. Immunogenetics 2012; 64:669-78. [PMID: 22710823 DOI: 10.1007/s00251-012-0628-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
T-cell immunoglobulin domain and mucin domain containing protein 1 (TIM1), also known as a cellular receptor for hepatitis A virus (HAVCR1) or a molecule induced by ischemic injury in the kidney (KIM1), is involved in the regulation of immune responses. We investigated a natural selection history of TIM1 by comparative sequencing analysis in 24 different primates. It was found that TIM1 had become a pseudogene in multiple lineages of the New World monkey. We also investigated T cell lines originated from four different New World monkey species and confirmed that TIM1 was not expressed at the mRNA level. On the other hand, there were ten amino acid sites in the Ig domain of TIM1 in the other primates, which were suggested to be under positive natural selection. In addition, mucin domain of TIM1 was highly polymorphic in the Old World monkeys, which might be under balanced selection. These data suggested that TIM1 underwent a lineage-specific evolutionary pathway in the primates.
Collapse
Affiliation(s)
- Hitoshi Ohtani
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | |
Collapse
|