1
|
Zhang W, Li Z, Wang Z, Liu K, Huang S, Liang J, Dai Z, Guo W, Mao C, Chen S, Wei J. Polyethylene microplastics promote nucleus pulposus cell senescence by inducing oxidative stress via TLR4/NOX2 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117950. [PMID: 40020381 DOI: 10.1016/j.ecoenv.2025.117950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
This study aimed to detect and characterize microplastics in intervertebral disc and investigate their effects and molecular mechanism on intervertebral disc degeneration. We collected intervertebral disc tissues from cervical, lumbar, and thoracolumbar segments and used Raman spectroscopy to identify and characterize microplastics. Among 80 samples, 47 contained microplastics, with polyethylene being the most prevalent type. To explore the effects of polyethylene microplastics (PE-MPs), we established a mouse model and a nucleus pulposus cell model. Reactive oxygen species (ROS) levels were assessed via immunofluorescence staining, cell viability was measured using the CCK-8 assay, and protein expression related to the Toll-like receptor 4 (TLR4)/NADPH oxidase 2 (NOX2) axis, oxidative stress, and nucleus pulposus degeneration were evaluated through western blotting and immunofluorescence staining. Results showed that PE-MPs exposure led to intervertebral disc degeneration by inducing oxidative stress and activating the TLR4 / NOX2 axis, which increased the senescence of nucleus pulposus cells. These effects were mitigated by TLR4 and NOX2 inhibitors. This research highlights the existence of microplastics in human intervertebral disc tissue and unveils a novel mechanism of nucleus pulposus cell senescence induced by PE-MPs, offering new avenues for clinical treatment of microplastic-related disc degeneration.
Collapse
Affiliation(s)
- Weilin Zhang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhencong Li
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhongwei Wang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kuize Liu
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shengbang Huang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinguo Liang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhiwen Dai
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Weixiong Guo
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chao Mao
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Siyuan Chen
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinsong Wei
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Feng Y, Wang X, Li P, Shi X, Prokosch V, Liu H. Exogenous hydrogen sulfide and NOX2 inhibition mitigate ferroptosis in pressure-induced retinal ganglion cell damage. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167705. [PMID: 39914725 DOI: 10.1016/j.bbadis.2025.167705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is characterized by the progressive degeneration of retinal ganglion cells (RGCs). While elevated intraocular pressure (IOP) significantly contributes to disease progression, managing IOP alone does not completely halt it. The mechanisms underlying RGCs loss in glaucoma remain unclear, but ferroptosis-an iron-dependent form of oxidative cell death-has been implicated, particularly in IOP-induced RGCs loss. There is an urgent need for neuroprotective treatments. Our previous research showed that hydrogen sulfide (H2S) protects RGCs against glaucomatous injury. This study aims to investigate the interplay between elevated pressure, mitochondrial dysfunction, iron homeostasis, and ferroptosis in RGCs death, focusing on how H2S may mitigate pressure-induced ferroptosis and protect RGCs. We demonstrate alterations in iron metabolism and mitochondrial function in a subacute IOP elevation model in vivo. In vitro, we confirm that elevated pressure, iron overload, and mitochondrial dysfunction lead to RGCs loss, increased retinal ferrous iron and total iron content, and heightened reactive oxygen species (ROS). Notably, pressure increases NADPH oxidase 2 (NOX2) and decreases glutathione peroxidase 4 (GPX4), a key regulator of ferroptosis. NOX2 deletion or inhibition by H2S prevents pressure-induced RGCs loss and ferroptosis. Our findings reveal that H2S chelates iron, regulates iron metabolism, reduces oxidative stress, and mitigates ferroptosis, positioning slow-releasing H2S donors are positioning as a promising multi-target therapy for glaucoma, with NOX2 emerging as a key regulator of ferroptosis.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Xiaosha Wang
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Panpan Li
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Xin Shi
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
3
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
4
|
Lu T, Li W. Neutrophil Engulfment in Cancer: Friend or Foe? Cancers (Basel) 2025; 17:384. [PMID: 39941753 PMCID: PMC11816126 DOI: 10.3390/cancers17030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Neutrophils, the most abundant circulating white blood cells, are essential for the initial immune response to infection and injury. Emerging research reveals a dualistic function of neutrophils in cancer, where they can promote or inhibit tumor progression. This dichotomy is influenced by the tumor microenvironment, with neutrophils capable of remodeling the extracellular matrix, promoting angiogenesis, or alternatively inducing cancer cell death and enhancing immune responses. An intriguing yet poorly understood aspect of neutrophil-cancer interactions is the phenomenon of neutrophil engulfment by cancer cells, which has been observed across various cancers. This process, potentially mediated by LC3-associated phagocytosis (LAP), raises questions about whether it serves as a mechanism for immune evasion or contributes to tumor cell death through pathways like ferroptosis. This review examines current knowledge on neutrophil development, their roles in cancer, and the mechanisms of LAP in neutrophil engulfment by tumor cells. We discuss how manipulating LAP impacts cancer progression and may represent a therapeutic strategy. We also explore neutrophils' potential as delivery vehicles for cancer therapeutic agents. Understanding the complex functions of tumor-associated neutrophils (TANs) and the molecular mechanisms underlying LAP in cancer may open new avenues for effective therapeutic interventions and mitigate potential risks.
Collapse
Affiliation(s)
- Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Stinson JA, Sheen A, Lax BM, Yang GN, Duhamel L, Santollani L, Fink E, Palmeri J, Wittrup KD. Tumor Integrin-Targeted Glucose Oxidase Enzyme Promotes ROS-Mediated Cell Death that Combines with Interferon Alpha Therapy for Tumor Control. Mol Cancer Ther 2025; 24:118-130. [PMID: 39382078 PMCID: PMC11695183 DOI: 10.1158/1535-7163.mct-24-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Although heightened intratumoral levels of reactive oxygen species (ROS) are typically associated with a suppressive tumor microenvironment, under certain conditions ROS contribute to tumor elimination. Treatment approaches, including some chemotherapy and radiation protocols, increase cancer cell ROS levels that influence their mechanism of cell death and subsequent recognition by the immune system. Furthermore, activated myeloid cells rapidly generate ROS upon encounter with pathogens or infected cells to eliminate disease, and recently, this effector function has been noted in cancer contexts as well. Collectively, ROS-induced cancer cell death may help initiate adaptive antitumor immune responses that could synergize with current approved immunotherapies, for improved control of solid tumors. In this work, we explore the use of glucose oxidase, an enzyme which produces hydrogen peroxide, a type of ROS, to therapeutically mimic the endogenous oxidative burst from myeloid cells to promote antigen generation within the tumor microenvironment. We engineer the enzyme to target pan-tumor-expressed integrins both as a tumor-agnostic therapeutic approach and as a strategy to prolong local enzyme activity following intratumoral administration. We found the targeted enzyme potently induced cancer cell death and enhanced cross-presentation by dendritic cells in vitro and further combined with interferon alpha for long-term tumor control in murine MC38 tumors in vivo. Optimizing the single-dose administration of this enzyme overcomes limitations with immunogenicity noted for other prooxidant enzyme approaches. Overall, our results suggest ROS-induced cell death can be harnessed for tumor control and highlight the potential use of designed enzyme therapies alongside immunotherapy against cancer.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Grace N. Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
6
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
7
|
Kuehu DL, Fu Y, Nasu M, Yang H, Khadka VS, Deng Y. Effects of Heat-Induced Oxidative Stress and Astaxanthin on the NF-kB, NFE2L2 and PPARα Transcription Factors and Cytoprotective Capacity in the Thymus of Broilers. Curr Issues Mol Biol 2024; 46:9215-9233. [PMID: 39194761 DOI: 10.3390/cimb46080544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
The thymus, a central lymphoid organ in animals, serves as the site for T cell development, differentiation and maturation, vital to adaptive immunity. The thymus is critical for maintaining tissue homeostasis to protect against tumors and tissue damage. An overactive or prolonged immune response can lead to oxidative stress from increased production of reactive oxygen species. Heat stress induces oxidative stress and overwhelms the natural antioxidant defense mechanisms. This study's objectives were to investigate the protective properties of astaxanthin against heat-induced oxidative stress and apoptosis in the chicken thymus, by comparing the growth performance and gene signaling pathways among three groups: thermal neutral, heat stress, and heat stress with astaxanthin. The thermal neutral temperature was 21-22 °C, and the heat stress temperature was 32-35 °C. Both heat stress groups experienced reduced growth performance, while the astaxanthin-treated group showed a slightly lesser decline. The inflammatory response and antioxidant defense system were activated by the upregulation of the NF-kB, NFE2L2, PPARα, cytoprotective capacity, and apoptotic gene pathways during heat stress compared to the thermal neutral group. However, expression levels showed no significant differences between the thermal neutral and heat stress with antioxidant groups, suggesting that astaxanthin may mitigate inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Donna Lee Kuehu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanyuan Fu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Masaki Nasu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Hua Yang
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Kamal K, Richardsdotter‐Andersson E, Dondalska A, Wahren‐Herlenius M, Spetz A. A Non-Coding Oligonucleotide Recruits Cutaneous CD11b + Cells that Inhibit Thelper Responses and Promote Tregs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400260. [PMID: 38896803 PMCID: PMC11336929 DOI: 10.1002/advs.202400260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Skin-resident antigen-presenting cells (APC) play an important role in maintaining peripheral tolerance via immune checkpoint proteins and induction of T regulatory cells (Tregs). However, there is a lack of knowledge on how to expand or recruit immunoregulatory cutaneous cells without causing inflammation. Here, it is shown that administration of a non-coding single-stranded oligonucleotide (ssON) leads to CCR2-dependent accumulation of CD45+CD11b+Ly6C+ cells in the skin that express substantial levels of PD-L1 and ILT3. Transcriptomic analyses of skin biopsies reveal the upregulation of key immunosuppressive genes after ssON administration. Functionally, the cutaneous CD11b+ cells inhibit Th1/2/9 responses and promote the induction of CD4+FoxP3+ T-cells. In addition, ssON treatment of imiquimod-induced inflammation results in significantly reduced Th17 responses. It is also shown that induction of IL-10 production in the presence of cutaneous CD11b+ cells isolated after ssON administrations is partly PD-L1 dependent. Altogether, an immunomodulatory ssON is identified that can be used therapeutically to recruit cutaneous CD11b+ cells with the capacity to dampen Th cells.
Collapse
Affiliation(s)
- Kahkashan Kamal
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| | | | - Aleksandra Dondalska
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| | - Marie Wahren‐Herlenius
- Department of MedicineKarolinska University HospitalKarolinska InstitutetVisionsgatan 18, L8SolnaSE‐171 76Sweden
| | - Anna‐Lena Spetz
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversitySvante Arrhenius väg 20CStockholmSE‐106 91Sweden
| |
Collapse
|
9
|
Ahmad A, Khan JM, Paray BA, Rashid K, Parvez A. Endolysosomal trapping of therapeutics and endosomal escape strategies. Drug Discov Today 2024; 29:104070. [PMID: 38942071 DOI: 10.1016/j.drudis.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Internalizing therapeutic molecules or genes into cells and safely delivering them to the target tissue where they can perform the intended tasks is one of the key characteristics of the smart gene/drug delivery vector. Despite much research in this field, endosomal escape continues to be a significant obstacle to the development of effective gene/drug delivery systems. In this review, we discuss in depth the several types of endocytic pathways involved in the endolysosomal trapping of therapeutic agents. In addition, we describe numerous mechanisms involved in nanoparticle endosomal escape. Furthermore, many other techniques are employed to increase endosomal escape to minimize entrapment of therapeutic compounds within endolysosomes, which have been reviewed at length in this study.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Rashid
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashib Parvez
- Department of Community Medicine, F.H. Medical College, Atal Bihari Vajpayee Medical University, Etmadpur, Agra, India
| |
Collapse
|
10
|
Priyanka, Sharma S, Sharma M. Role of PE/PPE proteins of Mycobacterium tuberculosis in triad of host mitochondria, oxidative stress and cell death. Microb Pathog 2024; 193:106757. [PMID: 38908454 DOI: 10.1016/j.micpath.2024.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The PE and PPE family proteins of Mycobacterium tuberculosis (Mtb) is exclusively found in pathogenic Mycobacterium species, comprising approximately 8-10 % of the Mtb genome. These emerging virulent factors have been observed to play pivotal roles in Mtb pathogenesis and immune evasion through various strategies. These immunogenic proteins are known to modulate the host immune response and cell-death pathways by targeting the powerhouse of the cell, the mitochondria to support Mtb survival. In this article, we are focused on how PE/PPE family proteins target host mitochondria to induce mitochondrial perturbations, modulate the levels of cellular ROS (Reactive oxygen species) and control cell death pathways. We observed that the time of expression of these proteins at different stages of infection is crucial for elucidating their impact on the cell death pathways and eventually on the outcome of infection. This article focuses on understanding the contributions of the PE/PPE proteins by unravelling the triad of host mitochondria, oxidative stress and cell death pathways that facilitate the Mtb persistence. Understanding the role of these proteins in host cellular pathways and the intricate mechanisms paves the way for the development of novel therapeutic strategies to combat TB infections.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory, Miranda House, and Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory, Miranda House, and Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Monika Sharma
- DSKC BioDiscovery Laboratory, Miranda House, and Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Liu Z, Liu S, Zhao Y, Wang Q. Biological Mediators and Partial Regulatory Mechanisms on Neuropathic Pain Associated With Chemotherapeutic Agents. Physiol Res 2024; 73:333-341. [PMID: 39027951 PMCID: PMC11299781 DOI: 10.33549/physiolres.935162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 07/27/2024] Open
Abstract
One of the most common issues caused by antineoplastic agents is chemotherapy-induced peripheral neuropathy (CIPN). In patients, CIPN is a sensory neuropathy accompanied by various motor and autonomic changes. With a high prevalence of cancer patients, CIPN is becoming a major problem for both cancer patients and for their health care providers. Nonetheless, there are lacking effective interventions preventing CIPN and treating the CIPN symptoms. A number of studies have demonstrated the cellular and molecular signaling pathways leading to CIPN using experimental models and the beneficial effects of some interventions on the CIPN symptoms related to those potential mechanisms. This review will summarize results obtained from recent human and animal studies, which include the abnormalities in mechanical and temperature sensory responses following chemotherapy such as representative bortezomib, oxaliplatin and paclitaxel. The underlying mechanisms of CIPN at cellular and molecular levels will be also discussed for additional in-depth studies needed to be better explored. Overall, this paper reviews the basic picture of CIPN and the signaling mechanisms of the most common antineoplastic agents in the peripheral and central nerve systems. A better understanding of the risk factors and fundamental mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Z Liu
- Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | |
Collapse
|
12
|
Makthal N, Saha S, Huang E, John J, Meena H, Aggarwal S, Högbom M, Kumaraswami M. Manganese uptake by MtsABC contributes to the pathogenesis of human pathogen group A streptococcus by resisting host nutritional immune defenses. Infect Immun 2024; 92:e0007724. [PMID: 38869295 PMCID: PMC11238556 DOI: 10.1128/iai.00077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Subhasree Saha
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Elaine Huang
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Science, Stockholm, Sweden
| | - Himani Meena
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Science, Stockholm, Sweden
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
13
|
Develin A, Fuglestad B. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47 phox Membrane Anchoring. Biochemistry 2024; 63:1097-1106. [PMID: 38669178 PMCID: PMC11080064 DOI: 10.1021/acs.biochem.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.
Collapse
Affiliation(s)
- Angela
M. Develin
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
14
|
Priyanka, Sharma S, Joshi H, Kumar C, Waseem R, Sharma M. Mycobacterium tuberculosis protein PPE15 (Rv1039c) possesses eukaryote-like SH3 domain that interferes with NADPH Oxidase assembly and Reactive Oxygen Species production. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119702. [PMID: 38408543 DOI: 10.1016/j.bbamcr.2024.119702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Inhibition of Reactive Oxygen Species (ROS) is one of the strategies that Mycobacterium tuberculosis (Mtb) employs as its defence mechanism. In this study, the role of PPE15 (Rv1039c), a late-stage protein, has been investigated in modulating the cellular ROS. We discovered PPE15 to be a secretory protein that downregulates ROS generation in THP1 macrophages. Our in-silico analysis revealed the presence of a eukaryote-like SH3 (SH3e) domain in PPE15. The predicted SH3e-domain of PPE15 was found to interact with cytosolic components of NADPH Oxidase (NOX), p67phox and p47phox through molecular docking. In-vitro experiments using THP1 macrophages showed a diminished NADP/NADPH ratio, indicating reduced NOX activity. We also observed increased levels of p67phox and p47phox in the cytoplasmic fraction of PPE15 treated macrophages as compared to the plasma membrane fraction. To understand the role of the SH3e-domain in ROS modulation, this domain was deleted from the full-length PPE15 (PPE15-/-SH3). We observed an increase in cellular ROS and NADP/NADPH ratio in response to PPE15-/-SH3 protein. The interaction of PPE15-/-SH3 with p67phox or p47phox was also reduced in the cytoplasm, indicating migration of NOX subunits to the plasma membrane. Additionally, M. smegmatis expressing PPE15 was observed to be resistant to oxidative stress with significant intracellular survival in THP1 macrophages as compared to M. smegmatis expressing PPE15-/-SH3. These observations suggest that the SH3e-domain of PPE15 interferes with ROS generation by sequestering NOX components that inhibit NOX assembly at the cell membrane. Therefore, PPE15 acts like a molecular mimic of SH3-domain carrying eukaryotic proteins that can be employed by Mtb at late stages of infection for its survival. These findings give us new insights about the pathogen evading strategy of Mtb which may help in improving the therapeutics for TB treatment.
Collapse
Affiliation(s)
- Priyanka
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, Delhi, India
| | - Chanchal Kumar
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory and Department of Zoology, Miranda House, University of Delhi, Delhi, India.
| |
Collapse
|
15
|
Li L, Li X, Zeng L, Wang Z, Deng N, Huang P, Hou J, Jian S, Zhao D. Molecular mechanism of the NOS/NOX regulation of antibacterial activity in Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110945. [PMID: 38278206 DOI: 10.1016/j.cbpb.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.
Collapse
Affiliation(s)
- Linjie Li
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Xiaoyong Li
- Department of Animal Husbandry and Aquatic Technology Extension and Application, Jiangxi Agricultural Technology Extension Center, Jiangxi 330046, China.
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Jiangxi 330038, China
| | - Ziyu Wang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Nan Deng
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Peiying Huang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Jiahao Hou
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Shaoqin Jian
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Daxian Zhao
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China.
| |
Collapse
|
16
|
Lee IT, Yang CC, Yang CM. Harnessing peroxisome proliferator-activated receptor γ agonists to induce Heme Oxygenase-1: a promising approach for pulmonary inflammatory disorders. Cell Commun Signal 2024; 22:125. [PMID: 38360670 PMCID: PMC10868008 DOI: 10.1186/s12964-024-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
The activation of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively shown to attenuate inflammatory responses in conditions such as asthma, acute lung injury, and acute respiratory distress syndrome, as demonstrated in animal studies. However, the precise molecular mechanisms underlying these inhibitory effects remain largely unknown. The upregulation of heme oxygenase-1 (HO-1) has been shown to confer protective effects, including antioxidant, antiapoptotic, and immunomodulatory effects in vitro and in vivo. PPARγ is highly expressed not only in adipose tissues but also in various other tissues, including the pulmonary system. Thiazolidinediones (TZDs) are highly selective agonists for PPARγ and are used as antihyperglycemic medications. These observations suggest that PPARγ agonists could modulate metabolism and inflammation. Several studies have indicated that PPARγ agonists may serve as potential therapeutic candidates in inflammation-related diseases by upregulating HO-1, which in turn modulates inflammatory responses. In the respiratory system, exposure to external insults triggers the expression of inflammatory molecules, such as cytokines, chemokines, adhesion molecules, matrix metalloproteinases, and reactive oxygen species, leading to the development of pulmonary inflammatory diseases. Previous studies have demonstrated that the upregulation of HO-1 protects tissues and cells from external insults, indicating that the induction of HO-1 by PPARγ agonists could exert protective effects by inhibiting inflammatory signaling pathways and attenuating the development of pulmonary inflammatory diseases. However, the mechanisms underlying TZD-induced HO-1 expression are not well understood. This review aimed to elucidate the molecular mechanisms through which PPARγ agonists induce the expression of HO-1 and explore how they protect against inflammatory and oxidative responses.
Collapse
Affiliation(s)
- I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, 333008, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, 242062, Taiwan.
| |
Collapse
|
17
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
18
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
20
|
Nakamizo S, Sugiura Y, Ishida Y, Ueki Y, Yonekura S, Tanizaki H, Date H, Yoshizawa A, Murata T, Minatoya K, Katagiri M, Nomura S, Komuro I, Ogawa S, Nakajima S, Kambe N, Egawa G, Kabashima K. Activation of the pentose phosphate pathway in macrophages is crucial for granuloma formation in sarcoidosis. J Clin Invest 2023; 133:e171088. [PMID: 38038136 PMCID: PMC10688990 DOI: 10.1172/jci171088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Sarcoidosis is a disease of unknown etiology in which granulomas form throughout the body and is typically treated with glucocorticoids, but there are no approved steroid-sparing alternatives. Here, we investigated the mechanism of granuloma formation using single-cell RNA-Seq in sarcoidosis patients. We observed that the percentages of triggering receptor expressed on myeloid cells 2-positive (TREM2-positive) macrophages expressing angiotensin-converting enzyme (ACE) and lysozyme, diagnostic makers of sarcoidosis, were increased in cutaneous sarcoidosis granulomas. Macrophages in the sarcoidosis lesion were hypermetabolic, especially in the pentose phosphate pathway (PPP). Expression of the PPP enzymes, such as fructose-1,6-bisphosphatase 1 (FBP1), was elevated in both systemic granuloma lesions and serum of sarcoidosis patients. Granuloma formation was attenuated by the PPP inhibitors in in vitro giant cell and in vivo murine granuloma models. These results suggest that the PPP may be a promising target for developing therapeutics for sarcoidosis.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Department of Dermatology
- Alliance Laboratory for Advanced Medical Research, and
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Yoko Ueki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
| | | | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
| | | | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruasa Murata
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Seitaro Nomura
- Department of Cardiovascular Medicine and
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo
| | - Issei Komuro
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo
- International University of Health and Welfare, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology
- Department of Drug Discovery for Inflammatory Skin Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Kenji Kabashima
- Department of Dermatology
- Skin Research Institute of Singapore (SRIS) and A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Singapore
| |
Collapse
|
21
|
Lim EY, Lee SY, Shin HS, Kim GD. Reactive Oxygen Species and Strategies for Antioxidant Intervention in Acute Respiratory Distress Syndrome. Antioxidants (Basel) 2023; 12:2016. [PMID: 38001869 PMCID: PMC10669909 DOI: 10.3390/antiox12112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary condition characterized by the sudden onset of respiratory failure, pulmonary edema, dysfunction of endothelial and epithelial barriers, and the activation of inflammatory cascades. Despite the increasing number of deaths attributed to ARDS, a comprehensive therapeutic approach for managing patients with ARDS remains elusive. To elucidate the pathological mechanisms underlying ARDS, numerous studies have employed various preclinical models, often utilizing lipopolysaccharide as the ARDS inducer. Accumulating evidence emphasizes the pivotal role of reactive oxygen species (ROS) in the pathophysiology of ARDS. Both preclinical and clinical investigations have asserted the potential of antioxidants in ameliorating ARDS. This review focuses on various sources of ROS, including NADPH oxidase, uncoupled endothelial nitric oxide synthase, cytochrome P450, and xanthine oxidase, and provides a comprehensive overview of their roles in ARDS. Additionally, we discuss the potential of using antioxidants as a strategy for treating ARDS.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| |
Collapse
|
22
|
Yu X, Zhang Y, Hou L, Qiao X, Zhang Y, Cheng H, Lu H, Chen J, Du L, Zheng Q, Hou J, Tong G. Increases in Cellular Immune Responses Due to Positive Effect of CVC1302-Induced Lysosomal Escape in Mice. Vaccines (Basel) 2023; 11:1718. [PMID: 38006050 PMCID: PMC10675172 DOI: 10.3390/vaccines11111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study found a higher percentage of CD8+ T cells in piglets immunized with a CVC1302-adjuvanted inactivated foot-and-mouth disease virus (FMDV) vaccine. We wondered whether the CVC1302-adjuvanted inactivated FMDV vaccine promoted cellular immunity by promoting the antigen cross-presentation efficiency of ovalbumin (OVA) through dendritic cells (DCs), mainly via cytosolic pathways. This was demonstrated by the enhanced levels of lysosomal escape of OVA in the DCs loaded with OVA and CVC1302. The higher levels of ROS and significantly enhanced elevated lysosomal pH levels in the DCs facilitated the lysosomal escape of OVA. Significantly enhanced CTL activity levels was observed in the mice immunized with OVA-CVC1302. Overall, CVC1302 increased the cross-presentation of exogenous antigens and the cross-priming of CD8+ T cells by alkalizing the lysosomal pH and facilitating the lysosomal escape of antigens. These studies shed new light on the development of immunopotentiators to improve cellular immunity induced by vaccines.
Collapse
Affiliation(s)
- Xiaoming Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuanyuan Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Liting Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuanpeng Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Haiwei Cheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Haiyan Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Jin Chen
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Guo Tai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
23
|
Zhou S, Lin H, Kong L, Ma J, Long Z, Qin H, Huang Z, Lin Y, Liu L, Li Z. Effects of Mulberry Leaf Extract on the Liver Function of Juvenile Spotted Sea Bass ( Lateolabrax maculatus). AQUACULTURE NUTRITION 2023; 2023:2892463. [PMID: 37908498 PMCID: PMC10615578 DOI: 10.1155/2023/2892463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
In order to explore the effect of mulberry leaf extract (ELM) on the liver function of spotted sea bass, 360 fish with healthy constitution (average body weight 9.00 ± 0.02 g) were selected and randomly divided into six groups with three repetitions, and six groups of fish were randomly placed into 18 test tanks (200 L) with 20 fish per tank for the 52-day feeding test. Every day, the fish were fed the experimental feed with different concentrations (0, 3, 6, 9, 12, 15 g/kg) to the level of apparent satiation, with a crude protein content of 48.0% and a crude fat content of 8.6%. And the water temperature was maintained at 25-28°C with a salinity of 0.5%-1‰. After feeding, five fish were randomly selected to collect their livers and serum for detection of indicators. The results showed that, compared with the control group, ELM significantly increased the activities of lipase (LPS) and trypsin (TRS) in the liver, and reached the highest level when the amount of ELM added was 6 g/kg (P < 0.05). ELM significantly increased the activities of lactate dehydrogenase (LDH) and glutamic-oxaloacetic transaminase (GOT) involved in the metabolic process in liver tissue, and GOT activity reached the highest when ELM was added at 9 g/kg, and LDH activity reached the highest when ELM was added at 15 g/kg (P < 0.05). ELM had no significant effect on liver antioxidant enzymes (P > 0.05), but the content of malondialdehyde was significantly reduced (P < 0.05). Compared with the control group, ELM significantly increased the activities of AKP and ACP in the liver, and the AKP activity reached the highest when the ELM addition amount was 3 g/kg, and the ACP activity reached the highest when the ELM addition amount was 9 g/kg (P < 0.05). Through comparative transcriptomic analysis, it was indicated that ELM enhanced the hepatic lipids and carbohydrates metabolism ability, as manifested in the upregulation of expression of phosphatidate phosphatase, glucuronosyltransferase, inositol oxygenase, carbonic anhydrase, and cytochrome c oxidase subunit 2. ELM can also increase the expression of signal transducer and activator of transcription 1, ATP-dependent RNA helicase and C-X-C motif chemokine 9 involved in the immune process. The above results show that the ELM can enhance the digestion, metabolism, and immunity of the liver by increasing the activity of digestive enzymes, metabolic enzymes, and the expression of metabolism and immune regulation genes. This study provides a theoretical basis for the application of ELM in the cultivation of spotted sea bass by exploring the effect of ELM on the liver function of spotted sea bass.
Collapse
Affiliation(s)
- Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| |
Collapse
|
24
|
Zhou X, An B, Lin Y, Ni Y, Zhao X, Liang X. Molecular mechanisms of ROS-modulated cancer chemoresistance and therapeutic strategies. Biomed Pharmacother 2023; 165:115036. [PMID: 37354814 DOI: 10.1016/j.biopha.2023.115036] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Drug resistance is the main obstacle to achieving a cure in many cancer patients. Reactive oxygen species (ROS) are master regulators of cancer development that act through complex mechanisms. Remarkably, ROS levels and antioxidant content are typically higher in drug-resistant cancer cells than in non-resistant and normal cells, and have been shown to play a central role in modulating drug resistance. Therefore, determining the underlying functions of ROS in the modulation of drug resistance will contribute to develop therapies that sensitize cancer resistant cells by leveraging ROS modulation. In this review, we summarize the notable literature on the sources and regulation of ROS production and highlight the complex roles of ROS in cancer chemoresistance, encompassing transcription factor-mediated chemoresistance, maintenance of cancer stem cells, and their impact on the tumor microenvironment. We also discuss the potential of ROS-targeted therapies in overcoming tumor therapeutic resistance.
Collapse
Affiliation(s)
- Xiaoting Zhou
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Biao An
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yi Lin
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
25
|
Medha, Priyanka, Sharma S, Sharma M. PE_PGRS45 (Rv2615c) protein of Mycobacterium tuberculosis perturbs mitochondria of macrophages. Immunol Cell Biol 2023. [PMID: 37565603 DOI: 10.1111/imcb.12677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
The PE_PGRS proteins have coevolved with the antigenic ESX-V secretory system and are abundant in pathogenic Mycobacterium. Only a few PE_PGRS proteins have been characterized, and research suggests their role in organelle targeting, cell death pathways, calcium (Ca2+ ) homeostasis and disease pathogenesis. The PE_PGRS45 (Rv2615c) protein was predicted to contain mitochondria targeting sequences by in silico evaluation. Therefore, we investigated the targeting of the Rv2615c protein to host mitochondria and its effect on mitochondrial functions. In vitro experiments showed the Rv2615c protein colocalized with the mitochondria and led to morphological mitochondrial perturbations. Recombinant Rv2615c was observed to cause increased levels of intracellular reactive oxygen species and the adenosine diphosphate-to-adenosine triphosphate ratio. The Rv2615c protein also induced mitochondrial membrane depolarization and the generation of mitochondrial superoxide. We observed the release of cytochrome C into the cytoplasm and increased expression of proapoptotic genes Bax and Bim with no significant change in anti-apoptotic Bcl2 in Rv2615c-stimulated THP1 macrophages. Ca2+ is a key signaling molecule in tuberculosis pathogenesis, modulating host cell responses. As reported for other PE_PGRS proteins, Rv2615c also has Ca2+ -binding motifs and thus can modulate calcium homeostasis in the host. We also observed a high level of Ca2+ influx in THP1 macrophages stimulated with Rv2615c. Based on these findings, we suggest that Rv2615c may be an effector protein that could contribute to disease pathogenesis by targeting host mitochondria.
Collapse
Affiliation(s)
- Medha
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Priyanka
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Sadhna Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| | - Monika Sharma
- DSKC BioDiscovery Laboratory, Department of Zoology, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|
26
|
Walton SD, Dasinger JH, Burns EC, Cherian-Shaw M, Abais-Battad JM, Mattson DL. Functional NADPH oxidase 2 in T cells amplifies salt-sensitive hypertension and associated renal damage. Am J Physiol Renal Physiol 2023; 325:F214-F223. [PMID: 37318993 PMCID: PMC10396224 DOI: 10.1152/ajprenal.00014.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Infiltrating T cells in the kidney amplify salt-sensitive (SS) hypertension and renal damage, but the mechanisms are not known. Genetic deletion of T cells (SSCD247-/-) or of the p67phox subunit of NADPH oxidase 2 (NOX2; SSp67phox-/-) attenuates SS hypertension in the Dahl SS rat. We hypothesized that reactive oxygen species produced by NOX2 in T cells drive the SS phenotype and renal damage. T cells were reconstituted by adoptively transferring splenocytes (∼10 million) from the Dahl SS (SS→CD247) rat, the SSp67phox-/- rat (p67phox→CD247), or only PBS (PBS→CD247) into the SSCD247-/- rat on postnatal day 5. Animals were instrumented with radiotelemeters and studied at 8 wk of age. There were no detectable differences in mean arterial pressure (MAP) or albuminuria between groups when rats were maintained on a low-salt (0.4% NaCl) diet. After 21 days of high-salt diet (4.0% NaCl), MAP and albuminuria were significantly greater in SS→CD247 rats compared with p67phox→CD247 and PBS→CD247 rats. Interestingly, there was no difference between p67phox→CD247 and PBS→CD247 rats in albuminuria or MAP after 21 days. The lack of CD3+ cells in PBS→CD247 rats and the presence of CD3+ cells in rats that received the T cell transfer demonstrated the effectiveness of the adoptive transfer. No differences in the number of CD3+, CD4+, or CD8+ cells were observed in the kidneys of SS→CD247 and p67phox→CD247 rats. These results indicate that reactive oxygen species produced by NOX2 in T cells participates in the amplification of SS hypertension and renal damage.NEW & NOTEWORTHY Our current work used the adoptive transfer of T cells that lack functional NADPH oxidase 2 into a genetically T cell-deficient Dahl salt-sensitive (SS) rat model. The results demonstrated that reactive oxygen species produced by NADPH oxidase 2 in T cells participate in the amplification of SS hypertension and associated renal damage and identifies a potential mechanism that exacerbates the salt-sensitive phenotype.
Collapse
Affiliation(s)
- Samuel D Walton
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - John Henry Dasinger
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Emily C Burns
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Mary Cherian-Shaw
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
27
|
Debowski AW, Bzdyl NM, Thomas DR, Scott NE, Jenkins CH, Iwasaki J, Kibble EA, Khoo CA, Scheuplein NJ, Seibel PM, Lohr T, Metters G, Bond CS, Norville IH, Stubbs KA, Harmer NJ, Holzgrabe U, Newton HJ, Sarkar-Tyson M. Macrophage infectivity potentiator protein, a peptidyl prolyl cis-trans isomerase, essential for Coxiella burnetii growth and pathogenesis. PLoS Pathog 2023; 19:e1011491. [PMID: 37399210 DOI: 10.1371/journal.ppat.1011491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.
Collapse
Affiliation(s)
- Aleksandra W Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - David R Thomas
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | - Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- DMTC Limited, Level 1, Kew, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Pamela M Seibel
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Georgie Metters
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicholas J Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
- Living Systems Institute, Stocker Road Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Hayley J Newton
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
28
|
Ngwaga T, Chauhan D, Salberg AG, Shames SR. Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions. PLoS Pathog 2023; 19:e1011473. [PMID: 37347796 PMCID: PMC10321654 DOI: 10.1371/journal.ppat.1011473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28β to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αβ-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αβ. PA28αβ has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αβ enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Abigail G. Salberg
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephanie R. Shames
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
29
|
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y, Zhang H. ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol 2023; 119:110069. [PMID: 37150014 DOI: 10.1016/j.intimp.2023.110069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
The redox state is essential to the process of cell life, which determines cell fate. As an important signaling molecule of the redox state, reactive oxygen species (ROS) are crucial for the homeostasis of immune cells and participate in the pathological processes of different diseases. We discuss the underlying mechanisms and possible signaling pathways of ROS to fine-tune the proliferation, differentiation, polarization and function of immune cells, including T cells, B cells, neutrophils, macrophages, myeloid-derived inhibitory cells (MDSCs) and dendritic cells (DCs). We further emphasize how excessive ROS lead to programmed immune cell death such as apoptosis, ferroptosis, pyroptosis, NETosis and necroptosis, providing valuable insights for future therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Benqi Huang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Jingdong Cao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yifei Wang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Hao Xiao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| |
Collapse
|
30
|
Thinh PD, Rasin AB, Silchenko AS, Trung VT, Kusaykin MI, Hang CTT, Menchinskaya ES, Pislyagin EA, Ermakova SP. Pectins from the sea grass Enhalus acoroides (L.f.) Royle: Structure, biological activity and ability to form nanoparticles. Int J Biol Macromol 2023; 242:124714. [PMID: 37148937 DOI: 10.1016/j.ijbiomac.2023.124714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Two pectins from the seagrass Enhalus acoroides (L.f.) Royle were isolated for the first time. Their structures and biological activities were investigated. NMR spectroscopy showed one of them to consist exclusively from the repeating →4-α-d-GalpUA→ residue (Ea1), while the other had a much more complex structure that also included 1→3-linked α-d-GalpUA residues, 1→4-linked β-apiose residues and small amounts of galactose and rhamnose (Ea2). The pectin Ea1 showed noticeable dose-dependent immunostimulatory activity, the Ea2 fraction was less effective. Both pectins were used to create pectin-chitosan nanoparticles for the first time, and the influence of pectin/chitosan mass ratio on their size and zeta potential was investigated. Ea1 particles were slightly smaller than Ea2 particles (77 ± 16 nm vs 101 ± 12 nm) and less negatively charged (-23 mV vs -39 mV). Assessment of their thermodynamic parameters showed that only the second pectin could form nanoparticles at room temperature.
Collapse
Affiliation(s)
- Pham Duc Thinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, 650000 Nhatrang, KhanhHoa, Viet Nam.
| | - Anton B Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Vo Thanh Trung
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, 650000 Nhatrang, KhanhHoa, Viet Nam
| | - Mikhail I Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia.
| | - Cao Thi Thuy Hang
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, 650000 Nhatrang, KhanhHoa, Viet Nam
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| |
Collapse
|
31
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
32
|
Anti-Oxidant and Pro-Oxidant Effects of Peroxiredoxin 6: A Potential Target in Respiratory Diseases. Cells 2023; 12:cells12010181. [PMID: 36611974 PMCID: PMC9818991 DOI: 10.3390/cells12010181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) is widely distributed in several organs, especially the lungs. The role of PRDX6 in oxidative stress is controversial and even contradictory, as indicated by research conducted over the past 20 years. PRDX6 has anti-oxidant or pro-oxidant effects on oxidative stress in different diseases. It can even exhibit both anti-oxidant and pro-oxidant effects in the same disease. These findings are attributed to the fact that PRDX6 is a multifunctional enzyme. The peroxidase and phospholipase A2 activity of PRDX6 is closely related to its anti-oxidant and pro-oxidant effects, which leads to the conflicting regulatory effects of PRDX6 on oxidative stress in respiratory diseases. Moreover, PRDX6 interacts with multiple redox signaling pathways to interfere with cell proliferation and apoptosis. PRDX6 has become a new target in respiratory disease research due to its important regulatory role in oxidative stress. In this paper, the role of PRDX6 in oxidative stress in respiratory diseases and the research progress in targeting PRDX6 are reviewed.
Collapse
|
33
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
34
|
Hao Y, Tang X, Xing J, Sheng X, Chi H, Zhan W. The role of Syk phosphorylation in Fc receptor mediated mIgM + B lymphocyte phagocytosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:462-471. [PMID: 36162778 DOI: 10.1016/j.fsi.2022.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase, and it mediates downstream signaling of FcR-mediated immune responses. Our previous work revealed that the expression of Syk was significantly up-regulated in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda, which suggested Syk might be involved in Ig-opsonized phagocytosis. In this paper, phospho-Syk (pSyk) inhibitor was used to investigate the potential role of phosphorylated Syk in FcR-mediated phagocytosis of IgM+ B cells. Indirect immunofluorescence assay (IFA) and Western blotting showed that the level of phosphorylated Syk in the mIgM+ B lymphocytes treated with pSyk inhibitor was significantly lower compared to the control group after stimulation with flounder antiserum. Flow cytometry analysis showed that after 3 h incubation with antiserum-opsonized E. tarda, the phagocytosis rates of mIgM+ B lymphocytes from peripheral blood, spleen and head kidney pre-treated with pSyk inhibitor were 48.1%, 40.1% and 43.6% respectively, which were significantly lower than that of the control groups with 58.7%, 53.2% and 57.4%, respectively. And likewise, after pSyk inhibitor treatment, the proportions of mIgM+ B lymphocytes with higher intracellular reactive oxygen species (ROS) levels in peripheral blood, spleen and head kidney decreased to 15.2%, 12.0% and 12.1% from the control level of 26.5%, 25.9% and 26.3%, respectively. Moreover, the expression of three genes affected by pSyk, including phospholipase Cγ1 (PLCγ1), phospholipase Cγ2 (PLCγ2) and phosphatidylinositol 3 kinase (PI3K) were found to be significantly down-regulated in pSyk inhibitor-treated mIgM+ B lymphocytes post phagocytosis. These results suggest that pSyk plays a key role in FcR-mediated phagocytosis and bactericidal activity of mIgM+ B lymphocytes, which promotes further understanding of the regulatory role of pSyk in teleost B cells phagocytosis.
Collapse
Affiliation(s)
- Yanbo Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
35
|
Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022; 188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
With the increasing understanding of various biological functions mediated by reactive oxygen species (ROS) in the immune system, a number of studies have been designed to develop ROS-generating/eliminating strategies to selectively modulate immunogenicity for disease treatment. These strategies potentially exploit ROS-modulating inorganic biomaterials to harness host immunity to maximize the therapeutic potency by eliciting a favorable immune response. Inorganic biomaterial-guided in vivo ROS scavenging can exhibit several effects to: i) reduce the secretion of pro-inflammatory factors, ii) induce the phenotypic transition of macrophages from inflammatory M1 to immunosuppressive M2 phase, iii) minimize the recruitment and infiltration of immune cells. and/or iv) suppress the activation of nuclear factor kappa-B (NF-κB) pathway. Inversely, ROS-generating inorganic biomaterials have been found to be capable of: i) inducing immunogenic cell death (ICD), ii) reprograming tumor-associated macrophages from M2 to M1 phenotypes, iii) activating inflammasomes to stimulate tumor immunogenicity, and/or iv) recruiting phagocytes for antimicrobial therapy. This review provides a systematic and up-to-date overview on the progress related to ROS-nanotechnology mediated immunomodulation. We highlight how the ROS-generating/eliminating inorganic biomaterials can converge with immunomodulation and ultimately elicit an effective immune response against inflammation, autoimmune diseases, and/or cancers. We expect that contents presented in this review will be beneficial for the future advancements of ROS-based nanotechnology and its potential applications in this evolving field.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
36
|
Sylvester AL, Zhang DX, Ran S, Zinkevich NS. Inhibiting NADPH Oxidases to Target Vascular and Other Pathologies: An Update on Recent Experimental and Clinical Studies. Biomolecules 2022; 12:biom12060823. [PMID: 35740948 PMCID: PMC9221095 DOI: 10.3390/biom12060823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) can be beneficial or harmful in health and disease. While low levels of ROS serve as signaling molecules to regulate vascular tone and the growth and proliferation of endothelial cells, elevated levels of ROS contribute to numerous pathologies, such as endothelial dysfunctions, colon cancer, and fibrosis. ROS and their cellular sources have been extensively studied as potential targets for clinical intervention. Whereas various ROS sources are important for different pathologies, four NADPH oxidases (NOX1, NOX2, NOX4, and NOX5) play a prominent role in homeostasis and disease. NOX1-generated ROS have been implicated in hypertension, suggesting that inhibition of NOX1 may be a promising therapeutic approach. NOX2 and NOX4 oxidases are of specific interest due to their role in producing extra- and intracellular hydrogen peroxide (H2O2). NOX4-released hydrogen peroxide activates NOX2, which in turn stimulates the release of mitochondrial ROS resulting in ROS-induced ROS release (RIRR) signaling. Increased ROS production from NOX5 contributes to atherosclerosis. This review aims to summarize recent findings on NOX enzymes and clinical trials inhibiting NADPH oxidases to target pathologies including diabetes, idiopathic pulmonary fibrosis (IPF), and primary biliary cholangitis (PBC).
Collapse
Affiliation(s)
- Anthony L. Sylvester
- Department of Biology, University of Illinois at Springfield, Springfield, IL 62703, USA; or
| | - David X. Zhang
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Sophia Ran
- Department of Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Natalya S. Zinkevich
- Department of Biology, University of Illinois at Springfield, Springfield, IL 62703, USA; or
- Correspondence: ; Tel.: +1-(217)-206-8367
| |
Collapse
|
37
|
Gordon RA, Giannouli C, Raparia C, Bastacky SI, Marinov A, Hawse W, Cattley R, Tilstra JS, Campbell AM, Nickerson KM, Davidson A, Shlomchik MJ. Rubicon promotes rather than restricts murine lupus and is not required for LC3-associated phagocytosis. JCI Insight 2022; 7:155537. [PMID: 35192551 PMCID: PMC9057630 DOI: 10.1172/jci.insight.155537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 01/03/2023] Open
Abstract
NADPH oxidase deficiency exacerbates lupus in murine models and patients, but the mechanisms remain unknown. It is hypothesized that NADPH oxidase suppresses autoimmunity by facilitating dead cell clearance via LC3-associated phagocytosis (LAP). The absence of LAP reportedly causes an autoinflammatory syndrome in aged, nonautoimmune mice. Prior work implicated cytochrome b-245, β polypeptide (CYBB), a component of the NADPH oxidase complex, and the RUN and cysteine-rich domain-containing Beclin 1-interacting protein (RUBICON) as requisite for LAP. To test the hypothesis that NADPH oxidase deficiency exacerbates lupus via a defect in LAP, we deleted Rubicon in the B6.Sle1.Yaa and MRL.Faslpr lupus mouse models. Under this hypothesis, RUBICON deficiency should phenocopy NADPH oxidase deficiency, as both work in the same pathway. However, we observed the opposite - RUBICON deficiency resulted in reduced mortality, renal disease, and autoantibody titers to RNA-associated autoantigens. Given that our data contradict the published role for LAP in autoimmunity, we assessed whether CYBB and RUBICON are requisite for LAP. We found that LAP is not dependent on either of these 2 pathways. To our knowledge, our data reveal RUBICON as a novel regulator of SLE, possibly by a B cell-intrinsic mechanism, but do not support a role for LAP in lupus.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christina Giannouli
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Jeremy S. Tilstra
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven Connecticut, USA
| | | | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | |
Collapse
|
38
|
Wang Z, Li X, Huang L, Liu G, Chen Y, Li B, Zhao X, Xie R, Li Y, Fang W. Long Non-coding RNAs (lncRNAs), A New Target in Stroke. Cell Mol Neurobiol 2022; 42:501-519. [PMID: 32865676 PMCID: PMC11441288 DOI: 10.1007/s10571-020-00954-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Stroke has become the most disabling and the second most fatal disease in the world. It has been a top priority to reveal the pathophysiology of stroke at cellular and molecular levels. A large number of long non-coding RNAs (lncRNAs) are identified to be abnormally expressed after stroke. Here, we summarize 35 lncRNAs associated with stroke, and clarify their functions on the prognosis through signal transduction and predictive values as biomarkers. Changes in the expression of these lncRNAs mediate a wide range of pathological processes in stroke, including apoptosis, inflammation, angiogenesis, and autophagy. Based on the exploration of the functions and mechanisms of lncRNAs in stroke, more timely, accurate predictions and more effective, safer treatments for stroke could be developed.
Collapse
Affiliation(s)
- Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xueyan Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang 24, Mailbox 207, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Liu S, Li X, Zhou X, Loor JJ, Jiang Q, Feng X, Yang Y, Lei L, Du X, Li X, Zhe W, Song Y, Liu G. β-Hydroxybutyrate impairs the release of bovine neutrophil extracellular traps through inhibiting phosphoinositide 3-kinase–mediated nicotinamide adenine dinucleotide phosphate oxidase reactive oxygen species production. J Dairy Sci 2022; 105:3405-3415. [DOI: 10.3168/jds.2021-21174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
|
40
|
Zang CX, Wang L, Yang HY, Shang JM, Liu H, Zhang ZH, Ju C, Yuan FY, Li FY, Bao XQ, Zhang D. HACE1 negatively regulates neuroinflammation through ubiquitylating and degrading Rac1 in Parkinson's disease models. Acta Pharmacol Sin 2022; 43:285-294. [PMID: 34593974 PMCID: PMC8792019 DOI: 10.1038/s41401-021-00778-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/03/2023]
Abstract
Neuroinflammation plays an important role in neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease. HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1) is a tumor suppressor. Recent evidence suggests that HACE1 may be involved in oxidative stress responses. Due to the critical role of ROS in neuroinflammation, we speculated that HACE1 might participate in neuroinflammation and related neurodegenerative diseases, such as PD. In this study, we investigated the role of HACE1 in neuroinflammation of PD models. We showed that HACE1 knockdown exacerbated LPS-induced neuroinflammation in BV2 microglial cells in vitro through suppressing ubiquitination and degradation of activated Rac1, an NADPH oxidase subunit. Furthermore, we showed that HACE1 exerted vital neuronal protection through increasing Rac1 activity and stability in LPS-treated SH-SY5Y cells, as HACE1 knockdown leading to lower tolerance to LPS challenge. In MPTP-induced acute PD mouse model, HACE1 knockdown exacerbated motor deficits by activating Rac1. Finally, mutant α-synuclein (A53T)-overexpressing mice, a chronic PD mouse model, exhibited age-dependent reduction of HACE1 levels in the midbrain and striatum, implicating that HACE1 participated in PD pathological progression. This study for the first time demonstrates that HACE1 is a negative regulator of neuroinflammation and involved in the PD pathogenesis by regulating Rac1 activity. The data support HACE1 as a potential target for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Cai-xia Zang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Lu Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Han-yu Yang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Jun-mei Shang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Hui Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Zi-hong Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Cheng Ju
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Fang-yu Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Fang-yuan Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Xiu-qi Bao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Dan Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
41
|
Acute exposure to gold nanoparticles aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk. J Nanobiotechnology 2022; 20:37. [PMID: 35057820 PMCID: PMC8772144 DOI: 10.1186/s12951-021-01203-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) are increasingly utilized in industrial and biomedical fields, thereby demanding a more comprehensive knowledge about their safety. Current toxicological studies mainly focus on the unfavorable biological impact governed by the physicochemical properties of AuNPs, yet the consequences of their interplay with other bioactive compounds in biological systems are poorly understood. Results In this study, AuNPs with a size of 10 nm, the most favorable size for interaction with host cells, were given alone or in combination with bacterial lipopolysaccharide (LPS) in mice or cultured hepatic cells. The results demonstrated that co exposure to AuNPs and LPS exacerbated fatal acute liver injury (ALI) in mice, although AuNPs are apparently non-toxic when administered alone. AuNPs do not enhance systemic or hepatic inflammation but synergize with LPS to upregulate hepatic apoptosis by augmenting macrophage-hepatocyte crosstalk. Mechanistically, AuNPs and LPS coordinate to upregulate NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation and activate the intrinsic apoptotic pathway in hepatic macrophages. Extracellular ROS generation from macrophages is then augmented, thereby inducing calcium-dependent ROS generation and promoting apoptosis in hepatocytes. Furthermore, AuNPs and LPS upregulate scavenger receptor A expression in macrophages and thus increase AuNP uptake to mediate further apoptosis induction. Conclusions This study reveals a profound impact of AuNPs in aggravating the hepatotoxic effect of LPS by amplifying ROS-dependent crosstalk in hepatic macrophages and hepatocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01203-w.
Collapse
|
42
|
Song Y, Jiang S, Li C, Loor JJ, Jiang Q, Yang Y, Feng X, Liu S, He J, Wang K, Li Y, Zhang C, Du X, Wang Z, Li X, Liu G. Free fatty acids promote degranulation of azurophil granules in neutrophils by inducing production of NADPH oxidase-derived reactive oxygen species in cows with subclinical ketosis. J Dairy Sci 2022; 105:2473-2486. [PMID: 34998570 DOI: 10.3168/jds.2021-21089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Subclinical ketosis (SCK) in dairy cows, a common metabolic disorder during the peripartal period, is accompanied by systemic inflammation. Excessive release of azurophil granule (AG) contents during degranulation of polymorphonuclear neutrophils (PMN) could contribute to systemic inflammation in SCK cows. Although the increase in blood free fatty acids (FFA) in SCK cows may promote AG degranulation from PMN, the underlying mechanisms are unclear. Thirty multiparous cows (within 3 wk postpartum) with similar lactation numbers (median = 3, range = 2-4) and days in milk (median = 6, range = 3-15) were classified based on serum β-hydroxybutyrate (BHB) level as control (n = 15, BHB < 0.6 mM) or SCK (n = 15, 1.2 mM < BHB < 3.0 mM). Cows with SCK had greater levels of serum haptoglobin, serum amyloid A, IL-1β, IL-6, IL-8 and tumor necrosis factor-α. These proinflammatory factors had strong positive correlations with myeloperoxidase (MPO), a marker protein of PMN AG, whose content was greater in the serum of SCK cows. Both the number of AG and the protein abundance of MPO were lower in PMN isolated from SCK cows. Additionally, we found a greater ratio of blood CH138A+/CD63high cells and greater mean fluorescence intensity of CD63 on the PMN membrane, further confirming the greater degree of AG degranulation in cows with SCK. In vitro FFA dose response (0, 0.3, 0.6, 1.2, and 2.4 mM for 4 h) and time course (0, 0.5, 1, 2, and 4 h with 0.6 mM) experiments were performed on PMN isolated from control cows. The increase in MPO content in extracellular supernatant resulting from those experiments led to the selection of 0.6 mM FFA for 1 h duration as conditions for subsequent studies. After FFA treatment, release of intracellular MPO was increased along with increased levels of CD63 mean fluorescence intensity on the PMN membrane, confirming that FFA promoted degranulation of AG. In addition, FFA treatment increased reactive oxygen species (ROS) production by PMN, an effect that was attenuated by incubation with diphenyleneiodonium chloride (DPI), a NADPH oxidase-derived ROS inhibitor. The mitochondrial-derived ROS inhibitor carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) did not affect ROS in response to FFA treatment. Treatment with FFA increased p47 phosphorylation and mRNA abundance of NCF1, NCF2, and CYBB in PMN. Furthermore, DPI, but not FCCP, dampened the degranulation of PMN AG induced by FFA in vitro. These data suggested that the degranulation of AG in PMN induced by FFA was mediated by NADPH oxidase-derived ROS. As verified ex vivo, PMN from SCK cows had greater levels of ROS, phosphorylation of p47, and mRNA abundance of NCF1, NCF2, and CYBB. Overall, the present study revealed that high blood concentrations of FFA in SCK cows induce the production of NADPH oxidase-derived ROS, thereby promoting degranulation of AG in PMN. The stimulatory effect of FFA on the release of AG content during degranulation, especially MPO, provides a new insight into the systemic inflammation experienced by peripartal cows with SCK.
Collapse
Affiliation(s)
- Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Shang Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Congyi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Xiancheng Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Siyuan Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Jiyuan He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Kexin Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Yunfei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003 China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062 China.
| |
Collapse
|
43
|
Anil A, Apte S, Joseph J, Parthasarathy A, Madhavan S, Banerjee A. Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium. J Bacteriol 2021; 203:e0043921. [PMID: 34606370 PMCID: PMC8604078 DOI: 10.1128/jb.00439-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023] Open
Abstract
Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Akhila Parthasarathy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
44
|
Blancett LT, Runge KA, Reyes GM, Kennedy LA, Jackson SC, Scheuermann SE, Harmon MB, Williams JC, Shearer G. Deletion of the Stress Response Gene DDR48 from Histoplasma capsulatum Increases Sensitivity to Oxidative Stress, Increases Susceptibility to Antifungals, and Decreases Fitness in Macrophages. J Fungi (Basel) 2021; 7:981. [PMID: 34829268 PMCID: PMC8617954 DOI: 10.3390/jof7110981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
The stress response gene DDR48 has been characterized in Saccharomyces cerevisiae and Candida albicans to be involved in combating various cellular stressors, from oxidative agents to antifungal compounds. Surprisingly, the biological function of DDR48 has yet to be identified, though it is likely an important part of the stress response. To gain insight into its function, we characterized DDR48 in the dimorphic fungal pathogen Histoplasma capsulatum. Transcriptional analyses showed preferential expression of DDR48 in the mycelial phase. Induction of DDR48 in Histoplasma yeasts developed after treatment with various cellular stress compounds. We generated a ddr48∆ deletion mutant to further characterize DDR48 function. Loss of DDR48 alters the transcriptional profile of the oxidative stress response and membrane synthesis pathways. Treatment with ROS or antifungal compounds reduced survival of ddr48∆ yeasts compared to controls, consistent with an aberrant cellular stress response. In addition, we infected RAW 264.7 macrophages with DDR48-expressing and ddr48∆ yeasts and observed a 50% decrease in recovery of ddr48∆ yeasts compared to wild-type yeasts. Loss of DDR48 function results in numerous negative effects in Histoplasma yeasts, highlighting its role as a key player in the global sensing and response to cellular stress by fungi.
Collapse
Affiliation(s)
- Logan T. Blancett
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kauri A. Runge
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- ThruPore Technologies, Inc., New Castle, DE 19720, USA
| | - Gabriella M. Reyes
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
| | - Lauren A. Kennedy
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sydney C. Jackson
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
| | - Sarah E. Scheuermann
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Mississippi INBRE Research Scholars Program, Mississippi INBRE, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
- High Containment Research Performance Core, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mallory B. Harmon
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Mississippi INBRE Research Scholars Program, Mississippi INBRE, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jamease C. Williams
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
- Mississippi INBRE Research Scholars Program, Mississippi INBRE, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Glenmore Shearer
- Center for Molecular and Cellular Biology, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (K.A.R.); (G.M.R.); (L.A.K.); (S.C.J.); (S.E.S.); (M.B.H.); (J.C.W.); (G.S.J.)
| |
Collapse
|
45
|
Mahgoub E, Hussain A, Sharifi M, Falahati M, Marei HE, Hasan A. The therapeutic effects of tumor treating fields on cancer and noncancerous cells. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Mortimer PM, Mc Intyre SA, Thomas DC. Beyond the Extra Respiration of Phagocytosis: NADPH Oxidase 2 in Adaptive Immunity and Inflammation. Front Immunol 2021; 12:733918. [PMID: 34539670 PMCID: PMC8440999 DOI: 10.3389/fimmu.2021.733918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) derived from the phagocyte NADPH oxidase (NOX2) are essential for host defence and immunoregulation. Their levels must be tightly controlled. ROS are required to prevent infection and are used in signalling to regulate several processes that are essential for normal immunity. A lack of ROS then leads to immunodeficiency and autoinflammation. However, excess ROS are also deleterious, damaging tissues by causing oxidative stress. In this review, we focus on two particular aspects of ROS biology: (i) the emerging understanding that NOX2-derived ROS play a pivotal role in the development and maintenance of adaptive immunity and (ii) the effects of excess ROS in systemic disease and how limiting ROS might represent a therapeutic avenue in limiting excess inflammation.
Collapse
Affiliation(s)
- Paige M Mortimer
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| | - Stacey A Mc Intyre
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| | - David C Thomas
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
47
|
Liu Y, Xia H, Xia G, Lin S, Guo L, Liu Y. The effect of an isoquinoline alkaloid on treatment of periodontitis by regulating the neutrophils chemotaxis. J Leukoc Biol 2021; 110:475-484. [PMID: 34184309 DOI: 10.1002/jlb.3ma0321-736r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophil plays a critical role in the progression of periodontitis. In general, its chemotaxis and activation are benefit for the host defense of bacterial infection and inflammation. However, previous studies have reported that the hyperactive and reactive neutrophils appear to be one of the reasons for tissue destruction in periodontitis tissues. In this study, we investigated an isoquinoline alkaloid Litcubanine A (LA), which from the Traditional Chinese medicinal plant, Litsea cubeba. We found LA showed significant activity in inhibiting neutrophils chemotaxis in the zebrafish yolk sac microinjection model in vivo and in mouse neutrophils in vitro. Further investigation proved that LA could inhibit the expression levels of neutrophil respiratory burst-related and inflammation-related genes CYBB and NCF2, as well as inhibit the activation of MAPK signaling pathway. Moreover, using LA, we successfully achieved the effect of reducing periodontitis bone loss by regulating neutrophil chemotaxis and related functions in a mouse ligature-induced periodontitis model.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Klimova EM, Drozdova LA, Lavinska OV, Bychenko EA, Kot YH, Kordon TI. Hepatosplenomegaly in liver cirrhosis is caused by reactive oxygen species formation, an increase in apoptosis and autophagy, and pronounced autoimmune reactions. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Various factors of infectious and toxic genesis can lead to the liver cirrhosis, often accompanied by complications such as recurrent bleeding due to portal hypertension against the background of hepatosplenomegaly. Metabolic changes and disturbances in immunoreactivity occur in the liver and spleen. To substantiate the choice of personalized treatment tactics for patients with hepatosplenomegaly, we investigated individual metabolic predictors and immunopathological processes in patients with: liver cirrhosis and hepatitis B (HBV) and/or hepatitis C (HCV) viruses (I group, n = 52); with herpes viruses CMV (cytomegalovirus) and EBV (Epstein-Barr virus) (II group, n = 48), and with splenomegaly and frequent recurrent bleeding associated with hereditary enzymopathies (III group, n = 15). We used the methods of immunoturbidimetry; enzyme immunoassay; light, fluorescence and confocal microscopy. In group I (HBV/HCV), we revealed a decrease in the C4 component; a significant increase in the phagocytic index and phagocytic number, a reduced number of active phagocytes and the digestion index; a decrease in the IL-1β content and an increase in IL-18 and IL-6. In group II (CMV/EBV), we revealed a high activity of the C3 and a low activity of the C4 component against the background of a high level of ROS in neutrophils; the antineutrophil antibodies (ANCA) formation in 85.7% of patients (71.4% –perinuclear antibodies (pANCA) to myeloperoxidase; 14.3% – cytoplasmic antibodies (CANCA) to proteinase 3). Also, in group II, an increased level of pro-inflammatory cytokines IFN-γ, IL-1β, TNF-α, IL-18 and anti-inflammatory IL-6 was detected. Changes in links of immunity in II group led to the formation of autoimmune reactions in 64.7% of patients, which was expressed in the development of a broad range of antinuclear antibodies ANA (11 specificities, including ANA to chromatin and chromatin-associated proteins, to proteins cytoskeleton, enzymes and enzyme complexes). In group III, we revealed a low absorption capacity of neutrophils, a high frequency of antineutrophil antibodies pANCA occurrence and cANCA (in 67.2% of the examined), and low concentration of TNF-α. The developed model of the stepwise change of immunological markers makes it possible to substantiate the choice of a complex targeted treatment, including antiviral and immunotropic therapy.
Collapse
|
49
|
Listeria exploits IFITM3 to suppress antibacterial activity in phagocytes. Nat Commun 2021; 12:4999. [PMID: 34404769 PMCID: PMC8371165 DOI: 10.1038/s41467-021-24982-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.
Collapse
|
50
|
De La Cruz JA, Ganesh T, Diebold BA, Cao W, Hofstetter A, Singh N, Kumar A, McCoy J, Ranjan P, Smith SME, Sambhara S, Lambeth JD, Gangappa S. Quinazolin-derived myeloperoxidase inhibitor suppresses influenza A virus-induced reactive oxygen species, pro-inflammatory mediators and improves cell survival. PLoS One 2021; 16:e0254632. [PMID: 34280220 PMCID: PMC8289044 DOI: 10.1371/journal.pone.0254632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Superoxide radicals and other reactive oxygen species (ROS) are implicated in influenza A virus-induced inflammation. In this in vitro study, we evaluated the effects of TG6-44, a novel quinazolin-derived myeloperoxidase-specific ROS inhibitor, on influenza A virus (A/X31) infection using THP-1 lung monocytic cells and freshly isolated peripheral blood mononuclear cells (PBMC). TG6-44 significantly decreased A/X31-induced ROS and virus-induced inflammatory mediators in THP-1 cells (IL-6, IFN-γ, MCP-1, TNF-α, MIP-1β) and in human PBMC (IL-6, IL-8, TNF-α, MCP-1). Interestingly, TG6-44-treated THP-1 cells showed a decrease in percent cells expressing viral nucleoprotein, as well as a delay in translocation of viral nucleoprotein into the nucleus. Furthermore, in influenza A virus-infected cells, TG6-44 treatment led to suppression of virus-induced cell death as evidenced by decreased caspase-3 activation, decreased proportion of Annexin V+PI+ cells, and increased Bcl-2 phosphorylation. Taken together, our results demonstrate the anti-inflammatory and anti-infective effects of TG6-44.
Collapse
Affiliation(s)
- Juan A. De La Cruz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thota Ganesh
- Department of Pharmacology, Emory University, Atlanta, Georgia, United States of America
| | - Becky A. Diebold
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Weiping Cao
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amelia Hofstetter
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Neetu Singh
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amrita Kumar
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James McCoy
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Priya Ranjan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Susan M. E. Smith
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J. David Lambeth
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (SG); (JDL)
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (SG); (JDL)
| |
Collapse
|