1
|
Zimmerman E, Sturrock A, Reilly CA, Burrell-Gerbers KL, Warren K, Mir-Kasimov M, Zhang MA, Pierce MS, Helms MN, Paine R. Aryl Hydrocarbon Receptor Activation in Pulmonary Alveolar Epithelial Cells Limits Inflammation and Preserves Lung Epithelial Cell Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:600-611. [PMID: 39033086 PMCID: PMC11335325 DOI: 10.4049/jimmunol.2300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a receptor/transcription factor widely expressed in the lung. The physiological roles of AHR expressed in the alveolar epithelium remain unclear. In this study, we tested the hypothesis that alveolar epithelial AHR activity plays an important role in modulating inflammatory responses and maintaining alveolar integrity during lung injury and repair. AHR is expressed in alveolar epithelial cells (AECs) and is active. AHR activation with the endogenous AHR ligand, FICZ (5,11-dihydroindolo[3,2-b] carbazole-6-carboxaldehyde), significantly suppressed inflammatory cytokine expression in response to inflammatory stimuli in primary murine AECs and in the MLE-15 epithelial cell line. In an LPS model of acute lung injury in mice, coadministration of FICZ with LPS suppressed protein leak, reduced neutrophil accumulation in BAL fluid, and suppressed inflammatory cytokine expression in lung tissue and BAL fluid. Relevant to healing following inflammatory injury, AHR activation suppressed TGF-β-induced expression of genes associated with epithelial-mesenchymal transition. Knockdown of AHR in primary AECs with shRNA or in CRISPR-Cas-9-induced MLE-15 cells resulted in upregulation of α-smooth muscle actin (αSma), Col1a1, and Fn1 and reduced expression of epithelial genes Col4a1 and Sdc1. MLE-15 clones lacking AHR demonstrated accelerated wound closure in a scratch model. AHR activation with FICZ enhanced barrier function (transepithelial electrical resistance) in primary murine AECs and limited decline of transepithelial electrical resistance following inflammatory injury. AHR activation in AECs preserves alveolar integrity by modulating inflammatory cytokine expression while enhancing barrier function and limiting stress-induced expression of mesenchymal genes.
Collapse
Affiliation(s)
- Elizabeth Zimmerman
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Anne Sturrock
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Christopher A. Reilly
- Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT
| | | | - Kristi Warren
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Mustafa Mir-Kasimov
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Mingyang A. Zhang
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Megan S. Pierce
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - My N. Helms
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| |
Collapse
|
2
|
Ionescu E, Nagler CR. Hit me baby one more time…with microbial IPA. Immunity 2024; 57:1728-1730. [PMID: 39142273 DOI: 10.1016/j.immuni.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
The immune system is imprinted by gut microbes in early life. In this issue of Immunity, Perdijk et al. show that dysregulation of airway epithelial function by neonatal antibiotic treatment can be reversed by supplementation with a depleted microbial metabolite.
Collapse
Affiliation(s)
- Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Department of Pathology, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Shen X, Mu X. Systematic Insights into the Relationship between the Microbiota-Gut-Brain Axis and Stroke with the Focus on Tryptophan Metabolism. Metabolites 2024; 14:399. [PMID: 39195495 DOI: 10.3390/metabo14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke, as a serious cerebral vascular disease with high incidence and high rates of disability and mortality, has limited therapeutic options due to the narrow time window. Compelling evidence has highlighted the significance of the gut microbiota and gut-brain axis as critical regulatory factors affecting stroke. Along the microbiota-gut-brain axis, tryptophan metabolism further acquires increasing attention for its intimate association with central nervous system diseases. For the purpose of exploring the potential role of tryptophan metabolism in stroke and providing systematic insights into the intricate connection of the microbiota-gut-brain axis with the pathological procedure of stroke, this review first summarized the practical relationship between microbiota and stroke by compiling the latest case-control research. Then, the microbiota-gut-brain axis, as well as its interaction with stroke, were comprehensively elucidated on the basis of the basic anatomical structure and physiological function. Based on the crosstalk of microbiota-gut-brain, we further focused on the tryptophan metabolism from the three major metabolic pathways, namely, the kynurenine pathway, serotonin pathway, and microbial pathway, within the axis. Moreover, the effects of tryptophan metabolism on stroke were appreciated and elaborated here, which is scarcely found in other reviews. Hopefully, the systematic illustration of the mechanisms and pathways along the microbiota-gut-brain axis will inspire more translational research from metabolic perspectives, along with more attention paid to tryptophan metabolism as a promising pharmaceutical target in order to reduce the risk of stroke, mitigate the stroke progression, and ameliorate the stroke prognosis.
Collapse
Affiliation(s)
- Xinyu Shen
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Xiaoqin Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
4
|
Sharma S, Rousselle D, Parker E, Ekpruke CD, Alford R, Babayev M, Commodore S, Silveyra P. Sensitivity of Mouse Lung Nuclear Receptors to Electronic Cigarette Aerosols and Influence of Sex Differences: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:810. [PMID: 38929056 PMCID: PMC11203813 DOI: 10.3390/ijerph21060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The emerging concern about chemicals in electronic cigarettes, even those without nicotine, demands the development of advanced criteria for their exposure and risk assessment. This study aims to highlight the sensitivity of lung nuclear receptors (NRs) to electronic cigarette e-liquids, independent of nicotine presence, and the influence of the sex variable on these effects. Adult male and female C57BL/6J mice were exposed to electronic cigarettes with 0%, 3%, and 6% nicotine daily (70 mL, 3.3 s, 1 puff per min/30 min) for 14 days, using the inExpose full body chamber (SCIREQ). Following exposure, lung tissues were harvested, and RNA extracted. The expression of 84 NRs was determined using the RT2 profiler mRNA array (Qiagen). Results exhibit a high sensitivity to e-liquid exposure irrespective of the presence of nicotine, with differential expression of NRs, including one (females) and twenty-four (males) in 0% nicotine groups compared to non-exposed control mice. However, nicotine-dependent results were also significant with seven NRs (females), fifty-three NRs (males) in 3% and twenty-three NRs (female) twenty-nine NRs (male) in 6% nicotine groups, compared to 0% nicotine mice. Sex-specific changes were significant, but sex-related differences were not observed. The study provides a strong rationale for further investigation.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Erik Parker
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Sarah Commodore
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Veland N, Gleneadie HJ, Brown KE, Sardini A, Pombo J, Dimond A, Burns V, Sarkisyan K, Schiering C, Webster Z, Merkenschlager M, Fisher AG. Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl hydrocarbon receptor in the lung. Commun Biol 2024; 7:442. [PMID: 38600349 PMCID: PMC11006662 DOI: 10.1038/s42003-024-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.
Collapse
Affiliation(s)
- Nicolas Veland
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen E Brown
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Joaquim Pombo
- Senescence Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Vanessa Burns
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen Sarkisyan
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Chris Schiering
- Inflammation and Obesity Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Zoe Webster
- Transgenics & Embryonic Stem Cell Facility, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
8
|
Hizawa N. Common Pathogeneses Underlying Asthma and Chronic Obstructive Pulmonary Disease -Insights from Genetic Studies. Int J Chron Obstruct Pulmon Dis 2024; 19:633-642. [PMID: 38464563 PMCID: PMC10922945 DOI: 10.2147/copd.s441992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Neither asthma nor chronic obstructive pulmonary disease (COPD) is a single disease consisting of a uniform pathogenesis; rather, they are both syndromes that result from a variety of basic distinct pathogeneses. Many of the basic pathogeneses overlap between the two diseases, and multiple basic pathogeneses are simultaneously involved at varying proportions in individual patients. The specific combination of different basic pathogeneses in each patient determines the phenotype of the patient, and it varies widely from patient to patient. For example, type 2 airway inflammation and neutrophilic airway inflammation may coexist in the same patient, and quite a few patients have clinical characteristics of both asthma and COPD. Even in the same patient, the contribution of each pathogenesis is expected to differ at different life stages (eg, childhood, adolescence, middle age, and older), during different seasons (eg, high seasons for hay fever and rhinovirus infection), and depending on the nature of treatments. This review describes several basic pathogeneses commonly involved in both asthma and COPD, including chronic non-type 2 inflammation, type 2 inflammation, viral infections, and lung development. Understanding of the basic molecular pathogeneses in individual patients, rather than the use of clinical diagnosis, such as asthma, COPD, or even asthma COPD overlap, will enable us to better deal with the diversity seen in disease states, and lead to optimal treatment practices tailored for each patient with less disease burden, such as drug-induced side effects, and improved prognosis. Furthermore, we can expect to focus on these molecular pathways as new drug discovery targets.
Collapse
Affiliation(s)
- Nobuyuki Hizawa
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Babic M, Veljovic K, Popović N, Golic N, Radojkovic D, Stankovic M. Antioxidant effect of lactic acid bacteria in human bronchial epithelial cells exposed to cigarette smoke. J Appl Microbiol 2023; 134:lxad257. [PMID: 37951288 DOI: 10.1093/jambio/lxad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
AIMS Chronic lung diseases are a major and increasing global health problem, commonly caused by cigarette smoke. We aimed to explore the antioxidant effects of lactic acid bacteria (LAB) against cigarette smoke in bronchial epithelial cells. METHODS AND RESULTS The antioxidant effects of 21 heat-killed (HK) LAB strains were tested in cigarette smoke-stimulated BEAS-2B cells and 3-D bronchospheres organoids. We showed that HK Lactiplantibacillus plantarum BGPKM22 possesses antioxidant activity against cigarette smoke, resistance to hydrogen peroxide, and free radical neutralizing activity. We demonstrated that HK BGPKM22 inhibited cigarette smoke-induced expression of the Aryl hydrocarbon receptor (AhR) and Nuclear factor erythroid 2 related factor 2 (Nrf2) genes. The cell-free supernatant (SN) of BGPKM22 fully confirmed the effects of HK BGPKM22. CONCLUSIONS For the first time, we revealed that HK and SN of Lactip. plantarum BGPKM22 possess antioxidant activity and modulate AhR and Nrf2 gene expression in bronchial epithelial cells exposed to cigarette smoke.
Collapse
Affiliation(s)
- Mirjana Babic
- Laboratory for Molecular Biology, Group for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Katarina Veljovic
- Laboratory for Molecular Microbiology, Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Nikola Popović
- Laboratory for Molecular Microbiology, Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Natasa Golic
- Laboratory for Molecular Microbiology, Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Dragica Radojkovic
- Laboratory for Molecular Biology, Group for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| | - Marija Stankovic
- Laboratory for Molecular Biology, Group for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Republic of Serbia
| |
Collapse
|
10
|
Aryal A, Noël A, Khachatryan L, Cormier SA, Chowdhury PH, Penn A, Dugas TR, Harmon AC. Environmentally persistent free radicals: Methods for combustion generation, whole-body inhalation and assessing cardiopulmonary consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122183. [PMID: 37442324 PMCID: PMC10528481 DOI: 10.1016/j.envpol.2023.122183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) results from the incomplete combustion of organic wastes which chemisorb to transition metals. This process generates a particle-pollutant complex that continuously redox cycles to produce reactive oxygen species. EPFRs are well characterized, but their cardiopulmonary effects remain unknown. This publication provides a detailed approach to evaluating these effects and demonstrates the impact that EPFRs have on the lungs and vasculature. Combustion-derived EPFRs were generated (EPFR lo: 2.1e-16 radical/g, EPFR hi: 5.5e-17 radical/g), characterized, and verified as representative of those found in urban areas. Dry particle aerosolization and whole-body inhalation were established for rodent exposures. To verify that these particles and exposures recapitulate findings relevant to known PM-induced cardiopulmonary effects, male C57BL6 mice were exposed to filtered air, ∼280 μg/m3 EPFR lo or EPFR hi for 4 h/d for 5 consecutive days. Compared to filtered air, pulmonary resistance was increased in mice exposed to EPFR hi. Mice exposed to EPFR hi also exhibited increased plasma endothelin-1 (44.6 vs 30.6 pg/mL) and reduced nitric oxide (137 nM vs 236 nM), suggesting vascular dysfunction. Assessment of vascular response demonstrated an impairment in endothelium-dependent vasorelaxation, with maximum relaxation decreased from 80% to 62% in filtered air vs EPFR hi exposed mice. Gene expression analysis highlighted fold changes in aryl hydrocarbon receptor (AhR) and antioxidant response genes including increases in lung Cyp1a1 (8.7 fold), Cyp1b1 (9 fold), Aldh3a1 (1.7 fold) and Nqo1 (2.4 fold) and Gclc (1.3 fold), and in aortic Cyp1a1 (5.3 fold) in mice exposed to EPFR hi vs filtered air. We then determined that lung AT2 cells were the predominate locus for AhR activation. Together, these data suggest the lung and vasculature as particular targets for the health impacts of EPFRs and demonstrate the importance of additional studies investigating the cardiopulmonary effects of EPFRs.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana, 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Pratiti H Chowdhury
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
11
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
12
|
Kim SH, Quoc QL, Park HS, Shin YS. The effect of apigenin, an aryl hydrocarbon receptor antagonist, in Phthalate-Exacerbated eosinophilic asthma model. J Cell Mol Med 2023. [PMID: 37315181 DOI: 10.1111/jcmm.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Endocrine disrupting chemicals have been known to contribute to the aggravation of inflammatory diseases including asthma. We aimed to investigate the effects of mono-n-butyl phthalate (MnBP) which is one of the representing phthalates, and its antagonist in an eosinophilic asthma mouse model. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA) with alum and followed by three nebulized OVA challenges. MnBP was administered through drinking water administration throughout the study period, and its antagonist, apigenin, was orally treated for 14 days before OVA challenges. Mice were assessed for airway hyperresponsiveness (AHR), differential cell count and type 2 cytokines in bronchoalveolar lavage fluid were measured in vivo. The expression of the aryl hydrocarbon receptor was markedly increased when MnBP was administered. MnBP treatment increased AHR, airway inflammatory cells (including eosinophils), and type 2 cytokines following OVA challenge compared to vehicle-treated mice. However, apigenin treatment reduced all asthma features, such as AHR, airway inflammation, type 2 cytokines, and the expression of the aryl hydrocarbon receptor in MnBP-augmented eosinophilic asthma. Our study suggests that MnBP exposure may increase the risk of eosinophilic inflammation, and apigenin treatment may be a potential therapy for asthma exacerbated by endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Seo-Hee Kim
- Department of Biomedical Science, Graduate School of Ajou University, Suwon-si, South Korea
| | - Quang Luu Quoc
- Department of Biomedical Science, Graduate School of Ajou University, Suwon-si, South Korea
| | - Hae-Sim Park
- Department of Biomedical Science, Graduate School of Ajou University, Suwon-si, South Korea
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon-si, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon-si, South Korea
| |
Collapse
|
13
|
Mrštná K, Kujovská Krčmová L, Švec F. Advances in kynurenine analysis. Clin Chim Acta 2023:117441. [PMID: 37321530 DOI: 10.1016/j.cca.2023.117441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.
Collapse
Affiliation(s)
- K Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - L Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - F Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
14
|
Zhou Y, Liu M, Liu K, Wu G, Tan Y. Lung microbiota and potential treatment of respiratory diseases. Microb Pathog 2023:106197. [PMID: 37321423 DOI: 10.1016/j.micpath.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The unique microbiome found in the lungs has been studied and shown to be associated with both pulmonary homeostasis and lung diseases. The lung microbiome has the potential to produce metabolites that modulate host-microbe interactions. Specifically, short-chain fatty acids (SCFAs) produced by certain strains of the lung microbiota have been shown to regulate immune function and maintain gut mucosal health. In response, this review described the distribution and composition of the microbiota in lung diseases and discussed the impact of the lung microbiota on health and lung disease. In addition, the review further elaborated on the mechanism of microbial metabolites in microbial-host interaction and their application in the treatment of lung diseases. A better understanding of the interaction between the microbiota, metabolites, and host will provide potential strategies for the development of novel methods for the treatment of pulmonary microbial induced lung diseases.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Psychiatry, Department of Medicine, Xiangya School of Medical, Central South University, Changsha, 410083, Hunan, China
| | - Mengjun Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Kaixuan Liu
- Department of Excellent Doctor Training, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
15
|
Cros A, De Juan A, Leclère R, Sampaio JL, San Roman M, Maurin M, Heurtebise-Chrétien S, Segura E. Homeostatic activation of aryl hydrocarbon receptor by dietary ligands dampens cutaneous allergic responses by controlling Langerhans cells migration. eLife 2023; 12:86413. [PMID: 37190854 DOI: 10.7554/elife.86413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Dietary compounds can affect the development of inflammatory responses at distant sites. However, the mechanisms involved remain incompletely understood. Here, we addressed the influence on allergic responses of dietary agonists of aryl hydrocarbon receptor (AhR). In cutaneous papain-induced allergy, we found that lack of dietary AhR ligands exacerbates allergic responses. This phenomenon was tissue-specific as airway allergy was unaffected by the diet. In addition, lack of dietary AhR ligands worsened asthma-like allergy in a model of 'atopic march.' Mice deprived of dietary AhR ligands displayed impaired Langerhans cell migration, leading to exaggerated T cell responses. Mechanistically, dietary AhR ligands regulated the inflammatory profile of epidermal cells, without affecting barrier function. In particular, we evidenced TGF-β hyperproduction in the skin of mice deprived of dietary AhR ligands, explaining Langerhans cell retention. Our work identifies an essential role for homeostatic activation of AhR by dietary ligands in the dampening of cutaneous allergic responses and uncovers the importance of the gut-skin axis in the development of allergic diseases.
Collapse
Affiliation(s)
- Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Alba De Juan
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Renaud Leclère
- Institut Curie, PSL Research University, Plateforme de Pathologie Expérimentale, Paris, France
| | - Julio L Sampaio
- Institut Curie, PSL Research University, Plateforme de Métabolomique et Lipidomique, Paris, France
| | - Mabel San Roman
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | | | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| |
Collapse
|
16
|
Metabolism-Related Gene TXNRD1 Regulates Inflammation and Oxidative Stress Induced by Cigarette Smoke through the Nrf2/HO-1 Pathway in the Small Airway Epithelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7067623. [PMID: 36578523 PMCID: PMC9792251 DOI: 10.1155/2022/7067623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), a small airway disease, is regarded as a metabolic disorder. To further uncover the metabolic profile of COPD patients, it is necessary to identify metabolism-related differential genes in small airway epithelium (SAE) of COPD. Metabolism-related differential genes in SAE between COPD patients and nonsmokers were screened from GSE128708 and GSE20257 datasets. KEGG, GO, and PPI analyses were performed to evaluate the pathway enrichment, term enrichment, and protein interaction of candidate metabolism-related differential genes, respectively. RT-PCR was used to verify the mRNA expression of the top ten differential genes. Western blotting was used to evaluate the protein expression of TXNRD1. TXNRD1 inhibitor auranofin (AUR) was used to assess the impact of TXNRD1 on oxidative stress and inflammation induced by cigarette smoke extraction (CSE). Twenty-four metabolism-related differential genes were selected. ALDH3A1, AKR1C3, CYP1A1, AKC1C1, CPY1B1, and TXNRD1 in the top ten genes were significantly upregulated after CSE simulation for 24 h in human bronchial epithelial (16HBE) cells. Among them, CYP1A1 and TXNRD1 also have a significant upregulation in primary SAE after simulation of CSE for 24 h. The overexpression of protein TXNRD1 has also been detected in 16HBE cells, primary SAE stimulated with CSE, and mouse lung exposed to cigarette smoke (CS). Additionally, inhibition of TXNRD1 with 0.1 μM AUR alleviated the expression of IL-6 and reactive oxygen species (ROS) induced by CSE by activating the Nrf2/HO-1 pathway in 16HBE cells. This study identified twenty-four metabolism-related differential genes associated with COPD. TXNRD1 might participate in the oxidative stress and inflammation induced by CS by regulating the activation of the Nrf2/HO-1 pathway.
Collapse
|
17
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
18
|
McCarthy CE, Duffney PF, Nogales A, Post CM, Lawrence BP, Martinez-Sobrido L, Thatcher TH, Phipps RP, Sime PJ. Dung biomass smoke exposure impairs resolution of inflammatory responses to influenza infection. Toxicol Appl Pharmacol 2022; 450:116160. [PMID: 35817128 PMCID: PMC10211473 DOI: 10.1016/j.taap.2022.116160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023]
Abstract
Epidemiological studies associate biomass smoke with an increased risk for respiratory infections in children and adults in the developing world, with 500,000 premature deaths each year attributed to biomass smoke-related acute respiratory infections including infections caused by respiratory viruses. Animal dung is a biomass fuel of particular concern because it generates more toxic compounds per amount burned than wood, and is a fuel of last resort for the poorest households. Currently, there is little biological evidence on the effects of dung biomass smoke exposure on immune responses to respiratory viral infections. Here, we investigated the impact of dung biomass exposure on respiratory infection using a mouse model of dung biomass smoke and cultured primary human small airway epithelial cells (SAECs). Mice infected with influenza A virus (IAV) after dung biomass smoke exposure had increased mortality, lung inflammation and virus mRNA levels, and suppressed expression of innate anti-viral mediators compared to air exposed mice. Importantly, there was still significant tissue inflammation 14 days after infection in dung biomass smoke-exposed mice even after inflammation had resolved in air-exposed mice. Dung biomass smoke exposure also suppressed the production of anti-viral cytokines and interferons in cultured SAECs treated with poly(I:C) or IAV. This study shows that dung biomass smoke exposure impairs the immune response to respiratory viruses and contributes to biomass smoke-related susceptibility to respiratory viral infections, likely due to a failure to resolve the inflammatory effects of biomass smoke exposure.
Collapse
Affiliation(s)
| | - Parker F Duffney
- United States Environmental Protection Agency, Integrated Health Assessment Branch, Research Triangle Park, NC, USA
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, Madrid, Spain
| | - Christina M Post
- Department of Environmental Medicine, University of Rochester, Rochester NY, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester, Rochester NY, New York, United States
| | | | - Thomas H Thatcher
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Patricia J Sime
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Attafi IM, Bakheet SA, Ahmad SF, Belali OM, Alanazi FE, Aljarboa SA, Al-Alallah IA, Korashy HM. Lead Nitrate Induces Inflammation and Apoptosis in Rat Lungs Through the Activation of NF-κB and AhR Signaling Pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64959-64970. [PMID: 35482242 PMCID: PMC9481511 DOI: 10.1007/s11356-022-19980-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Lead (Pb) is one of the most frequent hazardous air contaminants, where the lungs are particularly vulnerable to its toxicity. However, the Pb distribution and its impact on lung inflammation/apoptosis and particularly the involvement of nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways in Pb-induced lung toxicity have not yet been fully investigated. Adult male Wistar albino rats were exposed to Pb nitrate 25, 50, and 100 mg/kg b.w. orally for 3 days. The histopathological changes of several rat organs were analyzed using hematoxylin and eosin staining. The concentrations of Pb ion in different organ tissues were quantified using inductive coupled plasma mass spectrometry, while gas chromatography-mass spectrometry was used to identify organic compounds. The changes in the mRNA and protein expression levels of inflammatory and apoptotic genes in response to Pb exposure were quantified by using RT-PCR and Western blot analyses, respectively. Treatment of rats with Pb for three consecutive days significantly increased the accumulation of Pb in lung tissues causing severe interstitial inflammation. Pb treatment also increased the percentage of lung apoptotic cells and modulated apoptotic genes (Bc2, p53, and TGF-α), inflammatory markers (IL-4, IL-10, TNF-α), and oxidative stress biomarkers (iNOS, CYP1A1, EphX) in rat lung tissues. These effects were associated with a significant increase in organic compounds, such as 3-nitrotyrosine and myeloperoxidase, and some inorganic elements, such as selenium. Importantly, the Pb-induced lung inflammation and apoptosis were associated with a proportional increase in the expression of NF-κB and AhR mRNAs and proteins. These findings clearly show that Pb induces severe inflammation and apoptosis in rat lungs and suggest that NF-κB and AhR may play a role in Pb-induced lung toxicity.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Poison Control and Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osamah M Belali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Aseer Central Hospital, Asser health affairs, Ministry of Health, Abha, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Suliman A Aljarboa
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Al-Alallah
- Pathology and Clinical Laboratories Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
20
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
21
|
Lin H, Wang C, Yu H, Liu Y, Tan L, He S, Li Z, Wang C, Wang F, Li P, Liu J. Protective effect of total Saponins from American ginseng against cigarette smoke-induced COPD in mice based on integrated metabolomics and network pharmacology. Biomed Pharmacother 2022; 149:112823. [PMID: 35334426 DOI: 10.1016/j.biopha.2022.112823] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease. Aiming at assessing the effect of total saponins from American ginseng on COPD, both the chemical composition and anti-COPD activity of total saponins from wild-simulated American ginseng (TSW) and field-grown American ginseng (TSF) were investigated in this study. Firstly, a HPLC-ELSD chromatographic method was established to simultaneously determine the contents of 22 saponins in TSW and TSF. Secondly, CS-induced COPD mouse model was established to evaluate the activity of TSW and TSF. The results indicated that both TSW and TSF had the protective effect against COPD by alleviating oxidative stress and inflammatory response. TSW showed a stronger effect than TSF. Thirdly, an integrated approach involving metabolomics and network pharmacology was used to construct the "biomarker-reaction-enzyme-target" correlation network aiming at further exploring the observed effects. As the results, 15 biomarkers, 9 targets and 5 pathways were identified to play vital roles in the treatment of TSW and TSF on COPD. Fourthly, based on network pharmacology and the CS-stimulated A549 cell model, ginsenoside Rgl, Rc, oleanolic acid, notoginsenoside R1, Fe, silphioside B were certified to be the material basis for the stronger effect of TSW than TSF. Finally, the molecular docking were performed to visualize the binding modes. Our findings suggested that both TSW and TSF could effectively ameliorate the progression of COPD and might be used for the treatment of COPD.
Collapse
Affiliation(s)
- Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China.
| |
Collapse
|
22
|
Xiang K, Shen P, Gao Z, Liu Z, Hu X, Liu B, Fu Y. Formononetin Protects LPS-Induced Mastitis Through Suppressing Inflammation and Enhancing Blood-Milk Barrier Integrity via AhR-Induced Src Inactivation. Front Immunol 2022; 13:814319. [PMID: 35185907 PMCID: PMC8850474 DOI: 10.3389/fimmu.2022.814319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Formononetin (FOR), a natural flavonoid derived from Radix Astragali, has been reported to have anti-inflammatory and anti-oxidative effects. However, its protective mechanism against mastitis is still unknown. Nuclear factor kappa-B (NF-κB) signaling pathway plays an important role in inflammation, especially mastitis. Aryl hydrocarbon receptor (AhR) is involved in inflammatory regulation and defense against diseases. We investigated the protective effect of FOR on LPS-induced mastitis in mice and the effect of Ahr and NF-κB signaling pathways on the development of mastitis. In this study, mastitis model was induced by LPS injection through the nipple duct. Protective effect of FOR on LPS-induced mastitis was assessed by FOR pretreatment. The protective mechanism of FOR against mastitis was further investigated using LPS stimulation on mouse mammary epithelial cells EpH4-Ev. The results showed that LPS-induced mammary histological injury was inhibited by FOR. FOR significantly inhibited LPS-induced MPO activity. FOR administration enhanced the integrity of blood-milk barrier. In vitro and in vivo experiments showed that FOR inhibited LPS-induced NF-κB signaling pathway activation and the production of inflammatory factors TNF-α and IL-1ß. Moreover, FOR increased the expression of tight junction protein and enhanced blood-milk barrier integrity. LPS activated AhR and Src expression. But FOR induced significant increase in AhR inhibited Src phosphorylation to exert anti-inflammatory effects. In addition, AhR antagonist CH223191 reversed the inhibition of FOR on Src expression. And the inhibition of FOR on NF-κB activation and inflammatory cytokine production were reversed by AhR antagonist CH223191. In conclusion, FOR had protective effects against LPS-induced mastitis via suppressing inflammation and enhancing blood-milk barrier integrity via AhR-induced Src inactivation.
Collapse
Affiliation(s)
- Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Clinical Veterinary Medicine, College of Agriculture, Eastern Liaoning University, Dandong, China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyang Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, First Hospital of Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
23
|
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022; 11:cells11040707. [PMID: 35203356 PMCID: PMC8870046 DOI: 10.3390/cells11040707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.
Collapse
|
24
|
Liang R, Tong X, Dong Z, Qin W, Fan L, Bai Z, Zhang Z, Xiang T, Wang Z, Tan N. Suhuang antitussive capsule ameliorates post-infectious cough in mice through AhR-Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114664. [PMID: 34555451 DOI: 10.1016/j.jep.2021.114664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suhuang antitussive capsule (SH capsule), a typical traditional Chinese medicines (TCMs) compound, is widely used for the treatment of post-infectious cough (PIC) in the clinic. Our previous studies have demonstrated that SH capsule possesses significant ameliorative effects on cough variant asthma (CVA), sputum obstruction and airway remodeling. AIM OF THE STUDY This study is designed to investigate the ameliorative effects and potential mechanisms of SH capsule on PIC in mice. MATERIALS AND METHODS To establish the PIC model, ICR mice were induced by lipopolysaccharide (LPS) (3 mg/kg) once, followed by cigarettes smoke (CS) exposure for 30 min per day for 30 days. Mice were intragastrically (i.g.) administrated with SH capsule at the doses of 3.5, 7, 14 g/kg each day for 2 weeks since the 24th day. The number of coughs, coughs latencies, enzyme-linked immunosorbent assay (ELISA) and histological analysis were used to investigate the effects of SH capsule on PIC mice. Quantitative-polymerase chain reaction (Q-PCR) and western blotting were conducted to evaluate the levels of mRNA and proteins associated with Aryl hydrocarbon receptor (AhR)-NF-E2-related factor 2 (Nrf2) pathway. Superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity (T-AOC) assays were performed to evaluate the oxidative stress. A549 cells were used to investigate the ameliorative effects of SH capsule in vitro. RESULTS SH capsule effectively diminished the number of coughs and extended coughs latencies in PIC mice. The airway inflammation was alleviated by decreasing the expression levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Moreover, SH capsule dose-dependently activated AhR-Nrf2 pathway and induced the nuclear translocation in vitro and in vivo. Besides, SH capsule significantly increased the levels of SOD, GSH and T-AOC in mice. CONCLUSION Our study demonstrates that SH capsule ameliorates airway inflammation-associated PIC in mice through activating AhR-Nrf2 pathway and consequently alleviating inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Rongyao Liang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiyang Tong
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhikui Dong
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China; Jiangsu Longfengtang Traditional Chinese Medicine Co., Ltd., Yangtze River Pharmaceutical Group, Taizhou, 225321, PR China.
| | - Weiwei Qin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Lingling Fan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ziyu Bai
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhihao Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ting Xiang
- Beijing Haiyan Pharmaceutical Co., Ltd., Yangtze River Pharmaceutical Group, Beijing, 102206, PR China.
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
25
|
Wu SM, Tsai JJ, Pan HC, Arbiser JL, Elia L, Sheu ML. Aggravation of pulmonary fibrosis after knocking down the Aryl hydrocarbon receptor in the Insulin-like growth factor 1 receptor pathway. Br J Pharmacol 2022; 179:3430-3451. [PMID: 35083738 DOI: 10.1111/bph.15806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a devastating disease with multiple contributing factors. Insulin-like growth factor 1 receptor (IGF1R), with a reciprocal function to Aryl hydrocarbon receptor (AhR), is known to be involved in the development of airway inflammation. However, the exact relationship between IGF1R and AhR in lung fibrogenesis is unclear. This study aimed to investigate the cascade pathway involving IGF1R and AhR in IPF. EXPERIMENTAL APPROACH The AhR and IGF1R expressions were determined in the lungs of IPF patients and in a rodent fibrosis model. Pulmonary fibrosis was evaluated in bleomycin (BLM)-induced lung injury in wild type and AhR knockout (AhR-/- ) mice. The effects of IGF1R inhibition and AhR activation in vitro on TGF-β1-induced epithelial-mesenchymal transition (EMT) in Beas2B cells and in vivo on BLM-exposed mice were also examined. KEY RESULTS There were increased IGF1R levels but diminished AhR expression in the lung tissues of IPF patients and BLM-induced mice. Knockout of AhR aggravated lung fibrosis, while the use of IGF1R inhibitor and AhR agonist significantly attenuated such effects and inhibited TGF-β1-induced EMT in Beas2B cells. Both TGF-β1 and BLM markedly suppressed AhR expression through endoplasmic reticulum (ER) stress and consequently, IGF1R activation. The IGF1R inhibitor and specific knockdown of IGF1R reversed the activation of the TGF-β1 signal pathway. CONCLUSION AND IMPLICATIONS In the development of IPF, AhR and IGF1R play opposite roles via the TGF-β/Smad/STAT signaling cascade. The AhR/IGF1R axis is a potential target for the treatment of lung injury and fibrosis.
Collapse
Affiliation(s)
- Sheng-Mao Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jaw-Ji Tsai
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Ph.D. program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Winship Cancer Institute, Atlanta Veterans Administration Health Center, Atlanta, GA, USA
| | - Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Lombardia, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Lombardia, Italy
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Ph.D. program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
26
|
Pang J, Luo Y, Wei D, Cao Z, Qi X, Song M, Liu Y, Li Z, Zhang J, Li B, Chen J, Wang J, Wang C. Comparative Transcriptome Analyses Reveal a Transcriptional Landscape of Human Silicosis Lungs and Provide Potential Strategies for Silicosis Treatment. Front Genet 2021; 12:652901. [PMID: 34149803 PMCID: PMC8210851 DOI: 10.3389/fgene.2021.652901] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Silicosis is a fatal occupational lung disease which currently has no effective clinical cure. Recent studies examining the underlying mechanism of silicosis have primarily examined experimental models, which may not perfectly reflect the nature of human silicosis progression. A comprehensive profiling of the molecular changes in human silicosis lungs is urgently needed. Here, we conducted RNA sequencing (RNA-seq) on the lung tissues of 10 silicosis patients and 7 non-diseased donors. A total of 2,605 differentially expressed genes (DEGs) and critical pathway changes were identified in human silicosis lungs. Further, the DEGs in silicosis were compared with those in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary diseases (COPD), to extend current knowledge about the disease mechanisms and develop potential drugs. This analysis revealed both common and specific regulations in silicosis, along with several critical genes (e.g., MUC5AC and FGF10), which are potential drug targets for silicosis treatment. Drugs including Plerixafor and Retinoic acid were predicted as potential candidates in treating silicosis. Overall, this study provides the first transcriptomic fingerprint of human silicosis lungs. The comparative transcriptome analyses comprehensively characterize pathological regulations resulting from silicosis, and provide valuable cues for silicosis treatment.
Collapse
Affiliation(s)
- Junling Pang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Ya Luo
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Wei
- Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhujie Cao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianmei Qi
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Meiyue Song
- Department of Pulmonary and Critical Care Medicine/Others, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoguo Li
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin Zhang
- Department of Thoracic Surgery and Lung Transplantation, China-Japan Friendship Hospital, Beijing, China
| | - Baicun Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Chen
- Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China.,Department of Thoracic Surgery and Lung Transplantation, China-Japan Friendship Hospital, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Wang HC, Liu KY, Wang LT, Hsu SH, Wang SC, Huang SK. Aryl hydrocarbon receptor promotes lipid droplet biogenesis and metabolic shift in respiratory Club cells. Hum Cell 2021; 34:785-799. [PMID: 33683656 DOI: 10.1007/s13577-021-00491-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Club cells are critical in maintaining airway integrity via, in part, secretion of immunomodulatory Club cell 10 kd protein (CC10) and xenobiotic detoxification. Aryl hydrocarbon receptor (AhR) is important in xenobiotic metabolism, but its role in Club cell function is unclear. To this end, an AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ, 10 nM) was found to induce, in a ligand and AhR-dependent manner, endoplasmic reticulum stress, phospholipid remodeling, free fatty acid and triglyceride synthesis, leading to perilipin 2-dependent lipid droplet (LD) biogenesis in a Club cell-like cell line, NL20. The increase in LDs was due, in part, to the blockade of adipose triglyceride lipase to LDs, while perilipin 5 facilitated LDs-mitochondria connection, leading to the breakdown of LDs via mitochondrial β-oxidation and acetyl-coA generation. In FICZ-treated cells, increased CC10 secretion and its intracellular association with LDs were noted. Administration of low (0.28 ng), medium (1.42 ng), and high (7.10 ng) doses of FICZ in C57BL/6 mice significantly enhanced lipopolysaccharide (LPS, 0.1 μg)-induced airway inflammation, mucin secretion, pro-inflammatory cytokines and CC10 in the bronchoalveolar lavage fluids, as compared to those seen in mice receiving LPS alone, suggesting the importance of AhR signaling in controlling the metabolic homeostasis and functions of Club cells.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 40402, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Kwei-Yan Liu
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
29
|
Liu KY, Wang LT, Wang HC, Wang SN, Tseng LW, Chai CY, Chiou SS, Huang SK, Hsu SH. Aryl Hydrocarbon Receptor is Essential in the Control of Lung Club Cell Homeostasis. J Inflamm Res 2021; 14:299-311. [PMID: 33574691 PMCID: PMC7872937 DOI: 10.2147/jir.s284800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Club cells play an important role in maintaining lung homeostasis and aryl hydrocarbon receptor (AhR) is known to be important in xenobiotic metabolism, but its role in regulating club cells is currently unknown. METHODS To this end, mice with club cell-specific AhR deficiency were generated and evaluated in a model of antigen (ovalbumin, OVA)-induced airway inflammation for the number of infiltrating inflammatory cells, the levels of cytokines and CC10 and Notch signaling by standard methods. RESULTS After OVA sensitization and challenge, Scgb1a1-Cre; Ahrflox/flox mice showed aggravated levels of pulmonary inflammation with increased levels of inflammatory cells and cytokines 1 day after challenge as compared to those seen in their littermate controls, but in contrast to the littermate controls, no significant change in the levels of CC10 and SP-D was noted in Scgb1a1-Cre; Ahrflox/flox mice. Surprisingly, 7 days after the challenge, while, as expected, wild-type mice recovered from acute inflammation, significantly increased lymphocytic infiltration was noted in Scgb1a1-Cre; Ahrflox/flox mice, suggesting their defective mechanism of recovery. Mechanistically, this was due, in part, to the decreased Notch1 signaling and expression of its downstream gene, HES5, while AhR was shown to positively regulate Notch1 expression via its transactivating activity targeting the xenobiotic response element in the promoter region of Notch1 gene. CONCLUSION Under the condition of pulmonary inflammation, AhR is critical in controlling lung club cell homeostasis via targeting Notch1 signaling and the generation of anti-inflammatory mediators.
Collapse
Affiliation(s)
- Kwei-Yan Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, People’s Republic of China
| | - Li-Ting Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Chun Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Shen-Nien Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital
- Department of Surgery, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Wen Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Shin Chiou
- Division of Hematology-Oncology Department of Pediatrics, Kaohsiung Medical University Hospital Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shau-Ku Huang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, People’s Republic of China
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Zelante T, Choera T, Beauvais A, Fallarino F, Paolicelli G, Pieraccini G, Pieroni M, Galosi C, Beato C, De Luca A, Boscaro F, Romoli R, Liu X, Warris A, Verweij PE, Ballard E, Borghi M, Pariano M, Costantino G, Calvitti M, Vacca C, Oikonomou V, Gargaro M, Wong AYW, Boon L, den Hartog M, Spáčil Z, Puccetti P, Latgè JP, Keller NP, Romani L. Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Rep 2021; 34:108673. [PMID: 33503414 PMCID: PMC7844877 DOI: 10.1016/j.celrep.2020.108673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenases (IDOs) degrade l-tryptophan to kynurenines and drive the de novo synthesis of nicotinamide adenine dinucleotide. Unsurprisingly, various invertebrates, vertebrates, and even fungi produce IDO. In mammals, IDO1 also serves as a homeostatic regulator, modulating immune response to infection via local tryptophan deprivation, active catabolite production, and non-enzymatic cell signaling. Whether fungal Idos have pleiotropic functions that impact on host-fungal physiology is unclear. Here, we show that Aspergillus fumigatus possesses three ido genes that are expressed under conditions of hypoxia or tryptophan abundance. Loss of these genes results in increased fungal pathogenicity and inflammation in a mouse model of aspergillosis, driven by an alternative tryptophan degradation pathway to indole derivatives and the host aryl hydrocarbon receptor. Fungal tryptophan metabolic pathways thus cooperate with the host xenobiotic response to shape host-microbe interactions in local tissue microenvironments.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Anne Beauvais
- Unitè des Aspergillus, Pasteur Institute, 75724 Paris, France
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Marco Pieroni
- P4T group, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Claudia Galosi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Claudia Beato
- Interdepartmental Centre for Measures (CIM) "G. Casnati," University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Centre (CISM), University of Florence, 50019 Florence, Italy
| | - Xin Liu
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paul E Verweij
- Department of Medical Microbiology, Centre of Expertise in Mycology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eloise Ballard
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Costantino
- P4T group, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Vasilis Oikonomou
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Alicia Yoke Wei Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | | | - Zdeněk Spáčil
- Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Jean-Paul Latgè
- Unitè des Aspergillus, Pasteur Institute, 75724 Paris, France
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
31
|
Menon M, Hussell T, Ali Shuwa H. Regulatory B cells in respiratory health and diseases. Immunol Rev 2021; 299:61-73. [PMID: 33410165 PMCID: PMC7986090 DOI: 10.1111/imr.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
B cells are critical mediators of humoral immune responses in the airways through antibody production, antigen presentation, and cytokine secretion. In addition, a subset of B cells, known as regulatory B cells (Bregs), exhibit immunosuppressive functions via diverse regulatory mechanisms. Bregs modulate immune responses via the secretion of IL‐10, IL‐35, and tumor growth factor‐β (TGF‐β), and by direct cell contact. The balance between effector and regulatory B cell functions is critical in the maintenance of immune homeostasis. The importance of Bregs in airway immune responses is emphasized by the different respiratory disorders associated with abnormalities in Breg numbers and function. In this review, we summarize the role of immunosuppressive Bregs in airway inflammatory diseases and highlight the importance of this subset in the maintenance of respiratory health. We propose that improved understanding of signals in the lung microenvironment that drive Breg differentiation can provide novel therapeutic avenues for improved management of respiratory diseases.
Collapse
Affiliation(s)
- Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Halima Ali Shuwa
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
32
|
Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir Res 2020; 21:299. [PMID: 33187512 PMCID: PMC7666487 DOI: 10.1186/s12931-020-01563-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have found strong associations between air pollution and respiratory effects including development and/or exacerbation of asthma and chronic obstructive pulmonary disease (COPD) as well as increased occurrence of respiratory infections and lung cancer. It has become increasingly clear that also polycyclic aromatic hydrocarbons (PAHs) may affect processes linked to non-malignant diseases in the airways. The aim of the present paper was to review epidemiological studies on associations between gas phase and particle-bound PAHs in ambient air and non-malignant respiratory diseases or closely related physiological processes, to assess whether PAH-exposure may explain some of the effects associated with air pollution. Based on experimental in vivo and in vitro studies, we also explore possible mechanisms for how different PAHs may contribute to such events. Epidemiological studies show strongest evidence for an association between PAHs and asthma development and respiratory function in children. This is supported by studies on prenatal and postnatal exposure. Exposure to PAHs in adults seems to be linked to respiratory functions, exacerbation of asthma and increased morbidity/mortality of obstructive lung diseases. However, available studies are few and weak. Notably, the PAHs measured in plasma/urine also represent other exposure routes than inhalation. Furthermore, the role of PAHs measured in air is difficult to disentangle from that of other air pollution components originating from combustion processes. Experimental studies show that PAHs may trigger various processes linked to non-malignant respiratory diseases. Physiological- and pathological responses include redox imbalance, oxidative stress, inflammation both from the innate and adaptive immune systems, smooth muscle constriction, epithelial- and endothelial dysfunction and dysregulated lung development. Such biological responses may at the molecular level be initiated by PAH-binding to the aryl hydrocarbon receptor (AhR), but possibly also through interactions with beta-adrenergic receptors. In addition, reactive PAH metabolites or reactive oxygen species (ROS) may interfere directly with ion transporters and enzymes involved in signal transduction. Overall, the reviewed literature shows that respiratory effects of PAH-exposure in ambient air may extend beyond lung cancer. The relative importance of the specific PAHs ability to induce disease may differ between the biological endpoint in question.
Collapse
|
33
|
Beneficial Effects of Naringenin in Cigarette Smoke-Induced Damage to the Lung Based on Bioinformatic Prediction and In Vitro Analysis. Molecules 2020; 25:molecules25204704. [PMID: 33066647 PMCID: PMC7587370 DOI: 10.3390/molecules25204704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Naringenin is found mainly in citrus fruits, and is thought to be beneficial in the prevention and control of lung diseases. This study aims to investigate the mechanisms of naringenin against the damage in the lung caused by cigarette smoke. A system bioinformatic approach was proposed to predict the mechanisms of naringenin for protecting lung health. Then, we validated this prediction in BEAS-2B cells treated with cigarette smoke extract (CSE). System bioinformatic analysis indicated that naringenin exhibits protective effects on lung through the inhibition of inflammation and suppression of oxidative stress based on a multi-pathways network, mainly including oxidative stress pathway, Nrf2 pathway, Lung fibrosis pathway, IL-3 signaling pathway, and Aryl hydrocarbon receptor pathway. The in vitro results showed that naringenin significantly attenuated CSE-induced up-regulation of IL-8 and TNF-α. CSE stimulation increased the mRNA expressions of Nrf2, HO-1, and NQO1; the levels of total protein and nuclear protein of Nrf2; and the activity of SOD on days 2 and 4; but decreased these indexes on day 6. Naringenin can balance the antioxidant system by regulating Nrf2 and its downstream genes, preliminarily validating that Nrf2 pathway is involved in the protection offered by naringenin against cigarette smoke-induced damage to the lung. It suggests that dietary naringenin shows possible potential use in the management of lung health.
Collapse
|
34
|
Hong Y, Kim WJ. DNA Methylation Markers in Lung Cancer. Curr Genomics 2020; 22:79-87. [PMID: 34220295 PMCID: PMC8188581 DOI: 10.2174/1389202921999201013164110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer-related morbidity and mortality worldwide. As early symptoms of lung cancer are minimal and non-specific, many patients are diagnosed at an advanced stage. Despite a concerted effort to diagnose lung cancer early, no biomarkers that can be used for lung cancer screening and prognosis prediction have been established so far. As global DNA demethylation and gene-specific promoter DNA methylation are present in lung cancer, DNA methylation biomarkers have become a major area of research as potential alternative diagnostic methods to detect lung cancer at an early stage. This review summarizes the emerging DNA methylation changes in lung cancer tumorigenesis, focusing on biomarkers for early detection and their potential clinical applications in lung cancer.
Collapse
Affiliation(s)
- Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
35
|
Improved detection of tumor suppressor events in single-cell RNA-Seq data. NPJ Genom Med 2020; 5:43. [PMID: 33083012 PMCID: PMC7541488 DOI: 10.1038/s41525-020-00151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events. For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell resolution.
Collapse
|
36
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
37
|
You C, Wu S, Zheng SC, Zhu T, Jing H, Flagg K, Wang G, Jin L, Wang S, Teschendorff AE. A cell-type deconvolution meta-analysis of whole blood EWAS reveals lineage-specific smoking-associated DNA methylation changes. Nat Commun 2020; 11:4779. [PMID: 32963246 PMCID: PMC7508850 DOI: 10.1038/s41467-020-18618-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Highly reproducible smoking-associated DNA methylation changes in whole blood have been reported by many Epigenome-Wide-Association Studies (EWAS). These epigenetic alterations could have important implications for understanding and predicting the risk of smoking-related diseases. To this end, it is important to establish if these DNA methylation changes happen in all blood cell subtypes or if they are cell-type specific. Here, we apply a cell-type deconvolution algorithm to identify cell-type specific DNA methylation signals in seven large EWAS. We find that most of the highly reproducible smoking-associated hypomethylation signatures are more prominent in the myeloid lineage. A meta-analysis further identifies a myeloid-specific smoking-associated hypermethylation signature enriched for DNase Hypersensitive Sites in acute myeloid leukemia. These results may guide the design of future smoking EWAS and have important implications for our understanding of how smoking affects immune-cell subtypes and how this may influence the risk of smoking related diseases. Smoking-associated DNA methylation changes in whole blood have been reported by many EWAS. Here, the authors use a cell-type deconvolution algorithm to identify cell-type specific DNA methylation signals in seven EWAS, identifying lineage-specific smoking-associated DNA methylation changes.
Collapse
Affiliation(s)
- Chenglong You
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Sijie Wu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tianyu Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Han Jing
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Ken Flagg
- Guangzhou Regenerative Medicine Guangdong Laboratory, Guangzhou, China
| | - Guangyu Wang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Li Jin
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China. .,UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
38
|
Bhargava M, Viken KJ, Barkes B, Griffin TJ, Gillespie M, Jagtap PD, Sajulga R, Peterson EJ, Dincer HE, Li L, Restrepo CI, O'Connor BP, Fingerlin TE, Perlman DM, Maier LA. Novel protein pathways in development and progression of pulmonary sarcoidosis. Sci Rep 2020; 10:13282. [PMID: 32764642 PMCID: PMC7413390 DOI: 10.1038/s41598-020-69281-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary involvement occurs in up to 95% of sarcoidosis cases. In this pilot study, we examine lung compartment-specific protein expression to identify pathways linked to development and progression of pulmonary sarcoidosis. We characterized bronchoalveolar lavage (BAL) cells and fluid (BALF) proteins in recently diagnosed sarcoidosis cases. We identified 4,306 proteins in BAL cells, of which 272 proteins were differentially expressed in sarcoidosis compared to controls. These proteins map to novel pathways such as integrin-linked kinase and IL-8 signaling and previously implicated pathways in sarcoidosis, including phagosome maturation, clathrin-mediated endocytic signaling and redox balance. In the BALF, the differentially expressed proteins map to several pathways identified in the BAL cells. The differentially expressed BALF proteins also map to aryl hydrocarbon signaling, communication between innate and adaptive immune response, integrin, PTEN and phospholipase C signaling, serotonin and tryptophan metabolism, autophagy, and B cell receptor signaling. Additional pathways that were different between progressive and non-progressive sarcoidosis in the BALF included CD28 signaling and PFKFB4 signaling. Our studies demonstrate the power of contemporary proteomics to reveal novel mechanisms operational in sarcoidosis. Application of our workflows in well-phenotyped large cohorts maybe beneficial to identify biomarkers for diagnosis and prognosis and therapeutically tenable molecular mechanisms.
Collapse
Affiliation(s)
- Maneesh Bhargava
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Minnesota, MMC 276, 420 Delaware St SE, Minneapolis, MN, USA.
| | - K J Viken
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Minnesota, MMC 276, 420 Delaware St SE, Minneapolis, MN, USA
| | - B Barkes
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
| | - T J Griffin
- Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - M Gillespie
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
| | - P D Jagtap
- Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - R Sajulga
- Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - E J Peterson
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - H E Dincer
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Minnesota, MMC 276, 420 Delaware St SE, Minneapolis, MN, USA
| | - L Li
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
| | - C I Restrepo
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
| | - B P O'Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - T E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - D M Perlman
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Minnesota, MMC 276, 420 Delaware St SE, Minneapolis, MN, USA
| | - L A Maier
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
| |
Collapse
|
39
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
40
|
Analysis of the Mechanism of Zhichuanling Oral Liquid in Treating Bronchial Asthma Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1875980. [PMID: 32015750 PMCID: PMC6988691 DOI: 10.1155/2020/1875980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023]
Abstract
Zhichuanling oral liquid (ZOL) as a preparation of traditional Chinese medicine is widely used for the treatment of asthma in China; therefore, it is necessary to systematically clarify bioactive chemical ingredients and the mechanism of action of ZOL. Information on ZOL ingredients and asthma-related targets was collected, and we used the latest systematic pharmacological methods to construct protein-protein interaction network and compound-target network and then visualized them. Finally, GO and KEGG pathway enrichment analysis was conducted through the clusterProfiler package in the R software. The results showed that 58 bioactive ingredients and 42 potential targets of ZOL related to asthma were identified, following six important components and nine hub genes screened. Further cluster and enrichment analysis suggested that NF-κB signaling pathway, PI3K/Akt signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway, and TNF signaling pathway might be core pathways of ZOL for asthma. Our work successfully predicted the active ingredients and potential targets of ZOL and provided the explanation for the mechanism of action of ZOL for asthma through the systematic analysis, which suggested that ZOL played a major role in many ways including reducing airway inflammation and inhibiting airway remodeling and mucus secretion. Moreover, ZOL combined with glucocorticoids may have some effects on severe asthma.
Collapse
|
41
|
Attafi IM, Bakheet SA, Korashy HM. The role of NF-κB and AhR transcription factors in lead-induced lung toxicity in human lung cancer A549 cells. Toxicol Mech Methods 2019; 30:197-207. [PMID: 31682781 DOI: 10.1080/15376516.2019.1687629] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lead (Pb) is recognized as the first heavy metal of the top six toxic air pollutants threatening human health and the second hazardous substance. Pb exposure is associated with lung impairment and high incidences of lung cancer. Nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways are known to be expressed and play an important role in the lung. However, the link between Pb lung toxicity and NF-κB and/or AhR pathways remains unclear. This study was established to explore the role of NF-κB and AhR modulation in Pb-induced lung toxicity in human lung cancer A549 cells. In the current study, treatment of A549 cells with Pb significantly induced cell apoptosis as evidenced by increasing a) the percentage of cells underwent apoptosis determined by flow cytometry and b) p53 mRNA level. Pb treatment induced oxidative stress by a) increasing the formation of reactive oxygen species and b) decreasing GSTA1 mRNA levels. The toxic effects of Pb on the lung was associated with significant increases in NF-κB and AhR levels which was accompanied with increases in downstream targets genes, iNOS and CYP1A1, respectively. Inhibition of NF-κB or AhR either chemically using resveratrol or genetically using small interfering RNA (siRNA) significantly rescued A549 cells from Pb-mediated lung toxicity. The results clearly indicate that Pb-mediated lung toxicities are NF-κB and AhR-dependent mechanism.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Poison Control & Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
42
|
Temporal and tissue-specific activation of aryl hydrocarbon receptor in discrete mouse models of kidney disease. Kidney Int 2019; 97:538-550. [PMID: 31932072 DOI: 10.1016/j.kint.2019.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022]
Abstract
Emerging evidence in animal models of chronic kidney disease (CKD) implicates Aryl Hydrocarbon Receptor (AHR) signaling as a mediator of uremic toxicity. However, details about its tissue-specific and time-dependent activation in response to various renal pathologies remain poorly defined. Here, a comprehensive analysis of AHR induction was conducted in response to discrete models of kidney diseases using a transgenic mouse line expressing the AHR responsive-promoter tethered to a β-galactosidase reporter gene. Following validation using a canonical AHR ligand (a dioxin derivative), the transgenic mice were subjected to adenine-induced and ischemia/reperfusion-induced injury models representing CKD and acute kidney injury (AKI), respectively, in humans. Indoxyl sulfate was artificially increased in mice through the drinking water and by inhibiting its excretion into the urine. Adenine-fed mice showed a distinct and significant increase in β-galactosidase in the proximal and distal renal tubules, cardiac myocytes, hepatocytes, and microvasculature in the cerebral cortex. The pattern of β-galactosidase increase coincided with the changes in serum indoxyl sulfate levels. Machine-learning-based image quantification revealed positive correlations between indoxyl sulfate levels and β-galactosidase expression in various tissues. This pattern of β-galactosidase expression was recapitulated in the indoxyl sulfate-specific model. The ischemia/reperfusion injury model showed increase in β-galactosidase in renal tubules that persisted despite reduction in serum indoxyl sulfate and blood urea nitrogen levels. Thus, our results demonstrate a relationship between AHR activation in various tissues of mice with CKD or AKI and the levels of indoxyl sulfate. This study demonstrates the use of a reporter gene mouse to probe tissue-specific manifestations of uremia in translationally relevant animal models and provide hypothesis-generating insights into the mechanism of uremic toxicity that warrant further investigation.
Collapse
|
43
|
Kolonko M, Greb-Markiewicz B. bHLH-PAS Proteins: Their Structure and Intrinsic Disorder. Int J Mol Sci 2019; 20:ijms20153653. [PMID: 31357385 PMCID: PMC6695611 DOI: 10.3390/ijms20153653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
The basic helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) proteins are a class of transcriptional regulators, commonly occurring in living organisms and highly conserved among vertebrates and invertebrates. These proteins exhibit a relatively well-conserved domain structure: the bHLH domain located at the N-terminus, followed by PAS-A and PAS-B domains. In contrast, their C-terminal fragments present significant variability in their primary structure and are unique for individual proteins. C-termini were shown to be responsible for the specific modulation of protein action. In this review, we present the current state of knowledge, based on NMR and X-ray analysis, concerning the structural properties of bHLH–PAS proteins. It is worth noting that all determined structures comprise only selected domains (bHLH and/or PAS). At the same time, substantial parts of proteins, comprising their long C-termini, have not been structurally characterized to date. Interestingly, these regions appear to be intrinsically disordered (IDRs) and are still a challenge to research. We aim to emphasize the significance of IDRs for the flexibility and function of bHLH–PAS proteins. Finally, we propose modern NMR methods for the structural characterization of the IDRs of bHLH–PAS proteins.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
44
|
Neophytou AM, Oh SS, Hu D, Huntsman S, Eng C, Rodríguez-Santana JR, Kumar R, Balmes JR, Eisen EA, Burchard EG. In utero tobacco smoke exposure, DNA methylation, and asthma in Latino children. Environ Epidemiol 2019; 3:e048. [PMID: 31342008 PMCID: PMC6571182 DOI: 10.1097/ee9.0000000000000048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Maternal smoking during pregnancy is a risk factor for chronic disease later in life and has been associated with variability of DNA methylation at specific cytosine-phosphate-guanine (CpG) loci. We assessed the role of DNA methylation as a potential mediator of adverse effects of in utero tobacco smoke exposures on asthma outcomes in Latino children from the US mainland and Puerto Rico. METHODS Relationships between self-reported exposure and DNA methylation at CpG loci previously reported to be associated with maternal smoking were assessed in a subsample consisting of 572 children aged 8-21 years (310 cases with asthma, 262 healthy controls), sampled from a larger asthma case-control study. Subsequently, we assessed associations between top loci and asthma-related outcomes, followed by mediation analysis for loci for which associations with outcomes were observed. RESULTS Self-reported maternal smoking was associated with a -1.5% (95% confidence interval (CI) = -2.4%, -0.6%) lower methylation at CpG locus cg05575921 on the AHRR gene; a 1% increase in DNA methylation at the same locus resulted in an odds ratio (OR) of 0.90 (95% CI = 0.83, 0.96) for the odds of asthma. The OR for the indirect effect of maternal smoking on asthma mediated through methylation at the cg05575921 locus was 1.18 (95% CI = 1.07, 1.68), compared to the OR for the total effect of exposure in the parent study of 1.48 (95% CI = 1.03, 2.11). CONCLUSIONS Our findings suggest potential mediation by DNA methylation in the association between maternal smoking during pregnancy and asthma status.
Collapse
Affiliation(s)
- Andreas M. Neophytou
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Sam S. Oh
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California
| | | | - Rajesh Kumar
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - John R. Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
- Department of Medicine, University of California, San Francisco, California
| | - Ellen A. Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | | |
Collapse
|
45
|
Burleson JD, Siniard D, Yadagiri VK, Chen X, Weirauch MT, Ruff BP, Brandt EB, Hershey GKK, Ji H. TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Sci Rep 2019; 9:7361. [PMID: 31089182 PMCID: PMC6517446 DOI: 10.1038/s41598-019-43767-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
Previous studies have suggested a role for Tet1 in the pathogenesis of childhood asthma. However, how Tet1 contributes to asthma remains unknown. Here we used mice deficient for Tet1 in a well-established model of allergic airway inflammation and demonstrated that loss of Tet1 increased disease severity including airway hyperresponsiveness and lung eosinophilia. Increased expression of Muc5ac, Il13, Il33, Il17a, Egfr, and Tff2 were observed in HDM-challenged Tet1-deficient mice compared to Tet1+/+ littermates. Further, transcriptomic analysis of lung RNA followed by pathway and protein network analysis showed that the IFN signaling pathway was significantly upregulated and the aryl hydrocarbon receptor (AhR) pathway was significantly downregulated in HDM-challenged Tet1-/- mice. This transcriptional regulation of the IFN and AhR pathways by Tet1 was also present in human bronchial epithelial cells at base line and following HDM challenges. Genes in these pathways were further associated with changes in DNA methylation, predicted binding of transcriptional factors with relevant functions in their promoters, and the presence of histone marks generated by histone enzymes that are known to interact with Tet1. Collectively, our data suggest that Tet1 inhibits HDM-induced allergic airway inflammation by direct regulation of the IFN and AhR pathways.
Collapse
Affiliation(s)
- J D Burleson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dylan Siniard
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Veda K Yadagiri
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandy P Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA. .,California National Primate Research Center, Davis, CA, USA.
| |
Collapse
|
46
|
Kim WH, Lillehoj HS, Min W. Indole Treatment Alleviates Intestinal Tissue Damage Induced by Chicken Coccidiosis Through Activation of the Aryl Hydrocarbon Receptor. Front Immunol 2019; 10:560. [PMID: 30972060 PMCID: PMC6443889 DOI: 10.3389/fimmu.2019.00560] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Indoles, as the ligands of aryl hydrocarbon receptor (AhR), have been shown to possess immune-modulating property in terms of the balancing between regulatory T cells (Treg) and T helper 17 cells (Th17) activities. In the present study, we examined the effects of dietary indoles, 3,3′-diindolylmethane (DIM) and indole-3-carbinol (I3C), on CD4+T cell population and functions in chickens. Furthermore, the effects of dietary DIM treatment on chicken coccidiosis caused by an apicomplexan parasite were investigated. Dietary treatment of healthy chickens with DIM and I3C induced increased CD4+CD25+ (Treg) cells and the mRNA expression of IL-10, while decreasing number of CD4+IL-17A+ (Th17) cells and Th17-related cytokines transcripts expression in the intestine. In addition, we explored the role of AhR in indole-treated splenic lymphocytes by using AhR antagonist and our results suggested that DIM is a ligand for chicken AhR. In chicken coccidiosis, treatment of DIM increased the ratio of Treg/Th17 cells and significantly reduced intestinal lesion although no significant changes in body weight and fecal oocyst production were noted compared to non-treated control group. These results indicate that DIM is likely to affect the ratios of Treg/Th17 reducing the level of local inflammatory response induced by Eimeria or facilitate repairing process of inflamed gut following Eimeria infection. The results described herein are thus consistent with the concept that AhR ligand modulates the T cell immunity through the alteration of Treg/Th17 cells with Treg dominance. To our knowledge, present study is the first scientific report showing the effects of dietary indole on T cell immunity in poultry species.
Collapse
Affiliation(s)
- Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, U. S. Department of Agriculture, Beltsville Agricultural Research Center, ARS, Beltsville, MD, United States
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, U. S. Department of Agriculture, Beltsville Agricultural Research Center, ARS, Beltsville, MD, United States
| | - Wongi Min
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
47
|
Wang HC, Huang SK. Metformin inhibits IgE- and aryl hydrocarbon receptor-mediated mast cell activation in vitro and in vivo. Eur J Immunol 2018; 48:1989-1996. [PMID: 30242842 DOI: 10.1002/eji.201847706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 01/15/2023]
Abstract
Metformin, an anti-diabetic drug, possesses anti-inflammatory property beyond its glucose-lowering activity, but its regulatory effect on mast cells and allergic responses remains unknown, wherein the aryl hydrocarbon receptor (AhR)-ligand axis is critical in controlling mast cell activation. Herein, we provide evidence supporting the role of metformin in modulating mast cell activation by FcεR1-, AhR-mediated signaling or their combination. Metformin at relatively low doses was shown to suppress FcεR1-mediated degranulation, IL-13, TNF-α and sphingosine-1-phosphate (S1P) secretion in murine bone marrow-derived mast cells (BMMCs). In contrast, metformin at the same doses potently inhibited all parameters in mast cells stimulated with an AhR ligand, 5,11-dihydroindolo[3,2-b]carbazole-6-carbaldehyde (FICZ). Further, metformin was shown to inhibit FcεR1- and AhR-mediated passive cutaneous anaphylaxis (PCA) in vivo, reversible by a S1P receptor 2 antagonist, JTE-013. Using AhR reporter cells, Huh7-DRE-Luc cells, a human mast cell line, HMC-1, and BMMCs, metformin's inhibitory effect was mediated through the suppression of FICZ-induced AhR activity, calcium mobilization and ROS generation. Notably, FICZ-mediated oxidation of S1P lyase (S1PL) and its reduced activity were reversed by metformin, resulting in decreased levels of S1P. Collectively, these results suggested the potential utility of metformin in treating allergic diseases, particularly in cases with comorbid type II diabetes mellitus.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
| |
Collapse
|
48
|
Particulate matter containing environmentally persistent free radicals induces AhR-dependent cytokine and reactive oxygen species production in human bronchial epithelial cells. PLoS One 2018; 13:e0205412. [PMID: 30308017 PMCID: PMC6181347 DOI: 10.1371/journal.pone.0205412] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Particulate matter (PM) is emitted during the combustion of fuels and wastes. PM exposure exacerbates pulmonary diseases, and the mechanism may involve oxidative stress. At lower combustion temperatures such as occurs in the cool zone of a flame, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, resulting in the formation of surface-stabilized environmentally persistent free radicals (EPFR). Prior studies showed that PM-containing EPFR redox cycle to produce reactive oxygen species (ROS), and after inhalation, EPFR induce pulmonary inflammation and oxidative stress. Our objective was to elucidate mechanisms linking EPFR-induced oxidant injury with increased cytokine production by pulmonary epithelial cells. We thus treated human bronchial epithelial cells with EPFR at sub-toxic doses and measured ROS and cytokine production. To assess aryl hydrocarbon receptor (AhR) activity, cells were transfected with a luciferase reporter for xenobiotic response element activation. To test whether cytokine production was dependent upon AhR activation or oxidative stress, some cells were co-treated with an antioxidant or an AhR antagonist. EPFR increased IL-6 release in an ROS and AhR- and oxidant-dependent manner. Moreover, EPFR induced an AhR activation that was dependent upon oxidant production, since antioxidant co-treatment blocked AhR activation. On the other hand, EPFR treatment increased a cellular ROS production that was at least partially attenuated by AhR knockdown using siRNA. While AhR activation was correlated with an increased expression of oxidant-producing enzymes like cytochrome P450 CYP1A1, it is possible that AhR activation is both a cause and effect of EPFR-induced ROS. Finally, lipid oxidation products also induced AhR activation. ROS-dependent AhR activation may be a mechanism for altered epithelial cell responses after EPFR exposure, potentially via formation of bioactive lipid or protein oxidation products.
Collapse
|
49
|
Puccetti M, Giovagnoli S, Zelante T, Romani L, Ricci M. Development of Novel Indole-3-Aldehyde-Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. J Pharm Sci 2018; 107:2341-2353. [PMID: 29715478 DOI: 10.1016/j.xphs.2018.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
Abstract
Considering the recent evidence on the therapeutic potential of postbiotics, this study focused on 2 main goals: (1) to develop an enteric microparticle (MP) formulation for intestinal localized delivery of indole-3-aldehyde (3-IAld) (a microbial-derived metabolite produced by the host's lactobacilli during the catabolic pathway of tryptophan) and (2) to provide support in the employment of spray-drying as innovative one-step manufacturing technique for enteric products. For this purpose, special attention was taken in the knowledge of the influence of equipment setup and feedstock properties on MP enteric behavior. Eudragit® S100 and L100 and ethyl cellulose were used as wall materials and NaOH and ethanol solutions as solvent systems. 3-IAld loading was maintained at 10% w/w. As postulated, feedstock properties influenced spray-drying regime. In addition, they prevailed over other spray-drying process factors in determining MP enteric behavior. Albeit the high buckling regime that produced crumped particles, gastro resistance was obtained by spray-drying 2:1 Eudragit® S100:L100 with 30% w/w ethyl cellulose in ethanol solution. These results support the use of spray-drying as a method for manufacturing gastro-resistant MP. The obtained 3-IAld-loaded enteric MP will be useful to investigate novel postbiotic-based treatments in different therapeutic areas.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| |
Collapse
|
50
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|