1
|
Huang D, Dai J, Yu H, Chen W. Immune dysregulation in endometrial tuberculosis: elevated HLA-G and IL-1Ra as key modulators. Front Cell Infect Microbiol 2025; 15:1548238. [PMID: 40375897 PMCID: PMC12078264 DOI: 10.3389/fcimb.2025.1548238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 05/18/2025] Open
Abstract
Endometrial tuberculosis (ETB) is a reproductive system infection caused by Mycobacterium tuberculosis, primarily invading the endometrium through hematogenous dissemination. This study included 10 patients diagnosed with ETB and 10 patients with pulmonary tuberculosis (PTB) to analyze their clinical, pathological, and immunological characteristics. Anatomically, PTB presented the highest prevalence among tuberculosis cases. Compared to PTB imaging, CT scans of ETB showed less distinctive diagnostic features. Pathologically, abscess formation was more frequently observed in ETB patients than in PTB patients, suggesting a more intense local inflammatory response in ETB. However, there were no statistically significant differences in granulomatous lesions, caseous necrosis, coagulative necrosis, inflammatory necrosis, exudation, acute inflammation, or fibrous tissue hyperplasia between the two groups. Immunohistochemical analysis revealed higher infiltration of macrophages (CD68) in ETB lesions compared to PTB, whereas the counts of T cells (CD3+, CD4+, CD8+) and B cells (CD20) showed no significant differences. Notably, the expression levels of HLA-G and IP-10 were significantly elevated in the lesion areas of ETB compared to PTB. Similarly, the expression of HLA-G, IP-10, IL-1Ra, and IL-10 was significantly higher in the ETB group than in the PTB group. Furthermore, HLA-G and IL-1Ra expression levels were markedly elevated in ETB lesion areas compared to surrounding normal endometrial tissue. HLA-G plays a pivotal role in immune tolerance by modulating local immune responses, while IP-10 is involved in chronic inflammatory signaling. IL-1Ra and IL-10 are key regulators of endometrial immune homeostasis, counterbalancing inflammatory responses that could otherwise disrupt reproductive function. These immunoregulatory factors are crucial in maintaining immune tolerance within the endometrium and may influence immune responses associated with endometrial tuberculosis.
Collapse
Affiliation(s)
- Dan Huang
- Graduate School of Hebei North University, Zhangjiakou, China
- Department of Reproductive Medicine Clinic, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinlong Dai
- Department of Pathology, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Haotian Yu
- Department of Reproductive Medicine Clinic, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Liao K, Chen R, Zhang J, Ruan Y, Huang X, Huang Y, Xia J, Zhao D, Chen L, Zhao Y, Yang F, Xu JF, Shen L, Pi J. cGAS-mediated antibacterial immunotherapy against tuberculosis by macrophage-targeted manganese dioxide nanoagonist. Acta Biomater 2025; 196:471-486. [PMID: 40044101 DOI: 10.1016/j.actbio.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases. The pathogenesis hallmarks for TB are complex immune escape mechanisms of Mtb and low targeting effects of anti-TB drugs. cGAS signaling, which is responsible for triggering host antibacterial immunity against Mtb infection, has shown potentials to serve as targets for anti-TB immunotherapy. As cGAS agonist manganese ions (Mn2+) can activate cGAS-mediated autophagy to inhibit intracellular Mtb in macrophages, we constructed a functional nanoagonist targeting cGAS signaling based on manganese dioxide nanoparticles, naming Tuf-Rif@HA-MnO2 NPs, for synergistic macrophage-targeted drug delivery and anti-TB immuno-therapeutics. Tuf-Rif@HA-MnO2 NPs can actively target macrophages for rifampicin delivery and react with intracellular glutathione (GSH) to release Mn2+ for cGAS-STING signaling activation, which further promote autophagy and antibacterial M1 polarization of Mtb infected macrophages to achieve synergistic intracellular Mtb clearance. Furthermore, Tuf-Rif@HA-MnO2 NPs can potentiate dendritic cell maturation, CD4+ Th1 cell and CD8+ cytotoxic T cell activation in vivo, which collectively attribute to reduced Mtb burdens and alleviated tissue inflammations in lung of Mtb-infected mice without systemic toxicity. This macrophage targeted drug delivery nanoagonist system is expected to develop rational immunotherapy strategy targeting cGAS signaling against TB and drug-resistant TB. STATEMENT OF SIGNIFICANCE: cGAS-mediated autophagy plays a critical role in Mtb clearance in macrophages. Tuf-Rif@HA-MnO2 NPs specifically deliver rifampicin into macrophage for Mtb clearance. Tuf-Rif@HA-MnO2 NPs activate cGAS-mediated macrophage autophagy for Mtb clearance. Tuf-Rif@HA-MnO2 NPs synergize cGAS-mediated immunotherapy with targeted drug delivery for more effective anti-TB treatment.
Collapse
Affiliation(s)
- Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Ruihong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Jinwei Zhang
- Department of Dermatology, Chongqing General Hospital, Chongqing 401147, PR China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Xueqin Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650032, PR China
| | - Daina Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China.
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China.
| | - Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China.
| |
Collapse
|
3
|
Fu Y, Yang X, Ling Q, Huang Y, You X, Nie D, Sheng J, Chen Y, Wen Q, Zhou X, Zhou C, Hu S, Ma L. USP25 Promotes the Antimycobacterial Response of Macrophages Through Stabilizing B-Raf and C-Raf. J Infect Dis 2025; 231:366-377. [PMID: 39110031 DOI: 10.1093/infdis/jiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 02/21/2025] Open
Abstract
Ubiquitin-specific peptidase 25 (USP25) is one of the best-characterized deubiquitinating enzymes and plays a vital regulatory role in various biological processes, especially in cancer development and immune regulation. However, the exact role of USP25 and its underlying mechanisms in macrophage activation and immunogenicity during Mycobacterium tuberculosis infection remain unclear. In this study, we found that M tuberculosis infection induced USP25 expression in human and mouse macrophages. In particular, USP25 expression is elevated in multiple cell types, especially monocytes, in patients with tuberculosis. Additionally, USP25 deficiency in macrophages and mice resulted in compromised immunity against M tuberculosis infection, accompanied by reduced expressions of various proinflammatory cytokines and chemokines. Mechanistically, USP25 in macrophages promoted the activation of the ERK signaling pathway through deubiquitination and stabilization of B-Raf and C-Raf. These findings collectively suggest the critical roles of USP25 in M tuberculosis infection and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xiaodan Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Qiao Ling
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xiaolong You
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Dingnai Nie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| |
Collapse
|
4
|
Nan Y, Wang Y, Dong Y, Liu Y, Ge X, Chen Y, Long M, Zhou X. Impact of Hypoxia-Inducible Factor-1α on Host Immune Metabolism and Tissue Damage During Mycobacterium bovis Infection. J Infect Dis 2025; 231:355-365. [PMID: 38843067 DOI: 10.1093/infdis/jiae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/05/2024] [Indexed: 02/21/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a pivotal regulator of metabolic and inflammatory responses. This study investigated the role of HIF-1α in Mycobacterium bovis infection and its effects on host immune metabolism and tissue damage. We evaluated the expression of immunometabolism markers and matrix metalloproteinases (MMPs) in cells infected with M. bovis, and following HIF-1α inhibition in vitro. To understand the implications of HIF-1α inhibition on disease progression, mice at different infection stages were treated with the HIF-1α inhibitor, YC-1. Our results revealed an upregulation of HIF-1α in macrophages after M. bovis infection, facilitating enhanced M1 macrophage polarization. Blockade of HIF-1α moderated these responses but escalated MMP activity, hindering bacterial control. Consistent with our in vitro results, early-stage treatment of mice with YC-1 aggravated pathological alterations and tissue damage, while late-stage HIF-1α inhibition proved beneficial in managing the disease. Our findings underscored the nuanced role of HIF-1α across different phases of M. bovis infection.
Collapse
Affiliation(s)
- Yue Nan
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xin Ge
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yulan Chen
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Shepelkova GS, Evstifeev VV, Berezovskiy YS, Ergeshova AE, Tarasov RV, Bagirov MA, Yeremeev VV. Characteristics of Pulmonary Inflammation in Patients with Different Forms of Active Tuberculosis. Int J Mol Sci 2024; 25:11795. [PMID: 39519346 PMCID: PMC11546853 DOI: 10.3390/ijms252111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Targeted treatment of tuberculosis-associated lung damage requires an understanding of the precise mechanisms of immunopathology. A major obstacle to the longitudinal study of tuberculosis (TB) immunopathogenesis in humans is the lack of serial lung biopsies during disease progression and treatment, which could be used to characterize local immune pathways involved in tissue damage. Understanding of the immunobiology of lung tissue damage in tuberculosis has largely been based on animal models. Our study looked for signs of inflammation in TB patients' lung biopsies. Results were compared between a site of infection and relatively healthy tissue outside the site. The most significant differences in the expression of microRNAs (miRs) and cytokine/chemokines were observed between the non-decayed tuberculoma and the surrounding parenchyma. In addition, these parameters showed almost no differences between the cavitary wall and surrounding tissue. This is an indication that the inflammatory process is more prevalent in fibrotic cavitary tuberculosis (FCT). In FCT subjects, no difference was observed between the cavity wall and the parenchyma in the production of key inflammatory factors such as IL-6, IL-11, IL-17, and IFNγ. This is an indication that the limits of the inflammatory response are broader in FCT. The expression levels of miR-191, miR-193a, miR-222, miR-223, miR-18, miR-155, miR-376c, miR-26a, miR-150, and miR-124 were not significantly different between the cavernous wall and lung tissue in patients with FCT, further confirming the spread of inflammatory and destructive processes beyond the focus of infection.
Collapse
Affiliation(s)
- Galina S. Shepelkova
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (A.E.E.); (R.V.T.); (M.A.B.)
| | - Vladimir V. Evstifeev
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (A.E.E.); (R.V.T.); (M.A.B.)
| | - Yuriy S. Berezovskiy
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (A.E.E.); (R.V.T.); (M.A.B.)
- Moscow Regional Clinical Tuberculosis Center, Mytishchi 141132, Russia
| | - Anush E. Ergeshova
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (A.E.E.); (R.V.T.); (M.A.B.)
| | - Ruslan V. Tarasov
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (A.E.E.); (R.V.T.); (M.A.B.)
| | - Mamed A. Bagirov
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (A.E.E.); (R.V.T.); (M.A.B.)
| | - Vladimir V. Yeremeev
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (A.E.E.); (R.V.T.); (M.A.B.)
| |
Collapse
|
6
|
Zhao S, Zhang Z, Xu J, Zhou Z, Wu Y, Wu Y, Jiang G. Plasma cytokine levels as markers of pathogenesis and treatment response in patients with non-tuberculous mycobacterial pulmonary disease. Braz J Med Biol Res 2024; 57:e13755. [PMID: 39258673 PMCID: PMC11379429 DOI: 10.1590/1414-431x2024e13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
We investigated the value of plasma cytokine levels as markers of pathogenesis and treatment response in patients with non-tuberculous mycobacteria (NTM) pulmonary disease. Plasma cytokine levels were measured and compared among patients with NTM pulmonary disease (n=111), tuberculosis (TB) patients (n=50), and healthy individuals (n=40). Changes during treatment were monitored at 3 and 6 months after treatment. According to the treatment response, NTM patients were classified as 'resistance' or 'sensitivity' responders. The results revealed that five out of twelve cytokines exhibited significantly higher levels in NTM patients compared to controls. Among these, interleukin (IL)-6 demonstrated the strongest discriminating capacity for NTM. Furthermore, when combined with IL-1β, they efficiently distinguished between NTM drug-resistant and drug-sensitive patients, as well as between NTM and TB groups. Additionally, IL-6 levels initially rose and then decreased in the NTM drug-resistant group during the six months of treatment, similar to the behavior of IL-1β in the NTM drug-sensitive group. Subgroup analyses of the sensitive group with differential treatment responses revealed an increase in IL-10 levels in the six-month treatment responders. A high IL-6/IL-10 ratio was associated with increased disease severity of NTM and TB. Collectively, combinations of various plasma cytokines, specifically IL-1β, IL-6, and IL-10, effectively distinguished NTM patients with varying mycobacterial burdens, with IL-6 and IL-10 emerging as potential biomarkers for early treatment response. The combination of IL-6 and IL-1β demonstrated the highest discriminatory value for distinguishing between NTM-resistant and NTM-sensitive groups as well as between NTM and TB groups.
Collapse
Affiliation(s)
- Sai Zhao
- Department of Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- Immunology Department, Binzhou Medical University, Yantai, China
| | - Zhiqiang Zhang
- Department of Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Jie Xu
- Department of Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Zheng Zhou
- Department of Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Yunhua Wu
- Immunology Department, Binzhou Medical University, Yantai, China
| | - Yanhua Wu
- Department of Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Guosheng Jiang
- Immunology Department, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Pavan Kumar N, Padmapriyadarsini C, Nancy A, Tamizhselvan M, Mohan A, Reddy D, Ganga Devi NP, Rathinam P, Jeyadeepa B, Shandil RK, Guleria R, Singh M, Babu S. Effect of Metformin on systemic chemokine responses during anti-tuberculosis chemotherapy. Tuberculosis (Edinb) 2024; 148:102523. [PMID: 38850838 DOI: 10.1016/j.tube.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Metformin (MET), by boosting immunity, has been suggested as a host-adjunctive therapy to anti-tuberculosis treatment (ATT). METHODS We evaluated whether adding MET to the standard ATT can alter the host chemokine response. We investigated the influence of metformin on the plasma levels of a wide panel of chemokines in a group of active tuberculosis patients before treatment, at 2nd month of ATT and at 6-months of ATT as part of our clinical study to examine the effect of metformin on ATT. RESULTS Our results demonstrated that addition of metformin resulted in diminished CC (CCL1 and CCL3) and CXC (CXCL-2 and CXCL-10) chemokines in MET arm as compared to non-MET arm at the 2nd month and 6th month of ATT. In addition to this, MET arm showed significantly diminished chemokines in individuals with high bacterial burden and cavitary disease. CONCLUSION Our current data suggest that metformin alters chemokines responses that could potentially curb excessive inflammation during ATT.
Collapse
Affiliation(s)
| | | | - Arul Nancy
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - M Tamizhselvan
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Anant Mohan
- All India Institute for Medical Sciences, New Delhi, India
| | - Devarajulu Reddy
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | | | | | | | - R K Shandil
- Open Source Pharma Foundation, Bangalore, India
| | | | - Manjula Singh
- Indian Council of Medical Research, New Delhi, India
| | - Subash Babu
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
8
|
Hall TJ, McHugo GP, Mullen MP, Ward JA, Killick KE, Browne JA, Gordon SV, MacHugh DE. Integrative and comparative genomic analyses of mammalian macrophage responses to intracellular mycobacterial pathogens. Tuberculosis (Edinb) 2024; 147:102453. [PMID: 38071177 DOI: 10.1016/j.tube.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 06/14/2024]
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is a close evolutionary relative of Mycobacterium bovis, which causes bovine tuberculosis (bTB), one of the most damaging infectious diseases to livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. In this study, a multi-omics integrative approach was applied with functional genomics and GWAS data sets across the two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different experimental infection groups were used: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. RNA-seq data from these experiments 24 h post-infection (24 hpi) was analysed using three computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, and 3) combined pathway analysis. The results were integrated with high-resolution bovine and human GWAS data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to disease. This revealed common and unique response macrophage pathways for both pathogens and identified 32 genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority of which encode key components of the NF-κB signalling pathway and that also drive formation of the granuloma.
Collapse
Affiliation(s)
- Thomas J Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Michael P Mullen
- Bioscience Research Institute, Technological University of the Shannon, Athlone, Westmeath, N37 HD68, Ireland
| | - James A Ward
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
9
|
Liu L, Wang X, Luo L, Liu X, Chen J. Risk Factors of Tuberculosis Destroyed Lung in Patients with Pulmonary Tuberculosis and Structural Lung Diseases: A Retrospective Observational Study. Risk Manag Healthc Policy 2024; 17:753-762. [PMID: 38567384 PMCID: PMC10985215 DOI: 10.2147/rmhp.s448765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background Tuberculosis destroyed lung constitutes a significant worldwide public health challenge, little is known about its associated risk factors and prognosis. Our study aimed to identify the risk factors of tuberculosis destroyed lung among pulmonary tuberculosis and structural lung diseases. Methods Between January 2019 and December 2021, a case-control study was conducted at the Third People's Hospital of Shenzhen in China. We collected the clinical data among patients with pulmonary tuberculosis and structural lung diseases. Cases were defined as patients with tuberculosis destroyed lung. Controls were not diagnosed with the tuberculosis destroyed lung. A binary logistic regression was performed. Results In our study, a total of 341 patients met the inclusion criteria, including 182 cases and 159 controls. We found that age ranges of 46-60 years (aOR: 4.879; 95% CI: 2.338-10.180), >60 years (aOR: 3.384; 95% CI: 1.481-7.735); history of TB treatment (aOR: 2.729; 95% CI: 1.606-4.638); malnutrition (aOR: 5.126; 95% CI: 1.359-19.335); respiratory failure (aOR: 5.080; 95% CI: 1.491-17.306); and bronchiarctia (aOR: 3.499; 95% CI: 1.330-9.209) were the independent risk factors for tuberculosis destroyed lung. Conversely, having a normal (aOR: 0.207; 95% CI: 0.116-0.371) or overweight BMI (aOR: 0.259; 95% CI: 0.090-0.747) emerged as a protective factor against tuberculosis destroyed lung. Conclusion This study indicated that tuberculosis destroyed lung is a common condition among patients with pulmonary tuberculosis and structural lung diseases. The independent risk factors for tuberculosis destroyed lung were identified as being within the age groups of 46-60 and over 60 years, having a previous history of TB treatment, malnutrition, respiratory failure, and bronchiarctia. It is essential to closely monitor patients possessing these risk factors to prevent the progression towards tuberculosis destroyed lung.
Collapse
Affiliation(s)
- Linlin Liu
- Hengyang Medical School, School of Nursing, University of South China, Hengyang, People’s Republic of China
| | - Xiufen Wang
- Department of the Third Pulmonary Disease, The Third People’s Hospital of Shenzhen, Shenzhen, People’s Republic of China
- National Clinical Research Center for Infectious Diseases, Shenzhen, People’s Republic of China
| | - Li Luo
- Department of the Third Pulmonary Disease, The Third People’s Hospital of Shenzhen, Shenzhen, People’s Republic of China
- National Clinical Research Center for Infectious Diseases, Shenzhen, People’s Republic of China
| | - Xuhui Liu
- Department of the Third Pulmonary Disease, The Third People’s Hospital of Shenzhen, Shenzhen, People’s Republic of China
- National Clinical Research Center for Infectious Diseases, Shenzhen, People’s Republic of China
| | - Jingfang Chen
- Hengyang Medical School, School of Nursing, University of South China, Hengyang, People’s Republic of China
- Department of the Third Pulmonary Disease, The Third People’s Hospital of Shenzhen, Shenzhen, People’s Republic of China
- National Clinical Research Center for Infectious Diseases, Shenzhen, People’s Republic of China
- Faculty of Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| |
Collapse
|
10
|
Suresh S, Begum RF, Singh SA, Vellapandian C. An Update to Novel Therapeutic Options for Combating Tuberculosis: Challenges and Future Prospectives. Curr Pharm Biotechnol 2024; 25:1778-1790. [PMID: 38310450 DOI: 10.2174/0113892010246389231012041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 02/05/2024]
Abstract
Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - S Ankul Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
11
|
Kulkarni S, Arunachala S, Chaya SK, ShankaraSetty RV, Karnik M, Bansal N, Ravindran S, Lokesh KS, Mohan M, Kaleem Ullah M, Siddaiah JB, Mahesh PA. The Assessment of Serum Fibronectin Levels as a Potential Biomarker for the Severity of Drug-Sensitive Pulmonary Tuberculosis: A Pilot Study. Diagnostics (Basel) 2023; 14:50. [PMID: 38201359 PMCID: PMC10804257 DOI: 10.3390/diagnostics14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is a global health burden caused by Mycobacterium tuberculosis (Mtb) infection. Fibronectin (Fn) facilitates Mtb attachment to host cells. We studied the Fn levels in smear-positive TB patients to assess its correlation with disease severity based on sputum smears and chest X-rays. METHODS Newly detected consecutive sputum AFB-positive pulmonary TB patients (n = 78) and healthy control subjects (n = 11) were included. The mycobacterial load in the sputum smear was assessed by IUATLD classification, ranging from 0 to 3. The severity of pulmonary involvement was assessed radiologically in terms of both the number of zones involved (0-6) and as localized (up to 2 zones), moderate (3-4 zones), or extensive (5-6 zones). The serum human fibronectin levels were measured by using a commercially available enzyme-linked immunosorbent assay (ELISA) kit (Catalogue No: CK-bio-11486, Shanghai Coon Koon Biotech Co., Ltd., Shanghai, China). RESULTS The PTB patients showed lower Fn levels (102.4 ± 26.7) compared with the controls (108.8 ± 6.8), but they were not statistically significant. Higher AFB smear grades had lower Fn levels. The chest X-ray zones involved were inversely correlated with Fn levels. The Fn levels, adjusted for age and gender, decreased with increased mycobacterial load and the number of chest radiograph zones affected. A Fn level <109.39 g/mL predicted greater TB severity (sensitivity of 67.57% and specificity of 90.38%), while a level <99.32 pg/mL predicted severity based on the chest radiology (sensitivity of 84.21% and specificity of 100%). CONCLUSIONS The Fn levels are lower in tuberculosis patients and are negatively correlated with severity based on sputum mycobacterial load and chest radiographs. The Fn levels may serve as a potential biomarker for assessing TB severity, which could have implications for early diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Shreedhar Kulkarni
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Sumalatha Arunachala
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
- Public Health Research Institute of India, Mysore 570020, India
- Department of Critical Care Medicine, Adichunchanagiri Institute of Medical Sciences, Bellur 571448, India
| | - Sindaghatta Krishnarao Chaya
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Rekha Vaddarahalli ShankaraSetty
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Medha Karnik
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India; (M.K.)
| | - Nidhi Bansal
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Sukanya Ravindran
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Komarla Sundararaja Lokesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Mikash Mohan
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Mohammed Kaleem Ullah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India; (M.K.)
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jayaraj Biligere Siddaiah
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India (S.A.); (R.V.S.); (S.R.)
| |
Collapse
|
12
|
Kaufmann SHE. Vaccine development against tuberculosis before and after Covid-19. Front Immunol 2023; 14:1273938. [PMID: 38035095 PMCID: PMC10684952 DOI: 10.3389/fimmu.2023.1273938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease (Covid-19) has not only shaped awareness of the impact of infectious diseases on global health. It has also provided instructive lessons for better prevention strategies against new and current infectious diseases of major importance. Tuberculosis (TB) is a major current health threat caused by Mycobacterium tuberculosis (Mtb) which has claimed more lives than any other pathogen over the last few centuries. Hence, better intervention measures, notably novel vaccines, are urgently needed to accomplish the goal of the World Health Organization to end TB by 2030. This article describes how the research and development of TB vaccines can benefit from recent developments in the Covid-19 vaccine pipeline from research to clinical development and outlines how the field of TB research can pursue its own approaches. It begins with a brief discussion of major vaccine platforms in general terms followed by a short description of the most widely applied Covid-19 vaccines. Next, different vaccination regimes and particular hurdles for TB vaccine research and development are described. This specifically considers the complex immune mechanisms underlying protection and pathology in TB which involve innate as well as acquired immune mechanisms and strongly depend on fine tuning the response. A brief description of the TB vaccine candidates that have entered clinical trials follows. Finally, it discusses how experiences from Covid-19 vaccine research, development, and rollout can and have been applied to the TB vaccine pipeline, emphasizing similarities and dissimilarities.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Obeagu EI. Tuberculosis diagnostic and treatment delays among patients in Uganda. Health Sci Rep 2023; 6:e1700. [PMID: 38028687 PMCID: PMC10651951 DOI: 10.1002/hsr2.1700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mycobacterium tuberculosis, a bacterium that relies on its human host to achieve airborne transmission and existence, is the primary cause of tuberculosis (TB), a disease that is vital to public health. Aim To update the society on tuberculosis diagnostic and treatment delays among patients in Uganda. Materials and Methods The review paper utilized different search engines, such as Pubmed Central, Scopus, Web of Science, Google Scholar, and so forth, to conduct this review paper. Results Delays in diagnosis could cause diseases to spread throughout the community, progress more quickly, and increase mortality. With many populations experiencing TB diagnostic delay and less than a third of the population experiencing TB treatment delay, the rates of tuberculosis diagnosis and treatment delays are high. Conclusion The delay in diagnosing and treating tuberculosis in men is positively correlated with knowledge of the disease's symptoms and the regular use of a handkerchief or both hands to cover the mouth and nose while coughing or sneezing.
Collapse
Affiliation(s)
- Emmanuel I. Obeagu
- Department of Medical Laboratory ScienceKampala International UniversityKampalaUganda
| |
Collapse
|
14
|
Salami A, Bettadapura S, Wang S. Gasdermin D kills bacteria. Microbiol Res 2023; 272:127383. [PMID: 37062105 PMCID: PMC10192060 DOI: 10.1016/j.micres.2023.127383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
The recognition of pathogen- or damage- associated molecular patterns (PAMPs/DAMPs) signals a series of coordinated responses as part of innate immunity or host cell defense during infection. The inflammasome is an assemblage of multiprotein complexes in the cytosol that activate inflammatory caspases and release pro-inflammatory mediators. This review examines the two-edged sword activity of gasdermin D (GSDMD). Since its discovery in 2015, GSDMD has played a crucial role in the programmed necrotic type of cell death called pyroptosis. Pyroptosis is an important response in host self-protection against danger signals and infection. Although excessive pyroptosis has a deleterious effect on the host, it proves to have a game-changing therapeutic application against pathogenic invasion when controlled. Here, we explore the mechanism utilized by GSDMD, the best studied member of the gasdermin protein family, in host immune defense against many bacteria. While the protein contributes to the clearance of some bacteria, we also discussed results from previous studies and research, that its presence might hinder effective immunity against other pathogens, thus aiding pathogenic invasion and spread.
Collapse
Affiliation(s)
- Abosede Salami
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Sahana Bettadapura
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
| | - Shanzhi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| |
Collapse
|
15
|
Liu J, Li Y, Liu T, Shi Y, Wang Y, Wu J, Qi Y. Novel Biomarker Panel of Let-7d-5p and MiR-140-5p Can Distinguish Latent Tuberculosis Infection from Active Tuberculosis Patients. Infect Drug Resist 2023; 16:3847-3859. [PMID: 37346367 PMCID: PMC10281287 DOI: 10.2147/idr.s412116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) survives inside a human host for a long time in the form of latent tuberculosis infection (LTBI). Latent infection of tuberculosis has the opportunity of developing into active tuberculosis (ATB), which has greatly endangered human health. The existing diagnostic methods cannot effectively distinguish LTBI from ATB. Therefore, more effective diagnostic biomarkers and methods are urgently needed. Methods Here, we screened the GEO data set, conducted joint differential analysis and target gene enrichment analysis, after filtering the disease-related database, we screened the differential miRNA related to TB. The qPCR was used to verify the miRNAs in 84 serum samples. Different combinations of biomarkers were evaluated by logistic regression to obtain a biomarker panel with good performance for diagnosing LTBI. Results A panel with two miRNAs (hsa-let-7d-5p, hsa-miR-140-5p) was established to differentiate LTBI from ATB. Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) are 0.930 (sensitivity = 100%, specificity = 88.5%) and 0.923 (sensitivity = 100%, specificity = 92.3%) with the biomarker panel for the training set and test set respectively. Conclusion The findings indicated that the logistic regression model built by let-7d-5p and miR-140-5p has the ability to distinguish LTBI from active TB patients.
Collapse
Affiliation(s)
- Jiaxing Liu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, People’s Republic of China
| | - Ye Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Ting Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yuru Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Jing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yingjie Qi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| |
Collapse
|
16
|
Chiok KR, Dhar N, Banerjee A. Mycobacterium tuberculosis and SARS-CoV-2 co-infections: The knowns and unknowns. iScience 2023; 26:106629. [PMID: 37091987 PMCID: PMC10082467 DOI: 10.1016/j.isci.2023.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Health impacts of Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 co-infections are not fully understood. Both pathogens modulate host responses and induce immunopathology with extensive lung damage. With a quarter of the world's population harboring latent TB, exploring the relationship between SARS-CoV-2 infection and its effect on the transition of Mtb from latent to active form is paramount to control this pathogen. The effects of active Mtb infection on establishment and severity of COVID-19 are also unknown, despite the ability of TB to orchestrate profound long-lasting immunopathologies in the lungs. Absence of mechanistic studies and co-infection models hinder the development of effective interventions to reduce the health impacts of SARS-CoV-2 and Mtb co-infection. Here, we highlight dysregulated immune responses induced by SARS-CoV-2 and Mtb, their potential interplay, and implications for co-infection in the lungs. As both pathogens master immunomodulation, we discuss relevant converging and diverging immune-related pathways underlying SARS-CoV-2 and Mtb co-infections.
Collapse
Affiliation(s)
- Kim R Chiok
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
17
|
Krug S, Prasad P, Xiao S, Lun S, Ruiz-Bedoya CA, Klunk M, Ordonez AA, Jain SK, Srikrishna G, Kramnik I, Bishai WR. Adjunctive Integrated Stress Response Inhibition Accelerates Tuberculosis Clearance in Mice. mBio 2023; 14:e0349622. [PMID: 36853048 PMCID: PMC10128048 DOI: 10.1128/mbio.03496-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 03/01/2023] Open
Abstract
Despite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics. We recently discovered that inhibition of the integrated stress response, which is abnormally activated in tuberculosis and associated with necrotic granuloma formation, reduced bacterial numbers and lung inflammation in mice. Here, we evaluated the impact of the integrated stress response (ISR) inhibitor ISRIB, administered as an adjunct to standard tuberculosis antibiotics, on bacterial clearance, relapse, and lung pathology in a mouse model of tuberculosis. Throughout the course of treatment, ISRIB robustly lowered bacterial burdens compared to the burdens with standard TB therapy alone and accelerated the time to sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISRIB tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential to shorten TB treatment durations and improve lung health. IMPORTANCE Necrosis of lung lesions is a hallmark of tuberculosis (TB) that promotes bacterial growth, dissemination, and transmission. This process is driven by the persistent hyperactivation of the integrated stress response (ISR) pathway. Here, we show that adjunctive ISR inhibition during standard antibiotic therapy accelerates bacterial clearance and reduces immunopathology in a clinically relevant mouse model of TB, suggesting that host-directed therapies that de-escalate these pathological stress responses may shorten TB treatment durations. Our findings present an important conceptual advance toward overcoming the challenge of improving TB therapy and lowering the global burden of disease.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj Prasad
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shiqi Xiao
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariah Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Azevedo-Pereira JM, Pires D, Calado M, Mandal M, Santos-Costa Q, Anes E. HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an “Emerging Syndemic”. Microorganisms 2023; 11:microorganisms11040853. [PMID: 37110276 PMCID: PMC10142195 DOI: 10.3390/microorganisms11040853] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other’s pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.
Collapse
Affiliation(s)
- José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| |
Collapse
|
19
|
Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci 2023; 24:ijms24065202. [PMID: 36982277 PMCID: PMC10049048 DOI: 10.3390/ijms24065202] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb), the causative agent of TB, is a recalcitrant pathogen that is rife around the world, latently infecting approximately a quarter of the worldwide population. The asymptomatic status of the dormant bacteria escalates to the transmissible, active form when the host's immune system becomes debilitated. The current front-line treatment regimen for drug-sensitive (DS) M. tb strains is a 6-month protocol involving four different drugs that requires stringent adherence to avoid relapse and resistance. Poverty, difficulty to access proper treatment, and lack of patient compliance contributed to the emergence of more sinister drug-resistant (DR) strains, which demand a longer duration of treatment with more toxic and more expensive drugs compared to the first-line regimen. Only three new drugs, bedaquiline (BDQ) and the two nitroimidazole derivatives delamanid (DLM) and pretomanid (PMD) were approved in the last decade for treatment of TB-the first anti-TB drugs with novel mode of actions to be introduced to the market in more than 50 years-reflecting the attrition rates in the development and approval of new anti-TB drugs. Herein, we will discuss the M. tb pathogenesis, current treatment protocols and challenges to the TB control efforts. This review also aims to highlight several small molecules that have recently been identified as promising preclinical and clinical anti-TB drug candidates that inhibit new protein targets in M. tb.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
20
|
Park SH, Yoon SR, Nam JY, Ahn JY, Jeong SJ, Ku NS, Choi JY, Yeom JS, Kim JH. Impact of tuberculosis on the incidence of osteoporosis and osteoporotic fractures: a nationwide population-based cohort study. Public Health 2023; 216:13-20. [PMID: 36758345 DOI: 10.1016/j.puhe.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVES Despite the high prevalence of tuberculosis (TB) and the disease burden of osteoporosis and osteoporotic fractures, there is still a lack of well-designed, large-scale studies demonstrating associations among them. We aimed to investigate the effect of TB on the incidence of osteoporosis and osteoporotic fractures. STUDY DESIGN This was a nationwide population-based cohort study. METHODS This study was conducted using the National Health Insurance Service Database of South Korea. We included patients with newly diagnosed TB aged >40 years from January 2006 to December 2017. An uninfected control for each TB patient was randomly extracted by frequency matching for sex, age, income level, residence, and registration date at a 2:1 ratio. The primary outcome was the incidence of osteoporosis and osteoporotic fractures between the two groups, adjusted for sex, age, income level, residence, comorbidities, body mass index, blood pressure, laboratory tests, alcohol drinking, and smoking. The risk factors associated with osteoporosis or osteoporotic fractures were also investigated. RESULTS A total of 164,389 patients with TB and 328,778 matched controls were included (71.9% males). The mean duration of follow-up was 7.00 ± 3.49 years. The incidence of osteoporosis in patients with TB was 6.1 cases per 1000 person-years, which was significantly higher than that in matched controls (adjusted hazard ratio [aHR] 1.349, 95% confidence interval [CI] 1.302-1.398, P < 0.001). The incidence of osteoporotic fractures was also higher in patients with TB than in controls (aHR 1.392, 95% CI 1.357-1.428, P < 0.001). Among fractures, the risk of hip fracture was the highest (aHR 1.703, 95% CI 1.612-1.798, P < 0.001). CONCLUSIONS TB independently contributes to the incidence of osteoporosis and osteoporotic fractures, particularly hip fractures.
Collapse
Affiliation(s)
- S H Park
- Chaum Life Center, CHA University, Seoul 06062, South Korea; Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang 10444, South Korea
| | - S R Yoon
- Institute of Health Insurance and Clinical Research, National Health Insurance Service Ilsan Hospital, Goyang 10444, South Korea
| | - J Y Nam
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang 10444, South Korea
| | - J Y Ahn
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - S J Jeong
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - N S Ku
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - J Y Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - J-S Yeom
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - J H Kim
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea.
| |
Collapse
|
21
|
Dasaradhan T, Koneti J, Kalluru R, Gadde S, Cherukuri SP, Chikatimalla R. Tuberculosis-Associated Anemia: A Narrative Review. Cureus 2022; 14:e27746. [PMID: 36106202 PMCID: PMC9447415 DOI: 10.7759/cureus.27746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is an airborne illness that induces systemic inflammation. It often affects the lungs causing cough, fever, and chest pain. A commonly associated comorbid condition in TB is anemia. This review article has summarized various studies with an aim to gain a better understanding of pathogenesis and the role of cytokines that contribute to the development of anemia in TB. The study has gathered risk factors that enhance the likelihood of TB patients acquiring anemia. It has reviewed therapeutic modalities such as antitubercular therapy and iron therapy in an attempt to find which of them are effective in reducing the severity of anemia. This review article has also emphasized the importance of measuring hepcidin and ferritin and has touched upon the investigations that can be easily implemented.
Collapse
|
22
|
Chen G, Yang F, Fan S, Jin H, Liao K, Li X, Liu GB, Liang J, Zhang J, Xu JF, Pi J. Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Front Immunol 2022; 13:956181. [PMID: 35958612 PMCID: PMC9361286 DOI: 10.3389/fimmu.2022.956181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Current chemotherapy strategies used in clinic appear with lots of disadvantages due to the low targeting effects of drugs and strong side effects, which significantly restricts the drug potency, causes multiple dysfunctions in the body, and even drives the emergence of diseases. Immunotherapy has been proved to boost the body’s innate and adaptive defenses for more effective disease control and treatment. As a trace element, selenium plays vital roles in human health by regulating the antioxidant defense, enzyme activity, and immune response through various specific pathways. Profiting from novel nanotechnology, selenium nanoparticles have been widely developed to reveal great potential in anticancer, antibacterial, and anti-inflammation treatments. More interestingly, increasing evidence has also shown that functional selenium nanoparticles can be applied for potential immunotherapy, which would achieve more effective treatment efficiency as adjunctive therapy strategies for the current chemotherapy. By directly interacting with innate immune cells, such as macrophages, dendritic cells, and natural killer cells, selenium nanoparticles can regulate innate immunity to intervene disease developments, which were reported to boost the anticancer, anti-infection, and anti-inflammation treatments. Moreover, selenium nanoparticles can also activate and recover different T cells for adaptive immunity regulations to enhance their cytotoxic to combat cancer cells, indicating the potential of selenium nanoparticles for potential immunotherapy strategy development. Here, aiming to enhance our understanding of the potential immunotherapy strategy development based on Se NPs, this review will summarize the immunological regulation effects of selenium nanoparticles and the application of selenium nanoparticle-based immunotherapy strategies. Furthermore, we will discuss the advancing perspective of selenium nanoparticle-based potential immunotherapy as a kind of novel adjunctive therapy to enhance the efficiency of current chemotherapies and also introduce the current obstacles for the development of selenium nanoparticles for potential immunotherapy strategy development. This work is expected to promote the future research on selenium nanoparticle-assisted immunotherapy and finally benefit the more effective disease treatments against the threatening cancer and infectious and chronic diseases.
Collapse
Affiliation(s)
- Gengshi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xuemeng Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Pathogenic Biology and Immunology, School of Basic Medicine, Guangdong Medical University, Dongguan, China
| | - Gan-Bin Liu
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Jing Liang
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Junai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| |
Collapse
|
23
|
Liu Q, Chen X, Dai X. The association of cytokine gene polymorphisms with tuberculosis susceptibility in several regional populations. Cytokine 2022; 156:155915. [PMID: 35653894 DOI: 10.1016/j.cyto.2022.155915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE By collecting the data of all relevant articles, the goal of this study was to better understand the relationship between the IL-6/IL-18 polymorphism and susceptibility to tuberculosis in several regional populations. METHODS Pubmed, Embase, WOS and CNKI were used to find relevant literature. The findings of separate research were merged using Review Manager. RESULTS A total of 25 studies were included in this study. IL-6 rs1800795 (dominant. comparison: p-value < 0.0001, OR 1.43, 95 % CI 1.23-1.67; recessive comparison: p-value < 0.0001, OR 0.48, 95 % CI 0.35-0.65; allele comparison: p-value < 0.0001, OR 1.43, 95 % CI 1.27-1.62), IL-18 rs1946518 (dominant comparison: p-value = 0.01, OR 1.19, 95 % CI 1.04-1.35; recessive comparison: p-value = 0.01, OR 0.82, 95 % CI 0.71-0.96; allele comparison: p-value = 0.002, OR 1.14, 95 % CI 1.05-1.24), IL-18 rs187238 (dominant comparison: p-value = 0.0002, OR 1.35, 95 % CI 1.15-1.58; allele comparison: p-value < 0.0001, OR 1.31, 95 % CI 1.14-1.50). All gene polymorphisms were shown to be substantially linked to tuberculosis in the general population. Positive findings of rs187238 and rs1800795 polymorphisms were primarily driven by several regional populations, according to subgroup analyses. CONCLUSION This meta-analysis found that the the IL-6 rs1800795and IL-18 rs187238 polymorphisms may have a role in TB susceptibility.
Collapse
Affiliation(s)
- Qibin Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng Road, Qiaokou District, Wuhan City, Hubei Province, China.
| | - Xianxiang Chen
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng Road, Qiaokou District, Wuhan City, Hubei Province, China.
| | - Xiyong Dai
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, No. 28 Baofeng Road, Qiaokou District, Wuhan City, Hubei Province, China.
| |
Collapse
|
24
|
Ma N, Chen M, Ding J, Wang F, Jin J, Fan S, Chen J. Recurrent Pneumonia With Tuberculosis and Candida Co-infection Diagnosed by Metagenomic Next-Generation Sequencing: A Case Report and Literature Review. Front Med (Lausanne) 2022; 9:755308. [PMID: 35462994 PMCID: PMC9026854 DOI: 10.3389/fmed.2022.755308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/23/2022] [Indexed: 01/16/2023] Open
Abstract
An 82-year-old male patient was hospitalized in the Respiratory Department for “repeated cough and shortness of breath for 10 years, recurrence worsened for 1 month.” Later, he was transferred for further diagnosis and treatment, to the Infectious Disease Department for further hospitalization. Previously, the patient had repeatedly undergone tuberculosis-related examinations including bronchoscopy examinations. However, no evidence of Mycobacterium tuberculosis (MTB) infection was found. Early anti-infection treatments failed. Due to repeated symptoms, we performed bronchoscopy again and sent alveolar lavage fluid for the metagenomic next-generation sequencing (mNGS) test. Subsequently, MTB and Candida albicans were detected by mNGS. After antituberculosis and antifungal treatments, the symptoms were significantly relieved, and the chest CT showed resolution of the lung lesions. Therefore, we successfully diagnosed and treated a case of recurrent pneumonia with tuberculosis and Candida co-infection diagnosed by mNGS.
Collapse
Affiliation(s)
- Ning Ma
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Mei Chen
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Jingyi Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Hospital-Acquired Infection Control, Beilun District People’s Hospital, Ningbo, China
| | - Jingbo Jin
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Sitong Fan
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Jiajia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiajia Chen,
| |
Collapse
|
25
|
Lu P, Li J, Liu C, Yang J, Peng H, Xue Z, Liu Z. Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 2022; 17:447-461. [PMID: 35782322 PMCID: PMC9237582 DOI: 10.1016/j.ajps.2022.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious and fatal pulmonary inflammatory disease with an increasing incidence worldwide. The drugs nintedanib and pirfenidone, are listed as conditionally recommended drugs in the “Evidence-Based Guidelines for the Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis”. However, these two drugs have many adverse reactions in clinical application. Salvianolic acid B (Sal B), a water-soluble component of Salvia miltiorrhiza, could alleviate bleomycin-induced peroxidative stress damage, and prevent or delay the onset of IPF by regulating inflammatory factors and fibrotic cytokines during the disease's progression. However, Sal B is poorly absorbed orally, and patient compliance is poor when administered intravenously. Therefore, there is an urgent need to find a new non-injection route of drug delivery. In this study, Sal B was used as model drug and l-leucine (LL) as excipient to prepare Sal B dry powder inhaler (Sal B-DPI) by spray drying method. Modern preparation evaluation methods were used to assess the quality of Sal B-DPI. Sal B-DPI is promising for the treatment of IPF, according to studies on pulmonary irritation evaluation, in vivo and in vitro pharmacodynamics, metabolomics, pharmacokinetics, and lung tissue distribution.
Collapse
Affiliation(s)
- Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-center of National Clinical Research Center for Metabolic Diseases, Luoyang, Henan 471003, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
26
|
Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol 2022; 13:791136. [PMID: 35237260 PMCID: PMC8882646 DOI: 10.3389/fimmu.2022.791136] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The inflammasome complex is important for host defense against intracellular bacterial infections. Mycobacterium tuberculosis (Mtb) is a facultative intracellular bacterium which is able to survive in infected macrophages. Here we discuss how the host cell inflammasomes sense Mtb and other related mycobacterial species. Furthermore, we describe the molecular mechanisms of NLRP3 inflammasome sensing of Mtb which involve the type VII secretion system ESX-1, cell surface lipids (TDM/TDB), secreted effector proteins (LpqH, PPE13, EST12, EsxA) and double-stranded RNA acting on the priming and/or activation steps of inflammasome activation. In contrast, Mtb also mediates inhibition of the NLRP3 inflammasome by limiting exposure of cell surface ligands via its hydrolase, Hip1, by inhibiting the host cell cathepsin G protease via the secreted Mtb effector Rv3364c and finally, by limiting intracellular triggers (K+ and Cl- efflux and cytosolic reactive oxygen species production) via its serine/threonine kinase PknF. In addition, Mtb inhibits the AIM2 inflammasome activation via an unknown mechanism. Overall, there is good evidence for a tug-of-war between Mtb trying to limit inflammasome activation and the host cell trying to sense Mtb and activate the inflammasome. The detailed molecular mechanisms and the importance of inflammasome activation for virulence of Mtb or host susceptibility have not been fully investigated.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
27
|
Kumar NP, Moideen K, Nancy A, Viswanathan V, Thiruvengadam K, Nair D, Banurekha VV, Sivakumar S, Hissar S, Kornfeld H, Babu S. Plasma Chemokines Are Baseline Predictors of Unfavorable Treatment Outcomes in Pulmonary Tuberculosis. Clin Infect Dis 2021; 73:e3419-e3427. [PMID: 32766812 DOI: 10.1093/cid/ciaa1104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Plasma chemokines are biomarkers of greater disease severity, higher bacterial burden, and delayed sputum culture conversion in pulmonary tuberculosis (PTB). Whether plasma chemokines could also serve as biomarkers of unfavorable treatment outcomes in PTB is not known. METHODS A cohort of newly diagnosed, sputum smear- and culture-positive adults with drug-sensitive PTB were recruited under the Effect of Diabetes on Tuberculosis Severity study in Chennai, India. Plasma chemokine levels measured before treatment initiation were compared between 68 cases with unfavorable outcomes (treatment failure, death, or recurrence) and 136 control individuals who had recurrence-free cure. A second validation cohort comprising newly diagnosed, culture-positive adults with drug-sensitive TB was used to measure plasma chemokine levels in 20 cases and 40 controls. RESULTS Six chemokines (CCL2, CCL3, CCL4, CXCL8, CXCL10, and CX3CL1) were associated with increased risk, while CXCL1 was associated with decreased risk of unfavorable outcomes in unadjusted and adjusted analyses in the test cohort. Similarly, CCL3, CXCL8, and CXCL10 were associated with increased risk of unfavorable treatment outcomes in the validation cohort. Receiver operating characteristic analysis revealed that combinations of CCL3, CXCL8, and CXCL10 exhibited very high sensitivity and specificity in differentiating cases vs controls. CONCLUSIONS Our study reveals a plasma chemokine signature that can be used as a novel biomarker for predicting adverse treatment outcomes in PTB.
Collapse
Affiliation(s)
- Nathella P Kumar
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis, Chennai, India
| | - Kadar Moideen
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India
| | - Arul Nancy
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India.,Prof. M. Viswanathan Diabetes Research Center, Chennai, India
| | | | | | - Dina Nair
- National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Syed Hissar
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Subash Babu
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Theobald SJ, Gräb J, Fritsch M, Suárez I, Eisfeld HS, Winter S, Koch M, Hölscher C, Pasparakis M, Kashkar H, Rybniker J. Gasdermin D mediates host cell death but not interleukin-1β secretion in Mycobacterium tuberculosis-infected macrophages. Cell Death Discov 2021; 7:327. [PMID: 34718331 PMCID: PMC8557205 DOI: 10.1038/s41420-021-00716-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
Necrotic cell death represents a major pathogenic mechanism of Mycobacterium tuberculosis (Mtb) infection. It is increasingly evident that Mtb induces several types of regulated necrosis but how these are interconnected and linked to the release of pro-inflammatory cytokines remains unknown. Exploiting a clinical cohort of tuberculosis patients, we show here that the number and size of necrotic lesions correlates with IL-1β plasma levels as a strong indicator of inflammasome activation. Our mechanistic studies reveal that Mtb triggers mitochondrial permeability transition (mPT) and subsequently extensive macrophage necrosis, which requires activation of the NLRP3 inflammasome. NLRP3-driven mitochondrial damage is dependent on proteolytic activation of the pore-forming effector protein gasdermin D (GSDMD), which links two distinct cell death machineries. Intriguingly, GSDMD, but not the membranolytic mycobacterial ESX-1 secretion system, is dispensable for IL-1β secretion from Mtb-infected macrophages. Thus, our study dissects a novel mechanism of pathogen-induced regulated necrosis by identifying mitochondria as central regulatory hubs capable of delineating cytokine secretion and lytic cell death.
Collapse
Affiliation(s)
- Sebastian J Theobald
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Jessica Gräb
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Melanie Fritsch
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, 50935, Cologne, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Hannah S Eisfeld
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Sandra Winter
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Maximilian Koch
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, 23845, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Borstel, 23845, Borstel, Germany
| | - Manolis Pasparakis
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.,Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Hamid Kashkar
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, 50935, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, University of Cologne, 50937, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Ozturk M, Chia JE, Hazra R, Saqib M, Maine R, Guler R, Suzuki H, Mishra BB, Brombacher F, Parihar SP. Evaluation of Berberine as an Adjunct to TB Treatment. Front Immunol 2021; 12:656419. [PMID: 34745081 PMCID: PMC8563784 DOI: 10.3389/fimmu.2021.656419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.
Collapse
Affiliation(s)
- Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudranil Hazra
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Rebeng A. Maine
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:136222. [PMID: 33529162 DOI: 10.1172/jci136222] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans have been infected with Mycobacterium tuberculosis (Mtb) for thousands of years. While tuberculosis (TB), one of the deadliest infectious diseases, is caused by uncontrolled Mtb infection, over 90% of presumed infected individuals remain asymptomatic and contain Mtb in a latent TB infection (LTBI) without ever developing disease, and some may clear the infection. A small number of heavily Mtb-exposed individuals appear to resist developing traditional LTBI. Because Mtb has mechanisms for intracellular survival and immune evasion, successful control involves all of the arms of the immune system. Here, we focus on immune responses to Mtb in humans and nonhuman primates and discuss new concepts and outline major knowledge gaps in our understanding of LTBI, ranging from the earliest events of exposure and infection to success or failure of Mtb control.
Collapse
Affiliation(s)
- W Henry Boom
- Department of Medicine.,Department of Pathology, and.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ulrich E Schaible
- Division of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Jacqueline M Achkar
- Department of Medicine and.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
31
|
Yang A, Wu Y, Yu G, Wang H. Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir Res 2021; 22:204. [PMID: 34261470 PMCID: PMC8279385 DOI: 10.1186/s12931-021-01792-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an essential mechanism of various diseases. The development and resolution of inflammation are complex immune-modulation processes which induce the involvement of various types of immune cells. Specialized pro-resolving lipid mediators (SPMs) have been demonstrated to be signaling molecules in inflammation. SPMs are involved in the pathophysiology of different diseases, especially respiratory diseases, including asthma, pneumonia, and chronic obstructive pulmonary disease. All of these diseases are related to the inflammatory response and its persistence. Therefore, a deeper understanding of the mechanisms and development of inflammation in respiratory disease, and the roles of the SPM family in the resolution process, might be useful in the quest for novel therapies and preventive measures for pulmonary diseases.
Collapse
Affiliation(s)
- Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng, , Beijing, 100050, China.
| |
Collapse
|
32
|
Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura‐Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye X, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021; 22:e51678. [PMID: 33987949 PMCID: PMC8256295 DOI: 10.15252/embr.202051678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor β-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.
Collapse
|
33
|
Pedersen JL, Barry SE, Bokil NJ, Ellis M, Yang Y, Guan G, Wang X, Faiz A, Britton WJ, Saunders BM. High sensitivity and specificity of a 5-analyte protein and microRNA biosignature for identification of active tuberculosis. Clin Transl Immunology 2021; 10:e1298. [PMID: 34188917 PMCID: PMC8219900 DOI: 10.1002/cti2.1298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023] Open
Abstract
Objectives Non‐sputum‐based tests to accurately identify active tuberculosis (TB) disease and monitor response to therapy are urgently needed. This study examined the biomarker capacity of a panel of plasma proteins alone, and in conjunction with a previously identified miRNA signature, to identify active TB disease. Methods The expression of nine proteins (IP‐10, MCP‐1, sTNFR1, RANTES, VEGF, IL‐6, IL‐10, TNF and Eotaxin) was measured in the plasma of 100 control subjects and 100 TB patients, at diagnosis (treatment naïve) and over the course of treatment (1‐, 2‐ and 6‐month intervals). The diagnostic performance of the nine proteins alone, and with the miRNA, was assessed. Results Six proteins were significantly up‐regulated in the plasma of TB patients at diagnosis compared to controls. Receiver operator characteristic curve analysis demonstrated that IP‐10 with an AUC = 0.874, sensitivity of 75% and specificity of 87% was the best single biomarker candidate to distinguish TB patients from controls. IP‐10 and IL‐6 levels fell significantly within one month of commencing treatment and may have potential as indicators of a positive response to therapy. The combined protein and miRNA panel gave an AUC of 1.00. A smaller panel of only five analytes (IP‐10, miR‐29a, miR‐146a, miR‐99b and miR‐221) showed an AUC = 0.995, sensitivity of 96% and specificity of 97%. Conclusions A novel combination of miRNA and proteins significantly improves the sensitivity and specificity as a biosignature over single biomarker candidates and may be useful for the development of a non‐sputum test to aid the diagnosis of active TB disease.
Collapse
Affiliation(s)
- Jessica L Pedersen
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia
| | - Simone E Barry
- Centenary Institute The University of Sydney Sydney NSW Australia.,South Australian Tuberculosis Services Royal Adelaide Hospital. Adelaide Australia
| | - Nilesh J Bokil
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia
| | - Magda Ellis
- Centenary Institute The University of Sydney Sydney NSW Australia
| | - YuRong Yang
- Pathogen Biology and Medical Immunological Department Ningxia Medical University Yinchuan China
| | - Guangyu Guan
- Infectious Disease Hospital of Ningxia Yinchuan China
| | - Xiaolin Wang
- Pathogen Biology and Medical Immunological Department Ningxia Medical University Yinchuan China
| | - Alen Faiz
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia
| | | | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia.,Centenary Institute The University of Sydney Sydney NSW Australia
| |
Collapse
|
34
|
Tavolara TE, Niazi MKK, Gower AC, Ginese M, Beamer G, Gurcan MN. Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice. EBioMedicine 2021; 67:103388. [PMID: 34000621 PMCID: PMC8138606 DOI: 10.1016/j.ebiom.2021.103388] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Machine learning sustains successful application to many diagnostic and prognostic problems in computational histopathology. Yet, few efforts have been made to model gene expression from histopathology. This study proposes a methodology which predicts selected gene expression values (microarray) from haematoxylin and eosin whole-slide images as an intermediate data modality to identify fulminant-like pulmonary tuberculosis ('supersusceptible') in an experimentally infected cohort of Diversity Outbred mice (n=77). METHODS Gradient-boosted trees were utilized as a novel feature selector to identify gene transcripts predictive of fulminant-like pulmonary tuberculosis. A novel attention-based multiple instance learning model for regression was used to predict selected genes' expression from whole-slide images. Gene expression predictions were shown to be sufficiently replicated to identify supersusceptible mice using gradient-boosted trees trained on ground truth gene expression data. FINDINGS The model was accurate, showing high positive correlations with ground truth gene expression on both cross-validation (n = 77, 0.63 ≤ ρ ≤ 0.84) and external testing sets (n = 33, 0.65 ≤ ρ ≤ 0.84). The sensitivity and specificity for gene expression predictions to identify supersusceptible mice (n=77) were 0.88 and 0.95, respectively, and for an external set of mice (n=33) 0.88 and 0.93, respectively. IMPLICATIONS Our methodology maps histopathology to gene expression with sufficient accuracy to predict a clinical outcome. The proposed methodology exemplifies a computational template for gene expression panels, in which relatively inexpensive and widely available tissue histopathology may be mapped to specific genes' expression to serve as a diagnostic or prognostic tool. FUNDING National Institutes of Health and American Lung Association.
Collapse
Affiliation(s)
- Thomas E Tavolara
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| | - M K K Niazi
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States.
| | - Adam C Gower
- Department of Medicine, Boston University School of Medicine, 72 E. Concord St Evans Building, Boston, MA 02118, United States
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Metin N Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| |
Collapse
|
35
|
Ghermi M, Reguieg S, Attab K, Mened N, Ghomari N, Guendouz Elghoul FZ, Saichi F, Bossi S, Bouali-Youcef Y, Bey Baba Hamed M, Kallel Sellami M. Interferon-γ (+874 T/A) and interleukin-10 (-1082 G/A) genes polymorphisms are associated with active tuberculosis in the Algerian population of Oran's city. Indian J Tuberc 2021; 68:221-229. [PMID: 33845956 DOI: 10.1016/j.ijtb.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS Polymorphisms within genes encoding the cytokines involved in anti-tuberculosis immunity have been widely studied and sometimes associated with an increased risk of developing the active form of tuberculosis (TB). This study analyzes for the first time the impact of two polymorphisms, namely IFNG+874 T/A and IL10-1082 G/A, in the Algerian population where tuberculosis is moderately endemic. METHODS This case-control study included 104 healthy controls and 141 active TB patients: 75 extrapulmonary (EPTB) and 66 pulmonary (PTB). They were all genotyped by refractory mutational system-PCR amplification. In order to measure the functional impact of IFNG+874 T/A on the production rate of IFN-γ, 43 patients performed a QuantiFERON®Gold In-tube test. RESULTS The IFNG+874 AA genotype was associated with a higher risk of developing EPTB (OR = 2.52; 95%CI = 1.23-5.18; p = 0.012) while the IFNG+874 TA genotype was associated with a greater protection (OR = 0.34, 95%CI = 0.16-0.74; p = 0.006) which was further characterized by a high production of IFN-γ (p = 0.001). Similarly, the allele A of SNP IL10-1082 G/A, especially in its homozygous form (AA), were overrepresented in PTB patients (p = 0.010 and 0.019, respectively). The combination of both susceptibility genotypes (AA/AA) was strongly associated with risk of development of active TB (OR = 8.58; 95% C.I = 1.95-37.70, p = 0.004). This susceptibility combination was only significant in men regarding PTB (OR = 11.05; 95% C.I = 1.32-92.72, p = 0.027). Additionally, IFNG+874 TA and IL10-1082G∗ genotypes combination was mostly encountered in men controls and conferred the highest protection rate against EPTB (OR = 0.25; 95% C.I = 0.08-0.76, p = 0.015). CONCLUSION These two cytokines genes polymorphisms are associated with active TB susceptibility in the Algerian population. They act synergistically in terms of protection and susceptibility regarding the two forms of the disease. Moreover, these associations were more marked among males suggesting a potential role of gender.
Collapse
Affiliation(s)
- Mohamed Ghermi
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria; AQUABIOR Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria; Laboratory of Immuno-Rheumatology (LR05 SP01), La Rabta Hospital, Tunis, Tunisia.
| | - Sofiane Reguieg
- Immunology Department, EHU 1(er) Novembre Hospital, Oran, Algeria
| | - Khadidja Attab
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria; AQUABIOR Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Nedjma Mened
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | - Naima Ghomari
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | | | - Fatma Saichi
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | - Saliha Bossi
- Tuberculosis and Lung Disease Control Service (UCTMR) of Essenia, Oran, Algeria
| | | | - Mohammed Bey Baba Hamed
- AQUABIOR Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria; Higher School of Biological Sciences of Oran (ESSBO), Oran, Algeria
| | - Maryam Kallel Sellami
- Immunology Department, La Rabta Hospital, Tunis, Tunisia; Laboratory of Immuno-Rheumatology (LR05 SP01), La Rabta Hospital, Tunis, Tunisia
| |
Collapse
|
36
|
Nienaber A, Hayford FEA, Variava E, Martinson N, Malan L. The Manipulation of the Lipid Mediator Metabolism as Adjunct Host-Directed Therapy in Tuberculosis. Front Immunol 2021; 12:623941. [PMID: 33777003 PMCID: PMC7994275 DOI: 10.3389/fimmu.2021.623941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Host-directed therapies (HDTs) enhance the host response to tuberculosis (TB) infection to reduce disease severity. For instance, the manipulation of lipid mediator production diminishes the hyperactive immune response which is a known pathological feature of TB that generates lung tissue damage. Non-steroidal anti-inflammatory drugs (NSAIDs) and omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are examples of such HDTs. In this mini-review, we recapitulate the literature available on the effects of NSAIDs and n-3 LCPUFA in TB as well as the immunological pathways underpinning these effects. Many NSAIDs have a great deal of data describing their effects and safety and in many jurisdictions are inexpensive, and sold over the counter in neighborhood convenience stores and supermarkets. The potential benefits of NSAIDs in TB are well-documented in pre-clinical studies. The reduction of pro-inflammatory lipid mediator production by inhibiting cyclooxygenase (COX) pathways with NSAIDs has been found to improve lung histopathology, bacterial control, and survival. Additionally, n-3 LCPUFA and its novel bioactive metabolites produced by COX and lipoxygenase (LOX) have been identified as safe and effective pro-resolving and antibacterial pharmaconutrients. Nevertheless, heterogeneous results have been reported in pre-clinical TB studies. Recently, the importance of the correct timing of NSAIDs and n-3 LCPUFA administration in TB has also been highlighted. This mini-review will provide a better understanding of the potential contribution of these therapies toward reducing inflammatory lung damage and improving bactericidal activity, especially during later stages of TB infection. It further highlights that clinical trials are required to confirm benefit and safety in TB patients.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ebrahim Variava
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa.,Department of Internal Medicine, Klerksdorp Tshepong Hospital Complex, North West Department of Health, Klerksdorp, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
37
|
Alemnew B, Hoff ST, Abebe T, Abebe M, Aseffa A, Howe R, Wassie L. Ex vivo mRNA expression of toll-like receptors during latent tuberculosis infection. BMC Immunol 2021; 22:9. [PMID: 33509080 PMCID: PMC7842038 DOI: 10.1186/s12865-021-00400-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background Understanding immune mechanisms, particularly the role of innate immune markers during latent TB infection remains elusive. The main objective of this study was to evaluate mRNA gene expression patterns of toll-like receptors (TLRs) as correlates of immunity during latent TB infection and further infer their roles as potential diagnostic biomarkers. Methods Messenger RNA (mRNA) levels were analysed in a total of 64 samples collected from apparently healthy children and adolescents latently infected with tuberculosis (n = 32) or non-infected (n = 32). Relative expression in peripheral blood of selected genes encoding TLRs (TLR-1, TLR-2, TLR-4, TLR-6 and TLR-9) was determined with a quantitative real-time polymerase chain reaction (qRT-PCR) using specific primers and florescent labelled probes and a comparative threshold cycle method to define fold change. Data were analysed using Graph-Pad Prism 7.01 for Windows and a p-value less than 0.05 was considered statistically significant. Results An increased mean fold change in the relative expression of TLR-2 and TLR-6 mRNA was observed in LTBI groups relative to non-LTBI groups (p < 0.05), whereas a slight fold decrease was observed for TLR-1 gene. Conclusions An increased mRNA expression of TLR-2 and TLR-6 was observed in latently infected individuals relative to those non-infected, possibly indicating the roles these biomarkers play in sustenance of the steady state interaction between the dormant TB bacilli and host immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00400-4.
Collapse
Affiliation(s)
- Birhan Alemnew
- College of Health Sciences, Department of Medical Laboratory Sciences, Woldia University, Woldia, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
38
|
Zhang Q, Sun J, Fu Y, He W, Li Y, Tan H, Xu H, Jiang X. Guttiferone K Exerts the Anti-inflammatory Effect on Mycobacterium Tuberculosis- (H37Ra-) Infected Macrophages by Targeting the TLR/IRAK-1 Mediated Akt and NF- κB Pathway. Mediators Inflamm 2020; 2020:8528901. [PMID: 33100904 PMCID: PMC7569438 DOI: 10.1155/2020/8528901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a great threat to global health, killing more people than any other single infectious agent and causing uncontrollable inflammation in the host. Poorly controlled inflammatory processes can be deleterious and result in immune exhaustion. The current tuberculosis (TB) control is facing the challenge of drugs deficiency, especially in the context of increasingly multidrug resistant (MDR) TB. Under this circumstance, alternative host-directed therapy (HDT) emerges timely which can be exploited to improve the efficacy of TB treatment and disease prognosis by targeting the host. Here, we established the in vitro infection model of Mtb macrophages with H37Ra strain to seek effective anti-TB active agent. The present study showed that Guttiferone K, isolated from Garcinia yunnanensis, could significantly inhibit Mtb-induced inflammation in RAW264.7 and primary peritoneal macrophages. It was evidenced by the decreased production of inflammatory mediators, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Further studies with immunoblotting and immunofluorescence revealed that Guttiferone K obviously inhibits the nuclear factor-kappa B (NF-κB) both in RAW264.7 and primary peritoneal macrophages relying on the TLR/IRAK-1 pathway. Guttiferone K could also suppress the NLRP3 inflammasome activity and induce autophagy by inhibiting the protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) phosphorylation at Ser473 and Ser2448 in both cell lines. Thus, Guttiferone K possesses significant anti-inflammatory effect, alleviating Mtb-induced inflammation with an underlying mechanism that targeting on the TLR/IRAK-1 pathway and inhibiting the downstream NF-κB and Akt/mTOR signaling pathways. Together, Guttiferone K can be an anti-inflammatory agent candidate for the design of new adjunct HDT drugs fighting against tuberculosis.
Collapse
Affiliation(s)
- Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
39
|
He W, Sun J, Zhang Q, Li Y, Fu Y, Zheng Y, Jiang X. Andrographolide exerts anti-inflammatory effects in Mycobacterium tuberculosis-infected macrophages by regulating the Notch1/Akt/NF-κB axis. J Leukoc Biol 2020; 108:1747-1764. [PMID: 32991757 DOI: 10.1002/jlb.3ma1119-584rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a serious public health problem aggravated by the slow progress in the development of new anti-tuberculosis drugs. The hyper-reactive TB patients have suffered from chronic inflammation which could cause deleterious effects on their bodies. Therefore, it is imperative to develop an adjunctive therapy based on inflammatory modulation during Mycobacterium tuberculosis (Mtb) infection. The present study aims to investigate the immune regulatory effects of Andrographolide (Andro) on Mtb-infected macrophages and its underlying mechanisms. The results showed that Andro inhibits the production of IL-1β and other inflammatory cytokines in a dose-dependent manner. The down-regulation of IL-1β expression causes the declining expression of IL-8 and MCP-1 in lung epithelial cells which were co-cultured with Mtb-infected macrophages. The inhibition of the activation of NF-κB pathway, but not the inhibition of MAPK signaling pathway, accounts for the anti-inflammatory role of Andro. Further studies elucidated that Andro could evoke the activation of autophagy to degrade NLRP3, which ultimately inhibited inflammasome activation and subsequent IL-1β production. Finally, the relevant results demonstrated that Andro inhibited the Notch1 pathway to down-regulate the phosphorylation of Akt/mTOR and NF-κB p65 subunit. Taken together, Andro has been found to suppress the Notch1/Akt/NF-κB signaling pathway. Both Akt inhibition-induced autophagy and inhibition of the NF-κB pathway contributed to restraining the activation of NLRP3 inflammasome and subsequent IL-1β production. Then, the decreased production of IL-1β influenced chemokine expression in lung epithelial cells. Based on these results, anti-inflammatory effect of Andro in TB infection is merit further investigation.
Collapse
Affiliation(s)
- Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Department of Inspection and Quarantine, School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P.R. China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| |
Collapse
|
40
|
Zhai J, Gao W, Zhao L, Lu C. Integrated transcriptomic and quantitative proteomic analysis identifies potential RNA sensors that respond to the Ag85A DNA vaccine. Microb Pathog 2020; 149:104487. [PMID: 32920150 DOI: 10.1016/j.micpath.2020.104487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE DNA vaccine has emerged as a promising approach with potential for Tuberculosis (TB) prevention in adults. However, the mechanism behind DNA vaccines is still largely unknown. MATERIALS AND METHODS Utilizing the CRISPR/Cas9 technique, we engineered Ag85A mutated dendritic cells (Ag85A-M-DCs) in which the Ag85A mRNA derived from Mycobacterium tuberculosis was expressed but not the corresponding protein. Control cells (Ag85A-DCs) expressed both Ag85A mRNA and protein. To better understand the mechanism of antigen presentation following DNA vaccination, integrated transcriptomic and proteomic analysis of dendritic cells (DCs), Ag85A-DCs, and Ag85A-M-DCs were performed. RESULTS A total of 723, 278, and 933 differentially expressed genes (DEGs), and 209, 134, and 509 differentially expressed proteins (DEPs) were identified between Ag85A-M-DCs and DCs, Ag85A-DCs and DCs, and Ag85A-M-DCs and Ag85A-DCs, respectively. Integration analysis detected 59, 15, and 64 associated DEGs/DEPs with the same expression trend between Ag85A-M-DCs and DCs, Ag85A-DCs and DCs, and Ag85A-M-DCs and Ag85A-DCs, respectively. KEGG pathway analysis showed that chemokine signaling pathway and MAPK signaling pathway were enriched in all three pairs of comparisons. The protein and protein interaction network revealed that ANXA1 was in the top 10 high-degree hub genes closely related to other genes in all three pairs of comparisons. CONCLUSION The results indicated that Ag85A DNA vaccine might transmit immunogenicity information and induce immune responses by activating chemokine signaling pathway and MAPK signaling pathway. ANXA1 may serve as a key target molecule of the Ag85A vaccine with additional potential for TB prevention.
Collapse
Affiliation(s)
- Jingbo Zhai
- Brucellosis Institute of Inner Mongolia University for the Nationalities, Tongliao, 028000, China; Department of Immunology, China Medical University, Shenyang, 110122, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028042, China
| | - Wei Gao
- Brucellosis Institute of Inner Mongolia University for the Nationalities, Tongliao, 028000, China
| | - Leheng Zhao
- Brucellosis Institute of Inner Mongolia University for the Nationalities, Tongliao, 028000, China
| | - Changlong Lu
- Brucellosis Institute of Inner Mongolia University for the Nationalities, Tongliao, 028000, China; Department of Immunology, China Medical University, Shenyang, 110122, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028042, China.
| |
Collapse
|
41
|
Yu Z, Wit W, Xiong L, Cheng Y. Associations of six common functional polymorphisms in interleukins with tuberculosis: evidence from a meta-analysis. Pathog Dis 2020; 77:5575187. [PMID: 31560754 DOI: 10.1093/femspd/ftz053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Associations of polymorphisms in interleukin-6 (IL-6), IL-8 and IL-10 with tuberculosis (TB) susceptibility were already reported by many publications. The aim of this meta-analysis was to more precisely clarify associations between polymorphisms in IL-6/IL-8/IL-10 and TB by combing the results of all relevant publications. METHODS Eligible publications were searched from PubMed, Embase, Web of Science and CNKI. We used Review Manager to combine the results of individual studies. RESULTS A total of 47 publications were included in this study. IL-6 rs1800795 (1750 cases and 2335 controls, dominant, recessive and allele comparisons), IL-8 rs4073 (1125 cases and 1188 controls, dominant, recessive and allele comparisons), IL-10 rs1800871 (5528 cases and 7671 controls, dominant, recessive and allele comparisons), IL-10 rs1800872 (5269 cases and 7013 controls, dominant and allele comparisons) and IL-10 rs1800896 (7564 cases and 8952 controls, recessive comparison) polymorphisms were all significantly associated with TB in overall combined analyses. In subgroup analyses, we found that the positive results were mainly driven by the pulmonary tuberculosis and Asian subgroups. CONCLUSIONS Collectively, this meta-analysis proved that IL-6 rs1800795, IL-8 rs4073, IL-10 rs1800871, IL-10 rs1800872 and IL-10 rs1800896 may confer susceptibility to TB.
Collapse
Affiliation(s)
- Zhen Yu
- School of Public Health, Kunming Medical University, 1168# West Chunrong Road, Chenggong New City, Kunming 650500, China
| | - Wichaidit Wit
- School of Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Lifen Xiong
- Department of Tuberculosis, Center of Disease Control, 1# North Galan Road, Xishuangbanna, Yunnan 666100, China
| | - Ying Cheng
- School of Public Health, Kunming Medical University, 1168# West Chunrong Road, Chenggong New City, Kunming 650500, China
| |
Collapse
|
42
|
Madjid A, Syafar M, Arsunan A, Maria IL. Social determinants and tuberculosis incidents on empowerment case finding in Majene district. ENFERMERIA CLINICA 2020. [DOI: 10.1016/j.enfcli.2020.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun 2020; 11:2270. [PMID: 32385301 PMCID: PMC7210277 DOI: 10.1038/s41467-020-16143-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage. Inflammasome activation is a response to bacterial infection but can cause damage and spread infection. Here, the authors use live single-cell imaging to show two mechanisms by which M. tuberculosis causes damage to human macrophage cell plasma membranes, resulting in activation of the NLRP3 inflammasome, pyroptosis and release of infectious particles.
Collapse
|
44
|
Kathamuthu GR, Munisankar S, Banurekha VV, Nair D, Sridhar R, Babu S. Filarial Coinfection Is Associated With Higher Bacterial Burdens and Altered Plasma Cytokine and Chemokine Responses in Tuberculous Lymphadenitis. Front Immunol 2020; 11:706. [PMID: 32373129 PMCID: PMC7186434 DOI: 10.3389/fimmu.2020.00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Filarial infections are known to modulate cytokine responses in pulmonary tuberculosis by their propensity to induce Type 2 and regulatory cytokines. However, very little is known about the effect of filarial infections on extra-pulmonary forms of tuberculosis. Thus, we have examined the effect of filarial infections on the plasma levels of various families of (IL-1, IL-12, γC, and regulatory) cytokines and (CC and CXC) chemokines in tuberculous lymphadenitis coinfection. We also measured lymph node culture grades in order to assess the burden of Mycobacterium tuberculosis in the two study groups [Fil+ (n = 67) and Fil– (n = 109)]. Our data reveal that bacterial burden was significantly higher in Fil+ compared to Fil– individuals. Plasma levels of IL-1 family (IL-1α, IL-β, IL-18) cytokines were significantly lower with the exception of IL-33 in Fil+ compared to Fil– individuals. Similarly, plasma levels of IL-12 family cytokines -IL-12 and IL-23 were significantly reduced, while IL-35 was significantly elevated in Fil+ compared to Fil– individuals. Filarial infection was also associated with diminished levels of IL-2, IL-9 and enhanced levels of IL-4, IL-10, and IL-1Ra. Similarly, the Fil+ individuals were linked to elevated levels of different CC (CCL-1, CCL-2, CCL-3, CCL-11) and CXC (CXCL-2, CXCL-8, CXCL-9, CXCL-11) chemokines. Therefore, we conclude that filarial infections exert powerful bystander effects on tuberculous lymphadenitis, effects including modulation of protective cytokines and chemokines with a direct impact on bacterial burdens.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Saravanan Munisankar
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Dina Nair
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
45
|
Krishnamoorthy G, Kaiser P, Abu Abed U, Weiner J, Moura-Alves P, Brinkmann V, Kaufmann SHE. FX11 limits Mycobacterium tuberculosis growth and potentiates bactericidal activity of isoniazid through host-directed activity. Dis Model Mech 2020; 13:dmm041954. [PMID: 32034005 PMCID: PMC7132771 DOI: 10.1242/dmm.041954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lactate dehydrogenase A (LDHA) mediates interconversion of pyruvate and lactate, and increased lactate turnover is exhibited by malignant and infected immune cells. Hypoxic lung granuloma in Mycobacterium tuberculosis-infected animals present elevated levels of Ldha and lactate. Such alterations in the metabolic milieu could influence the outcome of host-M. tuberculosis interactions. Given the central role of LDHA for tumorigenicity, targeting lactate metabolism is a promising approach for cancer therapy. Here, we sought to determine the importance of LDHA for tuberculosis (TB) disease progression and its potential as a target for host-directed therapy. To this end, we orally administered FX11, a known small-molecule NADH-competitive LDHA inhibitor, to M. tuberculosis-infected C57BL/6J mice and Nos2-/- mice with hypoxic necrotizing lung TB lesions. FX11 did not inhibit M. tuberculosis growth in aerobic/hypoxic liquid culture, but modestly reduced the pulmonary bacterial burden in C57BL/6J mice. Intriguingly, FX11 administration limited M. tuberculosis replication and onset of necrotic lung lesions in Nos2-/- mice. In this model, isoniazid (INH) monotherapy has been known to exhibit biphasic killing kinetics owing to the probable selection of an INH-tolerant bacterial subpopulation. However, adjunct FX11 treatment corrected this adverse effect and resulted in sustained bactericidal activity of INH against M. tuberculosis As a limitation, LDHA inhibition as an underlying cause of FX11-mediated effect could not be established as the on-target effect of FX11 in vivo was unconfirmed. Nevertheless, this proof-of-concept study encourages further investigation on the underlying mechanisms of LDHA inhibition and its significance in TB pathogenesis.
Collapse
Affiliation(s)
| | - Peggy Kaiser
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Ulrike Abu Abed
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Volker Brinkmann
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
- Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843-3572, USA
| |
Collapse
|
46
|
Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020; 250:636-646. [PMID: 32108337 DOI: 10.1002/path.5407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has co-evolved with the human immune system and utilizes multiple strategies to persist within infected cells, to hijack several immune mechanisms, and to cause severe pathology and tissue damage in the host. This delays the efficacy of current antibiotic therapy and contributes to the evolution of multi-drug-resistant strains. These challenges led to the development of the novel approach in TB treatment that involves therapeutic targeting of host immune response to control disease pathogenesis and pathogen growth, namely, host-directed therapies (HDTs). Such HDT approaches can (1) enhance the effect of antibiotics, (2) shorten treatment duration for any clinical form of TB, (3) promote development of immunological memory that could protect against relapse, and (4) ameliorate the immunopathology including matrix destruction and fibrosis associated with TB. In this review we discuss TB-HDT candidates shown to be of clinical relevance that thus could be developed to reduce pathology, tissue damage, and subsequent impairment of pulmonary function. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, USA
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
47
|
Tsenova L, Fallows D, Kolloli A, Singh P, O'Brien P, Kushner N, Kaplan G, Subbian S. Inoculum size and traits of the infecting clinical strain define the protection level against Mycobacterium tuberculosis infection in a rabbit model. Eur J Immunol 2020; 50:858-872. [PMID: 32130727 DOI: 10.1002/eji.201948448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Host protective immunity against pathogenic Mycobacterium tuberculosis (Mtb) infection is variable and poorly understood. Both prior Mtb infection and BCG vaccination have been reported to confer some protection against subsequent infection and/or disease. However, the immune correlates of host protection with or without BCG vaccination remain poorly understood. Similarly, the host response to concomitant infection with mixed Mtb strains is unclear. In this study, we used the rabbit model to examine the host response to various infectious doses of virulent Mtb HN878 with and without prior BCG vaccination, as well as simultaneous infection with a mixture of two Mtb clinical isolates HN878 and CDC1551. We demonstrate that both the ability of host immunity to control pulmonary Mtb infection and the protective efficacy of BCG vaccination against the progression of Mtb infection to disease is dependent on the infectious inoculum. The host response to infection with mixed Mtb strains mirrors the differential responses seen during infection with each of the strains alone. The protective response mounted against a hyperimmunogenic Mtb strain has a limited impact on the control of disease caused by a hypervirulent strain. This preclinical study will aid in predicting the success of any vaccination strategy and in optimizing TB vaccines.
Collapse
Affiliation(s)
- Liana Tsenova
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Biological Sciences, NYC College of Technology, Brooklyn, NY, USA
| | - Dorothy Fallows
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Celgene Corporation, Summit, NJ, USA
| | - Afsal Kolloli
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Pooja Singh
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Paul O'Brien
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers University, Newark, NJ, USA
| | - Nicole Kushner
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Gilla Kaplan
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
48
|
Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage‐Targeted Isoniazid–Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiang Pi
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
- Department of Microbiology Zhongshan School of Medicine Key Laboratory for Tropical Diseases Control of the Ministry of Education Sun Yat-sen University Guangzhou Guangdong 510080 China
| | - Ling Shen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Enzhuo Yang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Dan Huang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Richard Wang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Chunmiao Hu
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Hua Jin
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| | - Huaihong Cai
- Department of Chemistry Jinan University Guangzhou Guangdong 510632 China
| | - Jiye Cai
- Department of Chemistry Jinan University Guangzhou Guangdong 510632 China
| | - Gucheng Zeng
- Department of Microbiology Zhongshan School of Medicine Key Laboratory for Tropical Diseases Control of the Ministry of Education Sun Yat-sen University Guangzhou Guangdong 510080 China
| | - Zheng W. Chen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL 60612 USA
| |
Collapse
|
49
|
Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage-Targeted Isoniazid-Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem Int Ed Engl 2020; 59:3226-3234. [PMID: 31756258 DOI: 10.1002/anie.201912122] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 12/16/2022]
Abstract
Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial-assisted anti-TB strategy manipulating Ison@Man-Se NPs for synergistic drug-induced and phagolysosomal destruction of Mtb. Ison@Man-Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man-Se/Man-Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man-Se/Man-Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome-associated autophagosomal Mtb degradation linked to ROS-mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial-assisted anti-TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug-resistant TB.
Collapse
Affiliation(s)
- Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA.,Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Enzhuo Yang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Chunmiao Hu
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hua Jin
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| |
Collapse
|
50
|
Yamauchi M, Kinjo T, Parrott G, Miyagi K, Haranaga S, Nakayama Y, Chibana K, Fujita K, Nakamoto A, Higa F, Owan I, Yonemoto K, Fujita J. Diagnostic performance of serum interferon gamma, matrix metalloproteinases, and periostin measurements for pulmonary tuberculosis in Japanese patients with pneumonia. PLoS One 2020; 15:e0227636. [PMID: 31917802 PMCID: PMC6952104 DOI: 10.1371/journal.pone.0227636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Serum markers that differentiate between tuberculous and non-tuberculous pneumonia would be clinically useful. However, few serum markers have been investigated for their association with either disease. In this study, serum levels of interferon gamma (IFN-γ), matrix metalloproteinases 1 and 9 (MMP-1 and MMP-9, respectively), and periostin were compared between 40 pulmonary tuberculosis (PTB) and 28 non-tuberculous pneumonia (non-PTB) patients. Diagnostic performance was assessed by analysis of receiver-operating characteristic (ROC) curves and classification trees. Serum IFN-γ and MMP-1 levels were significantly higher and serum MMP-9 levels significantly lower in PTB than in non-PTB patients (p < 0.001, p = 0.002, p < 0.001, respectively). No significant difference was observed in serum periostin levels between groups. ROC curve analysis could not determine the appropriate cut-off value with high sensitivity and specificity; therefore, a classification tree method was applied. This method identified patients with limited infiltration into three groups with statistical significance (p = 0.01), and those with MMP-1 levels < 0.01 ng/mL and periostin levels ≥ 118.8 ng/mL included only non-PTB patients (95% confidence interval 0.0–41.0). Patients with extensive infiltration were also divided into three groups with statistical significance (p < 0.001), and those with MMP-9 levels < 3.009 ng/mL included only PTB patients (95% confidence interval 76.8–100.0). In conclusion, the novel classification tree developed using MMP-1, MMP-9, and periostin data distinguished PTB from non-PTB patients. Further studies are needed to validate our cut-off values and the overall clinical usefulness of these markers.
Collapse
Affiliation(s)
- Momoko Yamauchi
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takeshi Kinjo
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- * E-mail:
| | - Gretchen Parrott
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuya Miyagi
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shusaku Haranaga
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Center for General Clinical Training and Education, University of the Ryukyus Hospital, Okinawa, Japan
| | - Yuko Nakayama
- Department of Respiratory Medicine, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Kenji Chibana
- Department of Respiratory Medicine, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Kaori Fujita
- Department of Respiratory Medicine, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Atsushi Nakamoto
- Department of Respiratory Medicine, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Futoshi Higa
- Department of Respiratory Medicine, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Isoko Owan
- Department of Respiratory Medicine, National Hospital Organization Okinawa Hospital, Okinawa, Japan
| | - Koji Yonemoto
- Division of Biostatistics, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Biostatistics, Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Jiro Fujita
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|