1
|
Liao M, Zhang JY, Feng Y, Ren ZX, Deng HN, Xu B. Phylogenomic insights into the historical biogeography, character-state evolution, and species diversification rates of Cypripedioideae (Orchidaceae). Mol Phylogenet Evol 2024; 199:108138. [PMID: 38977041 DOI: 10.1016/j.ympev.2024.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Cypripedioideae (slipper orchids; Orchidaceae) currently consist of ∼200 herbaceous species with a strikingly disjunctive distribution in tropical and temperate regions of both hemispheres. In this study, an updated phylogeny with representatives from all five cypripedioid genera was presented based on maximum likelihood and Bayesian inference of plastome and low-copy nuclear genes. Phylogenomic analyses indicated that each genus is monophyletic, but some relationships (e.g., those among Cypripedium sects. Acaulia, Arietinum, Bifolia, Flabellinervia, Obtusipetala and Palangshanensia) conflict with those in previous studies based on Sanger data. Cypripedioideae appeared to have arisen in South America and/or the adjacent Qinghai-Tibet Plateau and Hengduan Mountains ∼35 Mya. We inferred multiple dispersal events between East Asia and North America in Cypripedium, and between mainland Southeast Asia and the Malay Archipelago in Paphiopedilum. In the Americas, divergences among four genera (except Cypripedium) occurred around 31-20 Mya, long before the closure of the Isthmus of Panama, indicating the importance of long-distance dispersal. Evolutionary patterns between morphological and plastome character evolution suggested several traits, genome size and NDH genes, which are likely to have contributed to the success of slipper orchids in alpine floras and low-elevation forests. Species diversification rates were notably higher in epiphytic clades of Paphiopedilum than in other, terrestrial cypripedioids, paralleling similar accelerations associated with epiphytism in other groups. This study also suggested that sea-level fluctuations and mountain-building processes promoted the diversification of the largest genera, Paphiopedilum and Cypripedium.
Collapse
Affiliation(s)
- Min Liao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jun-Yi Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yu Feng
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zong-Xin Ren
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Heng-Ning Deng
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Bo Xu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
2
|
Kunz HH, Armbruster U, Mühlbauer S, de Vries J, Davis GA. Chloroplast ion homeostasis - what do we know and where should we go? THE NEW PHYTOLOGIST 2024; 243:543-559. [PMID: 38515227 DOI: 10.1111/nph.19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.
Collapse
Affiliation(s)
- Hans-Henning Kunz
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Ute Armbruster
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Mühlbauer
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Geoffry A Davis
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Zhang H, Liu P, Zhang Y, Sun H, Wang Y, Gao Z, Liu X. Chloroplast genome of Calamus tetradactylus revealed rattan phylogeny. BMC Genom Data 2024; 25:34. [PMID: 38528505 PMCID: PMC10962098 DOI: 10.1186/s12863-024-01222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Calamus tetradactylus, a species primarily distributed in Vietnam, Laos, and southern China, is highly valued for its utilization as a small-diameter rattan material. While its physical and mechanical properties have been extensively studied, the genomic characteristics of C. tetradactylus remain largely unexplored. RESULTS To gain a better understanding of its chloroplast genomic features and evolutionary relationships, we conducted sequencing and assembly of the chloroplast genome of C. tetradactylus. The complete chloroplast genome exhibited the typical highly conserved quartile structure, with specific variable regions identified in the single-copy region (like psbF-psbE, π = 0.10327, ndhF-rpl32, π = 0.10195), as well as genes such as trnT-GGU (π = 0.05764) and ycf1 (π = 0.03345) and others. We propose that these regions and genes hold potential as markers for species identification. Furthermore, phylogenetic analysis revealed that C. tetradactylus formed a distinct clade within the phylogenetic tree, alongside other Calamus species, and C. tetradactylus was most closely related to C. walkeri, providing support for the monophyly of the genus. CONCLUSION The analysis of the chloroplast genome conducted in this study provides valuable insights that can contribute to the improvement of rattan breeding programs and facilitate sustainable development in the future.
Collapse
Affiliation(s)
| | - Peng Liu
- BGI Research, Beijing, 102601, China
| | - Yi Zhang
- School of nursing, Chongqing Medical and Pharmaceutical College, P. R, Chongqing, China
| | - Huayu Sun
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yue Wang
- BGI Research, Beijing, 102601, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Xin Liu
- BGI Research, Beijing, 102601, China.
| |
Collapse
|
4
|
Köhler M, Reginato M, Jin JJ, Majure LC. More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae). ANNALS OF BOTANY 2023; 132:771-786. [PMID: 37467174 PMCID: PMC10799996 DOI: 10.1093/aob/mcad098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. METHODS Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. KEY RESULTS Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. CONCLUSIONS Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.
Collapse
Affiliation(s)
- Matias Köhler
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos, Sorocaba, SP, Brazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jian-Jun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Lucas C Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
5
|
Kharabian-Masouleh A, Furtado A, Alsubaie B, Al-Dossary O, Wu A, Al-Mssalem I, Henry R. Loss of plastid ndh genes in an autotrophic desert plant. Comput Struct Biotechnol J 2023; 21:5016-5027. [PMID: 37867970 PMCID: PMC10589726 DOI: 10.1016/j.csbj.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Plant plastid genomes are highly conserved with most flowering plants having the same complement of essential plastid genes. Here, we report the loss of five of the eleven NADH dehydrogenase subunit genes (ndh) in the plastid of a desert plant jojoba (Simmondsia chinensis). The plastid genome of jojoba was 156,496 bp with one large single copy region (LSC), a very small single copy region (SSC) and two expanded inverted repeats (IRA + IRB). The NADH dehydrogenase (NDH) complex is comprised of several protein subunits, encoded by the ndh genes of the plastome and the nucleus. The ndh genes are critical to the proper functioning of the photosynthetic electron transport chain and protection of plants from oxidative stress. Most plants are known to contain all eleven ndh genes. Plants with missing or defective ndh genes are often heterotrophs either due to their complete or holo- or myco- parasitic nature. Plants with a defective NDH complex, caused by the deletion/pseudogenisation of some or all the ndh genes, survive in milder climates suggesting the likely extinction of plant lineages lacking these genes under harsh climates. Interestingly, some autotrophic plants do exist without ndh gene/s and can cope with high or low light. This implies that these plants are protected from oxidative stress by mechanisms excluding ndh genes. Jojoba has evolved mechanisms to cope with a non-functioning NDH complex and survives in extreme desert conditions with abundant sunlight and limited water.
Collapse
Affiliation(s)
- Ardashir Kharabian-Masouleh
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Othman Al-Dossary
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Alex Wu
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Ibrahim Al-Mssalem
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Robert Henry
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Kim SC, Ha YH, Park BK, Jang JE, Kang ES, Kim YS, Kimspe TH, Kim HJ. Comparative analysis of the complete chloroplast genome of Papaveraceae to identify rearrangements within the Corydalis chloroplast genome. PLoS One 2023; 18:e0289625. [PMID: 37733832 PMCID: PMC10513226 DOI: 10.1371/journal.pone.0289625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Chloroplast genomes are valuable for inferring evolutionary relationships. We report the complete chloroplast genomes of 36 Corydalis spp. and one Fumaria species. We compared these genomes with 22 other taxa and investigated the genome structure, gene content, and evolutionary dynamics of the chloroplast genomes of 58 species, explored the structure, size, repeat sequences, and divergent hotspots of these genomes, conducted phylogenetic analysis, and identified nine types of chloroplast genome structures among Corydalis spp. The ndh gene family suffered inversion and rearrangement or was lost or pseudogenized throughout the chloroplast genomes of various Corydalis species. Analysis of five protein-coding genes revealed simple sequence repeats and repetitive sequences that can be potential molecular markers for species identification. Phylogenetic analysis revealed three subgenera in Corydalis. Subgenera Cremnocapnos and Sophorocapnos represented the Type 2 and 3 genome structures, respectively. Subgenus Corydalis included all types except type 3, suggesting that chloroplast genome structural diversity increased during its differentiation. Despite the explosive diversification of this subgenus, most endemic species collected from the Korean Peninsula shared only one type of genome structure, suggesting recent divergence. These findings will greatly improve our understanding of the chloroplast genome of Corydalis and may help develop effective molecular markers.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Beom Kyun Park
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Ju Eun Jang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Eun Su Kang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Soo Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Tae-Hee Kimspe
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| |
Collapse
|
7
|
Bag P, Shutova T, Shevela D, Lihavainen J, Nanda S, Ivanov AG, Messinger J, Jansson S. Flavodiiron-mediated O 2 photoreduction at photosystem I acceptor-side provides photoprotection to conifer thylakoids in early spring. Nat Commun 2023; 14:3210. [PMID: 37270605 DOI: 10.1038/s41467-023-38938-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Green organisms evolve oxygen (O2) via photosynthesis and consume it by respiration. Generally, net O2 consumption only becomes dominant when photosynthesis is suppressed at night. Here, we show that green thylakoid membranes of Scots pine (Pinus sylvestris L) and Norway spruce (Picea abies) needles display strong O2 consumption even in the presence of light when extremely low temperatures coincide with high solar irradiation during early spring (ES). By employing different electron transport chain inhibitors, we show that this unusual light-induced O2 consumption occurs around photosystem (PS) I and correlates with higher abundance of flavodiiron (Flv) A protein in ES thylakoids. With P700 absorption changes, we demonstrate that electron scavenging from the acceptor-side of PSI via O2 photoreduction is a major alternative pathway in ES. This photoprotection mechanism in vascular plants indicates that conifers have developed an adaptative evolution trajectory for growing in harsh environments.
Collapse
Affiliation(s)
- Pushan Bag
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK
| | - Tatyana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
| | - Jenna Lihavainen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sanchali Nanda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, London, ON, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, Umeå, Sweden
- Department of Chemistry-Ångström laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Ahmad W, Asaf S, Al-Rawahi A, Al-Harrasi A, Khan AL. Comparative plastome genomics, taxonomic delimitation and evolutionary divergences of Tetraena hamiensis var. qatarensis and Tetraena simplex (Zygophyllaceae). Sci Rep 2023; 13:7436. [PMID: 37156827 PMCID: PMC10167353 DOI: 10.1038/s41598-023-34477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
The Zygophyllum and Tetraena genera are intriguingly important ecologically and medicinally. Based on morphological characteristics, T. hamiensis var. qatarensis, and T. simplex were transferred from Zygophyllum to Tetraena with the least genomic datasets available. Hence, we sequenced the T. hamiensis and T. simplex and performed in-depth comparative genomics, phylogenetic analysis, and estimated time divergences. The complete plastomes ranged between 106,720 and 106,446 bp-typically smaller than angiosperms plastomes. The plastome circular genomes are divided into large single-copy regions (~ 80,964 bp), small single-copy regions (~ 17,416 bp), and two inverted repeats regions (~ 4170 bp) in both Tetraena species. An unusual shrinkage of IR regions 16-24 kb was identified. This resulted in the loss of 16 genes, including 11 ndh genes which encode the NADH dehydrogenase subunits, and a significant size reduction of Tetraena plastomes compared to other angiosperms. The inter-species variations and similarities were identified using genome-wide comparisons. Phylogenetic trees generated by analyzing the whole plastomes, protein-coding genes, matK, rbcL, and cssA genes exhibited identical topologies, indicating that both species are sisters to the genus Tetraena and may not belong to Zygophyllum. Similarly, based on the entire plastome and proteins coding genes datasets, the time divergence of Zygophyllum and Tetraena was 36.6 Ma and 34.4 Ma, respectively. Tetraena stem ages were 31.7 and 18.2 Ma based on full plastome and protein-coding genes. The current study presents the plastome as a distinguishing and identification feature among the closely related Tetraena and Zygophyllum species. It can be potentially used as a universal super-barcode for identifying plants.
Collapse
Affiliation(s)
- Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, USA.
| |
Collapse
|
9
|
Gaikwad AB, Kaila T, Maurya A, Kumari R, Rangan P, Wankhede DP, Bhat KV. The chloroplast genome of black pepper ( Piper nigrum L.) and its comparative analysis with related Piper species. FRONTIERS IN PLANT SCIENCE 2023; 13:1095781. [PMID: 36714762 PMCID: PMC9878596 DOI: 10.3389/fpls.2022.1095781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Piper nigrum, also known as black pepper, is an economically and ecologically important crop of the genus Piper. It has been titled as the king of spices due to its wide consumption throughout the world. In the present investigation, the chloroplast genome of P. nigrum has been assembled from a whole genome sequence by integrating the short and long reads generated through Illumina and PacBio platforms, respectively. The chloroplast genome was observed to be 161,522 bp in size, having a quadripartite structure with a large single copy (LSC) region of 89,153 bp and a small single copy (SSC) region of 18,255 bp separated by a copy of inverted repeats (IRs), each 27,057 bp in length. Taking into consideration all the duplicated genes, a total of 131 genes were observed, which included 81 protein-coding genes, 37 tRNAs, 4 rRNAs, and 1 pseudogene. Individually, the LSC region consisted of 83 genes, the SSC region had 13 genes, and 18 genes were present in each IR region. Additionally, 216 SSRs were detected and 11 of these were validated through amplification in 12 species of Piper. The features of the chloroplast genome have been compared with those of the genus Piper. Our results provide useful insights into evolutionary and molecular studies of black pepper which will contribute to its further genetic improvement and breeding.
Collapse
Affiliation(s)
- Ambika Baldev Gaikwad
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Tanvi Kaila
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ratna Kumari
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Parimalan Rangan
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - K. V. Bhat
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
10
|
Xu X, Shen Y, Zhang Y, Li Q, Wang W, Chen L, Chen G, Ng WL, Islam MN, Punnarak P, Zheng H, Zhu X. A comparison of 25 complete chloroplast genomes between sister mangrove species Kandelia obovata and Kandelia candel geographically separated by the South China Sea. FRONTIERS IN PLANT SCIENCE 2023; 13:1075353. [PMID: 36684775 PMCID: PMC9845719 DOI: 10.3389/fpls.2022.1075353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.
Collapse
Affiliation(s)
- Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuchen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qianying Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Porntep Punnarak
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Wang Y, Xie Y, Jin J, Li J, Qiu X, Tong Y, Li Z, Zhang Z, Lai W. Comparison of the chloroplast genomes and phylogenomic analysis of Elaeocarpaceae. PeerJ 2023; 11:e15322. [PMID: 37187516 PMCID: PMC10178313 DOI: 10.7717/peerj.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Elaeocarpaceae is a vital family in tropical and subtropical forests. Compared with the important position of Elaeocarpaceae species in forest ecosystem and the concern of medicinal value, the most research on Elaeocarpaceae are classification and taxonomy. Molecular systematics has corrected the morphological misjudgment, and it belongs to Oxalidales. Phylogenetic and divergence time estimates of Elaeocarpaceae is mostly constructed by using chloroplast gene fragments. At present, although there are reports on the chloroplast structure of Elaeocarpaceae, a comprehensive analysis of the chloroplast structure of Elaeocarpaceae is lacking. Methods To understand the variation in chloroplast sequence size and structure in Elaeocarpaceae, the chloroplast genomes of nine species were sequenced using the Illumina HiSeq 2500 platform and further assembled and annotated with Elaeocarpus japonicus and Sloanea sinensis (family Elaeocarpaceae) as references. A phylogenomic tree was constructed based on the complete chloroplast genomes of the 11 species representing five genera of Elaeocarpaceae. Chloroplast genome characteristics were examined by using Circoletto and IRscope software. Results The results revealed the following: (a) The 11 sequenced chloroplast genomes ranged in size from 157,546 to 159,400 bp. (b) The chloroplast genomes of Elaeocarpus, Sloanea, Crinodendron and Vallea lacked the rpl32 gene in the small single-copy (SSC) region. The large single-copy (LSC) region of the chloroplast genomes lacked the ndhK gene in Elaeocarpus, Vallea stipularis, and Aristotelia fruticosa. The LSC region of the chloroplast genomes lacked the infA gene in genus Elaeocarpus and Crinodendron patagua. (c) Through inverted repeat (IR) expansion and contraction analysis, a significant difference was found between the LSC/IRB and IRA/LSC boundaries among these species. Rps3 was detected in the neighboring regions of the LSC and IRb regions in Elaeocarpus. (d) Phylogenomic analysis revealed that the genus Elaeocarpus is closely related to Crinodendron patagua on an independent branch and Aristotelia fruticosa is closely related to Vallea stipularis, forming a clade with the genus Sloanea. Structural comparisons showed that Elaeocarpaceae diverged at 60 Mya, the genus Elaeocarpus diverged 53 Mya and that the genus Sloanea diverged 0.44 Mya. These results provide new insight into the evolution of the Elaeocarpaceae.
Collapse
Affiliation(s)
- Yihui Wang
- School of Life Sciences, Gannan Normal University, Ganzhou, P.R. China
- School of Landscape Architecture, Beijing Forestry University, Beijing, P.R. China
| | - Yifei Xie
- School of Life Sciences, Gannan Normal University, Ganzhou, P.R. China
- Key Laboratory of Nanling Plant Resources Conservation and Utilization, Ganzhou, P.R. China
| | - Jiayi Jin
- School of Life Sciences, Gannan Normal University, Ganzhou, P.R. China
| | - Jinyue Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, P.R. China
| | - Xiangdong Qiu
- School of Life Sciences, Gannan Normal University, Ganzhou, P.R. China
| | - Yang Tong
- School of Life Sciences, Gannan Normal University, Ganzhou, P.R. China
| | - Zhongyang Li
- School of Life Sciences, Gannan Normal University, Ganzhou, P.R. China
- Key Laboratory of Nanling Plant Resources Conservation and Utilization, Ganzhou, P.R. China
| | - Zhixiang Zhang
- School of Ecology and Nature conservation, Beijing Forestry University, Beijing, P.R. China
| | - Wenling Lai
- School of Life Sciences, Gannan Normal University, Ganzhou, P.R. China
- Key Laboratory of Nanling Plant Resources Conservation and Utilization, Ganzhou, P.R. China
| |
Collapse
|
12
|
Huang KY, Kan SL, Shen TT, Gong P, Feng YY, Du H, Zhao YP, Wan T, Wang XQ, Ran JH. A Comprehensive Evolutionary Study of Chloroplast RNA Editing in Gymnosperms: A Novel Type of G-to-A RNA Editing Is Common in Gymnosperms. Int J Mol Sci 2022; 23:ijms231810844. [PMID: 36142757 PMCID: PMC9505161 DOI: 10.3390/ijms231810844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics. In contrast to that noted in angiosperms, the density of RNA editing sites in ndh genes was not the highest in the sampled gymnosperms, and both loss and gain events at editing sites occurred frequently during the evolution of gymnosperms. In addition, GC content and plastomic size were positively correlated with the number of chloroplast RNA editing sites in gymnosperms, suggesting that the increase in GC content could provide more materials for RNA editing and facilitate the evolution of RNA editing in land plants or vice versa. Interestingly, novel G-to-A RNA editing events were commonly found in all sampled gymnosperm species, and G-to-A RNA editing exhibits many different characteristics from C-to-U RNA editing in gymnosperms. This study revealed a comprehensive evolutionary scenario for chloroplast RNA editing sites in gymnosperms, and reported that a novel type of G-to-A RNA editing is prevalent in gymnosperms.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Pin Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yun-Peng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
13
|
Zhang ZR, Yang X, Li WY, Peng YQ, Gao J. Comparative chloroplast genome analysis of Ficus (Moraceae): Insight into adaptive evolution and mutational hotspot regions. FRONTIERS IN PLANT SCIENCE 2022; 13:965335. [PMID: 36186045 PMCID: PMC9521400 DOI: 10.3389/fpls.2022.965335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As the largest genus in Moraceae, Ficus is widely distributed across tropical and subtropical regions and exhibits a high degree of adaptability to different environments. At present, however, the phylogenetic relationships of this genus are not well resolved, and chloroplast evolution in Ficus remains poorly understood. Here, we sequenced, assembled, and annotated the chloroplast genomes of 10 species of Ficus, downloaded and assembled 13 additional species based on next-generation sequencing data, and compared them to 46 previously published chloroplast genomes. We found a highly conserved genomic structure across the genus, with plastid genome sizes ranging from 159,929 bp (Ficus langkokensis) to 160,657 bp (Ficus religiosa). Most chloroplasts encoded 113 unique genes, including a set of 78 protein-coding genes, 30 transfer RNA (tRNA) genes, four ribosomal RNA (rRNA) genes, and one pseudogene (infA). The number of simple sequence repeats (SSRs) ranged from 67 (Ficus sagittata) to 89 (Ficus microdictya) and generally increased linearly with plastid size. Among the plastomes, comparative analysis revealed eight intergenic spacers that were hotspot regions for divergence. Additionally, the clpP, rbcL, and ccsA genes showed evidence of positive selection. Phylogenetic analysis indicated that none of the six traditionally recognized subgenera of Ficus were monophyletic. Divergence time analysis based on the complete chloroplast genome sequences showed that Ficus species diverged rapidly during the early to middle Miocene. This research provides basic resources for further evolutionary studies of Ficus.
Collapse
Affiliation(s)
- Zheng-Ren Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Wei-Ying Li
- Southwest Research Center for Landscape Architecture Engineering Technology, State Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
14
|
AL-Juhani WS, Alharbi SA, Al Aboud NM, Aljohani AY. Complete chloroplast genome of the desert date (Balanites aegyptiaca (L.) Del. comparative analysis, and phylogenetic relationships among the members of Zygophyllaceae. BMC Genomics 2022; 23:626. [PMID: 36045328 PMCID: PMC9434970 DOI: 10.1186/s12864-022-08850-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Balanites aegyptiaca (L.) Delile, commonly known as desert date, is a thorny evergreen tree belonging to the family Zygophyllaceae and subfamily Tribuloideae that is widespread in arid and semiarid regions. This plant is an important source of food and medicines and plays an important role in conservation strategies for restoring degraded desert ecosystems. RESULTS In the present study, we sequenced the complete plastome of B. aegyptiaca. The chloroplast genome was 155,800 bp, with a typical four-region structure: a large single copy (LSC) region of 86,562 bp, a small single copy (SSC) region of 18,102 bp, and inverted repeat regions (IRa and IRb) of 25,568 bp each. The GC content was 35.5%. The chloroplast genome of B. aegyptiaca contains 107 genes, 75 of which coding proteins, 28 coding tRNA, and 4 coding rRNA. We did not observe a large loss in plastid genes or a reduction in the genome size in B. aegyptiaca, as found previously in some species belonging to the family Zygophyllaceae. However, we noticed a divergence in the location of certain genes at the IR-LSC and IR-SSC boundaries and loss of ndh genes relative to other species. Furthermore, the phylogenetic tree constructed from the complete chloroplast genome data broadly supported the taxonomic classification of B. aegyptiaca as belonging to the Zygophyllaceae family. The plastome of B. aegyptiaca was found to be rich in single sequence repeats (SSRs), with a total of 240 SSRs. CONCLUSIONS The genomic data available from this study could be useful for developing molecular markers to evaluate population structure, investigate genetic variation, and improve production programs for B. aegyptiaca. Furthermore, the current data will support future investigation of the evolution of the family Zygophyllaceae.
Collapse
Affiliation(s)
- Widad S. AL-Juhani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, 24381 Saudi Arabia
| | - Samah A. Alharbi
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, 24381 Saudi Arabia
| | - Nora M. Al Aboud
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, 24381 Saudi Arabia
| | - Ashwaq Y. Aljohani
- Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah, 24381 Saudi Arabia
| |
Collapse
|
15
|
Qu XJ, Zhang XJ, Cao DL, Guo XX, Mower JP, Fan SJ. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol Phylogenet Evol 2022; 174:107544. [PMID: 35690375 DOI: 10.1016/j.ympev.2022.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China.
| |
Collapse
|
16
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
17
|
Jiang H, Tian J, Yang J, Dong X, Zhong Z, Mwachala G, Zhang C, Hu G, Wang Q. Comparative and phylogenetic analyses of six Kenya Polystachya (Orchidaceae) species based on the complete chloroplast genome sequences. BMC PLANT BIOLOGY 2022; 22:177. [PMID: 35387599 PMCID: PMC8985347 DOI: 10.1186/s12870-022-03529-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polystachya Hook. is a large pantropical orchid genus (c. 240 species) distributed in Africa, southern Asia and the Americas, with the center of diversity in Africa. Previous studies on species of this genus have not obtained the complete chloroplast genomes, structures and variations. Additionally, the phylogenetic position of the genus in the Orchidaceae is still controversial and uncertain. Therefore, in this study, we sequenced the complete plastomes of six Kenya Polystachya species based on genome skimming, subjected them to comparative genomic analysis, and reconstructed the phylogenetic relationships with other Orchidaceae species. RESULTS The results exhibited that the chloroplast genomes had a typical quadripartite structure with conserved genome arrangement and moderate divergence. The plastomes of the six Polystachya species ranged from 145,484 bp to 149,274 bp in length and had an almost similar GC content of 36.9-37.0%. Gene annotation revealed 106-109 single-copy genes. In addition, 19 genes are duplicated in the inverted regions, and 16 genes each possessd one or more introns. Although no large structural variations were observed among the Polystachya plastomes, about 1 kb inversion was found in Polystachya modesta and all 11 ndh genes in the Polystachya plastomes were lost or pseudogenized. Comparative analysis of the overall sequence identity among six complete chloroplast genomes confirmed that for both coding and non-coding regions in Polystachya, SC regions exhibit higher sequence variation than IRs. Furthermore, there were various amplifications in the IR regions among the six Polystachya species. Most of the protein-coding genes of these species had a high degree of codon preference. We screened out SSRs and found seven relatively highly variable loci. Moreover, 13 genes were discovered with significant positive selection. Phylogenetic analysis showed that the six Polystachya species formed a monophyletic clade and were more closely related to the tribe Vandeae. Phylogenetic relationships of the family Orchidaceae inferred from the 85 chloroplast genome sequences were generally consistent with previous studies and robust. CONCLUSIONS Our study is the initial report of the complete chloroplast genomes of the six Polystachya species, elucidates the structural characteristics of the chloroplast genome of Polystachya, and filters out highly variable sequences that can contribute to the development of DNA markers for use in the study of genetic variability and evolutionary studies in Polystachya. In addition, the phylogenetic results strongly support that the genus of Polystachya is a part of the tribe Vandeae.
Collapse
Affiliation(s)
- Hui Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Tian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jiaxin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Geoffrey Mwachala
- East African Herbarium, National Museums of Kenya, P.O. Box 45166, Nairobi, 00100, Kenya
| | - Caifei Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Wang X, Dorjee T, Chen Y, Gao F, Zhou Y. The complete chloroplast genome sequencing analysis revealed an unusual IRs reduction in three species of subfamily Zygophylloideae. PLoS One 2022; 17:e0263253. [PMID: 35108324 PMCID: PMC8809528 DOI: 10.1371/journal.pone.0263253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
Tetraena mongolica, Zygophyllum xanthoxylon, and Z. fabago are three typical dryland plants with important ecological values in subfamily Zygophylloideae of Zygophyllaceae. Studies on the chloroplast genomes of them are favorable for understanding the diversity and phylogeny of Zygophyllaceae. Here, we sequenced and assembled the whole chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, and performed comparative genomic and phylogenetic analysis. The total size, structure, gene content and orders of these three chloroplast genomes were similar, and the three chloroplast genomes exhibited a typical quadripartite structure with a large single-copy region (LSC; 79,696–80,291 bp), a small single-copy region (SSC; 16,462–17,162 bp), and two inverted repeats (IRs; 4,288–4,413 bp). A total of 107 unique genes were identified from the three chloroplast genomes, including 70 protein-coding genes, 33 tRNAs, and 4 rRNAs. Compared with other angiosperms, the three chloroplast genomes were significantly reduced in overall length due to an unusual 16–24 kb shrinkage of IR regions and loss of the 11 genes which encoded subunits of NADH dehydrogenase. Genome-wide comparisons revealed similarities and variations between the three species and others. Phylogenetic analysis based on the three chloroplast genomes supported the opinion that Zygophyllaceae belonged to Zygophyllales in Fabids, and Z. xanthoxylon and Z. fabago belonged to Zygophyllum. The genome-wide comparisons revealed the similarity and variations between the chloroplast genomes of the three Zygophylloideae species and other plant species. This study provides a valuable molecular biology evidence for further studies of phylogenetic status of Zygophyllaceae.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tashi Dorjee
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yiru Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- * E-mail: (FG); (YZ)
| | - Yijun Zhou
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- * E-mail: (FG); (YZ)
| |
Collapse
|
19
|
Dalla Costa TP, Silva MC, de Santana Lopes A, Gomes Pacheco T, de Oliveira JD, de Baura VA, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes. PLANTA 2022; 255:57. [PMID: 35113261 DOI: 10.1007/s00425-022-03841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The plastome of Melocactus glaucescens shows unique rearrangements, IR expansion, and unprecedented gene losses in Cactaceae. Our data indicate tRNA import from the cytosol to the plastids in this species. Cactaceae represents one of the richest families in keystone species of arid and semiarid biomes. This family shows various specific features comprehending morphology, anatomy, and metabolism, which allow them to grow under unfavorable environmental conditions. The subfamily Cactoideae contains the most divergence of species, which are highly variable in growth habit and morphology. This subfamily includes the endangered species Melocactus glaucescens (tribe Cereeae), which is a cactus endemic to the biome Caatinga in Brazil. Aiming to analyze the plastid evolution and develop molecular markers, we sequenced and analyzed in detail the plastome of M. glaucescens. Our analyses revealed that the M. glaucescens plastome is the most divergent among the species of the family Cactaceae sequenced so far. We characterized here unique rearrangements, expanded IRs containing an unusual set of genes, and several gene losses. Some genes related to the ndh complex were lost during the plastome evolution, while others have lost their functionality. Additionally, the loss of three tRNA genes (trnA-UGC, trnV-UAC, and trnV-GAC) suggests tRNA import from the cytosol to the plastids in M. glaucescens. Moreover, we identified high gene divergence, several putative positive signatures, and possible unique RNA-editing sites. Furthermore, we mapped 169 SSRs in the plastome of M. glaucescens, which are helpful to access the genetic diversity of natural populations and conservation strategies. Finally, our data provide new insights into the evolution of plastids in Cactaceae, which is an outstanding lineage adapted to extreme environmental conditions and a notorious example of the atypical evolution of plastomes.
Collapse
Affiliation(s)
- Tanara P Dalla Costa
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maria C Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - José D de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Valter A de Baura
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
20
|
Zhou XM, Zhao J, Yang JJ, Le Péchon T, Zhang L, He ZR, Zhang LB. Plastome structure, evolution, and phylogeny of Selaginella. Mol Phylogenet Evol 2022; 169:107410. [PMID: 35031459 DOI: 10.1016/j.ympev.2022.107410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
As one of the earliest land plant lineages, Selaginella is important for studying land plant evolution. It is the largest genus of lycophytes containing 700-800 species. Some unique characters of Selaginella plastomes have been reported, but based only on 20 species. There have been no plastome phylogenies of Selaginella based on a relatively large sampling, and no efforts have been made to resolve the phylogeny of the enigmatic Sinensis group whose relationships have been unclear based on small datasets. Here we investigated the structures of 59 plastomes representing 51 species covering all six subgenera and 18 sections of Selaginella except two sections and including the intriguing Sinensis group for the first time. Our major results include: (1) the plastome size of Selaginella ranges tremendously from 78,492 bp to 187,632 bp; (2) there are numerous gene losses in Selaginella comparing with other lycophytes, Isoëtaceae and Lycopodiaceae; (3) the gene contents and plastome structures in Selaginella vary lineage-specifically and all infrageneric taxa are well supported in the plastome phylogeny; (4) the ndh gene family tends to lose or pseudogenize in those species with DR structure and without other short or medium repeats; (5) the short and medium repeat regions in SC mediate many conformations causing diverse and complex plastome structures, and six new conformations are discovered; (6) forty-eight species sampled have high GC content (>50%) but three species in the Sinensis group have ∼30% GC content in plastomes, similar to most vascular plants; (7) the Sinensis group is monophyletic, includes at least two subgroups, and has the smallest plastomes in land plants except some parasitic plants, and their plastomes do not contain any tRNAs; (8) the younger lineages in Selaginella tend to have higher GC content, whereas the older lineages tend to have lower GC content; and (9) because of incomplete genomic data and abnormal structures or some unknown reasons, even the concatenated plastomes could not well resolve the phylogenetic relationships in Selaginella with confidence, highlighting the difficulty in resolving the phylogeny and evolution of this particularly important land plant lineage.
Collapse
Affiliation(s)
- Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China
| | - Jing Zhao
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China
| | - Jian-Jun Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China
| | | | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Li-Bing Zhang
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China.
| |
Collapse
|
21
|
Sabater B. On the Edge of Dispensability, the Chloroplast ndh Genes. Int J Mol Sci 2021; 22:12505. [PMID: 34830386 PMCID: PMC8621559 DOI: 10.3390/ijms222212505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.
Collapse
Affiliation(s)
- Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
22
|
Asaf S, Khan AL, Jan R, Khan A, Khan A, Kim KM, Lee IJ. The dynamic history of gymnosperm plastomes: Insights from structural characterization, comparative analysis, phylogenomics, and time divergence. THE PLANT GENOME 2021; 14:e20130. [PMID: 34505399 DOI: 10.1002/tpg2.20130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 05/25/2023]
Abstract
Gymnosperms are among the most endangered groups of plant species; they include ginkgo, pines (Conifers I), cupressophytes (Conifers II), cycads, and gnetophytes. The relationships among the five extant gymnosperm groups remain equivocal. We analyzed 167 available gymnosperm plastomes and investigated their diversity and phylogeny. We found that plastome size, structure, and gene order were highly variable in the five gymnosperm groups, of which Parasitaxus usta (Vieill.) de Laub. and Macrozamia mountperriensis F.M.Bailey had the smallest and largest plastomes, respectively. The inverted repeats (IRs) of the five groups were shown to have evolved through distinctive evolutionary scenarios. The IRs have been lost in all conifers but retained in cycads and gnetophytes. A positive association between simple sequence repeat (SSR) abundance and plastome size was observed, and the SSRs with the most variation were found in Pinaceae. Furthermore, the number of repeats was negatively correlated with IR length; thus, the highest number of repeats was detected in Conifers I and II, in which the IRs had been lost. We constructed a phylogeny based on 29 shared genes from 167 plastomes. With the plastome tree and 13 calibrations, we estimated the tree height between present-day angiosperms and gymnosperms to be ∼380 million years ago (mya). The placement of Gnetales in the tree agreed with the Gnetales-other gymnosperms hypothesis. The divergence between Ginkgo and cycads was estimated as ∼284 mya; the crown age of the cycads was 251 mya. Our time-calibrated plastid-based phylogenomic tree provides a framework for comparative studies of gymnosperm evolution.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, Univ. of Nizwa, Nizwa, 616, Oman
| | - Abdul Latif Khan
- Dep. of Biotechnology, College of Technology, Univ. of Houston, Houston, TX, 77204, USA
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord Univ., Bodø, 8049, Norway
| | - Adil Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, 79409, USA
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| |
Collapse
|
23
|
Li X, Yang JB, Wang H, Song Y, Corlett RT, Yao X, Li DZ, Yu WB. Plastid NDH Pseudogenization and Gene Loss in a Recently Derived Lineage from the Largest Hemiparasitic Plant Genus Pedicularis (Orobanchaceae). PLANT & CELL PHYSIOLOGY 2021; 62:971-984. [PMID: 34046678 PMCID: PMC8504446 DOI: 10.1093/pcp/pcab074] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/08/2021] [Accepted: 08/09/2021] [Indexed: 05/28/2023]
Abstract
The plastid genome (plastome) is highly conserved in both gene order and content and has a lower mutation rate than the nuclear genome. However, the plastome is more variable in heterotrophic plants. To date, most such studies have investigated just a few species or only holoheterotrophic groups, and few have examined plastome evolution in recently derived lineages at an early stage of transition from autotrophy to heterotrophy. In this study, we investigated the evolutionary dynamics of plastomes in the monophyletic and recently derived Pedicularis sect. Cyathophora (Orobanchaceae). We obtained 22 new plastomes, 13 from the six recognized species of section Cyathophora, six from hemiparasitic relatives and three from autotrophic relatives. Comparative analyses of gene content, plastome structure and selection pressure showed dramatic differences among species in section Cyathophora and in Pedicularis as a whole. In comparison with autotrophic relatives and other Pedicularis spp., we found that the inverted repeat (IR) region in section Cyathophora had expansions to the small single-copy region, with a large expansion event and two independent contraction events. Moreover, NA(D)H dehydrogenase, accD and ccsA have lost function multiple times, with the function of accD being replaced by nuclear copies of an accD-like gene in Pedicularis spp. The ccsA and ndhG genes may have evolved under selection in association with IR expansion/contraction events. This study is the first to report high plastome variation in a recently derived lineage of hemiparasitic plants and therefore provides evidence for plastome evolution in the transition from autotrophy to heterotrophy.
Collapse
Affiliation(s)
- Xin Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jun-Bo Yang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Xin Yao
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| |
Collapse
|
24
|
Zhang L, Wang S, Su C, Harris AJ, Zhao L, Su N, Wang JR, Duan L, Chang ZY. Comparative Chloroplast Genomics and Phylogenetic Analysis of Zygophyllum (Zygophyllaceae) of China. FRONTIERS IN PLANT SCIENCE 2021; 12:723622. [PMID: 34630471 PMCID: PMC8500179 DOI: 10.3389/fpls.2021.723622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 05/25/2023]
Abstract
The genus Zygophyllum comprises over 150 species within the plant family Zygophyllaceae. These species predominantly grow in arid and semiarid areas, and about 20 occur in northwestern China. In this study, we sampled 24 individuals of Zygophyllum representing 15 species and sequenced their complete chloroplast (cp) genomes. For comparison, we also sequenced cp genomes of two species of Peganum from China representing the closely allied family, Nitrariaceae. The 24 cp genomes of Zygophyllum were smaller and ranged in size from 104,221 to 106,286 bp, each containing a large single-copy (LSC) region (79,245-80,439 bp), a small single-copy (SSC) region (16,285-17,146 bp), and a pair of inverted repeat (IR) regions (3,792-4,466 bp). These cp genomes contained 111-112 genes each, including 74-75 protein-coding genes (PCGs), four ribosomal RNA genes, and 33 transfer RNA genes, and all cp genomes showed similar gene order, content, and structure. The cp genomes of Zygophyllum appeared to lose some genes such as ndh genes and rRNA genes, of which four rRNA genes were in the SSC region, not in the IR regions. However, the SC and IR regions had greater similarity within Zygophyllum than between the genus and Peganum. We detected nine highly variable intergenic spacers: matK-trnQ, psaC-rps15, psbZ-trnG, rps7-trnL, rps15-trnN, trnE-trnT, trnL-rpl32, trnQ-psbK, and trnS-trnG. Additionally, we identified 156 simple sequence repeat (cpSSR) markers shared among the genomes of the 24 Zygophyllum samples and seven cpSSRs that were unique to the species of Zygophyllum. These markers may be useful in future studies on genetic diversity and relationships of Zygophyllum and closely related taxa. Using the sequenced cp genomes, we reconstructed a phylogeny that strongly supported the division of Chinese Zygophyllum into herbaceous and shrubby clades. We utilized our phylogenetic results along with prior morphological studies to address several remaining taxonomic questions within Zygophyllum. Specifically, we found that Zygophyllum kaschgaricum is included within Zygophyllum xanthoxylon supporting the present treatment of the former genus Sarcozygium as a subgenus within Zygophyllum. Our results provide a foundation for future research on the genetic resources of Zygophyllum.
Collapse
Affiliation(s)
- Ling Zhang
- College of Life Science, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
- College of Life Science, Tarim University, Alar, China
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin Xinjiang Production & Construction Group, Alar, China
| | - Shu Wang
- College of Life Science, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Chun Su
- College of Life Science, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - AJ Harris
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Zhao
- College of Life Science, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Na Su
- College of Life Science, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Jun-Ru Wang
- College of Life Science, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| | - Lei Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhao-Yang Chang
- College of Life Science, Northwest A&F University, Yangling, China
- Herbarium of Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Chen J, Zang Y, Shang S, Liang S, Zhu M, Wang Y, Tang X. Comparative Chloroplast Genomes of Zosteraceae Species Provide Adaptive Evolution Insights Into Seagrass. FRONTIERS IN PLANT SCIENCE 2021; 12:741152. [PMID: 34630493 PMCID: PMC8495015 DOI: 10.3389/fpls.2021.741152] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 05/29/2023]
Abstract
Seagrasses are marine flowering plants found in tropical and sub-tropical areas that live in coastal regions between the sea and land. All seagrass species evolved from terrestrial monocotyledons, providing the opportunity to study plant adaptation to sea environments. Here, we sequenced the chloroplast genomes (cpGenomes) of three Zostera species, then analyzed and compared their cpGenome structures and sequence variations. We also performed a phylogenetic analysis using published seagrass chloroplasts and calculated the selection pressure of 17 species within seagrasses and nine terrestrial monocotyledons, as well as estimated the number of shared genes of eight seagrasses. The cpGenomes of Zosteraceae species ranged in size from 143,877 bp (Zostera marina) to 152,726 bp (Phyllospadix iwatensis), which were conserved and displayed similar structures and gene orders. Additionally, we found 17 variable hotspot regions as candidate DNA barcodes for Zosteraceae species, which will be helpful for studying the phylogenetic relationships and interspecies differences between seagrass species. Interestingly, nine genes had positive selection sites, including two ATP subunit genes (atpA and atpF), two ribosome subunit genes (rps4 and rpl20), two DNA-dependent RNA polymerase genes (rpoC1 and rpoC2), as well as accD, clpP, and ycf2. These gene regions may have played key roles in the seagrass adaptation to diverse environments. The Branch model analysis showed that seagrasses had a higher rate of evolution than terrestrial monocotyledons, suggesting that seagrasses experienced greater environmental pressure. Moreover, a branch-site model identified positively selected sites (PSSs) in ccsA, suggesting their involvement in the adaptation to sea environments. These findings are valuable for further investigations on Zosteraceae cpGenomes and will serve as an excellent resource for future studies on seagrass adaptation to sea environments.
Collapse
Affiliation(s)
- Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiling Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Tu XD, Liu DK, Xu SW, Zhou CY, Gao XY, Zeng MY, Zhang S, Chen JL, Ma L, Zhou Z, Huang MZ, Chen SP, Liu ZJ, Lan SR, Li MH. Plastid phylogenomics improves resolution of phylogenetic relationship in the Cheirostylis and Goodyera clades of Goodyerinae (Orchidoideae, Orchidaceae). Mol Phylogenet Evol 2021; 164:107269. [PMID: 34324956 DOI: 10.1016/j.ympev.2021.107269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Goodyerinae are one of phylogenetically unresolved groups of Orchidaceae. The lack of resolution achieved through the analyses of previous molecular sequences from one or a few markers has long confounded phylogenetic estimation and generic delimitation. Here, we present large-scale phylogenomic data to compare the plastome structure of the two main clades (Goodyera and Cheirostylis) in this subtribe and further adopt two strategies, combining plastid coding sequences and the whole plastome, to investigate phylogenetic relationships. A total of 46 species in 16 genera were sampled, including 39 species in 15 genera sequenced in this study. The plastomes of heterotrophic species are not drastically reduced in overall size, but display a pattern congruent with a loss of photosynthetic function. The plastomes of autotrophic species ranged from 147 to 165 kb and encoded from 132 to 137 genes. Three unusual structural features were detected: a 1.0-kb inversion in the large single-copy region of Goodyera schlechtendaliana; the loss and/or pseudogenization of ndh genes only in two species, Cheirostylis chinensis and C. montana; and the expansion of inverted repeat regions and contraction of small single-copy region in Hetaeria oblongifolia. Phylogenomic analyses provided improved resolution for phylogenetic relationships. All genera were recovered as monophyletic, except for Goodyera and Hetaeria, which were each recovered as non-monophyletic. Nomenclatural changes are needed until the broader sampling and biparental inherited markers. This study provides a phylogenetic framework of Goodyerinae and insight into plastome evolution of Orchidaceae.
Collapse
Affiliation(s)
- Xiong-De Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shao-Wei Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Yong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sai Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Liao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Ming-Zhong Huang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropic Agricultural Sciences, Haikou 571101, China
| | - Shi-Pin Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Ranade SS, Egertsdotter U. In silico characterization of putative gene homologues involved in somatic embryogenesis suggests that some conifer species may lack LEC2, one of the key regulators of initiation of the process. BMC Genomics 2021; 22:392. [PMID: 34039265 PMCID: PMC8157724 DOI: 10.1186/s12864-021-07718-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is the process in which somatic embryos develop from somatic tissue in vitro on medium in most cases supplemented with growth regulators. Knowledge of genes involved in regulation of initiation and of development of somatic embryos is crucial for application of SE as an efficient tool to enable genetic improvement across genotypes by clonal propagation. RESULTS Current work presents in silico identification of putative homologues of central regulators of SE initiation and development in conifers focusing mainly on key transcription factors (TFs) e.g. BBM, LEC1, LEC1-LIKE, LEC2 and FUSCA3, based on sequence similarity using BLASTP. Protein sequences of well-characterised candidates genes from Arabidopsis thaliana were used to query the databases (Gymno PLAZA, Congenie, GenBank) including whole-genome sequence data from two representative species from the genus Picea (Picea abies) and Pinus (Pinus taeda), for finding putative conifer homologues, using BLASTP. Identification of corresponding conifer proteins was further confirmed by domain search (Conserved Domain Database), alignment (MUSCLE) with respective sequences of Arabidopsis thaliana proteins and phylogenetic analysis (Phylogeny.fr). CONCLUSIONS This in silico analysis suggests absence of LEC2 in Picea abies and Pinus taeda, the conifer species whose genomes have been sequenced. Based on available sequence data to date, LEC2 was also not detected in the other conifer species included in the study. LEC2 is one of the key TFs associated with initiation and regulation of the process of SE in angiosperms. Potential alternative mechanisms that might be functional in conifers to compensate the lack of LEC2 are discussed.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center (UPSC), Swedish University of Agricultural Science (SLU), 901 83, Umeå, Sweden.
| | - Ulrika Egertsdotter
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center (UPSC), Swedish University of Agricultural Science (SLU), 901 83, Umeå, Sweden
| |
Collapse
|
28
|
Ping J, Feng P, Li J, Zhang R, Su Y, Wang T. Molecular evolution and SSRs analysis based on the chloroplast genome of Callitropsis funebris. Ecol Evol 2021; 11:4786-4802. [PMID: 33976848 PMCID: PMC8093713 DOI: 10.1002/ece3.7381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroplast genome sequences have been used to understand evolutionary events and to infer efficiently phylogenetic relationships. Callitropsis funebris (Cupressaceae) is an endemic species in China. Its phylogenetic position is controversial due to morphological characters similar to those of Cupressus, Callitropsis, and Chamaecyparis. This study used next-generation sequencing technology to sequence the complete chloroplast genome of Ca. funebris and then constructed the phylogenetic relationship between Ca. funebris and its related species based on a variety of data sets and methods. Simple sequence repeats (SSRs) and adaptive evolution analysis were also conducted. Our results showed that the monophyletic branch consisting of Ca. funebris and Cupressus tonkinensis is a sister to Cupressus, while Callitropsis is not monophyletic; Ca. nootkatensis and Ca. vietnamensis are nested in turn at the base of the monophyletic group Hesperocyparis. The statistical results of SSRs supported the closest relationship between Ca. funebris and Cupressus. By performing adaptive evolution analysis under the phylogenetic background of Cupressales, the Branch model detected three genes and the Site model detected 10 genes under positive selection; and the Branch-Site model uncovered that rpoA has experienced positive selection in the Ca. funebries branch. Molecular analysis from the chloroplast genome highly supported that Ca. funebris is at the base of Cupressus. Of note, SSR features were found to be able to shed some light on phylogenetic relationships. In short, this chloroplast genomic study has provided new insights into the phylogeny of Ca. funebris and revealed multiple chloroplast genes possibly undergoing adaptive evolution.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Peipei Feng
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Rongjing Zhang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
29
|
Fu P, Sun S, Twyford AD, Li B, Zhou R, Chen S, Gao Q, Favre A. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol Evol 2021; 11:3286-3299. [PMID: 33841784 PMCID: PMC8019047 DOI: 10.1002/ece3.7281] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
The structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species-rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species' habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single-copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage-specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species-rich plant group.
Collapse
Affiliation(s)
- Peng‐Cheng Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shan‐Shan Sun
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Alex D. Twyford
- Ashworth LaboratoriesInstitute of Evolutionary BiologyThe University of EdinburghEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Bei‐Bei Li
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Rui‐Qi Zhou
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shi‐Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Qing‐Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
| |
Collapse
|
30
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochem J 2020; 476:2743-2756. [PMID: 31654059 DOI: 10.1042/bcj20190365] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.
Collapse
|
32
|
Köhler M, Reginato M, Souza-Chies TT, Majure LC. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies. FRONTIERS IN PLANT SCIENCE 2020; 11:729. [PMID: 32636853 PMCID: PMC7317007 DOI: 10.3389/fpls.2020.00729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/22/2023]
Abstract
Chloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (∼25 kb) and the ndh gene suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized. Here, we investigated the variation of plastome sequences across the second-major lineage of the Cactaceae, the subfamily Opuntioideae, to address (1) how variable is the content and arrangement of chloroplast genome sequences across the subfamily, and (2) how phylogenetically informative are the plastome sequences for resolving major relationships among the clades of Opuntioideae. Our de novo assembly of the Opuntia quimilo plastome recovered an organelle of 150,347 bp in length with both copies of the inverted repeat and the presence of all the ndh gene suite. An expansion of the large single copy unit and a reduction of the small single copy unit was observed, including translocations and inversion of genes, as well as the putative pseudogenization of some loci. Comparative analyses among all clades within Opuntioideae suggested that plastome structure and content vary across taxa of this subfamily, with putative independent losses of the ndh gene suite and pseudogenization of genes across disparate lineages, further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome dataset was robust in resolving three tribes with high support within Opuntioideae: Cylindropuntieae, Tephrocacteae and Opuntieae. However, conflicting topologies were recovered among major clades when exploring different assemblies of markers. A plastome-wide survey for highly informative phylogenetic markers revealed previously unused regions for future use in Sanger-based studies, presenting a valuable dataset with primers designed for continued evolutionary studies across Cactaceae. These results bring new insights into the evolution of plastomes in cacti, suggesting that further analyses should be carried out to address how ecological drivers, physiological constraints and morphological traits of cacti may be related with the common rearrangements in plastomes that have been reported across the family.
Collapse
Affiliation(s)
- Matias Köhler
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Lucas C Majure
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, United States
| |
Collapse
|
33
|
Guo X, Liu C, Zhang G, Su W, Landis JB, Zhang X, Wang H, Ji Y. The Complete Plastomes of Five Hemiparasitic Plants ( Osyris wightiana, Pyrularia edulis, Santalum album, Viscum liquidambaricolum, and V. ovalifolium): Comparative and Evolutionary Analyses Within Santalales. Front Genet 2020; 11:597. [PMID: 32612639 PMCID: PMC7308561 DOI: 10.3389/fgene.2020.00597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/18/2020] [Indexed: 11/27/2022] Open
Abstract
Most species of Santalales (the sandalwood order) are hemiparasites, including both facultative and obligate hemiparasites. Despite its rich diversity, only a small fraction of the species in the sandalwood order have sequenced plastomes. The evolution of parasitism-associated plastome reduction in Santalales remains under-studied. Here, we report the complete plastomes of three facultative hemiparasites (Pyrularia edulis, Cervantesiaceae; Osyris wightiana, and Santalum album, Santalaceae), and two obligate hemiparasites (Viscum liquidambaricolum and Viscum ovalifolium, Viscaceae). Coupled with publicly available data, we investigated the dynamics of plastome degradation in Santalales hemiparasites. Our results indicate that these hemiparasites can be characterized by various degrees of plastome downsizing, structural rearrangement, and gene loss. The loss or pseudogenization of ndh genes was commonly observed in Santalales hemiparasites, which may be correlated to the lifestyle shift from photoautotroph to hemiparasitism. However, the obligate hemiparasites did not exhibit a consistently higher level of gene loss or pseudogenization compared to facultative hemiparasites, which suggests that the degree of plastome reduction is not correlated with the trophic level facultative or obligate hemiparasitism. Instead, closely related taxa tend to possess highly similar plastome size, structure, and gene content. This implies the parasitism-associated plastome degradation in Santalales may evolve in a lineage-specific manner.
Collapse
Affiliation(s)
- Xiaorong Guo
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Guangfei Zhang
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Wenhua Su
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
34
|
Yang Y, Wang Y, Ferguson DK. A new macrofossil ephedroid plant with unusual bract morphology from the Lower Cretaceous Jiufotang Formation of northeastern China. BMC Evol Biol 2020; 20:19. [PMID: 32019502 PMCID: PMC7001366 DOI: 10.1186/s12862-019-1569-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the Jehol Biota of western Liaoning in China includes three phases, initiation in the Dabeigou phase, radiation in the Yixian phase, and decline in the Jiufotang phase. Numerous ephedroid macrofossils were reported from the Lower Cretaceous Yixian Formation. However, so far none has been found in the younger Jiufotang Formation (ca. 120.3 Ma) of western Liaoning. RESULTS Here we report a new species Jianchangia verticillata gen. et sp. nov. with unusual morphology from the Lower Cretaceous of the Jiufotang Formation, Lamadong Village, Jianchang County, Liaoning. This species is the first record of gnetophytes from the Jiufotang Formation. It is similar to other ephedroid species from the Yixian Formation in possessing linear leaves with parallel veins, jointed shoots with swollen nodes and longitudinally furrowed internodes, and ovulate cones possessing two whorls of bracts enclosing two chlamydosperms, but differs from all known species by the ovulate cone having multiple fine linear verticillate bracts. CONCLUSIONS This study expands our knowledge about the diversity of early gnetophytes in the Lower Cretaceous, and demonstrates the lineage continuity of gnetophytes from the Yixian Formation to the younger Jiufotang Formation.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Yingwei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | |
Collapse
|
35
|
Yang Q, Blanco NE, Hermida-Carrera C, Lehotai N, Hurry V, Strand Å. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nat Commun 2020; 11:128. [PMID: 31913273 PMCID: PMC6949249 DOI: 10.1038/s41467-019-13954-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/05/2019] [Indexed: 01/25/2023] Open
Abstract
Boreal forests are dominated by evergreen conifers that show strongly regulated seasonal photosynthetic activity. Understanding the mechanisms behind seasonal modulation of photosynthesis is crucial for predicting how these forests will respond to changes in seasonal patterns and how this will affect their role in the terrestrial carbon cycle. We demonstrate that the two co-occurring dominant boreal conifers, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies), use contrasting mechanisms to reactivate photosynthesis in the spring. Scots pine downregulates its capacity for CO2 assimilation during winter and activates alternative electron sinks through accumulation of PGR5 and PGRL1 during early spring until the capacity for CO2 assimilation is recovered. In contrast, Norway spruce lacks this ability to actively switch between different electron sinks over the year and as a consequence suffers severe photooxidative damage during the critical spring period.
Collapse
Affiliation(s)
- Qi Yang
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87, Umeå, Sweden
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Nicolás E Blanco
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87, Umeå, Sweden.
- Centre of Photosynthetic and Biochemical Studies (CEFOBI-CONICET), Faculty of Biochemical Science and Pharmacy, Rosario National University, S2002LRK, Rosario, Argentina.
| | - Carmen Hermida-Carrera
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87, Umeå, Sweden
| | - Nóra Lehotai
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87, Umeå, Sweden
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83, Umeå, Sweden.
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87, Umeå, Sweden.
| |
Collapse
|
36
|
Omelchenko DO, Krinitsina AA, Belenikin MS, Konorov EA, Kuptsov SV, Logacheva MD, Speranskaya AS. Complete plastome sequencing of Allium paradoxum reveals unusual rearrangements and the loss of the ndh genes as compared to Allium ursinum and other onions. Gene 2019; 726:144154. [PMID: 31589962 DOI: 10.1016/j.gene.2019.144154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/12/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
In this work the complete chloroplast DNAs of Allium paradoxum and Allium ursinum, two edible species of Allium subg. Amerallium (the first lineage), were sequenced, assembled, annotated, and compared with complete Allium plastomes of the second and third evolutionary lines from GenBank database. The A. ursinum plastome contains 90 predicted genes (81 unique) including 5 pseudogenes, while A. paradoxum has 88 predicted genes (79 unique) including 19 pseudogenes. The comparative analysis has revealed that the A. paradoxum plastome differs markedly from those of other species. Due to many deletions, the A. paradoxum plastome is the shortest of known for Allium species, being only 145,819 bp long. The most prominent distinctions are (1) a 4825 bp long local inversion that spans from the ndhE to the rpl32 gene in the small single copy region and (2) pseudogenization, or the loss of all NADH-genes. In contrast, the plastome of A. ursinum - a species from the first evolutionary line (as well as A. paradoxum) - resembles the Allium species of the second and third evolutionary lines, showing no large rearrangements or discrepancies in gene content. It is unclear yet whether only A. paradoxum was affected by some evolutionary events or its close relatives from both sect. Briseis and other sections of Amerallium were altered as well. We speculate the sunlight-intolerant, shade-loving nature of A. paradoxum and the impairment of the ndh genes in its plastome could be interrelated phenomena.
Collapse
Affiliation(s)
- Denis O Omelchenko
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Institute for Information Transmission Problems, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow Region 143026, Russia.
| | - Anastasia A Krinitsina
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; All-Russia Research Institute of Agricultural Biotechnology, Timiryasevskaya St. 42, Moscow 127550, Russia.
| | - Maxim S Belenikin
- Moscow Institute of Physics and Technology, Institutskiy Ln. 9, Dolgoprudny Moscow Region 141701, Russia
| | - Evgenii A Konorov
- Vavilov Institute of General Genetics RAS, Gubkina St. 3, Moscow 119991, Russia; V.M. Gorbatov Federal Research Center for Food Systems RAS, Talalikhina 26, Moscow 109316, Russia
| | - Sergey V Kuptsov
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia
| | - Maria D Logacheva
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Institute for Information Transmission Problems, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow Region 143026, Russia
| | - Anna S Speranskaya
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Central Research Institute of Epidemiology, Novogireevskaya St. 3a, Moscow 111123, Russia.
| |
Collapse
|
37
|
Grebe S, Trotta A, Bajwa AA, Suorsa M, Gollan PJ, Jansson S, Tikkanen M, Aro EM. The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3211-3225. [PMID: 30938447 PMCID: PMC6598058 DOI: 10.1093/jxb/erz127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 05/07/2023]
Abstract
Pinaceae are the predominant photosynthetic species in boreal forests, but so far no detailed description of the protein components of the photosynthetic apparatus of these gymnosperms has been available. In this study we report a detailed characterization of the thylakoid photosynthetic machinery of Norway spruce (Picea abies (L.) Karst). We first customized a spruce thylakoid protein database from translated transcript sequences combined with existing protein sequences derived from gene models, which enabled reliable tandem mass spectrometry identification of P. abies thylakoid proteins from two-dimensional large pore blue-native/SDS-PAGE. This allowed a direct comparison of the two-dimensional protein map of thylakoid protein complexes from P. abies with the model angiosperm Arabidopsis thaliana. Although the subunit composition of P. abies core PSI and PSII complexes is largely similar to that of Arabidopsis, there was a high abundance of a smaller PSI subcomplex, closely resembling the assembly intermediate PSI* complex. In addition, the evolutionary distribution of light-harvesting complex (LHC) family members of Pinaceae was compared in silico with other land plants, revealing that P. abies and other Pinaceae (also Gnetaceae and Welwitschiaceae) have lost LHCB4, but retained LHCB8 (formerly called LHCB4.3). The findings reported here show the composition of the photosynthetic apparatus of P. abies and other Pinaceae members to be unique among land plants.
Collapse
Affiliation(s)
- Steffen Grebe
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Azfar A Bajwa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Stefan Jansson
- Umeå University, Faculty of Science and Technology, Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå, Sweden
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Plastid phylogenomic insights into the evolution of Caryophyllales. Mol Phylogenet Evol 2019; 134:74-86. [DOI: 10.1016/j.ympev.2018.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
|
39
|
Zhang HR, Xiang QP, Zhang XC. The Unique Evolutionary Trajectory and Dynamic Conformations of DR and IR/DR-Coexisting Plastomes of the Early Vascular Plant Selaginellaceae (Lycophyte). Genome Biol Evol 2019; 11:1258-1274. [PMID: 30937434 PMCID: PMC6486807 DOI: 10.1093/gbe/evz073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 12/23/2022] Open
Abstract
Both direct repeats (DR) and inverted repeats (IR) are documented in the published plastomes of Selaginella species indicating the unusual and diverse plastome structure in the family Selaginellaceae. In this study, we newly sequenced complete plastomes of seven species from five main lineages of Selaginellaceae and also resequenced three species (Selaginella tamariscina, Selaginella uncinata, and Selaginella moellendorffii) to explore the evolutionary trajectory of Selaginellaceae plastomes. Our results showed that the plastomes of Selaginellaceae vary remarkably in size, gene contents, gene order, and GC contents. Notably, both DR and IR structures existed in the plastomes of Selaginellaceae with DR structure being an ancestral state. The occurrence of DR structure was at ∼257 Ma and remained in most subgenera of Selaginellaceae, whereas IR structure only reoccurred in Selaginella sect. Lepidophyllae (∼143 Ma) and Selaginella subg. Heterostachys (∼19 Ma). The presence of a pair of large repeats psbK-trnQ, together with DR/IR region in Selaginella bisulcata, Selaginella pennata, S. uncinata, and Selaginella hainanensis, could frequently mediate diverse homologous recombination and create approximately equal stoichiometric isomers (IR/DR-coexisting) and subgenomes. High proportion of repeats is presumably responsible for the dynamic IR/DR-coexisting plastomes, which possess a lower synonymous substitution rate (dS) compared with DR-possessing and IR-possessing plastomes. We propose that the occurrence of DR structure, together with few repeats, is possibly selected to keep the stability of plastomes and the IR/DR-coexisting plastomes also reached an equilibrium in plastome organization through highly efficient homologous recombination to maintain stability.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Deng N, Hou C, Liu C, Li M, Bartish I, Tian Y, Chen W, Du C, Jiang Z, Shi S. Significance of Photosynthetic Characters in the Evolution of Asian Gnetum (Gnetales). FRONTIERS IN PLANT SCIENCE 2019; 10:39. [PMID: 30804953 PMCID: PMC6370715 DOI: 10.3389/fpls.2019.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/10/2019] [Indexed: 05/23/2023]
Abstract
Gnetum is a genus in the Gnetales that has a unique but ambiguous placement within seed plant phylogeny. Previous studies have shown that Gnetum has lower values of photosynthetic characters than those of other seed plants, but few Gnetum species have been studied, and those that have been studied are restricted to narrow taxonomic and geographic ranges. In addition, the mechanism underlying the lower values of photosynthetic characters in Gnetum remains poorly understood. Here, we investigated the photosynthetic characters of a Chinese lianoid species, i.e., Gnetum parvifolium, and co-occurring woody angiosperms growing in the wild, as well as seedlings of five Chinese Gnetum species cultivated in a greenhouse. The five Gnetum species had considerably lower values for photosynthesis parameters (net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatal conductance) than those of other seed plant representatives. Interrelated analyses revealed that the low photosynthetic capacity may be an intrinsic property of Gnetum, and may be associated with its evolutionary history. Comparison of the chloroplast genomes (cpDNAs) of Gnetum with those of other seed plant representatives revealed that 17 coding genes are absent from the cpDNAs of all species of Gnetum. This lack of multiple functional genes from the cpDNAs probably leads to the low photosynthetic rates of Gnetum. Our results provide a new perspective on the evolutionary history of the Gnetales, and on the ecophysiological and genomic attributes of tropical biomes in general. These results could also be useful for the breeding and cultivation of Gnetum.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Chen Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, China
| | - Minghe Li
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Igor Bartish
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences of Czech Republic, Praha, Czechia
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Institute of Forest and Ecology Protection, Chinese Academy of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
41
|
Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol Phylogenet Evol 2018; 129:106-116. [DOI: 10.1016/j.ympev.2018.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
|
42
|
Lee H, Golicz AA, Bayer PE, Severn-Ellis AA, Chan CKK, Batley J, Kendrick GA, Edwards D. Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3689-3702. [PMID: 29912443 PMCID: PMC6022596 DOI: 10.1093/jxb/ery147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/12/2018] [Indexed: 05/06/2023]
Abstract
Seagrasses are marine angiosperms that live fully submerged in the sea. They evolved from land plant ancestors, with multiple species representing at least three independent return-to-the-sea events. This raises the question of whether these marine angiosperms followed the same adaptation pathway to allow them to live and reproduce under the hostile marine conditions. To compare the basis of marine adaptation between seagrass lineages, we generated genomic data for Halophila ovalis and compared this with recently published genomes for two members of Zosteraceae, as well as genomes of five non-marine plant species (Arabidopsis, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Halophila and Zosteraceae represent two independent seagrass lineages separated by around 30 million years. Genes that were lost or conserved in both lineages were identified. All three species lost genes associated with ethylene and terpenoid biosynthesis, and retained genes related to salinity adaptation, such as those for osmoregulation. In contrast, the loss of the NADH dehydrogenase-like complex is unique to H. ovalis. Through comparison of two independent return-to-the-sea events, this study further describes marine adaptation characteristics common to seagrass families, identifies species-specific gene loss, and provides molecular evidence for convergent evolution in seagrass lineages.
Collapse
Affiliation(s)
- HueyTyng Lee
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, WA, Australia
| | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - Gary A Kendrick
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, WA, Australia
| |
Collapse
|
43
|
Song Y, Yu WB, Tan Y, Liu B, Yao X, Jin J, Padmanaba M, Yang JB, Corlett RT. Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids. Genome Biol Evol 2018; 9:2354-2364. [PMID: 28957463 PMCID: PMC5610729 DOI: 10.1093/gbe/evx180] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Available plastomes of the Lauraceae show similar structure and varied size, but there has been no systematic comparison across the family. In order to understand the variation in plastome size and structure in the Lauraceae and related families of magnoliids, we here compare 47 plastomes, 15 newly sequenced, from 27 representative genera. We reveal that the two shortest plastomes are in the parasitic Lauraceae genus Cassytha, with lengths of 114,623 (C. filiformis) and 114,963 bp (C. capillaris), and that they have lost NADH dehydrogenase (ndh) genes in the large single-copy region and one entire copy of the inverted repeat (IR) region. The plastomes of the core Lauraceae group, with lengths from 150,749 bp (Nectandra angustifolia) to 152,739 bp (Actinodaphne trichocarpa), have lost trnI-CAU, rpl23, rpl2, a fragment of ycf2, and their intergenic regions in IRb region, whereas the plastomes of the basal Lauraceae group, with lengths from 157,577 bp (Eusideroxylon zwageri) to 158,530 bp (Beilschmiedia tungfangensis), have lost rpl2 in IRa region. The plastomes of Calycanthus (Calycanthaceae, Laurales) have lost rpl2 in IRb region, but the plastome of Caryodaphnopsis henryi (Lauraceae) remain intact, as do those of the nonLaurales magnoliid genera Piper, Liriodendron, and Magnolia. On the basis of our phylogenetic analysis and structural comparisons, different loss events occurred in different lineages of the Laurales, and fragment loss events in the IR regions have largely driven the contraction of the plastome in the Lauraceae. These results provide new insights into the evolution of the Lauraceae as well as the magnoliids as a whole.
Collapse
Affiliation(s)
- Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Yunhong Tan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xin Yao
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jianjun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Michael Padmanaba
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| |
Collapse
|
44
|
de Santana Lopes A, Pacheco TG, Santos KGD, Vieira LDN, Guerra MP, Nodari RO, de Souza EM, de Oliveira Pedrosa F, Rogalski M. The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales. PLANT CELL REPORTS 2018; 37:307-328. [PMID: 29086003 DOI: 10.1007/s00299-017-2231-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 05/12/2023]
Abstract
The plastome of Linum usitatissimum was completely sequenced allowing analyses of evolution of genome structure, RNA editing sites, molecular markers, and indicating the position of Linaceae within Malpighiales. Flax (Linum usitatissimum L.) is an economically important crop used as food, feed, and industrial feedstock. It belongs to the Linaceae family, which is noted by high morphological and ecological diversity. Here, we reported the complete sequence of flax plastome, the first species within Linaceae family to have the plastome sequenced, assembled and characterized in detail. The plastome of flax is a circular DNA molecule of 156,721 bp with a typical quadripartite structure including two IRs of 31,990 bp separating the LSC of 81,767 bp and the SSC of 10,974 bp. It shows two expansion events from IRB to LSC and from IRB to SSC, and a contraction event in the IRA-LSC junction, which changed significantly the size and the gene content of LSC, SSC and IRs. We identified 109 unique genes and 2 pseudogenes (rpl23 and ndhF). The plastome lost the conserved introns of clpP gene and the complete sequence of rps16 gene. The clpP, ycf1, and ycf2 genes show high nucleotide and aminoacid divergence, but they still possibly retain the functionality. Moreover, we also identified 176 SSRs, 20 tandem repeats, and 39 dispersed repeats. We predicted in 18 genes a total of 53 RNA editing sites of which 32 were not found before in other species. The phylogenetic inference based on 63 plastid protein-coding genes of 38 taxa supports three major clades within Malpighiales order. One of these clades has flax (Linaceae) sister to Chrysobalanaceae family, differing from earlier studies that included Linaceae into the euphorbioid clade.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Karla Gasparini Dos Santos
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Onofre Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
45
|
Sun SS, Fu PC, Zhou XJ, Cheng YW, Zhang FQ, Chen SL, Gao QB. The Complete Plastome Sequences of Seven Species in Gentiana sect. Kudoa (Gentianaceae): Insights Into Plastid Gene Loss and Molecular Evolution. FRONTIERS IN PLANT SCIENCE 2018; 9:493. [PMID: 29765380 PMCID: PMC5938401 DOI: 10.3389/fpls.2018.00493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/03/2018] [Indexed: 05/15/2023]
Abstract
The chloroplast (cp) genome is useful in the study of phylogenomics, molecular dating, and molecular evolution. Gentiana sect. Kudoa is a predominantly alpine flowering plant that is valued for its contributions to medicine, ecology, and horticulture. Previous evolutionary studies showed that the plastid gene loss pattern and intra-sectional phylogenetics in sect. Kudoa are still unclear. In this study, we compared 11 Gentiana plastomes, including 7 newly sequenced plastomes from sect. Kudoa, to represent its three serious: ser. Ornatae, ser. Verticillatae, and ser. Monanthae. The cp genome sizes of the seven species ranged from 137,278 to 147,156 bp. The plastome size variation mainly occurred in the small single-copy and long single-copy regions rather than the inverted repeat regions. Compared with sect. Cruciata, the plastomes in ser. Ornatae and ser. Verticillatae had lost approximately 11 kb of sequences containing 11 ndh genes. Conversely, far fewer losses were observed in ser. Monanthae. The phylogenetic tree revealed that sect. Kudoa was not monophyletic and that ser. Monanthae was more closely related to other sections rather than sect. Kudoa. The molecular dating analysis indicated that ser. Monanthae and sect. Kudoa diverged around 8.23 Ma. In ser. Ornatae and ser. Verticillatae, the divergence occurred at around 0.07-1.78 Ma. The nucleotide diversity analysis indicated that the intergenic regions trnH-psbA, trnK-trnQ, ycf3-trnS and rpl32-trnL constituted divergence hotspots in both sect. Kudoa and Gentiana, and would be useful for future phylogenetic and population genetic studies.
Collapse
Affiliation(s)
- Shan-Shan Sun
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Peng-Cheng Fu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Xiao-Jun Zhou
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Yan-Wei Cheng
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Fa-Qi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qing-Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
- *Correspondence: Qing-Bo Gao,
| |
Collapse
|
46
|
Li Z, De La Torre AR, Sterck L, Cánovas FM, Avila C, Merino I, Cabezas JA, Cervera MT, Ingvarsson PK, Van de Peer Y. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biol Evol 2017; 9:1130-1147. [PMID: 28460034 PMCID: PMC5414570 DOI: 10.1093/gbe/evx070] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/02/2023] Open
Abstract
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Amanda R De La Torre
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Sciences, University of California-Davis, Davis, CA
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
47
|
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants. Mol Biol Evol 2017; 34:1363-1377. [PMID: 28333233 PMCID: PMC5435085 DOI: 10.1093/molbev/msx069] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes.
Collapse
Affiliation(s)
- Amanda R De La Torre
- Department of Plant Sciences, University of California-Davis, Davis, CA.,Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Zhen Li
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
48
|
Ni Z, Ye Y, Bai T, Xu M, Xu LA. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion. Molecules 2017; 22:E1528. [PMID: 28891993 PMCID: PMC6151703 DOI: 10.3390/molecules22091528] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/17/2022] Open
Abstract
The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.
Collapse
Affiliation(s)
- ZhouXian Ni
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - YouJu Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Tiandao Bai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
- Forestry College, Guangxi University, Nanning 530004, China.
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
49
|
The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae. G3-GENES GENOMES GENETICS 2017; 7:3157-3167. [PMID: 28751502 PMCID: PMC5592940 DOI: 10.1534/g3.117.300078] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp). Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms.
Collapse
|
50
|
Sun Y, Moore MJ, Lin N, Adelalu KF, Meng A, Jian S, Yang L, Li J, Wang H. Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family. BMC Genomics 2017; 18:592. [PMID: 28793854 PMCID: PMC5551029 DOI: 10.1186/s12864-017-3956-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the 13 families of early-diverging eudicots, only Circaeasteraceae (Ranunculales), which consists of the two monotypic genera Circaeaster and Kingdonia, lacks a published complete plastome sequence. In addition, the phylogenetic position of Circaeasteraceae as sister to Lardizabalaceae has only been weakly or moderately supported in previous studies using smaller data sets. Moreover, previous plastome studies have documented a number of novel structural rearrangements among early-divergent eudicots. Hence it is important to sequence plastomes from Circaeasteraceae to better understand plastome evolution in early-diverging eudicots and to further investigate the phylogenetic position of Circaeasteraceae. RESULTS Using an Illumina HiSeq 2000, complete plastomes were sequenced from both living members of Circaeasteraceae: Circaeaster agrestis and Kingdonia uniflora . Plastome structure and gene content were compared between these two plastomes, and with those of other early-diverging eudicot plastomes. Phylogenetic analysis of a 79-gene, 99-taxon data set including exemplars of all families of early-diverging eudicots was conducted to resolve the phylogenetic position of Circaeasteraceae. Both plastomes possess the typical quadripartite structure of land plant plastomes. However, a large ~49 kb inversion and a small ~3.5 kb inversion were found in the large single-copy regions of both plastomes, while Circaeaster possesses a number of other rearrangements, particularly in the Inverted Repeat. In addition, infA was found to be a pseudogene and accD was found to be absent within Circaeaster, whereas all ndh genes, except for ndhE and ndhJ, were found to be either pseudogenized (ΨndhA, ΨndhB, ΨndhD, ΨndhH and ΨndhK) or absent (ndhC, ndhF, ndhI and ndhG) in Kingdonia. Circaeasteraceae was strongly supported as sister to Lardizabalaceae in phylogenetic analyses. CONCLUSION The first plastome sequencing of Circaeasteraceae resulted in the discovery of several unusual rearrangements and the loss of ndh genes, and confirms the sister relationship between Circaeasteraceae and Lardizabalaceae. This research provides new insight to characterize plastome structural evolution in early-diverging eudicots and to better understand relationships within Ranunculales .
Collapse
Affiliation(s)
- Yanxia Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | - Nan Lin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kole F Adelalu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Meng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shuguang Jian
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Linsen Yang
- Hubei Key Laboratory of Shennongjia Golden Monkey Conservation Biology, Administration of Shennongjia National Park, Shennongjia, Hubei, China
| | - Jianqiang Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Hengchang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|